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In this chapter, we will give an overview on the counter electrode (CE) catalysts in
dye-sensitized solar cells (DSSCs). The contents in this chapter include (i) history
and cell efficiency level of DSSCs, (ii) fabrication techniques of a DSSC and a
symmetrical dummy cell, (iii) the operating principle of a DSSC, (iv) the operating
principle of a CE catalyst in DSSCs, (v) types and advances in CE catalysts in
DSSCs, and (vi) general design consideration of this book.

1.1 History and Cell Efficiency Level of DSSCs

Over the past 20 years, DSSCs as new-generation solar cells have drawn
much attention because of their low cost, simple fabrication, and high
solar-to-electrical power conversion efficiency (PCE) as compared with
silicon-based and thin film solar cells. The earliest DSSCs can be dated back to
the pioneering work of Gerischer and Tributsch in the late 1960s, and they found
that the organic dyes adsorbed on ZnO single-crystal electrodes can produce
photocurrents [1–3]. Subsequently, Tributsch and Calvin further demonstrated
that the sensitized ZnO semiconductors play a key role in solar energy conver-
sion [3–5]. The PCEs of this type of electrochemical cell are much lower at that
time, which has not drawn wide public attention in many labs around the world
[1, 6–8]. Approximately 10 years later, in 1977, the use of rutile TiO2 electrode
in this electrochemical cell resulted, in the turn of the tide, in the improvement
of cell performance [6, 9]. Many researchers from various groups worldwide
devote themselves to the study of electrochemical cells. A big breakthrough
was then made, and a high PCE of 7.1–7.9% was reported in the famous 1991
Nature paper by O’Regan and Grätzel [10]. Thereafter, type of electrochemical
cell was named DSSCs (or Grätzel cell) because of the use of mesoporous TiO2
semiconductor with a large specific surface area. This new and revolutionary
thin film solar cell initiated a new era of research and development of low-cost
and high-performance DSSCs.
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A typical DSSC is composed of a dye-sensitized mesoscopic TiO2
photoelectrode (PE), a iodide/triiodide (I−/I3

−) redox couple electrolyte,
and a platinized CE catalyst. Each component of the DSSCs performs a specific
task and the whole performance of DSSCs strongly depends on the optimization
of the individual cell components in a DSSC system. Over the past two decades,
great progress has been made in fundamental research and technological
application of DSSCs [11–33]. In a new DSSC system, alternative CE cata-
lysts, sensitizers (N719, Z907, N3, D35, Y123, etc.), and redox couples (I3

−/I−,
Co2+/Co3+, T2/T−, and Cu2+/Cu+) were employed for practical and economic
considerations. To meet the compatibility or match the demands of different cell
components of DSSCs, all cell components of DSSCs must have to be carefully
selected to achieve the superior DSSC performance. Tremendous advances in the
cell efficiency level of DSSCs have been made, as summarized in Table 1.1. The
PCE value of DSSCs increased from 7.12% in 1991 to 13% in 2014, and a cham-
pion PCE value of 14.3% was obtained in 2015 for cobalt-mediated DSSCs with
graphene nanoplatelet (GNP) CEs and combined photosensitizers of ADEKA-1
and LEG4 dyes. More comments on the match issues of the cell components of
DSSCs have been analyzed and reviewed in the previous literature [11, 54–57].

Although the cell efficiency level has been nearly similar to the standard val-
ues (15%) for practical applications, the present efficiency level is not evidently
satisfactory for large-scale application in a broader photovoltaic market, espe-
cially considering the stability such as the electrochemical stability, the mechan-
ical stability, and the long-term stability [55–57]. Therefore, it is highly desired
for achieving more efficient and more stable DSSC components. Additionally,

Table 1.1 The PCE values in DSSCs with various cell components (100 mW cm−2, AM 1.5 G).

No. PE∥CE∥Redox couple∥Dye Dye type Area (cm2) PCE (%) References

1 TiO2/Pt/(I3
−/I−)/trimeric Ru dye Ru dye 0.50 7.9 [10]

2 TiO2/Pt/(I3
−/I−)/N3 Ru dye 0.31 10.0 [34]

3 TiO2/Pt/(I3
−/I−)/N719 Ru dye 0.1697 10.0 [35]

4 TiO2/Pt/(I3
−/I−)/N719 Ru dye 0.158 11.18 [36]

5 TiO2/Pt/(I3
−/I−)/(black dye) Ru dye 0.219 11.1 [37]

6 TiO2/Pt/(I3
−/I−)/CYC-B11 Ru dye 0.158 11.5 [38]

7 TiO2/Pt/(I3
−/I−)/C106 Ru dye 0.158 11.7 [39]

8 TiO2/Pt/(I3
−/I−)/(black dye+Y1) Ru dye 0.231 11.4 [40]

1 TiO2/Pt/(I3
−/I−)/indoline dye 1 Organic dye 0.16 8.00 [41]

2 TiO2/Pt/(I3
−/I−)/D149 Organic dye — 9.03 [42]

3 TiO2/Pt/(I3
−/I−)/D205 Organic dye — 9.52 [43]

4 TiO2/Pt/(I3
−/I−)/C219 Organic dye 0.158 10.1 [44]

5 TiO2/Pt/(I3
−/I−)/JF419 Organic dye 0.20 10.3 [45]

1 TiO2/Pt/(I3
−/I−)/Cu-2-α-

oxymesoisochlorin e4
Porphyrin dye 0.50 2.6 [46]

(Continued)
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Table 1.1 (Continued)

No. PE∥CE∥Redox couple∥Dye Dye type Area (cm2) PCE (%) References

2 TiO2/Pt/(I3
−/I−)/TCPP Porphyrin dye 1.00 3.5a) [47]

3 TiO2/Pt/(I3
−/I−)/Zn-3 Porphyrin dye — 5.6 [48]

4 TiO2/Pt/(I3
−/I−)/ZnTPMA-2 Porphyrin dye — 7.1b) [49]

5 TiO2/Pt/(I3
−/I−)/YD-2 Porphyrin dye 0.16 11 [50]

6 TiO2/Pt/(Co3+/Co2+)/
(YD2-o-C8+Y123)

Porphyrin dye 0.36 12.3 [51]

7 TiO2/GNP/(Co3+/Co2+)/SM315 Porphyrin dye 0.28 13 [52]
8 TiO2/GNP/(Co3+/Co2+)/

(ADEKA-1 +LEG4)
Organic dye 0.1024 14.3c) [53]

a) TCPP: tetra(4-carboxyphenyl)porphyrin.
b) ZnTMPA: zinc tetraarylporphyrin malonic acids.
c) ZnTMPA: the photocurrent–voltage (J–V ) properties of the cells with maintaining the aperture

area of the cells to be 0.32× 0.32 cm2 by the use of a square black shade mask with a thickness of
30 μm.

almost all CE materials (carbon materials, polymers, transition metal compounds
(TMCs), and their corresponding hybrids) have their own merits and demerits;
therefore, it is often difficult to decide which one is better than the other even if
the dye and the electrolyte were not decided in the DSSC systems. This indicated
that the optimized and well-matched cell components within the DSSC devices
are also highly desired for making a significant breakthrough in cell efficiency
level. A maximum PCE of slightly higher than 30% can be achievable by harvest-
ing ultraviolet (UV) to near infrared ray (IR) photons, to transform the DSSC into
a mature commercial technology, similar to silicon-based and thin film solar cell
technologies [27, 57].

1.2 Fabrication Techniques of a DSSC and a
Symmetrical Dummy Cell

1.2.1 Preparation of Photoelectrode

Mesoscopic TiO2 photoelectrodes (PEs), CE catalysts, and electrolytes were
prepared separately and then assembled in a DSSC device. A 12-μm-thick TiO2
(P25; Degussa, Germany) film with a grain size of 20 nm was coated on an
fluorine-doped tin oxide (FTO) glass substrate using screen printing technique.
The obtained film was annealed at 500 ∘C for 30 minutes and then cooled to
80 ∘C. The resulting TiO2 films were immersed in 0.5 mM solution of N719
dye (Solaronix SA, Switzerland) in ethanol solution for 20 hours to obtain the
dye-sensitized mesoscopic TiO2 photoanode. The fabrication process of PEs
is similar to that reported in our previous literature [55, 56, 58–64]. In some
cases, TiCl4 solution pre- and post-treatment was used to allow the formation
of a thin and compact TiO2 underlayer and increase the surface area of the TiO2
particles [65].
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Figure 1.1 (a) A schematic illustration of the fabrication of a sandwich-type DSSC.
(b) Photocurrent density–photovoltage (J–V) curves for DSSCs. (c) Nyquist plots for the DSSCs
fabricated with PE and CE catalysts. The inset is a schematic illustration of a sandwich-type
DSSC. (d) Nyquist plots for the symmetrical cells fabricated with two identical CE catalysts.
The inset is a schematic illustration of the symmetrical cells. (e) Tafel curves for the symmetrical
cells fabricated with two identical CE catalysts. (f ) Cyclic voltammetry (CV) of iodide/triiodide
(I−/I3

−) redox couple electrolyte for Pt electrodes with an electrolyte solution composed of
LiClO4 (0.1 M), LiI (10 mM), and I2 (1 mM) in acetonitrile. A Pt electrode was used as the CE and
Ag/Ag+ as the reference electrode.



1.3 Operating Principle of DSSCs 5

1.2.2 Preparation of Counter Electrodes

Pt CE of DSSCs was prepared by pyrolyzing platinum acid chloride isopropyl
alcohol solution (H2PtCl6⋅6H2O dissolved in isopropyl alcohol solution) at 500 ∘C
for 30 min under air atmosphere. For more strategies of Pt CE fabrication, please
refer the previous literature [66–69]. For Pt-free CEs, 300 mg of prepared CE
powder and 6 g of ZrO2 pearl were dispersed in 6 ml isopropanol and milled for
four hours. The obtained CE solution was then sprayed on an FTO glass substrate
(type-U, 14Ω sq−1; Asahi Glass, Japan) using an airbrush (TD-128; Tiandi Co.,
Ltd.). The FTO glass substrate, coated with Pt-free CE film, was then annealed
under a N2 atmosphere at 400 ∘C for 30 minutes in a tube furnace. The expected
CEs were obtained. For more strategies of Pt-free CE fabrication, please refer the
previous literature [55, 56, 70–72].

1.2.3 Cell Fabrication

The PEs and CEs were assembled in a dry box with 25 or 35 μm of Surlyn
(Dupont), which provides spacing between the two electrodes and sealing
for the electrolyte. The electrolyte, containing 0.06 M LiI, 0.03 M I2, 0.6 M
1-butyl-3-methylimidazolium iodide, 0.5 M 4-tert-butyl pyridine, and 0.1 M
guanidinium thiocyanate in acetonitrile solution, was introduced into the
device through a predrilled hole in the CE under vacuum. The active area of a
sandwich DSSC is usually 0.16 cm2. A schematic illustration of the fabrication
of a sandwich-type DSSC is illustrated in Figure 1.1a [10, 18]. The as-assembled
DSSCs were used for testing the photovoltaic performance of cells (Figure 1.1b).
The as-assembled DSSCs were used in electrochemical impedance spectroscopy
(EIS) (Figure 1.1c).

The symmetrical dummy cell was fabricated by two identical CEs. Then, the
electrolyte, containing 0.06 M LiI, 0.03 M I2, 0.6 M 1-butyl-3-methylimidazolium
iodide, 0.5 M 4-tert-butyl pyridine, and 0.1 M guanidinium thiocyanate in
acetonitrile solution, was filled in the symmetrical dummy cell and sealed with
the established process, as mentioned above. The as-fabricated symmetrical
cells were used in EIS and Tafel polarization tests, as shown in Figure 1.1d
and e. Cyclic voltammetry (Figure 1.1f ) was performed on an electrochemical
analyzer in a three-electrode system in an argon-purged acetonitrile solution
containing 0.1 M LiClO4, 10 mM LiI, and 1 mM I2. Pt electrode is used as a
CE and Ag/Ag+ works as a reference electrode. The electrochemical properties
of CEs at frequencies ranging from 100 mHz to 1 MHz were measured with a
computer-controlled potentiostat at the bias potential (−0.75 V) and the AC
amplitude (10 mV).

1.3 Operating Principle of DSSCs

A schematic illustration of operating principles of a sandwich-type DSSC system
is shown in Figure 1.2. In this sandwich-type DSSC, the dye molecule absorbs
light and generates charge carriers. Under solar illumination, the incoming
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Figure 1.2 A schematic illustration of the working principle of a sandwich-type DSSC.
Source: Yun et al. 2016 [73]. Reproduced with permission of Elsevier.

photons are captured by the dye molecules. Sensitizer molecules adsorbed onto
the surface of TiO2 film are excited from the ground state (S) to the excited state
(S*) and rapidly injected an electron into the conduction band of the semicon-
ducting TiO2, thus leaving a hole in the sensitizer (S+). The injected electrons
are transported through an external circuit to reach the CE. The regeneration
of the dye molecules and the electrolyte is finished during the photoelectric
transformation process. S+ was reduced to S by I− ions, whereas the electrolyte
itself is regenerated by I3

− reduction at the CE surface. The electrons diffuse
through the network-structured TiO2 film to reach the external load on the
surface of the CE. In a solid-state DSSC, the dye molecule is regenerated by the
hole transporter instead of the liquid redox couple. Totally, the basic working
principle of solid-state DSSCs is similar to that of liquid-state DSSCs. More
details on the operating principles of a DSSC can be found in the previous
literature [13–18, 20].

1.4 Operating Principle of a Counter Electrode in DSSCs

As a crucial component of DSSCs, the CE plays a critical role in the operation of
DSSCs. As illustrated in Figure 1.3, the CE has two roles. Firstly, the CE must
efficiently promote the electron transfer from the external circuit back to the
electrolyte. Secondly, the CE can catalyze the I3

− reduction into the I− ions at
the CE/electrolyte interface. Therefore, superior catalytic activity and high elec-
trical conductivity are highly desired for CE catalysts. However, it is difficult for
one CE material to exhibit both high electrical conductivity and catalytic activity
required for efficient work.

In a traditional DSSC, the CE is traditionally composed of Pt materials.
However, Pt metal is of high cost and scarce, and the limited supply of Pt cannot
meet the increasing demand for its practical applications. In addition, Pt is
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Figure 1.3 A schematic illustration of the operation principle of a CE in a DSSC. In this DSSC
with N719 dye and the iodide/triiodide (I−/I3

−) redox couple electrolyte, transition metal
compounds (TMCs, such as TaO and TaC) imbedded the mesoporous carbon (MC), TaO/MC,
and TaC/MC were used as the CE catalysts. Source: Yun et al. 2014 [55]. Reproduced with
permission of John Wiley & Sons.

not very effective as a CE catalyst for redox couples such as cobalt complexes,
T2/T−, and polysulfide electrolytes. To overcome this challenge, developing
high-performance, Pt-free CE catalytic materials is an effective strategy to pro-
vide high electrical conductivity and superior catalytic activity simultaneously
[11, 54–57, 67–69, 73–78].

1.5 Types and Advances in Counter Electrodes in DSSCs

1.5.1 Types of Counter Electrodes in DSSCs

As far as the CE catalysts are concerned, (i) better catalytic activity, (ii) better elec-
trical conductivity, (iii) better chemical stability, (iv) large specific surface area,
(v) high corrosion resistance, (vi) better matching, and so on were required for
high-performance DSSCs, which must be particularly considered in the design of
Pt-free catalysts to maximize the function of CEs. New CE catalytic materials are
rapidly developing as an alternative Pt electrode in DSSCs. Six types of CE mate-
rials, such as Pt metal, metal and alloy, conducting polymers, carbon materials,
TMCs, and hybrids, have been developed so far for DSSC systems (Figure 1.4a).
To make full use of the synergistic catalytic effect resulting from various compo-
nents of the hybrid materials, seven types of hybrid CE catalysts (Figure 1.4b),
such as carbon/carbon, TMCs/TMCs, polymers/polymers, carbon/TMCs, car-
bon/polymer, polymer/TMCs, and TMCs/polymer/carbon, have been developed
and employed in DSSCs [55–57]. Pt metal electrode has established itself as the
preferred CE catalytic material in DSSC due to its high catalytic activity. In order
to utilize the peculiarity of Pt metal and reduce the cost of CE catalysts in DSSCs,
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Figure 1.4 (a) Six types of CE catalysts employed in DSSCs; (b) seven types of hybrid CE
catalysts (carbon/carbon, TMCs/TMCs, polymers/polymers, carbon/TMCs, carbon/polymer,
polymer/TMCs, and TMCs/polymer/carbon) employed in DSSCs; (c) four types of Pt-loaded CE
catalysts (Pt/carbon, Pt/polymer, Pt/TMC, and Pt/metal) employed in DSSCs; and (d) the
structural sketch of hybrid CE catalysts in DSSCs.

one possible approach is to reduce the required amount of Pt metal on CE surface
by developing Pt-loaded hybrid catalysts, as illustrated in Figure 1.4c. This strat-
egy further opens up the possibility of cost reduction of the DSSC devices, which
is vital to promote large-scale applications of DSSCs [60, 79, 80]. Among these CE
catalytic materials, the hybrid CEs are composed of a glass substrate, a conduct-
ing layer, a support layer, and a CE catalyst layer (Figure 1.4d) that have drawn
much attention because of their peculiar structure and their synergetic catalytic
effects resulting from various components of the hybrid CE materials.

1.5.2 Advances in Counter Electrode in DSSCs

Until now, great progresses have been made in the CE catalysts in DSSCs.
Typical PCE values of I-mediated DSSCs using various CE catalysts (presented
in Figure 1.4) are demonstrated in Figure 1.5a and b, and the corresponding
photovoltaic parameters of DSSCs were summarized in the Appendix: Cell
Efficiency Table of DSSCs with Various Counter Electrode Electrocatalysts. For
noble Pt electrodes listed in Table 1.1, although it is preferred that CE catalytic
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Figure 1.5 PCE values of I-mediated DSSCs used carbon materials and transition metal
compounds as typical CE catalysts resulted from two groups (Prof. Tingli Ma and Prof. Sining
Yun) (a); and by other groups (b) [55]. The corresponding photovoltaic parameters of DSSCs
were summarized in the Appendix: Cell Efficiency Table of DSSCs with Various Counter Electrode
Electrocatalysts. Source: Yun et al. 2014 [55]. Reproduced with permission of John Wiley & Sons.

materials in I-mediated DSSCs and higher PCE values can be achieved in most
cases, the highest PCE values of DSSCs (14.3%) are based on the new system
using the GNP catalyst and the iodine-free electrolyte. This means that the
superior performance of DSSCs strongly depends on the optimized and matched
cell components (Table 1.1), and the matching should be carefully considered in
the design of the CE catalytic materials. For more details on Pt electrode, please
refer Chapters 2 and 9.
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1.5.2.1 Advances in Carbon Materials in DSSCs
Conventional carbon materials are preferred CE catalytic materials that can
achieve higher PCE value in I-mediated DSSCs. However, a large amount of
carbon is desired highly to fully reach the performance level of Pt electrodes,
which resulted in a bulky and opaque DSSC device. Conventional carbon CE
catalysts also suffer from poor adhesion between the CE catalytic layer and the
FTO substrate. The demerits of these carbon CEs will further limit their practical
applications. A special consideration has been given to the improvements in
transparency and adhesion of CE catalytic films in Chapters 4–6. By con-
trast, carbon nanotubes (CNTs) and graphene are suitable catalytic materials for
I3

− reduction due to their distinctive structures and properties and can be applied
for Pt-free CE catalysts in DSSCs [70, 81]. The number of oxygen functional
groups and the C:O ratio play a key role in improving catalytic activity in DSSCs
for graphene CEs, whereas the preparation methods of CE catalysts and the
fabrication process of CNTs are crucial to high-performance DSSCs. A PCE of
10.04% has been achieved in DSSCs using CNTs as CEs that were grown directly
on a FTO substrate using a chemical vapor deposition (CVD) technique [82].

1.5.2.2 Advances in Transition Metal Compounds in DSSCs
We have clearly found that almost all transition metal (Ti, Zr, Hf, V, Nb, Ta, Cr,
Mo, W, Co, Ni, Si, Sn, Fe, etc.) compounds have been investigated and tested as
catalysts in DSSCs (Figure 1.5a). This design idea is based on the fact that these
TMCs have similar electronic structures of Pt metal and is able to present Pt-like
catalytic activity [83, 84]. Most transition metal oxides present the superior cat-
alytic properties and can be used as CE catalysts in DSSCs. However, not all
oxides, such as TiO2, SnO2, Nb2O5, and WO3, are promising CE catalytic materi-
als because the energy levels or bandgaps of these oxides may be more preferable
for use as a photoanode, not as a CE catalyst or a cathode, in DSSCs. For tran-
sition metal oxides, on the one hand, massive oxygen vacancies introduced by
nonstoichiometric effect should play a crucial role for enhanced catalytic activ-
ity of CE catalysts in DSSCs [85, 86]. On the other hand, the low ratio of oxygen
to metal atom of transition metal oxides favors the catalytic activity of these CE
catalysts in DSSCs [59, 85, 87, 88].

For transition metal carbides and nitrides, they presented more superior cat-
alytic activity in S-mediated DSSCs than in I-mediated DSSCs (see Appendix).
Ta4C3 CE showed a higher PCE of 7.39% in DSSCs, reaching 97.6% of the level
obtained using a Pt CE (7.57%). Ta4C3 is the best carbide CE material in DSSCs
as compared to other transition metal carbides [61, 89]. The PCE of DSSCs
with Ta3N5 (5.03%) CE is much higher than that of DSSCs with WN (3.67%),
Fe2N (2.65%), ZrN (1.20%), and NbN (3.68%) [61, 89, 90]. Highly ordered TiN
nanotube arrays on metallic Ti foil substrates as CEs in DSSCs yielded a PCE
of 7.73% [91]. Hierarchical TiN spheres coated onto Ti foil as a CE in DSSCs
yielded a PCE of 7.83% [92].

Lots of sulfides, such as CoS, Co8.4S8, Co9S8, Ni3S2, FeS2, MoS2, and WS2,
as alternative CE materials have yielded promising photovoltaic performances
with PCE values ranging from 6.50% to 7.73% [93–100]. Among them, cobalt
sulfide has drawn a massive research attention in the application of CE catalysts
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in DSSCs. Note that the morphology of sulfide CE catalytic materials has a
considerable effect on the photovoltaic performances of DSSCs. Moreover, CoS
is not a preferred CE catalytic material in T-mediated DSSCs as compared with
typical I-mediated DSSCs in a single-minded pursuit of high PCE.

For selenide CE catalysts, in-situ-grown Co0.85Se exhibited higher electrocat-
alytic activity for I3

− reduction and generated a PCE of 9.40% [101]. NiSe2 pre-
pared using a simple hydrothermal method as a CE yielded a PCE of 8.69% in
DSSCs [102]. Use of NbSe2, CoTe, and NiTe2 as CEs in DSSCs achieved PCEs of
7.34%, 6.92%, and 7.21%, respectively, comparable to that of DSSCs with Pt CEs.
By contrast, phosphides were only used as one component in hybrid CE catalysts
[103, 104].

In general, typical fabrication techniques, for example, urea–metal route (or
one-pot method), soft-template route, nano-ink technique, ion exchange tech-
nique, and in situ technique, can be used to prepare the TMC catalytic materials.
By contrast, the TMCs prepared by one-pot method do not show controllable
morphologies as compared with those synthesized through in situ growth and
the ion exchange technique. The in situ growth is an effective technique for fab-
ricating morphology-controllable CE materials, which are highly desirable for
the tailor-made design based on the relationship between microscopic struc-
ture and macroscopic performance. However, the quantity of amorphous carbon
(one-side product) in the final product cannot be effectively avoidable and con-
trolled in the preparation of TMCs by the one-pot method.

1.5.2.3 Advances in Polymers in DSSCs
Conjugated polymers have drawn considerable interest as alternative CE catalysts
in DSSC systems due to ambient temperatures used in their synthesis as well as
conducting nature and facile deposition methods [68, 69, 73, 105, 106]. Polypyr-
role (PPy), polyaniline (PANI), poly(3,4-propylenedioxythiophene) (PProDOT),
poly(3,4-ethylenedioxythiophene) (PEDOT), and polystyrene-sulfonate-doped
poly(3,4-ethylenedioxythiophene) (PEDOT-PSS) have presented good catalytic
properties for I3

− reduction and exhibited a relatively high photovoltaic per-
formance, as presented in Figure 1.6. Microporous PANI CE films exhibited
higher catalytic activity for I3

− reduction and resulted in a PCE of 7.15%, higher
than the Pt CE in DSSCs at the same conditions [107]. By contrast, oriented
PANI nanowire arrays grown by in situ synthesis exhibit much better catalytic
properties in Co-mediated DSSCs with a typical D-π-A organic dye sensitizer
(FNE29) than in I-mediated DSSCs with N719 dye, yielding a PCE of 8.24% in
DSSCs with the Co2+/Co3+ redox couple [108]. Note that PANI is not an ideal CE
catalytic material for I-mediated DSSCs because of its instability, self-oxidation,
and carcinogenic properties.

For porous PProDOT polymer prepared using electrical-field-assisted growth
technique, as-prepared PProDOT CE films yielded PCEs ranging from 9.12% to
9.25% in I-mediated DSSCs. As the Y123 dye was used in Co-mediated DSSCs
with PProDOT CEs, the DSSCs produced a V oc close to 1 V and a high PCE of
10.08% [109, 110]. These improvements in photovoltaic performances can be
attributed to the ionic liquids used in the electrolyte and the ultralarge surface
area of PProDOT films that can eliminate passivation of the interface between
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Figure 1.6 Typical PCE values of DSSCs employing polymer-based CEs [73]. The
corresponding photovoltaic parameters of DSSCs were summarized in the Appendix: Cell
Efficiency Table of DSSCs with Various Counter Electrode Electrocatalysts. Source: Yun et al. 2016
[73]. Reproduced with permission of Elsevier.

the CE layer and the electrolyte. In addition, the PEDOT as CE catalysts, a PCE
of 8.0% was achieved in acetonitrile-based DSSCs [111]. The PEDOT nanotube
arrays, electropolymerized onto ZnO nanowire array templates using the
chemical polymerization, as a CE catalyst exhibited a higher catalytic activity for
I3

− reduction than the Pt electrode, resulting in a PCE of 8.3% in DSSCs [112].
By contrast, the PEDOT nanofibers, prepared by a chemical oxidative technique,
presented a PCE of 9.2%, higher than bulk PEDOT (6.8%) and Pt electrodes
(8.6%) [113]. These results mean that controllable morphology is highly desirable
for achieving the high-performance DSSCs for polymer CE catalysts.

One key problem for the PEDOT is that it can form charge transfer complexes
with iodide and decrease the performance of DSSCs. To solve this problem,
a T2/T− redox couple was used as an alternative to the I3

−/I− redox couple, a
large surface area PEDOT electrode as a CE catalyst yielded a PCE of 7.9% in
DSSCs with an optimized T2/T− redox electrolyte and a Z907 dye [93, 114].
Another alternative to the I3

−/I− redox couple is the Co2+/Co3+ redox couple,
PEDOT as a CE yielded a PCE of 10.30% in DSSCs with a Y123 dye [115]. These
results imply that the T2/T− and Co2+/Co3+ redox couples have great potential
for practical application in DSSCs using PEDOT as a CE catalyst. We want
to further stress that PSS, TsO, SO4

2−, ClO4
−, Cl−, and BF4

− as the dopants
in the design of polymer CE catalysts have a remarkable effect on the mor-
phologies, electrochemical properties, and photovoltaic performance of devices
[73, 106, 116–118]. For more details, please refer our recent review paper [73].

Generally, polymer CE catalysts possess many excellent performance char-
acteristics, such as transparency, flexibility, availability, low cost, high catalytic
activity, and high PCE values, which are as good as or even much better than Pt
electrode in DSSCs. In addition, most polymer CE catalysts have better match
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and adaptability in I-, Co-, and T-based DSSCs with Y123, FNE29, N719, Z907,
and N3 dyes. Transparent PEDOT and PProDOT polymers as CE catalysts have
been used in flexible and bifacial DSSCs that can absorb incident photons from
both sides, resulting in enhanced light absorption [73, 111, 119, 120]. These
important contributions will significantly propel future research related with
conductive polymers in high-performance and low-cost DSSC systems.

1.5.2.4 Advances in Hybrids in DSSCs
As we mentioned above, the purpose of the hybrid CE design is to make full
use of synergetic catalytic effects resulted from different components of the
hybrids to further improve the performance of CEs. At the present stage, hybrid
CE catalytic materials have become the most popular class of alternative Pt
catalytic materials. As demonstrated in Figure 1.4 and 1.5b, carbon materi-
als, polymers, and TMCs are often used as components of the hybrids. Two-
component hybrids (TMCs/carbon, carbon/polymers, TMCs/polymers, carbon/
carbon, polymers/polymers, and TMCs/TMCs) and three-component hybrids
(carbon/TMCs/polymers) are very impressive as Pt-free hybrid CE catalytic
materials in DSSCs. In general, the photovoltaic performance of DSSCs can be
greatly enhanced using hybrid CE catalysts. For example, DSSCs with hybrid CEs
had PCEs close equal to or higher than those using TMCs, RGO, and Pt elec-
trode: (i) I-meditated DSSCs with N719 dye: NiS2/RGO(8.55%)>Pt(8.15%)>
NiS2(7.02%)>RGO(3.14%); (ii) Co-mediated DSSCs with FNE29 dye: Ta3N5/
RGO(7.85%)>Pt(7.59%)>RGO(4.55%)>Ta3N5(2.89%) and Pt(7.91%)>TaON/
RGO(7.65%)>RGO(4.62%)>TaON(2.54%) [121–123]. In addition, WC/MC,
MoC/MC, WO2/MC, TaO/MC, TaC/MC, VC/MC, and HfO2/MC, as carbon-
based hybrid CEs, presented PCEs of 8.18%, 8.34%, 7.76%, 8.09%, 7.93%, 7.63%,
and 7.75%, respectively [58, 62, 89, 124, 125]. The PCE values are higher than the
corresponding TMCs and MC CE catalysts.

As CE catalyst in DSSCs, TiN/CNTs hybrids resulted in comparable photo-
voltaic performance with the Pt electrode (5.41% vs 5.68%) [126]. TiN/Cb (Cb: car-
bon black) hybrid CE catalysts show superior electrochemical performances
compared to TiN and conductive Cb electrodes (7.92% vs 6.59%) [127]. TiN/MC
nanohybrid CEs in DSSCs resulted in a PCE of 8.41% with the I3

−/I− electrolyte
system, greater than that of Pt CEs (8.0%). TiN/MC hybrid CE yielded a PCE of
6.71% in a T2/T− electrolyte DSSC system, higher than that of the Pt CE (3.32%).
As compared to the Pt electrode, the chemical stability of TiN/MC hybrid CE
in organic T2/T− electrolyte was also improved [128]. The unique structure
feature and the synergistic effects between TMC and carbon materials should be
responsible for superior photovoltaic performance in I- and T-mediated DSSCs.

The combination of TMCs into polymers can offer a synergistic catalytic effect
on improving performance to I3

− reduction in DSSCs. The CoS/PEDOT-PSS
exhibited better catalytic activity by utilizing the merits of CoS and PEDOT-PSS
films and yielded a PCE of 5.4%, comparable to that of the Pt electrode
(6.1%) [129]. This work demonstrates improved catalytic properties that make
CoS/PEDOT-PSS feasible for practical applications in lightweight and flexible
devices. The typical synergistic effect is also illustrated in TiN/PEDOT-PSS
hybrid CEs. Use of optimized composition and thickness of CE catalyst, the
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TiN/PEDOT-PSS film as CE catalyst yielded a PCE of 6.67% in DSSCs with
CYC-B1 dye, higher than that of DSSCs with a sputtered Pt electrode [130].
Further investigation demonstrated that the morphology plays a key role in
improving photovoltaic performance of DSSCs. TiN nanoparticles (TiN(P)), TiN
nanorods (TiN(R)), and TiN mesoporous spheres (TiN(S)) are incorporated into
PEDOT-PSS. Use of TiN(P)/PEDOT-PSS as a CE in DSSCs produced a PCE of
7.06%, higher than that of TiN(R)/PEDOT-PSS (6.89%) and TiN(S)/PEDOT-PSS
(6.19%) electrodes. In addition, these TiN/PEDOT-PSS as CEs in DSSCs
presented much higher PCE values than those of DSSCs with PEDOT-PSS,
TiN(P), TiN(R), and TiN(S) [131]. This design idea combines high electrical
conductivity and superior catalytic activity of TiN and PEDOT-PSS, allowing
that TiN/PEDOT-PSS provides more favorable and efficient interfacial active
sites for I3

− reduction.
The state-of-the-art design of three-component carbon/TMCs/polymer

hybrids has exhibited the superior catalytic activity for I3
− reduction. The

Co/PPy/C (C: carbon) and Ni/PPy/C hybrids exhibit a higher catalytic activity to
I3

− reduction than Fe/PPy/C, which can attribute to the formation of the Co–N
and Ni–N catalytic sites. The higher catalytic activity resulted in a PCE of 7.64%,
higher than the Fe/PPy/C (5.07%), Ni/PPy/C (7.44%), and PPy/C (7.09%) elec-
trodes [132]. In addition, the TiC/graphene/PEDOT-PSS hybrids used as CEs in
flexible DSSCs yielded a PCE of 4.5%, slightly higher than that of a DSSC with
Pt electrode (4.3%) [133]. The better adhesion of the TiC/graphene/PEDOT-PSS
CE films to the flexible substrate resulted in better mechanical properties of the
CE films, highly desirable for practical application.

Apart from the hybrid CEs mentioned above, the polycomponent, such as
Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe), NiCo2S4, and CZTSe/MWCNTs,
is another type of Pt-free hybrid CE materials [134–138]. The CZTS CE films
after selenization presented an impressive catalytic activity to the I3

− reduction,
resulting in a PCE of 7.37% in DSSCs, close to that of the DSSCs with Pt
electrode (7.04%). By contrast, the CZTSe as CE catalysts only exhibited a PCE
of 3.85% in DSSCs. CoMoS4- and NiMoS4-based CEs yield PCE values >7% and
showed similar photovoltaic performances to DSSCs with Pt CEs [138]. These
polycomponent inorganic compounds are not very impressive as compared with
two-component and three-component hybrids in DSSCs.

Another attractive hybrid is Pt-loaded hybrid CE materials. Carbon materials,
conductive polymers, TMCs, and other metals were employed as support mate-
rials, as illustrated in Figure 1.4c. A small amount of Pt was loaded onto support
materials to achieve similar catalytic properties to Pt electrode in DSSCs. The
use of support materials in Pt-loaded hybrids is to prevent Pt nanoparticle aggre-
gation and control the amount of Pt. Pt-loaded hybrid CE materials have been
demonstrated to achieve the enhanced mechanical rigidity and chemical stability.
Reported technical strategies to reduce dependence on Pt have been developed
to produce Pt-free catalytic materials in the catalytic fields [55, 56, 60].

In general, all hybrid CE catalysts in DSSCs outperform their corresponding
components, and the PCE of DSSCs can be greatly enhanced using hybrid CEs.
The superior catalytic performance of hybrid CE catalysts can be attributed to
the synergetic effects of the different components of the hybrid CE materials.
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However, the exact reason for superior catalytic activity of the hybrids keeps
unclear. On the other hand, the hybrid CE materials can be designed to meet the
demands of new-system DSSCs with new components (dyes, electrolyte, and
redox couples). However, matching and stability of CE catalyst and DSSC device
are still the main limitations for their practical use. We believe that the hybrid
CEs can pave the way for the development of high-performance and low-cost
DSSCs in future.

1.6 General Design Consideration of this Book

High-speed development of third-generation solar cells resulted in an increas-
ingly scientific papers published in the past two decades. As a critical component
of DSSCs, the CE catalysts have become the focus of research that was mainly
driven by desires to overcome the Pt challenges. In this context, we edit this
book Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells covering
important contributions from different DSSC groups around the world by a selec-
tive presentation of recent research highlights. In this book, we focus on the
design ideas, fabrication approaches, and characterization techniques of novel
CE catalytic materials and stress the merits and demerits of well-designed car-
bon materials, conductive polymers, TMCs, and their corresponding hybrids.
The prospects and challenges of alternative Pt catalysts for their practical appli-
cations in DSSCs were included.

Typical noble metal Pt catalyst was assigned in Chapter 2, and metal and alloy
CE catalysts were assigned in Chapter 3 for I-mediated DSSCs. Subsequently,
carbon materials including carbon/carbon nanohybrids, carbon nanotubes, and
graphene CE catalyst were fixed in Chapters 4–6. TMCs including TMCs/TMC
hybrids and conductive polymers including polymers/polymer hybrids were
introduced in Chapters 7 and 8, respectively. After that, two-component,
three-component, and polycomponent hybrid CE catalysts, such as Pt-loaded
hybrid CEs, TMCs/carbon hybrids, TMCs/polymer hybrids, carbon/polymers
hybrids, carbon/TMCs/polymers, were arranged in Chapters 9–13. As an
alternative to the I3

−/I− redox couple, the T2/T− and Co2+/Co3+ redox couples
were given a special concern in T- and Co-mediated DSSCs in Chapters 14 and
15, respectively.

It is true that much more is now known about the principal physicochemical
processes that occur during CE operation of the DSSCs, but the stability issues
associated with CEs have not been matched by the exponential increase in CE
research effort [57]. It should be noted that there is not enough data to evalu-
ate the stability of a symmetrical dummy cell fabricated using two CE materials
and the long-term stability of a DSSCs. This means that the stability might limit
their possible commercial application. In this regard, the CE stability issue was
specially addressed in Chapter 16, offering strategies to overcome the current
stability stalemate.

As far as the TMCs are concerned, the catalytic activity is an intrinsic char-
acteristic of a catalyst that is determined by the electronic structure of the cat-
alyst. However, the accurate relationship between the electronic structure and
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the catalytic activity remains unclear. No one knows for sure which electronic
structure of CE materials can make them exhibit superior catalytic performance.
For the hybrid CE catalysts, the superior catalytic activity can be attributed to the
synergistic effect resulting from the different components of the hybrid CE mate-
rials. However, the clear role of each component in the hybrid materials remains
unclear. This means that predicting which CE materials will exhibit superior cat-
alytic activity in DSSCs is exceedingly difficult. The catalytic mechanism of TMCs
as CE catalysts in DSSCs is not clear even though they exhibit superior catalytic
activity. Therefore, the first-principle density functional theory (DFT) calcula-
tions and ab initio Car–Parrinello molecular dynamics (CPMD) simulations is
highly desired for understanding the catalytical mechanism of TMCs in DSSCs.

Expect for DSSCs, several special issues on perovskite solar cells, for example,
metal- and carbon-based contact electrodes, the first-principles DFT calcula-
tions, and boundary engineering contact for perovskite solar cells, were also
included in Chapters 17–20 in this book. Finally, the Cell Efficiency Table
of DSSCs with Various Counter Electrode Electrocatalysts was given in the
Appendix. This book can be communicated to the wider scientific community
to stimulate further progress of DSSCs and perovskite solar cells.
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