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Crystal Optics

1.1 Introduction

Crystal optics is the branch of optics that describes the behavior of electromag-
netic waves in anisotropic media, that is, media (such as crystals) in which light
behaves differently depending on the direction in which the light is propagating.
The characteristic phenomena of crystals that are studied in crystal optics include
double refraction (birefringence), polarization of light, rotation of the plane of
polarization, etc.

The phenomenon of double refraction was first observed in crystals of Ice-
land spar by the Danish scientist E. Bartholin in 1669. This date is considered
the beginning of crystal optics. Problems of the absorption and emission of light
by crystals are studied in crystal spectroscopy. The effect of electric and magnetic
fields, mechanical stress, and ultrasound waves on the optical properties of crys-
tals are studied in electro-optics, magneto-optics, photoelasticity, acousto-optics,
and photorefractivity, which are based on the fundamental laws of crystal optics.

Since the lattice constant (of the order of 10 Å) is much smaller than the wave-
length of visible light (4000–7000 Å), a crystal may be regarded as a homoge-
neous but anisotropic medium. The optical anisotropy of crystals is caused by
the anisotropy of the force field of particle interaction. The nature of the field is
related to crystal symmetry. All crystals, except crystals of the cubic system, are
optically anisotropic.

1.2 Index Ellipsoid or Optical Indicatrix

In isotropic materials, the electric field displacement vector D is parallel to the
electric field vector E, related by D = 𝜀0𝜀rE = 𝜀0E + P, where 𝜀0 is the permittivity
of free space, 𝜀r is the unitless relative dielectric constant, and P is the material
polarization vector.

The optical anisotropy of transparent crystals is due to the anisotropy of the
dielectric constant. In an anisotropic dielectric medium (a crystal, for example),
the vectors D and E are no longer parallel; each component of the electric
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flux density D is a linear combination of the three components of the electric
field E.

Di =
∑

j
𝜀ijEj (1.1)

where i, j = 1, 2, 3 indicate the x, y, and z components, respectively. The dielec-
tric properties of the medium are therefore characterized by a 3 × 3 array of nine
coefficients {𝜀ij} forming a tensor of second rank known as the electric permit-
tivity tensor and denoted by the symbol 𝜀. Equation (1.1) is usually written in the
symbolic form D = 𝜀E. The electric permittivity tensor is symmetrical, 𝜀ij = 𝜀ji,
and is therefore characterized by only six independent numbers. For crystals of
certain symmetries, some of these six coefficients vanish and some are related,
so that even fewer coefficients are necessary.

Elements of the permittivity tensor depend on the choice of the coordinate sys-
tem relative to the crystal structure. A coordinate system can always be found for
which the off-diagonal elements of 𝜀ij vanish, so that

D1 = 𝜀1E1, D2 = 𝜀2E2, D3 = 𝜀3E3 (1.2)

where 𝜀1 = 𝜀11, 𝜀2 = 𝜀22, and 𝜀3 = 𝜀33. These are the directions for which E and
D are parallel. For example, if E points in the x-direction, D must also point in
the x-direction. This coordinate system defines the principal axes and principal
planes of the crystal. The permittivities 𝜀1, 𝜀2, and 𝜀3 correspond to refractive
indices.

n1 =
(
𝜀1

𝜀0

)1∕2

, n2 =
(
𝜀2

𝜀0

)1∕2

, n3 =
(
𝜀3

𝜀0

)1∕2

(1.3)

are known as the principal refractive indices and 𝜀0 is the permittivity of free
space.

In crystals with certain symmetries two of the refractive indices are equal
(nl = n2 ≠ n3) and the crystals are called uniaxial crystals. The indices are usually
denoted n1 = n2 = no and n3 = ne. The uniaxial crystal exhibits two refractive
indices, an “ordinary” index (no) for light polarized in the x- or y-direction, and an
“extraordinary” index (ne) for polarization in the z-direction. The crystal is said to
be positive uniaxial if ne > no and negative uniaxial if ne < no. The z-axis of a uni-
axial crystal is called the optic axis. In other crystals (those with cubic unit cells,
for example) the three indices are equal and the medium is optically isotropic.
Media for which the three principal indices are different (i.e. n1 ≠ n2 ≠ n3) are
called biaxial. Light polarized at some angle to the axes will experience a different
phase velocity for different polarization components and cannot be described
by a single index of refraction. This is often depicted as an index ellipsoid.

The optical properties of crystals are described by the index ellipsoid or optical
indicatrix. It is generated by the equation

x2
1

n2
1
+

x2
2

n2
2
+

x2
3

n2
3
= 1 (1.4)

where x1, x2, and x3 are the principal axes of the dielectric constant tensor and n1,
n2, and n3 are the principal dielectric constants, respectively. Figure 1.1 shows the
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Figure 1.1 The index ellipsoid. The coordinates (x, y, z)
are the principal axes and (n1, n2, n3) are the principal
refractive indices of the crystal.
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optical indicatrix of a biaxial crystal. It is a general ellipsoid with n1 ≠ n2 ≠ n3 rep-
resentative of the optical properties of triclinic, monoclinic, and orthorhombic
crystals.

1.3 Effect of Crystal Symmetry

In the case of cubic crystals, which are optically isotropic, 𝜀 is independent of
direction and the optical indicatrix becomes a sphere with radius n. In crystals of
intermediate systems (trigonal, tetragonal, and hexagonal), the indicatrix is nec-
essarily an ellipsoid of revolution about the principal symmetry axis (Figure 1.2).
The central section is perpendicular to the principal axis, and only this central
section is a circle of radius n0. Hence, only for a wave normal along the principal
axis is there no double refraction. The principal axis is called the optic axis and
the crystals are said to be uniaxial. A uniaxial crystal is called optically positive
(+) when ne > n0 and negative (−) when ne < n0.

For crystals of the lower systems (orthorhombic, monoclinic, and triclinic), the
indicatrix is a triaxial ellipsoid. There are two circular sections (Figure 1.3) and
hence two privileged wave normal directions for which there is no double refrac-
tion. These two directions are called the primary optic axes or simply the optic
axes, and the crystals are said to be biaxial.

Figure 1.2 The indicatrix for a (positive) uniaxial
crystal.

Optic axis

Wave normalne

no
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Figure 1.3 The two circular sections of the
indicatrix and the two primary optic axes OP1,
OP2 for a biaxial crystal.

1.4 Wave Surface

If a point source of light is situated within a crystal the wave front emitted at any
instant forms a continuously expanding surface. The geometric locus of points
at a distance v from a point O is called the ray surface or wave surface. Actually,
the wave surface is a wave front (or pair of wave fronts) completely surrounding
a point source of monochromatic light. This is also a double-sheeted surface. In
most crystalline substances, however, two wave surfaces are formed; one is called
the ordinary wave surface and the other is called the extraordinary wave surface.
In both positive and negative crystals, the ordinary wave surface is a sphere and
the extraordinary wave surface is an ellipsoid of revolution.

1.4.1 Uniaxial Crystal

In uniaxial crystals, one surface is a sphere and the other is an ellipsoid of
revolution touching one another along the optical axis – OZ as shown in
Figure 1.4a,b. In positive (+) crystals (ne > n0) the ellipsoid is inscribed within
the sphere (Figure 1.4a), whereas in negative (−) crystals (ne < no) the sphere is
inscribed within the ellipsoid (Figure 1.4b).
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Figure 1.4 Ray surfaces of uniaxial crystals: (a) positive, (b) negative, (OZ) optical axis of the
crystal, (v0) and (ve) phase velocities of ordinary and extraordinary waves propagating in
the crystals.
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Figure 1.5 Positive uniaxial medium wave surface. Inner fold (left), vertical section (center),
and outer fold (right). Source: Latorre et al. 2012 [1]. Reproduced with permission of
Springer Nature.

Figure 1.6 Negative uniaxial medium wave surface. Inner fold (left), vertical section (center),
and outer fold (right). Source: Latorre et al. 2012 [1]. Reproduced with permission of
Springer Nature.

The dependence of the ray velocity of a plane wave propagating in a crystal on
the direction of propagation and the nature of polarization of the wave leads to
the splitting of light rays in crystals. In a uniaxial crystal, one of the refracted rays
obeys the usual laws of refraction and is therefore called the ordinary ray, whereas
the other ray does not (it does not lie in the plane of incidence) and is called the
extraordinary ray. The three-dimensional view of positive and negative uniaxial
medium wave surfaces can be seen in Figures 1.5 and 1.6.

1.4.2 Biaxial Crystal

It is very difficult to imagine what shapes the biaxial wave surface will have. For
wave normals that lie in any of the three principal planes of the indicatrix the
situation is very similar to that described for the uniaxial crystal. Three cross-
sectional views of the wave surfaces for a biaxial crystal are given in Figure 1.7.

In biaxial media, the wave surface equations are fourth-order polynomials with
even powers only; that is, the surface is symmetrical with respect to the origin.
Both surface folds intersect only at four symmetrical points, as can be seen in
Figure 1.8. Note that this intersection does not yield a curve but only the four
points.
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Figure 1.7 Principal sections of the wave surface for a biaxial crystal.

Figure 1.8 Wave surface for a biaxial medium. Inner fold (left), vertical section (center), and
outer fold (right). Source: Latorre et al. 2012 [1]. Reproduced with permission of Springer
Nature.

1.5 Birefringence

When a beam of nonpolarized light passes into a calcite or quartz crystal, the
light is decomposed into two beams that refract at different angles. This phe-
nomenon is called birefringence or double refraction. The ray for which Snell’s
law holds is called the ordinary or O-ray, and the other is called the extraordinary
or E-ray (Figure 1.9).

Birefringent materials are optically anisotropic (their properties depend on
the direction a light beam takes across them) because their molecules do not
respond to the incident light evenly in all directions. This arises from their
molecular (bond strengths) and crystal (arrangement) structures. However,
in all such materials there is at least one optic axis (some materials have two)
along which propagating light can travel with no consequences to either (any)
component of its electric vector. This axis serves as a kind of reference. Light
traveling in any other direction through the crystal experiences two different
refractive indices and is split into components that travel at different speeds and
have perpendicular polarizations.

E-ray

O-ray

Incident

light

Figure 1.9 Side view of the
double refraction of light by a
calcite crystal.
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Figure 1.10 Double
refraction at the boundary of
an anisotropic medium.
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This effect of double refraction or birefringence is further demonstrated in
Figure 1.10 [2]. In Figure 1.10, subscript 0 indicates the incident wave, while
1 and 2 indicate the refracted waves. The refractive index for ordinary wave is
denoted by no and is independent of the direction of propagation. The refractive
index for extraordinary wave is denoted by ne(𝜃) and depends on the direction of
propagation (𝜃) relative to the optic axis.

The behavior of refractive index is usually described in terms of the refractive
index surface, i.e. the index ellipsoid. In the case of the ordinary ray it is a sphere,
while for the extraordinary ray it is an ellipsoid. That is, in terms of ellipsoid,
this effect becomes a three-dimensional body with cylindrical symmetry. The two
indices of refraction are then identical (nx = ny), so that the plane intersecting
perpendicular to the optical axis forms a circle. If z-axis is considered as the axis
of cylindrical symmetry (the optical axis of a uniaxial crystal), then for uniaxial
crystal, the principal indices of refraction are

n2
0 =

𝜀x

𝜀0
=

𝜀y

𝜀0
and n2

e =
𝜀z

𝜀0
(1.5)

where 𝜀o is the dielectric constant in free space (∼8.85× 10−12 F/m); 𝜀x, 𝜀y, and 𝜀z
are the dielectric constants along x, y, and z-axes. For uniaxial crystals 𝜀x = 𝜀y. It is
also a known fact that refractive index and critical angle of materials are related by

sin co =
1
n0

and sin ce =
1
ne

(1.6)

where co and ce are the critical angles at the ordinary and extraordinary axes
respectively. The critical angle of a material determines whether an internal ray
will be reflected back into the material. As shown in Eq. (1.6), it is a function of the
refractive index, and hence, the higher the refractive index the lower the critical
angle.

In Figure 1.11a, the incident light rays giving rise to the ordinary and extraor-
dinary rays enter the crystal in a direction that is oblique with respect to the
optical axis and are responsible for the observed birefringent character. When
an incident ray enters the crystal perpendicular to the optical axis, it is separated
into ordinary and extraordinary rays, but instead of taking different pathways, the
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Figure 1.11 Separation of light waves by a birefringent crystal [3]. Source: Courtesy of Nikon.

trajectories of these rays are coincident. Even though the ordinary and extraor-
dinary rays emerge from the crystal at the same location, they exhibit different
optical path lengths and are subsequently shifted in phase relative to one another
(Figure 1.11b). In the case where incident light rays impact the crystal in a direc-
tion that is parallel to the optical axis (Figure 1.11c), they behave as ordinary light
rays and are not separated into individual components by an anisotropic birefrin-
gent crystal. Calcite and other anisotropic crystals act as if they were isotropic
materials (such as glass) under these circumstances. The optical path lengths of
the light rays emerging from the crystal are identical, and there is no relative
phase shift.

1.6 Polarization of Light

Polarization generally just means “orientation.” It comes from the Greek word
polos, for the axis of a spinning globe. Wave polarization occurs for vector fields.
For light (electromagnetic waves) the vectors are the electric and magnetic fields,
and the light’s polarization direction is by convention along the direction of the
electric field. Generally, we should expect fields to have three vector components,
e.g. (x, y, z), but light waves only have two non-vanishing components: the two
that are perpendicular to the direction of the wave.

Electromagnetic waves are the solutions of Maxwell’s equations in a vacuum:
∇ × E= 0
∇ × B= 0

∇ × E=−𝜕B
𝜕t

∇ × B = 𝜀0𝜇0
𝜕E
𝜕t

(1.7)
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Figure 1.12 Schematic view of
electromagnetic wave
propagation along the z-axis.
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Figure 1.13 Propagation of Ex and Ey components along the z-axis [4]. Source: Courtesy of
Semrock.

In order to satisfy all four equations, the waves must have the E and B fields
transverse to the propagation direction. Thus, if the wave is traveling along the
positive z-axis, the electric field can be parallel to the x-axis and B-field parallel
to the y-axis (Figure 1.12).

We shall call the two distinct waves Ex and Ey, where we denote these by vectors
to remind that they point in (or oscillate along) a certain direction (the x- and
y-directions, respectively) as shown in Figure 1.13. The amplitude of the light
wave describes how the wave propagates in position and time. Mathematically,
we can write it as a “sine wave” where the angle of the sine function is a linear
combination of both position and time terms:

E(x, t) = A sin
(

2𝜋 z
𝜆
± 2𝜋𝜈t

)
(1.8)

where A is called the “amplitude factor,” the variable 𝜆 is the wavelength, and
the variable 𝜈 is the frequency. If a snapshot of the wave could be taken at a fixed
time, 𝜆 would be the distance from one wave peak to the next. If one sits at a fixed
point in space and counts the wave peaks as they pass by, 𝜈 gives the frequency of
these counts, or 1/𝜈 gives the time between peaks. The sign between the position
and time terms determines the direction the wave travels: when the two terms
have the opposite sign (i.e. the “−” sign is chosen), the wave travels in the positive
z-direction.

For convenience, we often use two new variables called the wave number
k= 2𝜋/𝜆 and the angular frequency 𝜔= 2𝜋𝜈, which absorb the factor of 2𝜋, so
that the wave amplitude can now be written more compactly as

E(x, t) = A sin(kz ± 𝜔t) (1.9)
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Using this description of a single transverse orientation of a light wave, we can
now consider multiple orientations to describe different states of polarization.

1.6.1 Linear Polarization – Equal Amplitudes

Here is an example of two waves Ex and Ey viewed in a “fixed time” picture (say
at t = 0). The amplitude E or the potential for a charged particle to feel a force
is vibrating along both the x- and y-directions. An actual charged particle would
feel both of these fields simultaneously, or it would feel

E =Ex +Ey = (x+ y)A sin(kz − 𝜔t) (1.10)

If we look down the propagation axis in the positive z-direction, the vector E
at various locations (and at t= 0) appears as in Figure 1.14.

That is, E appears to oscillate along a line oriented at 45∘ with respect to the
x-axis. Hence this situation is called linear polarization.

Equivalently, we could view the wave at a particular location (“fixed position”)
and watch its amplitude evolve with time. Suppose we sit at the position z = 0.
Then we see that

E =Ex + Ey = −(x + y)A sin(2𝜋𝜐t) (1.11)

which appears as in Figure 1.15.

1.6.2 Linear Polarization – Unequal Amplitudes

If the two components Ex and Ey have unequal amplitude factors, we can see that
the light wave is still linearly polarized (see Figure 1.16).

z = λ/4 z = 3λ/4

E
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Ey
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yz z y yz A

A E
x x

α

Various z

Figure 1.14 Orientation of E vector at various locations along the z-axis [4]. Source: Courtesy
of Semrock.
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Figure 1.15 The oscillation of E vector back and forth along the same 45∘ line as time
evolves [4]. Source: Courtesy of Semrock.
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Ey = yAy sin(kz – ωt)

Ex = xAx sin(kz – ωt)
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Figure 1.16 Propagation of the unequal Ex and Ey components along the z-axis [4]. Source:
Courtesy of Semrock.

Figure 1.17 Orientation of E vector at various locations
along the z-axis (when Ax ≠Ay) [4]. Source: Courtesy of
Semrock.
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If Ax ≠Ay, the total wave E is linearly polarized, but it is no longer oriented at
45∘ with respect to the x-axis. In fact, we can see that it is oriented at an angle 𝛼

where

tan 𝛼 =
Ay

Ax
(1.12)

In other words, if we look down the propagation axis in the positive x-direction,
the vector E at various locations (and at t = 0) appears as in Figure 1.17.

1.6.3 Circular Polarization

Suppose the two components have equal amplitudes again, but now consider the
case where these two components are not in phase, such that the angles of the
“sine functions” are different. In particular, suppose there is a constant phase dif-
ference of 𝜋/2 between them, which corresponds to a distance of 𝜆/4 in the “fixed
time” picture.

The x-component is

Ex = xA sin
(

kz − 𝜔t − 𝜋

2

)
(1.13)

while the y-component is as before

Ey = yA sin(kz − 𝜔t) (1.14)

This case appears as in Figure 1.18.
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Figure 1.18 Propagation of Ex and Ey components along the z-axis when they are at a
constant phase difference of 𝜋/2 [4]. Source: Courtesy of Semrock.
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Figure 1.19 Orientation of E vector in the x–y plane at a fixed time [4]. Source: Courtesy of
Semrock.
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Figure 1.20 Circular orientation of E vector along the z-axis [4]. Source: Courtesy of Semrock.

To understand what is going on physically, again look down the z-axis
(at time t= 0). We can see that the tip of E traces out a circle as we follow the
wave along the z-axis at a fixed time (Figure 1.19).

Similarly, if we sit at a fixed position, the tip of E appears to trace out a cir-
cle as time evolves. Hence this type of polarization is called circular polarization
(Figure 1.20).

1.6.4 Elliptical Polarization

All the states of polarization described above are actually special cases of the most
general state of polarization, called elliptical polarization, in which the tip of the
electric field vector E traces out an ellipse in the x–y plane. The two components
might have unequal amplitudes Ax ≠Ay, and also might contain a different rela-
tive phase, often denoted 𝛿. That is, we may write generally the x-component as
follows:

Ex = xAx sin(kz − 𝜔t + 𝛿) (1.15)
while the y-component is as before:

Ey = yAy sin(kz − 𝜔t) (1.16)
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Figure 1.21 Elliptical polarization of E vector in the x–y plane [4]. Source: Courtesy of Semrock.

where, as before, E = Ex + Ey. The three special cases described in Sections 1.1,
1.2, and 1.3 thus correspond to Ax =Ay and 𝛿= 0 (linear polarization; equal ampli-
tudes); Ax ≠Ay and 𝛿 = 0 (linear polarization; unequal amplitudes); and Ax =Ay
with 𝛿 = −𝜋/2 (circular polarization), respectively. Some other examples of more
general states of elliptical polarization are shown below (Figure 1.21).

1.7 Changing the Polarization of Light

Unpolarized light can be polarized using a polarizer or polarizing beam split-
ter (PBS) and the state of already polarized light can be altered using a polarizer
and/or optical components that are phase retarders. In this section, we explore
some examples of these types of components.

1.7.1 Polarizer and Polarizing Beam Splitters

A polarizer transmits only a single orientation of linear polarization and blocks
the rest of the light. For example, a polarizer oriented along the x-direction passes
Ex and blocks Ey (see Figure 1.22).

Some polarizer eliminates the non-passed polarization component (Ey in the
above example) by absorbing it, while others reflect this component. Absorbing
polarizers are convenient when it is desirable to completely eliminate one polar-
ization component from the system. A disadvantage of absorbing polarizers is
that they are not very durable and may be damaged by high-intensity light (as
found in many laser applications).

x

y Ey

Ex Ex

Linear polarizer oriented along x

z

Figure 1.22 Linear polarizer transmits Ex component of the light oriented along the x-axis [4].
Source: Courtesy of Semrock.
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Figure 1.23 Polarization of light (y-component) by the absorbing polarizer (a), and by the
reflective beam splitter (b) [4]. Source: Courtesy of Semrock.

Ex
Ex

Ey

e–
Figure 1.24 Transmission of Ex component of
light through the PVA sheet Polaroid [4]. Source:
Courtesy of Semrock.

When a reflective polarizer is operated in such a way that the blocked (i.e.
reflected) polarization component is deflected into a convenient direction, such
as 90∘ relative to the transmitted polarization component, then the polarizer acts
like a PBS, as shown in Figure 1.23. Most PBSs are very efficient polarizers for
the transmitted light (i.e. the ratio of desired to undesired polarization is very
high); however, the reflected light generally contains some of both polarization
components.

There are different ways of making a polarizer. However, as an example,
consider one of the most popular absorbing polarizers: the well-known Polaroid
“H-Sheet.” This polarizer, invented by E. H. Land in 1938, is a plastic, poly-vinyl
alcohol (PVA) sheet that has been heated and then stretched in one direction,
forming long, nearly parallel hydrocarbon molecule chains. After dipping the
sheet into an iodine-rich ink, long iodine chains form along the hydrocarbon
molecules. Electrons freely move along the iodine chains, but do not easily move
perpendicular to the chains. This ability for electrons to move freely in one
direction but not the perpendicular direction is the key principle upon which
most absorbing polarizers are based (see Figure 1.24).

When the electric field of a light wave encounters the sheet, the component
parallel to the chains causes electrons to oscillate along the direction of that com-
ponent (Ey in the above example), thus absorbing energy and inhibiting the com-
ponent from passing through the sheet. Because electrons cannot respond to the
other component (Ex), it is readily transmitted.

1.7.2 Birefringent Wave Plate

Some materials have a different index of refraction for light polarized along
different directions. This phenomenon is called birefringence. For example,
suppose that light polarized along the x-direction sees an index of nx while light
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Figure 1.25 Transformation of linearly polarized light into circularly polarized light by the
birefringent material [4]. Source: Courtesy of Semrock.

polarized along the y-direction sees an index ny. Now, suppose linearly polarized
light passes through a piece of such a birefringent material of length L, where the
linear polarization axis is oriented at 45∘ angle with respect to the x- and y-axes.
The fixed time picture thus looks as in Figure 1.25.

We can see that in general the light emerges in a different state of elliptic polar-
ization. In fact, for the example illustrated above, the particular choice of L for
a given difference between nx and ny causes the linearly polarized light at the
input end to be converted to circularly polarized light at the other end of the
birefringent material.

Consider the phases accumulated by the two component waves as they travel
through the birefringent material. The waves can be described by

Ex = xA sin
(2𝜋
𝜆

nxz − 𝜔t
)

and Ey = yA sin
(2𝜋
𝜆

nyz − 𝜔t
)

(1.17)

After traveling a length L, the waves have accumulated the respective phases of

𝜃x =
2𝜋
𝜆

nxL and 𝜃y =
2𝜋
𝜆

nyL (1.18)

If the difference between the two phase values is 𝜋/2, then the wave emerging
from the material (say into air) will be circularly polarized. This occurs when

𝜃y − 𝜃x =
2𝜋
𝜆
(ny − nx)L = 2𝜋

𝜆
ΔnL = 𝜋

2
(1.19)

or when

ΔnL = 𝜆

4
(1.20)

Because of this relationship, a material with birefringence Δn of the appropri-
ate thickness L to convert linear polarization to circular polarization is called a
quarter-wave plate.

Some materials, especially crystals, are naturally anisotropic at micro-
scopic (sub-wavelength) size scales. For example, calcite (CaCO3) is shown in
Figure 1.26. The structure, and hence the response to polarized light, along the
c-direction is markedly different than that along the a- and b-directions, thus
leading to a different index of refraction for light polarized along this direction
(see Figure 1.26).

Other materials are nominally isotropic, but when they are bent or deformed
in some way, they become anisotropic and therefore exhibit birefringence. This
effect is widely used to study the mechanical properties of materials with optics.
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Figure 1.26 Structure of
CaCO3 along the a-, b-, and
c-axis [4]. Source: Courtesy of
Semrock.

1.8 Effects of Reflection and Transmission
on Polarization

The polarization of light reflected and transmitted at an interface between two
media or at a thin-film multilayer coating can be altered dramatically. These two
cases are considered below.

1.8.1 Interface Between Two Media

When light is incident on an interface between two different media with different
indexes of refraction, some of the light is reflected and some is transmitted. When
the angle of incidence is not normal, different polarizations are reflected (and
transmitted) by different amounts. This dependence was first properly described
by Fresnel and hence it is often called “Fresnel reflection.” It is simplest to describe
the polarization of the incident, the reflected, and transmitted (refracted) light in
terms of a vector component perpendicular to the plane of incidence, called the
“s” component, and a component parallel to the plane of incidence, called the “p”
component. The “plane of incidence” is the plane that contains the incident ray
and the transmitted and reflected rays (i.e. all of these rays lie on one plane). In
the example in Figure 1.27, the plane of incidence is the plane containing the x-
and z-axes. That is, Es∥y, while Ep lies in the x–z plane.

The angle of the reflected ray, 𝜃r , is always equal to the angle of the incident
ray, 𝜃i; this result is called the “law of reflection.” The angle of the transmitted (or
refracted) ray, 𝜃t , is related to the angle of incidence by the well-known “Snell’s
law” relationship: ni sin 𝜃i = nt sin 𝜃t .

x

z
y

ni

Es Esr

Ept

Est

Ep Epr

nt

θt

θi θr

Figure 1.27 Polarization of the incident, reflected, and transmitted (refracted) light in terms of
vector components (“s” and “p” components) [4]. Source: Courtesy of Semrock.
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Figure 1.28 The intensity of reflection coefficient for a light wave for air-to-glass (a) and
glass-to-air (b) [4]. Source: Courtesy of Semrock.

It turns out that s-polarized light is always more highly reflected than
p-polarized light. In fact, at a special angle called “Brewster’s angle,” denoted
𝜃B, the p-polarized component sees no reflection, or is completely transmitted.
Brewster’s angle is given by 𝜃B = arc tan(nt/ni). The power or intensity reflection
coefficients for a light wave (i.e. the squares of the amplitude reflection coeffi-
cients) for air-to-glass and glass-to-air polarization appear as in Figure 1.28a
and b, respectively.

The Fresnel reflection coefficients for non-normal incidence are given by the
equations:

rs =
ni cos 𝜃i − nt cos 𝜃t

ni cos 𝜃i + nt cos 𝜃t
and rp =

nt cos 𝜃i − ni cos 𝜃t

nt cos 𝜃i + ni cos 𝜃t
(1.21)

Notice from the graph above on the right that for the case of reflection from a
higher index region to a lower index region (in this case glass-to-air, or ni = 1.5
and nt = 1.0), the reflectivity becomes 100% for all angles greater than the “critical
angle” 𝜃c = arc sin(nt/ni) and for both polarizations. This phenomenon is known
as “total internal reflection” (TIR).

For angles of incidence below the critical angle only the amplitudes of the dif-
ferent polarization components are affected by reflection or transmission at an
interface. Except for discrete changes of 𝜋 (or 180∘), the phase of the light is
unchanged. Thus, the state of polarization can change in only limited ways. For
example, linearly polarized light remains linearly polarized, although its orien-
tation (angle 𝛼) may rotate. However, for angles greater than 𝜃c, different polar-
izations experience different phase changes, and thus TIR can affect the state of
polarization of a light wave in the same way birefringence does. Thus, linearly
polarized light may become elliptical or vice versa, in addition to changes in the
orientation.

1.8.2 Multilayer Thin-Film Filters

Multilayer thin-film coatings have a large number of interfaces, since they are
generally comprised of alternating layers of high- and low-index layer materials.
The fraction of incident light intensity Iin that is reflected (IR) and transmitted
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Figure 1.29 The fraction of intensity reflection (IR)
and transmission (IT ) for normal incidence of light
on a multilayer thin film filter [4]. Source: Courtesy
of Semrock.

Iin

IR = R(λ)Iin

IT = T(λ)Iin

Dichroic

Figure 1.30 The fraction of intensity
reflection (IR) and transmission (IT ) for the
non-normal, incoherent, and unpolarized
incidence of light [4]. Source: Courtesy of
Semrock.

(IT ) through a thin-film coating can be calculated from the indexes of refraction
and the precise thicknesses of each layer. These intensity reflection and trans-
mission functions R(𝜆) and T(𝜆), respectively, generally depend strongly on the
wavelength of the light, because the total amount of light reflected from and
transmitted through the coating comes from the interference of many individual
waves that arise from the partial reflection and transmission at each interface.
That is why optical filters based on thin-film coatings are called “interference fil-
ters” (see Figure 1.29).

When an optical filter is used at a non-normal angle of incidence, as is common
with the so-called “plate beam splitters,” the filter can impact the polarization of
the light. If the incident light is incoherent and unpolarized and the optical sys-
tem is “blind” to polarization, the standard intensity reflection and transmission
functions R(𝜆) and T(𝜆) may be determined for the new angle of incidence, and
they are sufficient to characterize the two emerging beams (see Figure 1.30).

However, if the optical system is in any way sensitive to polarization, even when
the incident light is unpolarized, it is important to recognize that the beam split-
ter can transmit and reflect different amounts of the “s” and “p” polarization
states, as shown in Figure 1.31.

The amount of light output in each polarization state can be determined by sim-
ply breaking up the incident light into its two polarization components (s and p)
and then calculating how much of each intensity is transmitted and reflected. For
systems based on incoherent light, this level of detail is usually sufficient to keep
track of the impacts of components such as optical filters on polarization.

For some optical systems – particularly those based on coherent light and that
utilize or are sensitive to interference effects – the complete state of polarization
should be tracked at every point through the system. In that case, it is important
to understand that optical filters based on multilayer thin-film coatings not only
reflect and transmit different amounts of intensity for the “s” and “p” polarization
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Figure 1.31 The fraction of intensity
reflection (IR) and transmission (IT ) in terms
of “s” and “p” polarization states [4]. Source:
Courtesy of Semrock.

Iin

Is,R = Rs(λ)Iin

Is,T = Ts(λ)Iin

Ip,R = Rp(λ)Iin

Ip,T = Tp(λ)Iin

states but also impart different phases to the two different states. Both the ampli-
tude and phase contributions can depend strongly on the wavelength of light.
Thus, in general, an optical filter can act like a combination of a partial polarizer
and a birefringent wave plate, for both reflected and transmitted light.

To determine the effect of an optical filter on the light in such a system, the
incident light should first be broken up into the two fundamental components
associated with the plane of incidence of the filter (s and p components). Then, the
amplitude and phase responses of the filter for the “s” and “p” components should
be applied separately to each of the incident light components to determine the
amplitudes and phases of the reflected and transmitted light components. Finally,
the reflected “s” and “p” components can be recombined to determine the total
reflected light and its state of polarization, and likewise for the transmitted light.
These steps are illustrated in Figure 1.32.

Because the polarization response of a tilted multilayer thin-film coating can be
very strong, optical filters can make excellent polarizers. For example, a basic edge
filter at a high angle of incidence exhibits “edge splitting” – the edge wavelength
for light at normal incidence shifts to a different wavelength for p-polarized light
than it does for s-polarized light. As a result, there is a range of wavelengths

Es,r = rs(λ)eif
s,r(λ)Es,in

Es,in

Ep,in

Es,t = ts(λ)eif
s,t(λ)Es,in

Ep,r = rp(λ)eif
p,r(λ)Ep,in

Ep,t = tp(λ)eif
p,t(λ)Ep,in

IT = |Et|
2

Iin = |Ein|2

IR = |Er|
2

Figure 1.32 Distribution of IR and IT in terms of Es and Ep of the incident light [4]. Source:
Courtesy of Semrock.



20 1 Crystal Optics

p only

s only

s and p

T

λ

p
s

Figure 1.33 Thin-film plate polarizer [4]. Source: Courtesy of Semrock.

for which p-polarized light is highly transmitted while s-polarized light is highly
reflected, as shown below (see Figure 1.33).

It is also possible to take advantage of an appreciable difference in reflected
or transmitted phase for p- and s-polarized light over a region of the spectrum
where the reflected and transmitted intensities are essentially equal, thus forming
a wave plate.

1.9 Light Polarizing Devices

This section is a brief description of a number of devices that are used to modify
the state of polarization of light. Their respective features are given below.

1.9.1 Polarizing Plate

A polarizing plate is a piece of film by itself or a film being held between two
plates of glass. Adding salient iodine to preferentially oriented macromolecules
will allow this film to have dichroism. Dichroism is a phenomenon in which dis-
crepancies in absorption occur due to the vibration in the direction of incident
light polarization. Since the polarizing plate absorbs the light oscillating in the
arranged direction of the macromolecule, the transmitted light rays become lin-
early polarized. Despite its drawbacks of (i) limited usable wavelength band (vis-
ible to near infrared light) and (ii) susceptibility to heat, the polarizing plate is
inexpensive and easy to enlarge.

1.9.2 Polarizing Prism

When natural light enters a crystal having double refraction the light splits into
two separate linearly polarized beams. By intercepting one of these, linearly
polarized light can be obtained; this kind of polarizing device is called a polariz-
ing prism, and among those we find Glan–Thompson prism (Figure 1.34a) and
Nicol prism (Figure 1.34b). A polarizing prism has higher transmittance than a
polarizing plate and provides high polarization characteristics that cover a wide
wavelength band. However, its angle of incidence is limited and it is expensive. In
addition, when used in a polarizing microscope, this prism takes up more space
than a polarizing plate and may cause image deterioration when placed in an
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Figure 1.34 Polarizing prism.
(a) Glan–Thompson prism
(b) Nicol prism [5]. Source:
Courtesy of Olympus.
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image forming optical system. For these reasons, a polarizing plate is generally
used except when brightness or high polarization is required.

1.9.3 Phase Plate

A phase plate is used in the conversion of linearly polarized light and circularly
polarized light, and in the conversion of the vibration direction of linearly
polarized light. A phase plate is an anisotropic crystal that generates a certain
fixed amount of retardation, and based on that amount, several types of phase
plates (tint plate, quarter-wave plate, and half-wave plate) are made. When using
a quarter-wave plate, a diagonally positioned optical axis direction can convert
incident linearly polarized light into circularly polarized light and vice versa
(Figure 1.35).

Linearly polarized light

Linearly polarized light

Circularly polarized light

Circularly polarized light

1/4 wave plate

1/4 wave plate

Conversion of linearly polarized light into
circularly polarized light

Conversion of circularly polarized light into
linearly polarized light

Z′

X′

Z′

X′

4
5
°

Figure 1.35 Quarter-wave plate conversion of linearly polarized light into circularly polarized
light [5]. Source: Courtesy of Olympus.



22 1 Crystal Optics

A half-wave plate is mainly used for changing the vibration direction of linearly
polarized light, and for reversing the rotating direction of circularly polarized and
elliptically polarized light. Quarter-wave plates, half-wave plates, and tint plates
are usually thin pieces of mica or crystal sandwiched in between the glass.

1.9.4 Optical Isolator

The optical isolator is a combination of a linearly PBS and a quartz quarter-wave
plate as shown in Figure 1.36. Incident light is linearly polarized by the polarizer
and converted to circular polarization by the quarter-wave plate. If any portion
of the emerging beam is reflected back into the isolator, the quarter-wave plate
produces a beam that is linearly polarized perpendicular to the input beam. This
beam is blocked by the linear polarizer and not returned to the input side of the
system. Two types of optical isolator are offered: a monochromatic optical isola-
tor and a broadband optical isolator.

1.9.5 Optical Attenuators

An optical attenuator is built by combining two linear polarizers and a half-wave
plate. The input and output polarizers are crossed so that no light passes through
them; however, inserting the half-wave plate allows light to pass through the
device. The amount of light is determined by the angle between the optical axis
of the incoming polarizer and the half-wave plate. Placing the half-wave plate’s
optical axis at 45∘ to the incoming polarizer achieves maximum transmission;
aligning the optical axis of the half-wave plate with either of the input or output
polarizer optical axes gives the minimum transmission. How close the minimum
is to zero transmission depends on the quality of the polarizer and the half-wave
plate used in the device.

Replacing the half-wave plate with a liquid crystal (LC) variable retarder creates
a variable attenuator. This configuration is shown in Figure 1.37. When we align
the fast axis of the variable retarder at 45∘ to the input polarizer and modulate
the retardance between half wave and full wave, transmission varies between the
maximum and the minimum, creating an optical shutter chopper.

PBS Quarter-waveplate Reflecting surface

Circularly polarized beam

Figure 1.36 Demonstration
of optical isolation [6].
Source: Courtesy of Union
Optic.
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Figure 1.37 The variable attenuator configuration [7]. Source: Courtesy of Meadowlark
Optics, Inc.

1.9.6 Polarization Rotator

A polarization rotator is an optical device that rotates the polarization axis of a
linearly polarized light beam by an angle of choice. A simple polarization rotator
consists of a half-wave plate in linear polarized light. Rotating the half-wave plate
causes the polarization to rotate to twice the angle of the half-wave plate’s fast axis
with the polarization plane, as shown in Figure 1.38.

The polarization rotation induced by optically active crystals, such as wave
plates, is reciprocal. If the polarization direction is rotated from right to left
(say) on forward passage (as viewed by a fixed observer) it will be rotated from
left to right on backward passage (as viewed by the same observer), so that
back-reflection of light through an optically active crystal will result in light with
zero final rotation, the two rotations having canceled out. This is best shown in
the Figure 1.39.

45°

Optical axis

Figure 1.38 A half-wave plate rotates polarization by 90∘ [8].
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Figure 1.39 (a) Left to right polarization and (b) right to left polarization [9]. Source: Courtesy
of Fosco.

90° twisted cell

Figure 1.40 Liquid crystal
twisted nematic
polarization rotator cell [10].
Source: Courtesy of
ARCoptix.

This is because the polarization rotation that occurs here is a result of a longi-
tudinal spirality (represented as a helix) in the crystal structure. Hence, rotation
following the handedness of the spiral in the forward direction will be opposed
by the spiral in the backward direction.

Liquid crystal twisted nematic polarization rotator (TN cell) is very useful when
one wants to rotate the orientation of linear polarization by a fixed amount, typ-
ically 45∘ or 90∘. When light is traversing an LC twisted nematic cell its polariza-
tion follows the rotation of the molecules (Figure 1.40). The screen of any laptop
computer is based on the same effect.

In optical systems, the polarization is often rotated by quartz retardation plates
(l/2 or l/4 plates). Quartz plate shows high quality and good transmission per-
formances especially in the UV region. However, such plates also present some
disadvantages: They are expensive, function only for a narrow spectral band-
width, and have a small incidence angle acceptance (field of view less than 2∘).
The liquid crystal nematic cells have therefore a large acceptance angle, function
over a very large spectral range from Vis to NIR (if they are thick enough), and
are less expensive. Optionally, by applying a voltage on the TN cell, the polariza-
tion rotation can be “switched off.” Also, when placing a 90∘ twisted cell between
crossed polarizers, it can be used as a shutter.
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