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Field Theory

Introduction

1 Concept of a tensor

In theoretical physics all physical phenomena are described with the aid of various
mathematical models in which the physical objects are associated with the mathemat-
ical ones. The mathematical objects describe the physical ones in space, specifying
them in the different reference frames. Here, each point in space is associated with a
set of coordinates, the number of them depending on the dimensionality of the space.
The coordinates are usually denoted as xi where the index i takes all possible values in
accordance with the enumeration of the reference frame axes and is called free index.
A set of coordinates pertaining to one point is referred to as radius-vector and is usually,
in the three-dimensional case in particular, denoted with r.

The properties of physical objects must not depend on the choice of reference frame
and this determines the properties of mathematical objects corresponding to the phys-
ical ones. For example, the physical laws of conservation must be described with the
aid of mathematical objects having the same form in various reference frames. These
are called invariants. Various reference frames can be related with the aid of a cer-
tain coordinate transformation representing, from the formal mathematical viewpoint,
a replacement written usually as xi(r) = x′i(r′). The prime is commonly ascribed to the
radius-vector in the reference frame transformed with respect to the initial frame. Since
for describing physical objects it is also necessary to apply the inverse transformations,
the continuous and non-degenerate transformations alone should be used for replacing
the coordinates for which J = det(𝜕xi ∕𝜕x′k) ≠ 0, J being the determinant of the Jacobi
matrix, i. e. Jacobian of the given transformation.

The mathematical objects that remain unchangeable under all transformations
(replacements) of the coordinates correspond to the invariants and these objects are
referred to as scalars. A scalar has no free indices and thus can be denoted as 𝜑. If in
place of a simple scalar one specifies a scalar field, i. e. scalar 𝜑(r) as a function of the
spatial point with coordinates r, this function varies with the replacement of coordinates
r(r′) so that the previous values would correspond to new coordinates of the previous
points:

𝜑(r(r′)) = 𝜑′(r′).
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4 1 Field Theory

If the coordinate transformation is linear, the elements of the Jacobi matrix are simply
numbers and the expression for the radius-vector of a point after transformation of the
reference frame can be written in the following form:

xi =
∑

k

𝜕xi

𝜕x′k
x′k ≡ 𝜕xi

𝜕x′k
x′k .

It is customary always to perform a summation over the doubly repeated so-called
dummy index and thus the summation sign is usually omitted (rule of summation).

Provided that the coordinate transformation is nonlinear, the law of transformation is
valid not for the radius-vector but for its differential

dxi = 𝜕xi

𝜕x′k
dx′k .

A vector or contravariant vector is called a set of quantities Ai varying under the trans-
formation of a reference frame in the same way as the components of the radius-vector:

Ai = 𝜕xi

𝜕x′k
A′k .

The derivative of the scalar field with respect to the radius-vector components, i.e. the
gradient, is a multicomponent quantity as well. Under transformation of the reference
frame its form will vary with the aid of the inverse transformation matrix. Such an object
is referred to as a covariant vector (covector) and is written with a lower index:

𝜕𝜑

𝜕xi =
𝜕𝜑

𝜕x′k
𝜕x′k

𝜕xi , ui =
𝜕x′k

𝜕xi u′
k .

For orthogonal transformations, the transformation laws for vectors and covectors
coincide. In this case there is no necessity to distinguish between these two objects and
use the upper and lower indices.

If the scalar field is doubly differentiated with respect to the radius-vector compo-
nents, there appears a set of quantities described by two free indices transforming in
the same way as the replacement of coordinates, namely as a product of components of
two covariant vectors:

Tik = 𝜕2𝜑

𝜕xi𝜕xk
= 𝜕x′l

𝜕xi
𝜕x′m

𝜕xk
𝜕2𝜑

𝜕x′l𝜕x′m
≡ 𝜕x′l

𝜕xi
𝜕x′m

𝜕xk
T ′

lm.

Such mathematical objects are called covariant tensors of second rank. Accordingly, a
(contravariant) tensor of second rank is a set of quantities with two upper indices which
are transformed as a product of the corresponding components of two vectors. The rank
of a tensor is determined by the number of its indices. In general, a tensor can be of any
rank and have both upper and lower indices. The position of each index is important:

Tij…
kl… = T ′pq…

rs…
𝜕xi

𝜕x′p
𝜕xj

𝜕x′q · · · 𝜕x′r

𝜕xk
𝜕x′s

𝜕xl
· · · ⋅

In particular, a scalar is a tensor without indices, a vector is a tensor with one single
upper index, and a covariant vector is a tensor with one single lower index.

The following operations are defined for tensors.
Contraction is a summation over a pair of recurring indices, one of them being the

upper and the other being the lower, Tij…
il…. Contracting over a single pair of indices
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decreases the rank of a tensor by two. The contraction is also defined for two tensors
and here the number of pairs of same indices can be arbitrary, e.g. Tij…

kl…Skq…
mj…. Note

that, in general,

Tij…
kl…Skq…

mj… ≠ Tij…
kl…Sqk…

jm….

The contraction of two tensors of first rank is nothing but their scalar product AiBi =
(AB).

The tensor or Kronecker product is an elementwise multiplication of tensor compo-
nents with sets of different indices Tij…

kl…Spq…
mn…. As a result, one obtains a tensor

whose rank equals the sum of the ranks of the tensors in the product.
The tensor equality implies that two tensors with the same set of the lower and upper

indices are equal

Tij…
kl… = Sij…

kl…

if the difference of the corresponding components of these tensors vanishes in an arbi-
trary reference frame. Thus, the equality of two tensors in N-dimensional space corre-
sponds to a system of Ns equations, s being the tensor rank. It follows that vectors and
tensors allow one to write physical relations in a form independent of the chosen ref-
erence frames. This is because both sides of the tensor equality transform according to
the same rule under replacement of coordinates.

A combination of correctly constructed tensors results in another valid tensor pro-
vided the following rules of the index balance are observed:

• Each summand and each term of the equality must have the same sets of free indices,
namely, indices with the same attributes must be in the identical (lower or upper)
positions and the attribute of each free index runs once in each term.

• In each summand and in every part of the equality there may also be (or not) dummy
indices, namely, every dummy index in each term either is absent or can be found
exactly twice (once as an upper and once as a lower index).

• If any index occurs three times or more in one term, there is an error in the formula.
• If some index is found twice in the upper position or in the lower position, the formula

has an error. (Otherwise, we deal with tensors corresponding to orthogonal transfor-
mations.)

• We can rename any free index if we change its name equally in all summands. Here,
one should keep in mind that the new index name must differ from the names of the
other indices used in every summand. Analogously, we can replace the free index with
its numerical value.

• We can rename any dummy index in some summand, replacing simultaneously the
name of both its positions. In this operation the new name of the index should not
coincide with the names of other indices used in the summand.

One can obtain a tensor of second rank by differentiating the components of the
radius-vector with respect to its proper components. This results in a symmetric tensor
whose components are invariant with respect to any coordinate transformations:

𝛿i
k = 𝜕xi

𝜕xk
=
{

1, i = k,
0, i ≠ k

The tensor 𝛿i
k is usually referred to as the Kronecker symbol.
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Among various invariants an especially important one is the element of length, its
square being (dl)2 = dxidxi. Since this is a scalar, its value must remain unchanged by a
replacement of coordinates:

(dl)2 = dxi dxi =
𝜕xi

𝜕x′k
𝜕x′l

𝜕xi dx′kdx′
l = gl

kdx′kdx′
l.

According to the definition, the factor in front of dx′kdx′
l is a mixed second-rank tensor

which can be denoted as gl
k . If both indices are lower ones, a covariant tensor of second

rank can be introduced as

gkl =
∑

i

𝜕xi

𝜕x′k
𝜕xi

𝜕x′l
,

and thus the element of length can be written using the contravariant vector components
alone:

(dl)2 = gikdxi dxk .

The tensor gik is called the metric. It is easy to see that the contravariant tensor gik proves
to be inverse to gik , i. e. gikgkl = 𝛿l

i . With replacement of variables the metric tensor trans-
forms according to the definition

gik = 𝜕x′j

𝜕xi
𝜕x′l

𝜕xk
g′jl

For a second-rank tensor, one can calculate its determinant. Calculating the determinant
for both sides we arrive at g = (J−1)2g′ or

√
g′ = |J|√g.

The metric tensor can be used for raising or lowering the indices:
Ai = gikAk , Fi

j = gikFkj, also
AiBi = gikAiBk = gikAkBi.

There exists one more useful invariant tensor which has the same rank as the space
in which a physical object is treated. This is a completely antisymmetric tensor whose
components change sign under permutation of any pair of indices and whose nonzero
components are ±1. For definiteness, we consider the three-dimensional case. Then,
the completely antisymmetric tensor is a third-rank tensor, eikl = −ekil = ekli. Due to the
antisymmetric property all six components differ only in sign. It is agreed to put +1
for the component having the right ordering of indices, i. e. in Cartesian coordinates
e123 = exyz = +1. Let us write the relation of the tensor components obtained after a
coordinate transformation with the initial one:

eikl = 𝜕xi

𝜕x′p
𝜕xk

𝜕x′q
𝜕xl

𝜕x′r e′pqr
.

A summation over twice recurring indices taking account of the sign interchange gives

eikl = Je′ikl

where J is the Jacobian of the transformation. If the Jacobian of the transformation equals
unity, e.g. in the case of pure rotations, the tensor components remain unchanged1 . In
the three-dimensional case the tensor eikl is usually called the Levi-Civita symbol.

1 The availability of the Jacobian indicates that a tensor defined in such manner has the properties of a
density.
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2 Vectors and tensors in Euclidean space

In Euclidean space there exist a preferred systems of coordinates called Cartesian coor-
dinates in which the components of the metric tensor gij (i, j = 1, 2, 3) are given by the
unit matrix. In this case the raising or lowering of indeces does not change the values
of tensor components. The Jacobi matrices for coordinate transformations are always
orthogonal, J−1 = JT , and vectors with upper and lower indices transform identically.

With the exception of specified cases we will use Cartesian coordinates for describing
Euclidean space: r = (x, y, z) = (x1, x2, x3), allowing us to disregard the difference in the
upper and lower indices. We will use Latin characters for denoting tensor indices in
Euclidean space and write the indices as subscripts.

Usually, in Euclidean space a vector is denoted either by a bold character or by an
arrow over its symbol.

Transformations of the Cartesian reference frame for which the reference origin
remains invariant reduce to rotations around some axes, reflections in planes, and
inversion. For rotations, the Jacobian is J = +1, and for reflections and inversion one
has J = −1. Therefore, the tensor eikl behaves as a tensor for rotational transformations
but its components change sign for reflections. In other words, this tensor has an
attribute different from that of a genuine tensor. Thus, the tensor eikl is often referred to
as a pseudotensor.

The scalar, cross (vector) and scalar triple (mixed) products in tensor notation take
the form

(a b) = aibi = 𝛿ijaibj, [a × b]i = eijkajbk , (a [b × c]) = eijkaibjck .

As one sees, the cross product is a contraction of a pseudotensor and two vectors over
two pairs of indices, and thus the resultant vector is not genuine and is usually referred
to as pseudovector or axial vector.

The differential operator or del, presented by the nabla symbol 𝛁, is in Cartesian coor-
dinates a vector with the following components:

𝛁 =
(

𝜕

𝜕x
,

𝜕

𝜕y
,

𝜕

𝜕z

)
, ∇i =

𝜕

𝜕xi
.

In three-dimensional Euclidean space the basic functions, having invariant meaning
and thus often used, read in tensor notation as follows:

𝛁𝜑 = grad 𝜑 or grad 𝜑|i = ∇i𝜑 = 𝜕𝜑∕𝜕xi,

(𝛁 a) = div a = ∇iai = 𝜕ai∕𝜕xi,

[𝛁 × a] = curl a or curl a|i = eijk∇jak = eijk𝜕ak∕𝜕xj,

(a 𝛁) = ∇a = ai∇i (differential operator in the a direction),

(𝛁 𝛁) = div grad = ∇2 = ∇i∇i = Δ (Laplace operator),

div r = ∇ixi = 3,

curl r|i = [𝛁 × r]i = eijk∇jxk = 0,

ai∇ixj = (a 𝛁)r|j = aj or (a 𝛁)r = a,

grad r = r∕r = n.
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The integral Gauss theorem in invariant form is given by

∫ ∫ ∫V
div A dV ≡ ∫ ∫ ∫V

(𝛁 A) dV = ∮S
(A dS) = ∮S

(A n) dS.

The surface element or the normal is implied to be directed outside.
The Gauss theorem in tensor form reads as

∫ ∫ ∫V
div A dV ≡ ∫ ∫ ∫V

𝜕Ai

𝜕xi
dV = ∮S

Ai dSi ≡ ∮S
Aini dS.

The integral Stokes theorem in invariant form is given by

∫ ∫S
(curl A dS) ≡ ∫ ∫S

(dS [𝛁 × A]) = ∮L
(A dl).

The Stokes theorem in tensor form reads as

∫ ∫S
(curl A dS) ≡ ∫ ∫S

eijk
𝜕Ak

𝜕xj
dSi = ∮L

Ai dxi.

3 Vectors and tensors in Minkowski space

In the four-dimensional Minkowski space there also exists a preferred system of
coordinates (Lorentz coordinates) usually referred to as reference frames. In Lorentz
coordinates the components of the metric tensor (Minkowski metric) are written as
g𝜇𝜈 = diag (+1,−1,−1,−1) (𝜇, 𝜈 = 0, 1, 2, 3). In this case, raising or lowering an index
may change the sign of the tensor component, resulting in the necessity to distinguish
between upper and lower indices.

With the aid of the metric g𝜇𝜈 and the inverse metric g𝜇𝜈 one can raise or lower the
indices in the following way:

g𝜇𝜈 = g𝜇𝜈 = diag (+1,−1,−1,−1) =
⎛⎜⎜⎜⎝
+1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ , (1.1)

𝑣𝜇 = 𝑣𝜈g𝜇𝜈, 𝑣𝜇 = 𝑣𝜈g𝜇𝜈, T𝜇𝜈𝜆 = T𝜇𝜘𝜆g𝜘𝜈 , etc.

Greek characters will stand for the tensor indices in Minkowski space.
With the exception of a few specified cases we use Lorentz coordinates for describing

Minkowski space, x𝜇 ≡ x = (ct, x, y, z) = (ct, r) = (x0, x1, x2, x3), c being the speed of
light. A point in Minkowski space is called an event. It is obvious that

x𝜇 = (x0, x1, x2, x3) = g𝜇𝜈x𝜈 = (x0,−x1,−x2,−x3) = (x0,−r).

A vector in Minkowski space is often denoted by an underlined character, A𝜇 ≡ A.
The four-dimensional distance between two events s, the length of a four-dimensional

radius-vector (or, for short, a 4-radius-vector), is called an interval, its square being
equal to

s2 = g𝜇𝜈(x𝜇x𝜈) ≡ xx = (ct)2 − r2.

In general the square s2 of an interval may be positive, negative, or zero. The case s2 > 0
is referred to as a timelike one (two events may occur at the same point in space but at
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different time points). The case s2 < 0, this is said to be spacelike. For the lightlike line
one finds s = 0, this represents the light or zero interval.

The completely antisymmetric tensor e𝜇𝜈𝛼𝛽 is a tensor with respect to the transfor-
mations with unit Jacobian, i. e. for rotations and other transformations conserving the
volume and orientation of the basis. In the four-dimensional case it is usually defined by

e𝜘𝜆𝜇𝜈 = −e𝜆𝜘𝜇𝜈 = −e𝜘𝜇𝜆𝜈 = −e𝜘𝜆𝜈𝜇 = −e𝜈𝜆𝜇𝜘 , e0123 = +1.

With the aid of the completely antisymmetric tensor e𝜘𝜆𝜇𝜈 in Minkowski space one
can introduce the objects dual to scalar, vector, and antisymmetric tensors of rank 2, 3
and 4:

𝜑̃𝜘𝜆𝜇𝜈 = 1
0!

e𝜘𝜆𝜇𝜈𝜑, Ã𝜆𝜇𝜈 = 1
1!

e𝜘𝜆𝜇𝜈A𝜘 , F̃𝜇𝜈 = 1
2!

e𝜘𝜆𝜇𝜈F𝜘𝜆,

G̃𝜈 = 1
3!

e𝜘𝜆𝜇𝜈G𝜘𝜆𝜇, H̃ = 1
4!

e𝜘𝜆𝜇𝜈H𝜘𝜆𝜇𝜈.

The differential operator (4-gradient operator) in linear coordinates represents a covari-
ant vector and reads as

𝜕

𝜕x𝜇
= 𝜕𝜇 =

(1
c
𝜕

𝜕t
, 𝛁

)
.

With the exception of specified cases we consider in the following only linear coordi-
nate transformations conserving the Minkowski metric. A set of such transformations
embraces translations, spatial reflections, reversion of time, spatial rotations, Lorentz
transformations, and their possible combinations.

4 Relativistic kinematics

The Lorentz transformation determines the transfer from one inertial reference frame to
another. The rotation-free Lorentz transformation is also called a boost. Contravariant
vectors and tensors in four-dimensional space are simply referred to as four-vectors and
four-tensors. The standard Lorentz transformation of an arbitrary 4-vector A𝜇 , deter-
mined for the case when the velocity V of the reference frame moving relative to the
laboratory frame is directed along the x axis, has the form2

⎛⎜⎜⎜⎝
A0

A1

A2

A3

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝛾 𝛽𝛾 0 0
𝛽𝛾 𝛾 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
A′0

A′1

A′2

A′3

⎞⎟⎟⎟⎠ , 𝛽 = V
c

, 𝛾 = 1√
1 − 𝛽2

.

Covariant vectors transform with the aid of the transposed inverse matrix which can be
obtained by replacing V with −V . The boosts in the y or z direction can be derived with
the corresponding permutations of rows and columns in the transformation matrix.

A contravariant vector and its components are usually written as A𝜇 ≡ (A0,A) ≡
(A0,Ai), and a covariant vector reads correspondingly as A𝜇 ≡ (A0,−A) ≡ (A0,−Ai) =
(A0,Ai).

The scalar or dot product of two vectors equals

A𝜇B𝜇 = A𝜇B𝜇 = A𝜇B𝜈g𝜇𝜈 = A𝜇B𝜈g𝜇𝜈 = A0B0 − AB = A0B0 − AiBi .

2 The rapidity 𝜃, a real parameter related to the velocity as tanh 𝜃 = V∕c, can also be useful for describing
the Lorentz transformation.
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The interval between events, associated with the particle motion, is expressed in terms
of the particle velocity 𝑣 as the invariant ds = cd𝜏 = cdt

√
1 − (𝑣∕c)2. Here, 𝜏 is the proper

time of a particle, i.e. the time in the frame in which the particle is at rest. The proper
time 𝜏 is often used for the definition of various kinematic quantities, differing from the
interval along the timelike world line by a factor of light speed c.

The 4-velocity and 4-acceleration have the forms

u𝜇 = dx𝜇

ds
=
(
𝛾, 𝛾

v
c

)
, 𝑤𝜇 = du𝜇

ds
= d2 x𝜇

ds2 . (1.2)

From the definition of 4-velocity and 4-acceleration we have

u𝜇u𝜇 = dx𝜇

ds
dx𝜇

ds
=

dx𝜇 dx𝜇

ds ds
= ds2

ds2 = 1, u𝜇𝑤𝜇 = 1
2

d
ds

u𝜇u𝜇 = 0.

The 4-momentum of a particle with mass m reads as

p𝜇 = mcu𝜇 =
(

c
, p

)
= (m𝛾c, m𝛾v), p = v

c2 (1.3)

where  is the energy and p is the three-dimensional momentum.
The rest energy 0 = mc2 is unambiguously associated with the mass of a particle3 and

is also an invariant.
The general definition of mass can be derived from the invariant

p𝜇p𝜇 = (∕c)2 − p 2 = m2c2.

For a massless particle, the 4-velocity is not a well-defined quantity but the
4-momentum can readily be determined, obeying the general relation p𝜇p𝜇 = m2c2 = 0
in this case.

For a system of particles, the 4-momentum conservation law holds:∑
a

p𝜇
a =

∑
b

p′𝜇
b (1.4)

where the sum is taken over all particles before and after any interaction among them,
e.g. scattering, decay, reactions, etc. The total energy and spatial momentum are con-
served. However, both the number and the type of particles can vary as well as the total
mass of all particles. Thus, on the left-hand and right-hand sides of Eq. (1.4) the index
of summation is denoted by different characters. The 4-momentum conservation law,
written in the form (1.4), is very convenient for solving various problems with the aid
of four-dimensional invariants obtained by separating the squared 4-momentum of one
or several particles from the above-mentioned equation. For example, one can write for
two particles of known masses

p′𝜇
2 p′

2𝜇 = (m2c)2 = (p𝜇

1 + p𝜇

2 − p′𝜇
1 )(p1𝜇 + p2𝜇 − p′

1𝜇).

Application of the method of 4-invariants depends on the process under consideration.
An elastic process is a process in which the amount of particles and their types remain

unchanged and, in particular, the particle masses do not vary either.

3 Commonly, in the theories of relativity and particle physics a system of units is used in which c = 1. In this
case, the electron volt (eV) is used as a common unit of measurement for energy, momentum and mass, with
the following multiple prefixes: 1keV= 103eV, 1 MeV= 106eV, 1 GeV= 109eV, 1 TeV= 1012eV. The usage of
such units is frequently not specified.
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An inelastic process is a process with varying numbers and/or types and, in particular,
masses of particles.

Among kinematic problems associated with inelastic processes a very important prob-
lem is the determination of the threshold of reactions in the production of particles that
differ from the initial ones. The energy threshold of the reaction is the minimum kinetic
energy T =  − mc2 of the incident particle, necessary for the creation of a new parti-
cle. For the system of particles, one can determine the effective mass as an energy in the
center-of-inertia frame, using the invariance of the squared 4-momentum:

M2
effc2 = p𝜇

collpcoll 𝜇
. (1.5)

As follows from Eq. (1.5), the energy will be minimal if the particles are at rest in the
center-of-inertia frame. Then, the effective mass equals the sum of the masses of all
particles after the reaction:

Meff =
∑

b
mb.

5 The Maxwell equations

(1) The Maxwell equations in three-dimensional form. The Maxwell equations are
commonly written in the form of two pairs, one without sources and the other with
sources. In three-dimensional (in differential) form the equations read as⎧⎪⎨⎪⎩

div H = 0,

curl E = −1
c
𝜕H
𝜕t

,
(the first pair)

⎧⎪⎨⎪⎩
div E = 4𝜋𝜌,

curl H = 1
c
𝜕E
𝜕t

+ 4𝜋
c

j.
(the second pair)

The continuity equation or charge conservation law results from the second pair of the
Maxwell equations:

𝜕𝜌

𝜕t
+ div j = 0.

The densities of charge and current induced by a point particle are equal to

𝜌(r, t) =
∑

a
ea𝛿(r − ra(t)), j(r, t) =

∑
a

eava(t)𝛿(r − ra(t)). (1.6)

The first pair of the Maxwell equations allows us to parameterize the electromagnetic
field by introducing the scalar 𝜑 and vector A potentials:

H = curl A, E = −grad 𝜑 − 1
c
𝜕A
𝜕t

.

(2) The Maxwell equations in four-dimensional form. The scalar and vector
potentials treated together form the components of a 4-vector A𝜇 = (𝜑,A). The electric
and magnetic fields can be expressed via the components of the electromagnetic
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field 4-tensor. The latter is determined with the aid of derivatives of the 4-potential
components with respect to the components of the 4-radius-vector according to

F𝜇𝜈 = 𝜕𝜇A𝜈 − 𝜕𝜈A𝜇.

The components of electric E and magnetic H fields are connected with the components
of the antisymmetric field 4-tensor F𝜇𝜈 as follows:

Ek = F0k , Hk = −1
2

ekijFij.

This can clearly be represented in the matrix form

F𝜇𝜈 =

⎛⎜⎜⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0

⎞⎟⎟⎟⎟⎠
.

Introducing the electromagnetic field tensor allows one to write the Maxwell equations
in four-dimensional form. Then, the first pair of the equations is determined by the
4-divergence of the dual tensor F̃𝜇𝜈 = 1 ∕2 e𝜇𝜈𝛼𝛽F𝛼𝛽 :

𝜕𝜈 F̃𝜇𝜈 = 0 (the first pair), (1.7)

𝜕𝜈F𝜇𝜈 = −4𝜋
c

j𝜇 (the second pair). (1.8)

The 4-vector of the electric current density reads j𝜇 = (c𝜌, j) and the continuity equation
is the divergence of the 4-current density:

𝜕

𝜕x𝜇
j𝜇 = 𝜕𝜇j𝜇 = 0.

The potentials of the given electromagnetic field are ambiguously determined. In fact,
due to gauge symmetry it is always possible to perform a gauge transformation of the
form

A′ = A − grad f , 𝜑′ = 𝜑 + 1
c
𝜕f
𝜕t

or A′
𝜇 = A𝜇 + 𝜕𝜇f

where f (t, x, y, z) is an arbitrary function. The transformations considered leave the
strengths of electromagnetic field E and H invariant.

In order to restrict in part the randomness associated with gauge symmetry, additional
gauge conditions, simply called the gauge, are imposed on the potentials. The following
gauge conditions are most common:

𝜕𝜇A𝜇 = 1
c
𝜕𝜑

𝜕t
+ div A = 0 (the Lorentz gauge),

𝛁A = 0 (the Coulomb gauge),
𝜑 = 0 (the Weyl gauge).

Substituting the explicit expression for tensor F𝜇𝜈 given in the 4-potential components
into the second pair of Eqs. (1.8), we have

𝜕𝜈𝜕
𝜇A𝜈 − 𝜕𝜈𝜕

𝜈A𝜇 = −4𝜋
c

j𝜇.
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For this case, it is convenient to choose the Lorentz gauge condition in order to obtain
the wave equation for the 4-potential components (the d’Alembert equation):

◽A𝜇 = −4𝜋
c

j𝜇, where − 𝜕𝜈𝜕
𝜈 = ∇2 − 1

c2
𝜕2

𝜕t2 = ◽. (1.9)

Here, the box◽ stands for the d’Alembertian or d’Alembert operator which can be treated
as the Laplace operator in Minkowski space.

After choosing the Lorentz gauge, it is still possible to subject the potentials to residual
gauge transformations which also do not modify the fields E and H and do not disturb
the Lorentz gauge:

A′
𝜇 = A𝜇 + 𝜕𝜇f , and ◽f = 0.

The electric and magnetic fields, as 4-tensor components, transform with the transi-
tion from one reference frame to another according to the Lorentz transformations for
the components of a 4-tensor. In the case of the usual Lorentz transformation we have

Hx = H′
x, Hy =

H ′
y − 𝛽E′

z√
1 − 𝛽2

, Hz =
H ′

z + 𝛽E′
y√

1 − 𝛽2
,

Ex = E′
x, Ey =

E′
y + 𝛽H′

z√
1 − 𝛽2

, Ez =
E′

z − 𝛽H′
y√

1 − 𝛽2
.

Note that it is simpler to derive the rule for the transformation of the electric field com-
ponents from the transform of the dual tensor F̃𝜇𝜈 .

The electromagnetic field tensor F𝜇𝜈 together with the dual tensor F̃𝜇𝜈 allows one to
determine two invariants of the electromagnetic field:

F𝜇𝜈F𝜇𝜈 = 2(H2 − E2) = I1 = in𝑣; F𝜇𝜈 F̃𝜇𝜈 = 4(HE) = I2 = in𝑣. (1.10)

(3) The action function for the electromagnetic field. The equations for the elec-
tromagnetic field and for the motion of charged particles in the general form can be
obtained starting from the principle of least action. In its most general form the action
function is represented as a sum of terms describing the separate subsystems of the sys-
tem in question and their interaction. Hence, the action for the electromagnetic field
and electrically charged particles should consist of these three contributions:

S = Spart + Sfield + Sint, (1.11)

i.e. actions for particles, field and particle-field interactions. On account of the universal
principle of least action, the action must be a scalar, i.e. a 4-invariant in our case. Deriv-
ing specific expressions for the action, one should keep in mind additional conditions.
In particular, the theory obtained should be gauge-invariant and, in addition, provide a
principle of correspondence, i.e. crossover to the known expressions in the nonrelativistic
limit.

On derivation of the equations for a field interacting with charged particles it is neces-
sary to employ the second and third terms in (1.11). It is convenient to write these terms
in the form of the action for the electromagnetic field with sources,

S[A𝜇(x)] = ∫
(
−

F𝜇𝜈F𝜇𝜈

16𝜋c
− 1

c
j𝜇A𝜇

)
d4x = 1

c ∫  d4x, (1.12)
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 being the Lagrangian density. The integrals along the world lines of particles are rep-
resented as integrals over space-time, and the current density 4-vector is introduced
according to

j𝜇(x) =
∑

a
∫ 𝛿(4)(x − xa(sa)) ea

dx𝜇
a

dsa
dsa. (1.13)

Here, x𝜇
a (sa) is the 4-radius-vector of the ath particle, dx𝜇

a∕dsa is its 4-velocity
(1.2), sa = c𝜏a is the interval associated with the proper time of a particle, and
𝛿(4)(x − xa(sa)) = 𝛿(ct − x0

a(sa)) 𝛿 (r − ra(sa)) is the four-dimensional 𝛿-function. Inte-
grating in (1.13) over dsa with the aid of Eq. (A.7), we arrive at the familiar formula
(1.6). Note that the Lagrangian density  is a scalar function since the element of
four-dimensional volume is a scalar as well.

The components of 4-potential of the field A𝜇 are here the independent generalized
coordinates in which the variation of action is calculated. Under the condition of
vanishing variation of the action with respect to A𝜇 , i.e. 𝛿S[A𝜇(x)] = 0, we obtain the
Euler-Lagrange equation for the electromagnetic field:

𝜕
𝜕A𝜇

− 𝜕

𝜕x𝜈

(
𝜕

𝜕(𝜕𝜈A𝜇)

)
= 0.

The second pair of the Maxwell equations (1.8) results from this equation. According to
the definition of tensor F𝜇𝜈 the first pair of Eqs. (1.7) is satisfied identically.

(4) The energy-momentum tensor. Based on the action for the electromagnetic
field Sfield, see (1.11) or the first term in (1.12), one can find the so-called canonical
energy-momentum tensor:

T̃𝜇𝜈 = 𝜕
𝜕(𝜕𝜇A𝛼)

𝜕𝜈A𝛼 − g𝜇𝜈. (1.14)

The definition of the energy-momentum tensor (1.14), in general, is not unambiguous.
In fact, any tensor 𝛿T𝜇𝜈 with zero 4-divergence can be added to the initial tensor, i.e.

T𝜇𝜈 = T̃𝜇𝜈 + 𝛿T𝜇𝜈, 𝜕𝜇(𝛿T𝜇𝜈) = 0.

The latter is commonly chosen so that the final energy-momentum tensor would be
symmetric, i.e. T𝜇𝜈 = T𝜈𝜇 .

The symmetric energy-momentum tensor for the electromagnetic field reads

T𝜇𝜈 = 1
4𝜋

(1
4

g𝜇𝜈F𝛼𝛽F𝛼𝛽 − F𝜇𝛼F𝜈
𝛼

)
.

In three-dimensional notation, the tensor splits into blocks:

T𝜇𝜈 =
⎛⎜⎜⎜⎝
𝑤 Sx∕c Sy∕c Sz∕c

Sx∕c 𝜎xx 𝜎xy 𝜎xz
Sy∕c 𝜎yx 𝜎yy 𝜎yz
Sz∕c 𝜎zx 𝜎zy 𝜎zz

⎞⎟⎟⎟⎠ =
(

𝑤 S∕c
S∕c 𝜎ij

)
(1.15)

where the energy density 𝑤 and the energy flux density vector or Poynting vector S for
the electromagnetic field are equal to

𝑤 = 1
8𝜋

(E2 + H2) , S = c
4𝜋

[E × H] .
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The momentum density g and the momentum flux density tensor4 𝜎ij of electromagnetic
field are defined as

g = 1
4𝜋c

[E × H] = S
c2 , 𝜎ij = 𝑤𝛿ij −

1
4𝜋

(EiEj + HiHj). (1.16)

For a closed system consisting of an electromagnetic field and particles interacting
with the field, the energy-momentum conservation law holds:

𝜕𝜈T𝜇𝜈

tot = 0. (1.17)

This is an obvious illustration of the Noether theorem stating that the invariance of the
Lagrangian with respect to any one-parameter transformation yields the corresponding
local conserving current. In our case the energy-momentum conservation relates to the
invariance of the Lagrangian with respect to the space-time translation x𝜇 → x𝜇 + a𝜇 .

If we write the expression for the 4-divergence of the energy-momentum tensor of the
field alone, we obtain the following relation instead of (1.17):

𝜕T𝜇𝜈

𝜕x𝜈
= −1

c
F𝜇𝜈 j𝜈 = −𝜇 (1.18)

where 𝜇 is the density of the force which the field exerts on the charge system. In
three-dimensional form the above equation reads as⎧⎪⎪⎨⎪⎪⎩

𝜕𝑤

𝜕t
+ divS = −(jE),

𝜕gi

𝜕t
+

𝜕𝜎ij

𝜕xj
= −𝜌Ei −

1
c
[j × H]i.

(1.19)

6 Motion of a charged particle in an external field

The equations of motion for a charged particle in an external electromagnetic field can
be derived from the general principle of least action. In our case it is sufficient to use
only the first and third terms in Eq. (1.11). The action for a single particle interacting
with the field and satisfying all additional conditions can be written as

S[x(s)] = −∫
b

a

⎛⎜⎜⎝mc

√
dx𝜇

ds
dx𝜇

ds
+ e

c
A𝜇

dx𝜇

ds

⎞⎟⎟⎠ ds = ∫
b

a
Lds (1.20)

where the integration limits indicate the initial and final positions of a particle at the
world line and L is the corresponding Lagrange function or Lagrangian. The variation
of the action (1.20) with respect to the particle coordinates x𝜇(s) for a fixed field A𝜇 yields
the usual Euler-Lagrange equation, resulting in the equation of motion of a particle in
covariant form:

mc du𝜇

ds
= e

c
F𝜇𝜈u𝜈 . (1.21)

4 The negative value of the momentum flux density tensor, i.e. −𝜎ij, is called the Maxwell stress tensor.
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Here, ds =
√

g𝜇𝜈dx𝜇dx𝜈 , u𝜇 = dx𝜇∕ds is the 4-velocity of a particle (1.2). In
three-dimensional form these equations read as

dp
dt

= eE + e
c
[v × H], (1.22)

d
dt

= e(Ev). (1.23)

The right-hand side of Eq. (1.22) represents the Lorentz force, and Eq. (1.23), time com-
ponent of Eq. (1.21), is nothing but the temporal variation of the energy of a particle.

For systems of extended charges and currents with the corresponding densities 𝜌 and
j, the notion of the force density  is commonly introduced as (see (1.18))

 = 𝜌E + 1
c
[j × H] so that F = ∫ d3 r.

Then, the time-law of energy in the system is given by

d
dt

= ∫ d3 r(v) = ∫ d3r𝜌(vE) ≡ ∫ d3 r(Ej).

The law of energy conservation in a system of charged particles and an electromagnetic
field can be represented in integral form as (compare Eq. (1.19))

d
dt

= −dW
dt

− ∫ d3 r divS = −dW
dt

− ∮ (Sdf).

Here,

W = 1
8𝜋 ∫ d3 r(E2 + H2)

is the electromagnetic field energy in the volume across whose boundary the field energy,
transferred via the Poynting vector, flows in the outward direction, and  is the energy
of the charged particles in the volume considered.

Calculating the generalized (or canonical) 4-momentum P𝜇 = −𝜕L∕𝜕u𝜇 =
mcu𝜇 + (e∕c)A𝜇 according to the general rules of Eq. (1.20), we find that the gen-
eralized momentum of a charged particle in the electromagnetic field differs from the
ordinary kinetic momentum (1.3):

P = p + e
c

A.

The Hamiltonian function for a particle in the external field is equal to

(P,q) =
√

p2c2 + m2c4 + e𝜑 = c
√(

P − e
c

A(q)
)2

+ m2c2 + e𝜑(q).

7 Static electromagnetic field

The wave equations for the components of the 4-potential (the d’Alembert equation, 1.9)
represent a set of linear nonuniform equations and their solution can be written as

A𝜇 = A𝜇

f + A𝜇
e
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where A𝜇

f is the general solution of the uniform equation and A𝜇
e is a partial solution of

the nonuniform equation determined by the 4-current distribution. The general solution
of the uniform equation represents the free electromagnetic field and a partial solution
of the nonuniform equation can be obtained with the aid of the Green function satisfying
the equation with the point source:(

∇2 − 1
c2

𝜕

𝜕t2

)
G(r, t; r′, t′) = −4𝜋𝛿(r − r′)𝛿(t − t′). (1.24)

Hence, the solution for A𝜇
e reads

A𝜇
e = 1

c ∫ j𝜇(r′, t′)G(r, t; r′, t′)d3r′dt′. (1.25)

The physical conditions are satisfied by the solution of Eq. (1.24) in the form of the
retarded Green function

G(r − r′; t − t′) = 1|r − r′|𝛿
(

t − t′ − |r − r′|
c

)
. (1.26)

A partial solution for the components of the 4-potential (1.25) has, after integration in
time, the form of the retarded potentials

A𝜇
e (r, t) =

1
c ∫

j𝜇(r′, t − |r − r′|∕c)|r − r′| d3r′. (1.27)

The partial solution of the wave equations has the simplest form in the case of a static
distribution of charges and stationary currents in which case the integrand function is
time-independent. In this case the solution can be treated regardless of the scalar or
vector potentials, resulting in static electric and magnetic fields.

The scalar potential induced at point R equals

𝜑(R) = ∫
𝜌(r)|R− r| d3r =

∑
a

ea|R− ra| .
Here, the expressions are given for a system of extended and point charges. For distances
far from the charge system |R| ≫ |r| or |R| ≫ |ra|, the expansion in multipole moments
is valid

𝜑(R) = 𝜑(0)(R) + 𝜑(1)(R) + 𝜑(2)(R) +…

where

𝜑(0)(R) = Q
R
; 𝜑(1)(R) = (Rd)

R3 ; 𝜑(2)(R) =
XiXjQij

2!R5 . (1.28)

In Eqs. (1.28) the terms of different order in the small expansion parameter r∕R ≪ 1 can
be interpreted as the total charge (zero moment), dipole (first) moment, and quadrupole
(second) moment. These terms for the system of point charges are equal to

Q =
∑

a
ea, d =

∑
a

eara, Qij =
∑

a
ea(3xaixaj − 𝛿ijr2

a). (1.29)

Note that the trace of the quadrupole moment tensor is invariant and vanishes, Qii = 0.
For a system of extended charges, the sum should be replaced with an integration over

the charge distribution density 𝜌(r).
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The analogous expansion in multipoles is also valid for the interaction energy of the
system of charges with the inhomogeneous static electric field as long as the typical
scale of the electric field inhomogeneity is much larger as the typical sizes of the charge
system:

U =
∑

a
𝜑(R + ra) = U (0) + U (1) + U (2) + … (1.30)

where, correspondingly,

U (0) =
∑

a
ea𝜑(R) = Q𝜑(R),

U (1) = 𝜕𝜑(R)
𝜕R

∑
a

eara = −(Ed), U (2) = 1
6

Qij
𝜕2𝜑(R)
𝜕Xi𝜕Xj

. (1.31)

The force being exerted on the system of charges is determined as F = −𝛁U and, for a
charge system having an electric dipole moment, it equals

F = −𝛁(U (0) + U (1)) = −q𝛁𝜑 + 𝛁(Ed) = qE + (d𝛁)E. (1.32)

Here, we have taken into account the Maxwell equation curl E = 0 for the static field.
The vector potential induced at the point R is equal to

A(R) = ∫
j(r)

c|R − r| d3r =
∑

a

eava

c|R − ra|
where the expressions are given for the system of the extended but spatially limited cur-
rents and moving point charges. The overscore (bar) means averaging in time since the
current distribution is limited in space and therefore cannot be induced by charges mov-
ing with steady velocity v.

When expanding the vector potential in multipole moments it is usually sufficient to
restrict oneself to first or dipole terms which reads as

A(1)(R) = 1
cR3 ∫ (Rr)j(r) d3r

and can be expressed in terms of the magnetic dipole moment of the system 𝝁:

A(R) = [𝝁 × R]
R3 = −[𝝁 × 𝛁] 1

R
. (1.33)

Here, the following notation is introduced:

𝝁 = 1
2c ∫ [r × j] d3r =

∑
a

ea

2c
[ra × va]. (1.34)

In the nonrelativistic case we have va = pa∕ma and thus the magnetic moment can be
associated with the angular momentum of the particles:

𝝁 =
∑

a

ea

2mac
[ra × pa] =

∑
a

ea

2mac
Ma (1.35)

where in our case Ma is a time-independent angular momentum of a particle.
The quantity equal to

𝛾a =
ea

2mac
(1.36)
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is called the gyromagnetic ratio of a particle. Provided the charge-to-mass ratio is the
same for all particles in the system, it becomes possible to introduce a single gyromag-
netic ratio for the whole system equal to 𝛾 . Then, the magnetic moment is related to the
total angular momentum as

𝝁 = e
2mc

∑
a

Ma = 𝛾M. (1.37)

In the external static inhomogeneous magnetic field the force exerted on the system of
currents can also be expanded in multipole moments. As a rule, it is sufficient to consider
only the interaction with the magnetic moment

F = 1
c ∫ [j(r) × H(R + r)] d3r = curl [H × 𝝁] = (𝝁𝛁)H. (1.38)

Here, we have taken into account that div j = 0 in the static case and div H = 0 according
to the Maxwell equation. The force (1.38) can be obtained by introducing the effective
energy Um for the magnetic moment in the magnetic field:

Um = −(𝝁H), thus F = −𝛁Um. (1.39)

In addition, the system of currents is subjected to the torque K as well with

K = 1
c ∫ [r × [j × H]] d3r = −[H × 𝝁] = [𝝁 × H].

Under this torque the angular momentum of the system changes in accordance with the
Larmor equation

dM
dt

= K = [𝝁 × H]. (1.40)

If the system of currents is induced by charges with the same gyromagnetic ratio 𝛾 ,
Eq. (1.40) reduces to

dM
dt

= 𝛾[M × H] = −[𝛀 × M] (1.41)

where the Larmor frequency 𝛀 = 𝛾H is introduced. The vector 𝛀 is directed along or
opposite to the magnetic field, depending on the sign of 𝛾 , i.e. the sign of the charge.

8 Free electromagnetic field

The general solution of the uniform wave equation can be given in the form of a plane
wave, i.e. a function depending only on the argument t − nr∕c where the unit vector n
determines the direction of the field propagation. The general solution for the potentials
is commonly treated in the Coulomb gauge. Then,

E = −1
c
𝜕A
𝜕t

= −1
c

Ȧ; H = curl A = −1
c
[n × Ȧ] = [n × E]. (1.42)

The fields E and H lie in the plane normal to the unit vector n so that the three vectors
E, H and n are mutually orthogonal and constitute a right-hand triple of vectors. The
field proves to be transverse. The energy flux density in a plane electromagnetic wave is
equal to

S = c
4𝜋

[E × H] = c
4𝜋

E2n = c
4𝜋

H2n.
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The plane electromagnetic wave can be expanded into a Fourier integral:

A(t, r) = ∫ Ak,𝜔ei(kr−𝜔t) d3kd𝜔
(2𝜋)4 , Ak,𝜔 = ∫ A(t, r)e−i(kr−𝜔t) d3r dt. (1.43)

The real part of the Fourier transform represents the specific case of a plane wave

A(t, r) = Re{Ak,𝜔ei(kr−𝜔t)} (1.44)

and is referred to as the monochromatic plane wave. The argument of such a wave, the
wave phase, is 𝜔t − kr = 𝜔(t − nr∕c) and the vector k is called the wave vector with|k| = k = 𝜔∕c = 2𝜋∕𝜆, and n = k∕|k|.

The wave phase can be represented in the Lorentz-invariant form 𝜔t − kr = k𝜇x𝜇 by
introducing the four-dimensional wave vector:

k𝜇 =
(
𝜔

c
, k

)
, k𝜇k𝜇 =

(
𝜔

c

)2
− k2 = 0.

The electric and magnetic fields in the monochromatic plane wave are commonly writ-
ten in the following form:

E(t, r) = Re{E0ei(kr−𝜔t)}, H(t, r) = Re{H0ei(kr−𝜔t)}. (1.45)

The electric field in the monochromatic plane wave can always be represented as

E = Re{E0ei(kr−𝜔t)} = Re{(E01e(1) + iE02e(2))ei(kr−𝜔t)}
= e(1)|E01| cos(kr − 𝜔t − 𝛼) ∓ e(2)|E02| sin(kr − 𝜔t − 𝛼) (1.46)

where e(1) and e(2) are perpendicular unit vectors, maybe complex, and normal to the
wave vector k as well. Thus, the monochromatic plane wave can be related to the local
basis constituted by vectors e(1) and e(2) which obey the following conditions:

(e(1)∗e(2)) = (e(1,2)n) = 0, e(2) = [n × e(1)]. (1.47)

The direction of the electric field vector in the local reference frame is called the polar-
ization which can readily be represented as the unit vector e = E0∕|E0| = e1e(1) + e2e(2).
The monochromatic plane wave is always polarized. In the local reference frame the
field vector E circumscribes an ellipse. If E02 = ±E01, the wave is circularly polarized. If
E02 = 0, the wave is linearly polarized (see (1.46)).

Thus, the linear or circular polarization of a plane wave can be specified for the vectors
of local basis if we choose the real vectors e(1) and e(2) for linear polarization or e(±) =
(e(1) ± ie(2))∕

√
2 for the circular one.

9 The retarded potentials and radiation

The system of charges can radiate an electromagnetic field and, correspondingly, lose
radiation energy if the energy flux of the field across the infinitely distant closed surface
is nonzero,

I = ∮ (Sdf) ≠ 0. (1.48)

To satisfy this, the radiation field must decay at large distances from the charge system
according to

E, H|R→∞ ∼ 1∕R.
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The quantity I, determining the energy losses per unit time, is called the intensity of
radiation.

Such a distance dependence of the field can be obtained from expression (1.27) for the
retarded potentials. At sufficiently large distances, the electric and magnetic radiation
fields represent an outgoing spherical wave. The relation between the electric and mag-
netic fields is the same as in the plane wave, i.e. as in the free electromagnetic field for
which the unit propagation vector n is directed from the radiating system to the point
at which the field is observed.

In the case of a nonrelativistic system of charges, the retarded potentials can be
expanded in multipoles. Here — in addition to the obvious small parameter a∕R ≪ 1
where a is the typical linear size of the system — one more parameter appears which is
associated with the nonrelativistic type of motion, namely, 𝑣∕c ≪ 1 where 𝑣 is the typi-
cal velocity of charge motion. Since the charges move within a finite volume, the typical
time T ∼ a∕𝑣 comes forward, resulting in the onset of the typical field frequency
𝜔 ∼ c∕a ≫ 𝑣∕a = T−1 in the expansion of the retarded potentials in monochromatic
plane waves. This leads to a new dimensional quantity called the typical wavelength 𝜆.
Depending on the ratio between a, 𝜆 and R, one can distinguish three spatial regions
for the fields obtained from the retarded potentials, as follows:

(1) near-field (or quasi-static) zone a < R ≪ 𝜆 in which retardation effects can be
neglected;

(2) transition (intermediate or induction) zone a ≪ R ∼ 𝜆 in which the retardation
effect becomes essential but the radiation field is not yet formed;

(3) far-field (radiation or wave) zone a ≪ 𝜆 ≪ R in which the radiation field becomes
dominant, decaying as 1∕R with distance.

Since the relation between the electric and the magnetic fields in the wave zone is
analogue to that in the plane wave, it is convenient to choose the Coulomb gauge and
consider the vector potential alone

A(R, t) = 1
cR ∫ j(r′, t − |R − r′|∕c) d3r′

= 1
cR ∫

(
j(r′, t′) + 1

c
j̇(r′, t′)(r′n) + 1

2c2 j̈(r′, t′)(r′n)2 +…
)

d3r′ (1.49)

where t′ = t − R∕c is the retarded time synchronous for all charges in the nonrelativistic
system.

The first term of the expansion in Eq (1.49), i.e.

Ad(R, t) =
1

cR ∫ j(r′, t′) d3r′ = ḋ(t′)
cR

|||||t′=t−R∕c

(1.50)

is determined by the electric dipole moment of the system. The far-field induced by
potential (1.50) is called the electric dipole radiation and is equal to

Hd(R, t) =
[d̈(t′) × n]

c2R
, Ed(R, t) =

[n × [n × d̈(t′)]]
c2R

(1.51)

where the right-hand sides of the equations in (1.51) should be evaluated at the retarded
time t′ = t − R∕c. The angular intensity distribution of the electric dipole radiation is
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given by the formula

dI(t)
dΩ

= 1
4𝜋c2 H2 = [d̈(t′) × n]2

4𝜋c3

|||||t′=t−R∕c

(1.52)

where dΩ is the solid angle element corresponding to the direction n. The total intensity
of the electric dipole radiation equals

Id = 2d̈2

3c3 . (1.53)

The second term of expansion (1.49) straightforwardly yields the expression for the
vector potential as a sum of two terms induced by the magnetic dipole and electric
quadrupole moments A2 = Am + AQ, respectively. The term

Am(R, t) =
1

cR
𝜕

𝜕t
[𝝁 × n] = [𝝁̇(t′) × n]

cR
||||t′=t−R∕c

(1.54)

determines the magnetic dipole radiation. The second term gives the electric quadrupole
radiation

AQ,i(R, t) =
nj

6c2R
𝜕2

𝜕t2 Qij(t′)
||||t′=t−R∕c

or

AQ(R, t) =
1

6c2R
D̈(t′)

||||t′=t−R∕c
. (1.55)

For convenience, vector Di = Qijnj is commonly used.
The magnetic radiation field in second-order expansion is given by

Hm + HQ = 1
c2R

[[𝝁̈(t′) × n] × n] + 1
6c3R

[D⃛(t′) × n].

On account of two terms in the above expression the angular distribution of the radiation
intensity displays the interference or crossed term vanishing after integration over the
total solid angle. As a result, the total radiation intensity in second-order expansion can
be written as the sum

I2 = Im + IQ = 2
3c3 𝝁̈

2 + 1
180c5 Q⃛2

𝛼𝛽
.

The radiation losses of the energy in the system of charged particles can be described
as a work of some effective force called the radiation damping force or Lorentz fric-
tional force. For example, for a single charged particle, one can write I = (Fradv) and,
correspondingly, is lead to

Frad = 2e2

3c3 v̈ = 2e
3c3 d⃛. (1.56)

For an arbitrary system of charges radiating in the electric dipole approximation, the last
term in Eq. (1.56) is valid as well.

In addition to the radiation damping force one can also introduce the torque resulting
in the dissipative loss of angular momentum of the particle system

dM
dt

= − 2
3c3 [ḋ × d̈].



Introduction 23

10 Electromagnetic field of relativistic particles

It is not possible to describe the radiation of relativistically moving particles in terms
of multipole moments. So, at first, we consider the radiation from a single relativistic
particle. Next, employing the principle of superposition, we generalize the result
to a system of particles. For a single particle, the partial solution for the 4-potential
components (1.25) should be written with the aid of the retarded Green functions (1.26)
in which the charge and current densities (1.6) correspond to a point particle with
ra = r0(t), v = ṙ0(t) being the particle velocity. For the vector potential, we have

A(r, t) = e
c ∫

𝛿(t − t′ − |r − r′|∕c)|r − r′| v(t′)𝛿(r′ − r(t′)) d3r′dt′. (1.57)

As a result of the calculations5 we find that the vector potential generated by a relativis-
tically moving charge is equal to

A(r, t) = ev
cR(1 − (nv)∕c)

||||t′ . (1.58)

The analogous expression for the scalar potential reads

𝜑(r, t) = e
R(1 − (nv)∕c)

||||t′ . (1.59)

The potentials (1.58) and (1.59) are called the Liénard-Wiechert potentials. In
Eqs. (1.58) and (1.59) we have introduced the following notation: R(t′) = r − r0(t′)
and R(t′) = |R(t′)|, n(t′) = R(t′)∕R(t′) being the unit vector in the R direction. The
right-hand sides in these expressions should be evaluated at the retarded time t′
determined by the solution of the following equation:

t′ − t + R(t′)∕c = 0. (1.60)

The name “retarded time” is explained by the fact that the time difference t − t′ = R(t′)∕c
is exactly equal to the time necessary to propagate the electromagnetic field from the
point of its formation r0(t′) to the point r where the field is observed. Differentiating
Eq. (1.60) with respect to the time t′ gives the equation

dt
dt′

= 1 − (nv)
c

(1.61)

which allows us to find a connection between the interval of observation time and the
interval of retarded time.

The expressions for the magnetic and electric fields can be derived from the poten-
tials (1.58) and (1.59):

H(r, t) = e {c [w × n] + [n × [ [v × w] × n] ]}
c3R(1 − (nv)∕c)3 +

e (1 − 𝑣2∕c2)[v × n]
cR2(1 − (nv)∕c)3 ,

(1.62)

E(r, t) =
e [n × [(n − v∕c) × w] ]

c2R(1 − (nv)∕c)3 +
e (1 − 𝑣2∕c2)(n − v∕c)

R2(1 − (nv)∕c)3 (1.63)

5 For details, see the solution of problem 1.9.1.
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where w = v̇(t′) is the acceleration of a charge. The electromagnetic field, described
by (1.62) and (1.63), always satisfies the condition H(r, t) = [n(t′) × E(r, t)], i.e. the vec-
tor H is perpendicular both to the vector E and to the unit vector connecting the charge
position at the retarded time with the point of observation.

For large distances from the particle, the field in the wave zone is given by

E =
e [n × [(n − v∕c) × w]]

c2R(1 − (nv)∕c)3 , H = [n × E]. (1.64)

Let the electromagnetic field energy d𝜀, emitted by the charge into the solid angle
element dΩ in the direction n = R∕R during the time from t′ to t′ + dt′, pass across the
surface element dS = R2dΩ during the time from t to t + dt. The moment of radiation t′
and the moment of observation t are related by Eq. (1.60). At large |r| ≫ |r0| distances
from the radiating charge this energy in the wave zone is given by

d𝜀 = c
4𝜋

|E|2R2dΩ dt

where E is determined by (1.64). Then, the angular distribution of the radiation intensity,
i.e. the energy registered by an observer per unit time and solid angle, is equal to

dI
dΩ

= d2𝜀

dΩdt
= e2

4𝜋c3
|[n×[(n − v∕c) × w]]|2

(1 − (nv)∕c)6

|||||t′ . (1.65)

The total radiation intensity I = d𝜀∕dt can be obtained from this angular distribu-
tion (1.65) by integration over the total solid angle.

Frequently, the radiation power, i.e. the energy emitted by a particle per unit retarded
time t′, becomes of interest. It is clear that the radiation power equals the rate of the
particle energy losses, but with the opposite sign:

W = d𝜀
dt′

= −d
dt′

, (1.66)

 being the particle energy, see (1.3). We will distinguish between these two quanti-
ties, namely radiation intensity I and radiation power W . Involving the condition dt =
dt′(1 − (nv)∕c), which follows from Eq. (1.61), we obtain the relation between the angu-
lar distributions of radiation intensity I and radiation power W :

dW
dΩ

= d2𝜀

dt′dΩ
=
(

1 − (nv)
c

)
dI
dΩ

. (1.67)

We emphasize that, as can be seen from (1.67), the difference between power and inten-
sity is significant in the relativistic case. If 𝑣∕c ≪ 1, this distinction becomes negligible.

Thus, the rate of total energy loss of a particle equals

d
dt′

= −W = −∫
e2

4𝜋c3
[n × [(n − v∕c) × w]]2

(1 − (nv)∕c)5 dΩ . (1.68)

The direct integration over the angle in (1.68) is cumbersome. However, for calculating
the total radiation power it is sufficient to see that the quantity d∕dt′ is a relativis-
tic invariant and, therefore, its expression can be written in the relativistic covariant
representation

d
dt′

= 2
3

e2c 𝑤𝜇𝑤𝜇 (1.69)
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where 𝑤𝜇 is the 4-acceleration of a particle, see (1.2). For the proper reference frame of
a particle K0 in which the instantaneous particle velocity vanishes v0 = 0, the expres-
sion (1.69) for the rate of energy loss reduces to

d
dt′

||||K0

≡ d0

dt′0
= −

2e2w2
0

3c3

where w0 is the acceleration of a particle in its proper or instantaneous comoving refer-
ence frame. The obtained equation is called the Larmor formula. Since in the laboratory
reference frame the velocity 4-vector at time t′ reads according to (1.2) as

u𝜇 = dx𝜇

ds
= dx𝜇

cd𝜏
= 1

c
√

1 − 𝑣2∕c2

dx𝜇

dt′
≡ 𝛾

c
d

dt′
(ct′, r) = 𝛾

(
1, v

c

)
,

the components of the 4-acceleration will be equal to

𝑤𝜇 = du𝜇

ds
≡ 𝛾

c
d

dt′
(
𝛾, 𝛾

v
c

)
= 𝛾2

c2

(
𝛾2

c
vw, w + 𝛾2

c2 (vw)v
)
. (1.70)

Substituting the result obtained into Eq. (1.69), we arrive at the Liénard formula gen-
eralizing the above Larmor formula:

d
dt′

= −2e2𝛾6

3c3

{
w2 − [v × w]2

c2

}
. (1.71)

11 The scattering of electromagnetic waves

Under influence of the field of the electromagnetic wave incident onto the system of
charges the charges will be set in some accelerated motion which, correspondingly,
results in the radiation of electromagnetic waves. On the other hand, the field of the
incident electromagnetic wave performs work on the system of charges and, therefore,
wave energy is absorbed. Thus, the electromagnetic field emitted by the charge system
in all directions under influence of the incident wave can be treated as the field of a scat-
tered wave. All scattering processes are commonly described in terms of the differential
scattering cross section

d 𝜎 = dI|S|
where dI is the intensity of radiation outgoing from the charge system in the given direc-
tion towards the solid angle element dΩ per unit time and |S| is the energy flux density
of the wave incident on a unit area of the charge system per unit time.

The scattering of a monochromatic plane wave is usually treated in order to obtain the
spectral expansion of the differential cross section of scattering. In the monochromatic
plane wave the Poynting vector is given by|S| = c

4𝜋
(Re{E0ei(kr−𝜔t)})2 = c

8𝜋
(E2

01 + E2
02).

The scattering at the system of charges is described readily in the nonrelativistic
approximation. For a single charge, it is sufficient to consider electric dipole radiation,
hence

d I
d Ω

= e2

4𝜋c3 [r̈ × n]2.
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Here, the acceleration r̈ is determined by the equation of motion in the electric field of
the incident wave since the effect of the magnetic field can be neglected in the nonrela-
tivistic case and the electric field of the plane wave can be treated as uniform within the
same accuracy:

mr̈ = eE + Frad, or r̈ − 2e2

3mc3 r⃛ = e
m

Re{eE0e−i𝜔t}. (1.72)

The partial solution for the equation of charge motion reads

r = e2

m𝜔2 Re
{

1
1 + i𝛾

E0e−i𝜔t
}

where 𝛾 = 2e2

3mc3 𝜔.

Here, 𝛾 is referred to as the natural linewidth of radiation. The expression for the differ-
ential cross section of scattering, provided 𝛾 ≪ 1, is given by

d 𝜎

d Ω
=
(

e2

mc2

)2 [e(1) × n]2 + (E01∕E02)2[e(2) × n]2

1 + (E01∕E02)2 . (1.73)

The total scattering cross section is found by integrating the differential cross
section (1.73) over solid angle and equals

𝜎T = 8𝜋
3

r2
e (1.74)

where re = e2∕mc2 is the classical electron radius. The total cross section (1.74) is called
the Thomson cross section.

The scattering of the wave at a free particle is accompanied by the appearance of some
wave-induced force acting on the scattering particle. The time-averaged force exerted
on the particle is determined by the average value of the field momentum absorbed by
the particle per unit time. The expression for the force can be represented as

F = 𝜎T𝑤n (1.75)

where 𝜎T is the Thomson cross section (1.74), n is the unit vector in the propagation
direction of the incident wave, and 𝑤 = E2∕4𝜋 is the average energy density of the field.
Note that the momentum of the field equals the field energy divided by the speed of
light.

The polarization properties of the plane wave can conveniently be described with the
aid of the second-rank tensor 𝜌𝛼𝛽 composed of the components of the complex unit vec-
tor e. Since this vector e has only two components in the plane normal to the direction
of wave propagation, let us denote them with Greek subscripts as

𝜌𝛼𝛽 = e∗𝛼e𝛽 ; 𝜌∗
𝛼𝛽

= 𝜌𝛽𝛼 .

Thus, the polarization tensor is a 2 × 2 self-adjoint matrix and its trace satisfies

Tr 𝜌̂ = 𝜌𝛼𝛼 = |e1|2 + |e2|2 = 1.

For the linearly polarized wave, the polarization tensor is quite simple. The only
nonzero element of the matrix is on the diagonal, either 𝜌11 or 𝜌22. Provided the wave
has circular polarization, one has 𝜌11 = 𝜌22 = 1∕2 and 𝜌12 = ±i∕2 where the plus sign
corresponds to right-handed and the minus sign to left-handed circular polarization.
The determinant of matrix 𝜌̂ vanishes, i.e. det 𝜌̂ = 0. The polarization tensor contains
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the full information on the polarization properties of the electromagnetic wave and is
widely used for describing both monochromatic and natural radiation.

Problems

1.1 Vectors and tensors in Euclidean space

1.1.1 Show that the scalar product of two real vectors is invariant with respect to
coordinate transformations.

1.1.2 Show that the bilinear combination AiBj formed by the product of the compo-
nents of two vectors Ai and Bj is a second-rank tensor.

1.1.3 Show that the tensor 𝛿ij can be represented as

𝛿ij =
𝜕xi

𝜕xj
.

1.1.4 Verify that the tensor 𝛿ij is invariant with respect to orthogonal coordinate
transformations.

1.1.5 Calculate the contraction 𝛿ii.

1.1.6 Calculate 𝛿ij𝛿ik𝛿kl𝛿li.

1.1.7 Calculate eijkemnk .

1.1.8 Calculate eijkemjk .

1.1.9 Calculate eijkeijk .

1.1.10 Calculate eijkejik .

1.1.11 Transform the expression curl curl a.

1.1.12 Transform the expression div [a × b].

1.1.13 Transform the expression curl [a × b].

1.1.14 Transform the expression grad (ab).

1.1.15 Assuming the vector 𝝁 to be constant, calculate div (𝝁r).

1.1.16 Calculate grad (𝝁r).

1.1.17 Calculate curl [𝝁 × r].
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1.1.18 Calculate div (𝝁f (r)).

1.1.19 Calculate curl (𝝁f (r)).

1.1.20 Calculate the gradient of the exponential term eikr.

1.1.21 Assuming vector A to be constant, calculate div(Aeikr).

1.1.22 Calculate curl(Aeikr).

1.1.23 Using the properties of the tensor eijk , show that a cross product is anticommu-
tative, i.e. antisymmetric with respect to interchanging the factors.

1.1.24 Using the properties of the tensor eijk , derive the formula of the vector triple
product expansion, or Lagrange’s formula with the mnemonic bac − cab

[a × [b × c]] = b(ac) − c(ab).

1.1.25 Calculate (a𝛁)r.

1.1.26 Transform the integral ∫V f (r)div A(r) dV .
Use the invariant and tensor forms of representation.

1.1.27 Using the invariant and tensor forms of representation, transform the volume
integral of the integrand (gradf curl A) to a surface integral.

1.1.28 For this and the next expressions, calculate the surface integrals, connecting
them with the volume integrals ∮S(r dS).

1.1.29 Calculate ∮S z dx dy.

1.1.30 Assuming the vector c to be constant, calculate ∮S r(c dS).

1.1.31 Assuming the vector c to be constant, calculate ∮S(cr) dS.

1.1.32 Transform the surface integral ∮S[dS × A] to the volume one.

1.1.33 Assuming the vector c to be constant, calculate ∮S(cdS)A.

1.1.34 Transform the contour integral ∮L d dl with the scalar function f as integrand
to the surface integral

∮L
f dl.

1.1.35 Prove the formula
1
2 ∮L

[dr × r] = ∫S
dS.
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1.2 Vectors and tensors in Minkowski space

1.2.1 Calculate e𝜇𝜈𝜅𝜆e𝜇𝜈𝜅𝜆.

1.2.2 Calculate e𝜇𝜈𝜅𝜆e𝜌𝜈𝜅𝜆.

1.2.3 Calculate e𝜇𝜈𝜅𝜆e𝜌𝜎𝜅𝜆.

1.2.4 Calculate a scalar ẽ dual to the completely antisymmteric tensor e𝜇𝜈𝜅𝜆 in
four-dimensional Minkowski space.

1.2.5 Express the twice dual tensor ̃̃F𝜇𝜈 in terms of the initial antisymmetric tensor F𝜇𝜈 .

1.2.6 Assuming G𝜇𝜈𝜆 = 𝜕𝜇F𝜈𝜆 + 𝜕𝜈F𝜆𝜇 + 𝜕𝜆F𝜇𝜈 , write G̃𝜆 via F̃𝜆𝜇 .

1.2.7 Assuming F𝜇𝜈 = 𝜕𝜇A𝜈 − 𝜕𝜈A𝜇 , write F̃𝜈𝜆 via Ã𝜈𝜆𝜇 .

1.2.8 Express F̃𝜇𝜈 F̃𝜇𝜈 via the antisymmetric tensor F𝜇𝜈 .

1.3 Relativistic kinematics

1.3.1 Write a product of two successive Lorentz transformations for velocities 𝑣1∕c =
tan 𝜃1 and 𝑣2∕c = tan 𝜃2 in the direction of the x axis. Does the resultant trans-
formation correspond to the Lorentz transformation? If so, what velocity 𝑣∕c =
tan 𝜃 does the resultant transformation correspond to?

1.3.2 Show that the matrix of a boost, i.e. rotation-free Lorentz transformation, in
the direction of the x axis can be represented as a matrix exponential Λx(𝜃) =
exp(𝜃ax) where 𝜃 is the rapidity 𝑣∕c = tan 𝜃 and ax is an unknown matrix to be
called the boost generator in the x axis direction. Find explicitly the matrix ax.
Write the boost matrices and generators in the direction of the y and z axes.

1.3.3 Show that the matrix of rotation around the x axis by the angle 𝜑, Rx(𝜑), can be
represented as a matrix exponential Rx(𝜑) = exp(𝜑 bx) where bx is an unknown
matrix called the rotation generator around the x axis. Find this matrix bx in
explicit form. Write the matrices and generators of rotation around the y and
z axes.

1.3.4 Show that the volume element d4x = cdt dx dy dz is invariant under rotations,
Lorentz boosts and their combinations.

1.3.5 The origin of the reference frame K ′ moves at velocity v with respect to frame
K and the coordinate axes in K ′ are at the same angles with v = (𝑣x, 𝑣y) as the
coordinate angles do in frame K . Write the Lorentz transformation from frame
K to frame K ′.
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1.3.6 Determine the position of axes (x′, y′) of frame K ′ (see problem 1.3.5) in the
frame K at zero time t = 0 according to a clock in frame K .

1.3.7 Let velocities in the reference frames K1, K2, and K ′ lie in the (x, y) plane of
laboratory frame K . The velocity of frame K1 with respect to frame K equals
v1 = (Vx, 0, 0), and the velocity of frame K ′ with respect to frame K equals V =
(Vx,Vy, 0). At what velocity v𝟐 = (V2x,V2y, 0) should the frame K2 move with
respect to frame K1 so that the frame K2 be motionless with respect to frame
K ′, i.e. its velocity with respect to laboratory frame K be equal to the velocity of
frame K ′ with respect to K?

1.3.8 At what angle are the coordinate axes of frame K2 rotated with respect to the
axes of frame K ′? (See Prs. 1.3.5 and 1.3.7.)

1.3.9 A force acts on a particle moving at velocity v and delivers the acceleration of
magnitude v̇ to the particle. Determine the angular velocity at which the spin
of a particle rotates with respect to the laboratory frame if the force acting
on the particle does not affect the particle spin. The phenomenon, called the
Thomas precession, results from the fact that a composition of two noncollinear
Lorentz boosts does not reduce to a boost alone but represents a combination
of boosts and rotations.

1.3.10 Two sources moving with the same velocity 𝑣 along one straight line emit light
pulses at one time in the frame of sources. The distance between the sources in
the frame of sources equals l.
What is the time lapse for the light pulses to be registered with a receiver located
on the same line as the sources but in front of them?

1.3.11 A plane mirror moves at velocity 𝑣 in the direction of its normal. The monochro-
matic wave of frequency 𝜔1 strikes the mirror at angle 𝜃1 with respect to the
normal. Find the direction and frequency of the reflected wave, assuming that
the standard reflection law holds for the mirror at rest. Hint: introduce the wave
and normal 4-vectors.

1.3.12 Choose a uniformly rotating reference frame, i.e. the frame of an observer who
travels uniformly round the circumference of a rotating table. How does the
metric tensor in such a reference frame look like?
Let one of two twins remain at rest and the other travel around the circumfer-
ence. Which one of the twins will be younger when they will meet each other?

1.3.13 Determine the phase difference for propagating a light ray of frequency𝜔 clock-
wise and counterclockwise in a rotating circular waveguide with radius R and
refractive index n. The phenomenon is called the Sagnac effect and used for
determining angular rotation velocity with laser gyroscopes.

1.3.14 An observer sits on a plane having a slit of width l and sees that a rod rushes
at velocity (Vx,Vy) in the direction of the slit. The rod is parallel to the plane
and has length L > l, the x axis being parallel to the plane and the y axis being
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perpendicular to it. The velocity of the rod is such that in the observer’s frame
the rod has a length slightly less than l. Will the rod pass safely through the slit
if we take into account that it is the slit width that contracts in the frame of the
rod? Which end of the rod will pass first through the slit from the viewpoints
of the observer and the rod?

1.3.15 Two particles of masses m1 and m2 have momenta p1 and p2. Determine:
(1) the velocity of the center-of-inertia frame;
(2) the energy in the center-of-inertia frame;
(3) the energy of the second particle in the rest frame of the first particle;
(4) the relative velocity of the particles.

1.3.16 In an accelerator a beam of particles of mass m and energy  ≫ mc2 collides
with a fixed target composed of particles with the same mass. Determine the
effective mass for a pair of particles from the beam and the target. Find
the velocity of the center-of-inertia frame for a pair of particles. As an example,
consider the collision of accelerated protons (mc2 = 1 GeV) with the protons
in the fixed target at the following energies of incident protons:
(1)  = 70 GeV (Serpukhov accelerator);
(2)  = 1 TeV (Tevatron at Fermilab, Batavia, USA);
(3)  = 7 TeV (Large Hadron Collider, CERN, Geneva).

1.3.17 A collider provides head-on collisions for beams of particles with mass m1 and
energy 1 ≫ m1c2 and with mass m2 and energy 2 ≫ m2c2. Determine the
effective mass of a pair of particles from the first and second beams, and the
center-of-inertia velocity of a pair. Give the numerical answer for head-on col-
lisions of protons with energy 1 = 800 GeV and electrons with energy 2 =
30 GeV (accelerator HERA, Germany).

1.3.18 What energy  ′ should be achieved in a fixed-target accelerator in order to
obtain the same center-of-inertia energy as for the 7 TeV collider (Large Hadron
Collider)? For an estimate, take m1c2 = m2c2 = 1 GeV.

1.3.19 Show that the energy 𝜀 and momentum projection px onto the x axis can be
parameterized for a particle of mass m as 𝜀 = m⟂ cosh 𝛼, px = m⟂ sinh 𝛼 where
m2

⟂ = m2 + p2
y + p2

z and tanh 𝛼 = 𝑣x. (Here, we put c = 1.)

1.3.20 A 𝜋0-meson runs the distance L and decays into two 𝛾-quanta emitted at
angles 𝛼 and 𝛽 with respect to the particle’s velocity. Determine the lifetime of
a 𝜋0-meson in its rest frame.

1.3.21 Determine the mass m of a particle if it decays into two particles with masses m1
and m2. The momenta of these particles, p1 and p2, are known from experiment.

1.3.22 Determine the mass m1 of a particle if you know that it represents one of
two particles created in the decay of a particle with mass m and momentum
p. The mass m2 and momentum p2 of the second particle are known from
experiment.
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1.3.23 A 𝜋0-meson flying at velocity v decays into two 𝛾-quanta. Determine the mini-
mum angle of separation of the 𝛾-quanta, 𝜃min.

1.3.24 An ultrarelativistic particle with mass m and energy 𝜀0 scatters elastically on a
fixed nucleus with mass M ≫ m. Determine the behavior of the final particle
energy 𝜀 as a function of the scattering angle 𝜃.

1.3.25 A particle with mass m1 and velocity v collides with a particle of mass m2 which
is at rest and is absorbed by the latter. Find the mass M and velocity V of the
new particle.

1.3.26 An ultrarelativistic particle with mass m and energy 𝜀0 scatters on a fixed
nucleus of mass M ≫ m and excites the latter. The energy of the excited
nucleus Δ in its rest frame satisfies the inequality mc2 ≪ Δ ≪ Mc2. Find the
behavior of the final particle energy 𝜀 as a function of the scattering angle 𝜃.

1.3.27 A photon of frequency 𝜔0 scatters at a freely moving electron with momentum
p0 at an angle 𝜃0 with respect to the direction in which the photon propagates
(Compton scattering). Find the behavior for the frequency 𝜔 of the scattered
photon as a function of the direction of its propagation.

1.3.28 A photon of energy 𝜀 = 2 eV scatters at an ultrarelativistic electron flying with
energy  = 200 GeV ≫ 𝜀 in the opposite direction. Find the maximum energy
of the scattered photon. For what relation between  , 𝜀 and the electron mass
m can this be achieved?

1.3.29 For the neutrinos appearing in the decay of a 6 GeV 𝜋-mesons, determine their
energy spectrum, maximum and average energies, and angular distribution if
the decay of 𝜋-meson, 𝜋 → 𝜇 + 𝜈, is known to be isotropic in its rest frame.
The mass of the 𝜋-meson is m𝜋c2 ≈ 140 MeV, the mass of the muon is m𝜇c2 ≈
105 MeV, and the neutrino mass6 is m𝜈c2 ≈ 0. Find the characteristic interval of
the neutrino emission angles. Plot the energy and angular distributions for the
neutrinos emergent in the 𝜋-meson decay.

1.3.30 A 𝜋0-meson flying at velocity v decays into two 𝛾-quanta. Find the angular
distribution dN∕NdΩ for 𝛾-quanta in the laboratory reference frame if the dis-
tribution is spherically symmetric in the 𝜋0-meson rest frame.

1.3.31 For the K-meson decay, K → 𝜋 + e + 𝜈, determine the maximum possible
energy for each of three emerging particles. Use the values mK c2 = 500 MeV,
mec2 = 0.5 MeV, m𝜋c2 = 135 MeV, and m𝜈 = 0.

6 According to modern experimental data, the neutrino mass is very small but nonzero, namely m
𝜈
c2 ≃ 1eV

or even less. Therefore, in the ultrarelativistic case 
𝜈
≫ m

𝜈
c2 one can assume with good accuracy that

m
𝜈
c2 ≈ 0. See also Pr. 1.3.31.
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1.3.32 An accelerated proton collides with a proton of the target at rest. The reaction
results in the production of particle a and antiparticle ã: p + p → p + p + a + ã.
Find the energy threshold for this reaction if particle a is as follows: (a) proton p
of mass about 1 GeV; (b) deuteron d of mass about 2 GeV; (c) 𝛼-particle or 4He
nucleus of mass about 4 GeV.

1.3.33 A collider provides for the reaction e+ + e− → 𝜇+ + 𝜇−. Assuming the electron
and positron energies to be known, find the energy and momentum of muons.
What is the energy threshold for this reaction? Compare with the energy thresh-
old in the case when the accelerated positrons collide with the electrons at rest.
The electron mass is mec2 = 0.5 MeV and the muon mass is m𝜇c2 = 100 MeV.

1.3.34 A proton with energy  = 3 GeV, scattering on a proton of the target,
transfers to it an energy 𝜀 = 1 MeV. Determine the scattering angle in the
center-of-inertia system and in the laboratory reference frame.

1.3.35 What is, in the ultrarelativistic limit, the connection between the scattering
angle for a collision of two identical particles of mass m in a fixed-target sys-
tem and in the center-of-inertia system? The energy of the incident particle in
the fixed-target frame equals  .

1.3.36 A free nucleus of mass M has an excited state whose energy exceeds the ground
state energy by 𝜀.
(1) The excited nucleus emits a 𝛾-quantum and relaxes to the ground state. Find

the energy of this 𝛾-quantum.
(2) Determine the recoil energy which the nucleus receives.
(3) Determine the minimum velocity at which the excited nucleus should move

in order to excite a nucleus in the ground state at rest by the 𝛾-quantum
emitted by the moving excited nucleus.

1.3.37 Determine the maximum energy of neutrinos produced in the 𝛽+-decay of the
nuclei

13N → 13C + e+ + 𝜈e and 15O → 15N + e+ + 𝜈e ,

assuming that protons are distributed with a homogeneous density over the
nucleus volume. The nucleus’s size is R0 = 1.5 × 10−13A1∕3cm, A being the mass
number. For simplicity, use the same binding energies for protons and neutrons.
The difference in the neutron and proton masses is mnc2 − mpc2 = 1.29 MeV.

1.4 The Maxwell equations

1.4.1 Derive the wave equations for the electromagnetic field from the Maxwell
equations.
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1.4.2 Two Maxwell equations allow us to calculate the time derivatives of the fields E
and H provided these fields are given on some hyperplane t = const:

𝜕H
𝜕t

= −c curl E, 𝜕E
𝜕t

= c curl H − 4𝜋j. (1)

The other two Maxwell equations

div H = 0, div E = 4𝜋𝜌 (2)

do not contain time derivatives and, therefore, their validity can be checked for
a separate hyperplane t = t0.
Let Eqs. (2) be checked for the initial conditions given at some time t = t0. Next,
the fields E and H are calculated for arbitrary time moments with the aid of
Eqs. (1).
Under what condition will Eqs. (2) be satisfied for an arbitrary point in time t
different from t0?

1.4.3 Modify the first pair of the Maxwell equations by including the density of hypo-
thetical magnetic monopoles or magnetic charges 𝜌m and the current density
of these magnetic monopoles jm in such a way that the continuity equation is
satisfied for them. Solve problem 1.4.2 for the modified equations.

1.4.4 Rewrite the Maxwell equations in terms of the complex vector field F = E +
iH. How does such a form of the Maxwell equations change in the presence of
magnetic monopoles? See Pr. 1.4.3.

1.4.5 Substituting the expressions for the fields E and H via the potentials𝜑 and A into
the Maxwell equations in three-dimensional form, derive the field equations for
the potentials.
What form does the first pair of the Maxwell equations reduce to?

1.4.6 Substituting the expressions for the fields F𝜇𝜈 via the potentials A𝜇 into the
Maxwell equations in four-dimensional form. Derive the field equations for the
potentials.
What form does the first pair of the Maxwell equations reduce to?

1.4.7 What form will the field equations for the potentials take when the Lorentz
gauge condition 𝜕𝜇A𝜇 = 0 or 1

c
𝜕𝜑

𝜕t
+ div A = 0 is imposed? Consider both three-

and four-dimensional notations.

1.4.8 What form will the field equations for the potentials take in three-dimensional
notation when the Coulomb gauge condition div A = 0 is imposed?

1.4.9 What form will the field equations for the potentials take in three-dimensional
notation when the Weyl gauge condition 𝜑 = 0 is imposed?

1.4.10 For gauge 𝜑 = 0, parametrize the constant uniform electromagnetic field of the
general form with the aid of the vector potential A, the fields E and H being two
arbitrary constant vectors.
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1.4.11 For potentials of the general form A𝜇 = (𝜑,A), find the gauge transformations
which satisfy the following gauge conditions:

(1) 𝜕𝜇A𝜇 = 0, i.e. 1
c
𝜕𝜑

𝜕t
+ div A = 0 (Lorentz gauge),

(2) div A = 0 (Coulomb gauge),
(3) 𝜑 = 0 (Weyl gauge).

1.4.12 Find the form of the residual gauge transformation or constraint on function f
for each of the following gauges:
(1) 𝜕𝜇A𝜇 = 0, i.e. 1

c
𝜕𝜑

𝜕t
+ div A = 0 (Lorentz gauge),

(2) div A = 0 (Coulomb gauge),
(3) 𝜑 = 0 (Weyl gauge).

1.4.13 Show that the continuity equation for charges and currents results from the
invariance of the electromagnetic field action with respect to gauge transfor-
mations.

1.4.14 The action function for the electromagnetic field (1.12) reads

Sfield[A(x)] = − 1
16𝜋c ∫ F𝜇𝜈F𝜇𝜈 d4x = 1

c ∫  d4x.

Obtain the energy-momentum tensor T̃𝜇𝜈 according to Eq. (1.14). Is this tensor
gauge-invariant?

1.4.15 Find an additive 𝛿T𝜇𝜈 to the energy-momentum tensor from Pr. 1.4.14 such
that the new energy-momentum tensor T𝜇𝜈 = T̃𝜇𝜈 + 𝛿T𝜇𝜈 would be symmetric
and 𝜕𝜇𝛿T𝜇𝜈 = 0 under the condition that the Maxwell equations are satisfied
without sources. Is the new tensor T𝜇𝜈 gauge-invariant?
Verify that 𝜕𝜇T𝜇𝜈 = 0 in the absence of field sources.

1.4.16 Calculate 𝜕𝜇T𝜇𝜈 for the tensor from Pr. 1.4.15 in the presence of charges and
currents. Derive the equations for the energy-momentum conservation law.

1.4.17 Find the trace of the energy-momentum tensor T𝜇
𝜇 for the electromagnetic field.

1.4.18 Find the pressure on one of the plates of a vacuum-separated thin capacitor if
you start from the following assumptions:
(1) the force density 𝜌E is known;
(2) the drop of the electric field pressure is known.

1.4.19 Find the pressure on the wall of a coreless solenoid under the following assump-
tions:
(1) the force density [j × H]∕c is known;
(2) the drop of the magnetic field pressure is known.
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1.5 The motion of a charged particle in an external field

1.5.1 For a relativistic particle, prove that the force power (vF) equals the energy vari-
ation rate.

1.5.2 Consider the special features of the relativistic motion for a particle of charge
e and mass m in uniform crossed fields E and H, the angle between the fields
being equal to 𝜃.

1.5.3 Determine the coordinates r and time t of a charged particle in the laboratory
reference frame as a function of proper time 𝜏 for particle motion in a uniform
constant electric field E. At the initial time the particle is at the frame origin and
has the energy 0 and momentum p0.

1.5.4 Determine the coordinates r and time t of a charged particle in the laboratory
reference frame as a function of proper time 𝜏 for particle motion in a uniform
constant magnetic field H. At the initial time the particle is at the frame origin
and has the energy 0 and momentum p0.

1.5.5 Determine the coordinates r and time t of a charged particle in the laboratory
reference frame as a function of proper time 𝜏 for a particle moving in uniform
constant electric and magnetic fields perpendicular to each other. At the initial
time the particle is at the frame origin and has the energy 0 and momentum p0.

1.5.6 Determine the trajectory of motion of a charged particle in the crossed electric
and magnetic fields, E ⟂ H, of the same magnitudes.

1.5.7 Find the kinetic energy of a particle T =  − mc2 as a function of proper time 𝜏
when it moves in constant uniform electric and magnetic fields parallel to each
other, E||H. At the initial time the particle is at rest at the frame origin.

1.5.8 Determine the coordinates r and time t of a charged particle in the laboratory
reference frame as a function of proper time 𝜏 when it moves in constant uni-
form electric and magnetic fields parallel to each other. At the initial time the
particle is at the frame origin and has the energy 0 and momentum p0.

1.5.9 Find the kinetic energy of a particle T =  − mc2 as a function of proper time 𝜏
when it moves in crossed uniform constant electric and magnetic fields, E ⟂ H.
At the initial time the particle is at rest at the frame origin.

1.5.10 Find the deceleration time tbr and the stopping distance l for a relativistic parti-
cle of charge e, mass m and initial energy 0 in an decelerating uniform electric
field E parallel to the initial velocity of a particle.
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1.5.11 A beam of 𝜋+-mesons with the initial momentum p0 = 200 MeV/c is injected
into a linear accelerator. What is the accelerating field strength E necessary for
accelerating, at least, half of the pions to the energy  = 200 GeV? What length
should the accelerator have?
The 𝜋+-meson mass is mc2 = 140 MeV. The 𝜋+-meson lifetime is 𝜏𝜋+ = 2.6 ×
10−8s and the half-life for the decay 𝜋+ → 𝜇+ + 𝜈𝜇 is 𝜏1∕2 = 𝜏𝜋+ ln 2.

1.5.12 Determine the oscillation frequencies of a charged isotropic spatial oscillator in
a constant uniform magnetic field. Without a magnetic field the proper oscilla-
tion frequency is 𝜔0. The splitting of oscillation frequencies refers to the classi-
cal Zeeman effect.

1.5.13 Prove that the Runge-Lenz vector

 = Ze2 r
r
− 1

𝜇
[p × M], 1

𝜇
= 1

m
+ 1

M
, M = [r × p]

is conserved for a nonrelativistic electron of charge −e and mass m moving in
the field of a nucleus with charge Ze and mass M.

1.5.14 A current of magnitude J flows along an infinitely long straight cylindrical
wire of radius r. An electron with the initial velocity v0 parallel to the wire
axis escapes from the wire surface. Find the maximum distance R which the
electron can run away from the axis of the wire.

1.5.15 A relativistic particle of mass m and charge e moves in a uniform magnetic field.
Determine the variation of the particle energy for one rotation provided the
magnetic field varies slowly in time, namely, field variations for the period of
motion are small compared with the field magnitude. Prove that the quantity
p2
⟂∕H remains constant and represents an adiabatic invariant. Calculate the

variation of the orbit radius and particle energy if the field changes from mag-
nitude H1 to H2.

1.5.16 For the nonrelativistic case, find the equation of motion for the guiding center of
a charged particle orbit provided the magnetic field changes slowly at distances
of the order of the orbit radius.

1.5.17 At large distances the magnetic field of the Earth looks like a dipole field
with magnetic moment 𝜇 = 8.1 × 1025 G ⋅ cm3. The charged particles that
come from the solar wind and are trapped within the Earth’s magnetic field
drift between the poles along the force lines in regions called the Van Allen
radiation belts.
(a) Assuming that the velocity of a particle at the equator is at an angle 𝛼 with

the equator plane, determine the maximum latitude or polar angle which
can be reached by the particle. Find the angle 𝛼 which allows the particle
to reach the Earth’s surface if the particle was in the equatorial plane at a
distance from the Earth much larger than the radius of the Earth.
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(b) Find the period of drift around the Earth for a 10 MeV proton moving in
the equatorial plane at a distance of 30 000 km from the center of the Earth.

1.6 Static electromagnetic field

1.6.1 Determine the quadrupole moment of a uniformly charged ellipsoid with
respect to its center.

1.6.2 Find the electric field of a uniformly charged ellipsoid at large distances R to an
accuracy of fourth order in 1∕R.

1.6.3 Determine the quadrupole moment of a uniformly charged filament of length
l if its total charge equals q. Put the coordinate origin at the middle of the fila-
ment.

1.6.4 Calculate the quadrupole moment tensor for a neutral system of charges in
which two charges +q are located at points (+a,+a, 0) and (−a,−a, 0), and the
other two charges −q are placed at points (+a,−a, 0) and (−a,+a, 0). Find the
system of coordinates in which this tensor has a diagonal form.

1.6.5 For the system of charges considered in the previous problem, find the energy
of the system in an external uniform electric field E.

1.6.6 Two opposite charges of the same magnitude are fixed at a distance l from each
other. Find the force and torque acting on the given system if it is placed in the
field of a point-like charge at distance R ≫ l.

1.6.7 Write down the interaction energy (d1,d2,R) between a dipole d1 at the coor-
dinate origin and a second dipole d2 at the point R.

1.6.8 Let the dipole d1 be directed along the z axis. Obtain the expansion of energy
(d1,d2,R) in spherical harmonics for fixed values of d1, d2, and |R|.

1.6.9 The potential V (r, 𝜃) for an axially symmetric system of charges at the z (𝜃 = 0)
axis reads

V (r, 0) = V0

(
1 − r2 − a2

r
√

r2 + a2

)
, r > a .

Find two leading terms of expansion V (r, 𝜃) at distances r ≫ a.

1.6.10 A body, confined within a surface similar to a sphere with

R(𝜃) = R0[1 + 𝛽P2(cos 𝜃)],

or spheroid, is uniformly charged, P2(x) being a Legendre polynomial. The total
charge equals q. Find the multipole moments of the spheroid in an approxima-
tion linear in 𝛽.
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1.6.11 Show that the uniform magnetic field H directed along the z axis can be
described by the vector potential A1 = (0,Hx, 0).
Transform to the potential A2 = [H × r]∕2 using a gauge transformation.

1.6.12 A magnetic field has a component in the z direction and decreases in the same
direction with the constant gradient 𝜕Hz∕𝜕z = −h = const. Could this field be
parallel to the z axis in the whole space? Find the radial components of the field
outside the z axis. Plot the lines of force.

1.6.13 Derive the formula F = (𝝁𝛁)H for the force acting on a magnetic dipole in an
inhomogeneous field.

1.6.14 Find the equation of the line of force of a magnetic dipole in polar coordinates.
Determine how the field changes along the line of force.

1.6.15 Determine the energy of interaction between a magnetic dipole 𝜇 moving with
velocity 𝑣 ≪ c and a fixed nucleus of charge Ze.

1.7 Free electromagnetic field

1.7.1 What conditions should be satisfied for the complex amplitude of a plane
monochromatic wave, A𝜇

0 = (A0
0,A0), and the wave 4-vector k𝜇 = (𝜔∕c, k)?

1.7.2 Find the energy-momentum tensor of a linearly polarized monochromatic trav-
eling plane wave.

1.7.3 Find the energy-momentum tensor of a linearly polarized monochromatic stand-
ing plane wave.

1.7.4 Show that the scalar potential of an arbitrary free electromagnetic field can be
reduced to zero by using the residual gauge transformation, without violating
the Lorentz gauge.

1.7.5 Write the Maxwell equations for the Fourier amplitudes obtained by expanding
an arbitrary plane wave in terms of monochromatic plane waves.

1.7.6 Find the expression for the Fourier amplitudes of a monochromatic plane wave.

1.8 The retarded potentials and radiation

1.8.1 Determine the electric and magnetic field of a harmonically oscillating dipole
at distances r much larger than the dipole size a but, maybe, comparable with
the wavelength 𝜆.

1.8.2 Prove that, for a closed system of charged particles with the same
charge-to-mass ratio, there is neither electric nor magnetic dipole radiation.
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1.8.3 In the Rutherford atomic model two opposite charges (e1,m1) and (e2,m2) orbit
around each other along a circular trajectory of radius R under the action of the
Coulomb attraction. Determine the energy loss due to radiation per revolution.
Find the dependence of the distance between charges on time. Determine the
time at which one charge will fall on the other.

1.8.4 Let us consider the classical model of the helium atom in which two electrons
with charges −e, located at diametrically opposite points, orbit the infinitely
heavy nucleus of charge +2e. What is the intensity of the emitted electric and
magnetic dipole radiation? What is the intensity of quadrupole radiation? How
does the orbit radius change in time?

1.8.5 Two like charges (e1,m1) and (e2,m2) are subjected to a head-on collision.
Determine the total radiated energy if the relative velocity at infinity is given by
𝑣∞ ≪ c. Consider the dipole e1∕m1 ≠ e2∕m2 and quadrupole e1∕m1 = e2∕m2
cases.

1.8.6 A body, confined within a surface similar to a sphere with

R(𝜃) = R0[1 + 𝛽P2(cos 𝜃)],

i.e. a spheroid, is uniformly charged, P2(x) being a Legendre polynomial. The
total charge equals q. The small parameter 𝛽 = 𝛽(t) ≪ 1 oscillates in time with
frequency 𝜔. Keeping lowest terms of expansion in 𝛽, calculate the angular dis-
tribution and total power of radiation in the long wave approximation.

1.8.7 A charge e with mass m is placed at a weightless rod of length l.
(1) Find the temporal variation law for the angular velocity 𝜔(t) if 𝜔(0) = 𝜔0 at

the initial time moment.
(2) Determine the average angular distribution dI∕dΩ and the total intensity I

of the radiation.

1.8.8 An electron travels around a circle in the uniform magnetic field H. Find the
temporal behavior of the electron kinetic energy (t). Determine the electron
trajectory in the nonrelativistic limit 𝑣 ≪ c.

1.8.9 Determine the average angular distribution dI∕dΩ and the total radiation inten-
sity I for two like charges e traveling uniformly and nonrelativistically around a
circle of radius a with angular velocity 𝜔 in diametrically opposite positions.

1.8.10 Two like charges e travel uniformly and nonrelativistically with angular velocity
𝜔 along a circle of radius a. How should the arrangement of charges differ from
diametrically opposite positions in order to have equal intensities of electric
dipole and quadrupole radiation?

1.8.11 A point dipole d travels along a circle of radius R with angular velocity 𝜔. The
dipole is oriented along the radius-vector d||R. Find the intensities of the elec-
tric dipole, quadrupole and magnetic dipole radiation for R ≪ 𝜆 = 2𝜋c∕𝜔.
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1.8.12 Two like dipoles of magnitude d are located at distance R from the center of a
weightless rod and oppositely oriented along the rod. Determine the temporal
behavior of the angular velocity 𝜔(t) if at the initial time moment 𝜔(0) = 𝜔0.
The mass of the dipole is m and R ≪ c∕𝜔.

1.8.13 The velocity of a charged particle decreases from 𝑣0 to zero during the time 𝜏 .
Find the angular distribution of the bremsstrahlung (braking radiation),
assuming the acceleration to be constant. What radiation pulse duration Δt
will be registered by the receiver at rest if it is set at angle 𝜃 with respect to the
direction of the particle motion?

1.8.14 An electron is subjected to a head-on collision with a fixed (infinitely heavy)
point dipole d. Determine the energy loss due to radiation as a result of this
collision. The electron moves in a straight line.

1.8.15 A uniformly charged rod with the linear charge density 𝜌 and length l rotates
around its end. Find the temporal behavior of its angular velocity 𝜔(t) if 𝜔(0) =
𝜔0. The rod mass is m.

1.8.16 A uniformly charged rod with the linear charge density 𝜌 and length 2l rotates
around an axis running through the middle of the rod. Find the temporal behav-
ior of the angular velocity 𝜔(t) if 𝜔(0) = 𝜔0. The rod mass is 2m.

1.8.17 Consider the neutral system of four charged particles fixed at the corners of a
2a × 2a-sized square, two positive charges each +q being at one diagonal and
two negative charges each −q being at the other diagonal. The square wholly
lies in the xy plane and the z axis runs through the center of the square. The
square rotates around the z axis with some angular velocity𝜔. Find the temporal
behavior of the angular velocity 𝜔(t) if 𝜔(0) = 𝜔0. The masses of the particles
are the same and equal to m.

1.8.18 At the initial time a magnetic moment 𝝁 is set in the direction normal
to an external uniform magnetic field H = (0, 0,H). Then, the magnetic
moment starts to precess around the magnetic field direction. Find 𝜇z(t) if the
gyromagnetic ratio equals 𝛾 .

1.8.19 An oscillatory circuit contains a capacitor and an inductance coil. The natu-
ral oscillation frequency is 𝜔0. Let the coil be ideal, i.e. dissipationless, and the
capacitor consist of two parallel plates of area s, the distance between the plates
being a. The size of the capacitor is small compared with 𝜆 = 2𝜋c∕𝜔. Deter-
mine the Q-factor of the circuit, i.e. 2𝜋 multiplied by the ratio of stored energy
to energy losses.

1.8.20 An oscillatory circuit contains a capacitor and an inductance coil. The natural
oscillation frequency is𝜔0. The capacitor is ideal or dissipationless. The coreless
coil consists of N turns, each of the turns having an area s. The coil length is a.
The coil size is small compared with 𝜆 = 2𝜋c∕𝜔. Determine the circuit Q-factor,
i.e. 2𝜋 multiplied by the ratio of stored energy to energy losses.
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1.8.21 A nonrelativistic charged particle with charge q and mass m slides friction-
lessly on the surface of revolution in the horizontal plane. The axis of revo-
lution is vertical. The gravitational force mg and the reaction force normal to
the contact surface act on the particle. The particle dissipates its energy due
to electromagnetic radiation and, for one rotation, the energy losses are small.
Determine the time dependence z(t) for the following surfaces of revolution:

(1) surface of a cone z = kr,
(2) surface of a paraboloid z = r2∕a.

1.8.22 A harmonically oscillating dipole is set at height h above an ideally conducting
metallic plane. For the cases h ≪ 𝜆 and h ≫ 𝜆, find the dipole radiation intensity
as a function of the observation angle and the angle between the dipole and the
normal to the metallic plane.

1.9 Electromagnetic field of relativistic particles

1.9.1 Determine the electric and magnetic fields of an arbitrarily moving charge.

1.9.2 Determine the electromagnetic field induced by an electron moving uniformly
at velocity v.

1.9.3 Determine the interaction force F of two electrons moving parallel to each other
with the same velocities V.

1.9.4 Find the instantaneous angular distribution of radiation power dW∕dΩ for a rel-
ativistic charged particle in two cases:

(1) particle velocity v and acceleration w are parallel at the retarded time t′;
(2) velocity and acceleration are mutually perpendicular at the retarded time t′.
Analyze the nonrelativistic 𝑣∕c ≪ 1 and ultrarelativistic 𝑣∕c ∼ 1 limits.

1.9.5 Find the radiation energy of a relativistic electron in a uniform magnetic field for
one rotation. Find the total power (in Megawatt) of synchrotron radiation in a
collider of electrons and positrons with the energy 100 GeV. The circumference
of the collider is 30 km and the number of accelerated particles in the ring is
5 × 1012. Estimate the typical wavelength of radiation.

1.9.6 A beam of relativistic electrons traverses a plane capacitor (electric undulator)
under alternating voltage of frequency 𝜔0. Find the frequency of undulator radi-
ation as a function of the angle 𝜃 between an observer and the direction of beam
motion.

1.9.7 Determine the temporal behavior for the energy of a relativistic electron in a
uniform magnetic field, the electron velocity being perpendicular to the field.
Verify that in the t → ∞ limit, the behavior agrees with the result for nonrela-
tivistic electrons.
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1.9.8 Assuming that a particle in a linear accelerator travels along a straight line under
the action of a constant force, determine the energy losses due to radiation. Find
the energy conversion efficiency for an ultrarelativistic particle.

1.10 The scattering of electromagnetic waves

1.10.1 A linearly polarized monochromatic plane wave is scattered by a free electron.
Determine the polarization of the scattered electromagnetic field.

1.10.2 .(1) Find the differential and total cross sections for the scattering of linearly
polarized and natural (unpolarized) light by a damped oscillator. The
damping is due to viscous friction.

(2) Find the total cross section of absorption.

1.10.3 Determine the differential cross section d𝜎∕dΩ for the scattering of a circu-
larly polarized monochromatic electromagnetic plane wave by an electron in
the strong uniform magnetic field H0, taking into account radiation damping.
Consider the case k||H0 where k is the wave vector of the incident wave.

1.10.4 Determine the differential cross section d𝜎∕dΩ for the scattering of an unpo-
larized monochromatic electromagnetic plane wave by a charged harmonic
oscillator in the strong uniform magnetic field H0, taking into account radia-
tion damping. Consider the case k||H0.

1.10.5 Find the differential cross section for the scattering of a circularly polarized
monochromatic plane electromagnetic wave of frequency 𝜔 and wave vector
k at a system having the magnetic moment 𝝁 and gyromagnetic ratio 𝛾e, pro-
vided that the magnetic moment 𝝁 experiences small oscillations around the
mean position 𝝁0 under the influence of the incident wave. Consider the case
of a small gyromagnetic ratio. What is the criterion of smallness in the prob-
lem?

1.10.6 Find the differential and total cross sections for the scattering of a linearly
polarized monochromatic electromagnetic plane wave of frequency 𝜔 on a
capacitor. The capacitor is composed of two parallel plates of area s located at
a distance a from each other. The plates are short-circuited. The electric field
of the incident wave is perpendicular to the plates. The size of the capacitor is
small compared with the wavelength.

1.10.7 Find the differential and total cross sections for the scattering of a linearly
polarized monochromatic electromagnetic plane wave of frequency 𝜔 on a
coil. The coil consists of N turns, each of the turns having an area s. The coil
length is a. The coil is short-circuited. The coil size is small compared with the
wavelength.



44 1 Field Theory

1.10.8 Estimate the density of matter in the solar corona if the corona brightness,
observed in the course of a solar eclipse, is smaller by a factor 106 in com-
parison with the brightness of the solar photosphere or visible surface of
the Sun.

1.10.9 For relatively young stars, e.g. novae, the luminosity, i.e. total energy radiated
per unit time, varies drastically for several days. In the beginning the lumi-
nosity grows abruptly and then decreases slowly to the initial magnitude. The
mechanism of the phenomenon is a detachment of the gas shell of star due
to disturbances of the equilibrium state. In essence, the light pressure on the
gas shell or, more precisely, plasma shell, three fourths of which are ions of
hydrogen, becomes larger than the gravitational attraction. Estimate the criti-
cal luminosity or Eddington limit for a star of mass M and radius R.

1.10.10 Find the differential and total cross section for the scattering of a linearly polar-
ized monochromatic electromagnetic wave on a superconducting sphere of
radius r ≪ 𝜆. The fields of the charges and currents, induced by the external
electromagnetic wave field at the sphere surface, compensate completely the
external fields inside the sphere.


