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Principles of Mathematical Modeling

We begin this introduction to mathematical modeling and simulation with an explanation
of basic concepts and ideas, which includes definitions of terms such as system, model,
simulation, and mathematical model, reflections on the objectives of mathematical mod-
eling and simulation, characteristics of “good” mathematical models, and a classification
of mathematical models. You may skip this chapter at first reading if you are just interested
in a hands-on application of specific methods explained in the later chapters of the book,
such as regression or neural network methods (Chapter 2), differential equations (DEs)
(in Chapters 3 and 4), or virtual plants (Chapter 5). Any professional in this field, how-
ever, should of course know about the principles of mathematical modeling and simulation.
It was emphasized in the preface that everybody uses mathematical models – “even those
of us who are not aware of doing so”. You will agree that it is a good idea to have an idea of
what one is doing…

Our starting point is the complexity of the problems treated in science and engineer-
ing. As will be explained in Section 1.1, the difficulty of problems treated in science and
engineering typically originates from the complexity of the systems under consideration,
and models provide an adequate tool to break up this complexity and make a problem
tractable. After giving general definitions of the terms system, model, and simulation in
Section 1.2, we move on toward mathematical models in Section 1.3, where it is explained
that mathematics is the natural modeling language in science and engineering. Mathe-
matical models themselves are defined in Section 1.4, followed by a number of example
applications and definitions in Sections 1.5 and 1.6. This includes the important distinc-
tion between phenomenological and mechanistic models, which has been used as the main
organization principle of this book (see Section 1.6.1 and Chapters 2–5). The chapter ends
with a classification of mathematical models and Golomb’s famous “Don’ts of mathematical
modeling” in Sections 1.7 and 1.8.

1.1 A Complex World Needs Models

Generally speaking, engineers and scientists try to understand, develop, or optimize
“systems”. Here, “system” refers to the object of interest, which can be a part of nature
(such as a plant cell, an atom, a galaxy, etc.) or an artificial technological system (see
Definition 1.2.3). Principally, everybody deals with systems in their everyday life in a way
similar to the approach of engineers or scientists. For example, consider the problem of
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2 1 Principles of Mathematical Modeling

a table that is unstable due to an uneven floor. This is a technical system, and everybody
knows what must be done to solve the problem: we just have to put suitable pieces of
cardboard under the table legs. Each of us solves an abundant number of problems relating
to simple technological systems of this kind during our lifetime. Beyond this, there are a
great number of really difficult technical problems that can only be solved by engineers.
Characteristic of these more demanding problems is a high complexity of the technical
system. We would simply need no engineers if we did not have to deal with complex
technical systems such as computer processors, engines, and so on. Similarly, we would
not need scientists if processes such as the photosynthesis of plants could be understood
as simply as an unstable table. The reason why we have scientists and engineers, virtually
their right to exist, is the complexity of nature and the complexity of technological systems.

Note 1.1.1 (The complexity challenge) It is the genuine task of scientists and
engineers to deal with complex systems, and to be effective in their work, they most
notably need specific methods to deal with complexity.

The general strategy used by engineers or scientists to break up the complexity of their
systems is the same strategy that we all use in our everyday life when we are dealing with
complex systems: simplification. The idea is just this: if something is complex, make it
simpler. Consider an everyday life problem related to a complex system: A car that refuses
to start. In this situation, everyone knows that a look at the battery and fuel levels will
solve the problem in most cases. Everyone will do this automatically, but to understand the
problem-solving strategy behind this, let us think of an alternative scenario. Assume some-
one is in this situation for the first time. Assume that “someone” was told how to drive a
car, that they have used the car for some time, and now they are for the first time in a sit-
uation in which the car does not start. Of course, we also assume that there is no help for
miles around! Then, looking under the hood for the first time, our “someone” will realize
that the car, which seems simple as long as it works well, is quite a complex system. They
will spend a lot of time until they eventually solve the problem, even if we admit that our
“someone” is an engineer. The reason why each of us will solve this problem much faster
than this “someone” is of course the simple fact that this situation is not new to us. We have
experienced this situation before, and from our previous experience we know what is to be
done. Conceptually, one can say that we have a simplified picture of the car in our mind
similar to Figure 1.1. In the moment when we realize that our car does not start, we do
not think of the car as the complex system that it really is, that is, we do not think of this
conglomerate of valves, pistons, and all the kind of stuff that can be found under the hood;
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Figure 1.1 Car as a real system and as a model.
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rather, we have this simplified picture of the car in our mind. We know that this simplified
picture is appropriate in this given situation, and it guides us to look at the battery and fuel
levels and then solve the problem within a short time.

This is exactly the strategy used by engineers or scientists when they deal with complex
systems. When an engineer, for example, wants to reduce the fuel consumption of an
engine, they will not consider that engine in its entire complexity. Rather, they will use
simplified descriptions of that engine, focusing on the machine parts that affect fuel
consumption. Similarly, a scientist who wants to understand the process of photosynthesis
will use simplified descriptions of a plant focusing on very specific processes within a single
plant cell. Anyone who wants to understand complex systems or solve problems related to
complex systems needs to apply appropriate simplified descriptions of the system under
consideration. This means that anyone who is concerned with complex systems needs
models, since simplified descriptions of a system are models of that system by definition.

Note 1.1.2 (Role of models) To break up the complexity of a system under consider-
ation, engineers and scientists use simplified descriptions of that system (i.e. models).

1.2 Systems, Models, Simulations

In 1965, Minsky gave the following general definition of a model [2, 3]:

Definition 1.2.1 (Model) To an observer B, an object A∗ is a model of an object A to
the extent that B can use A∗ to answer questions that interest him about A.

Note 1.2.1 (Formal definitions) Note that Definition 1.2.1 is a formal definition in
the sense that it operates with terms such as object or observer that are not defined in a
strict axiomatic sense similar to the terms used in the definitions of standard mathemat-
ical theory. The same remark applies to several other definitions in this book, including
the definition of the term mathematical model in Section 1.4. Definitions of this kind
are justified for practical reasons, since they allow us to talk about the formally defined
terms in a concise way. An example is Definition 2.6.2 in Section 2.6.5, a concise formal
definition of the term overfitting, which uses several of the previous formal definitions.

The application of Definition 1.2.1 to the car example is obvious – we just have to iden-
tify B with the car driver, A with the car itself, and A∗ with the simplified tank/battery
description of the car in Figure 1.1.

1.2.1 Teleological Nature of Modeling and Simulation

An important aspect of the above definition is the fact that it includes the purpose of a
model, namely, that the model helps us to answer questions and solve problems. This is
important because particularly beginners in the field of modeling tend to believe that a
good model is one that mimics the part of reality that it pertains to as closely as possible.
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But as was explained in the previous section, modeling and simulation aim at simplification,
rather than at a useless production of complex copies of a complex reality, and hence, the
contrary is true.

Note 1.2.2 (The best model) The best model is the simplest model that still serves
its purpose, that is, which is still complex enough to help us understand a system and to
solve problems. Seen in terms of a simple model, the complexity of a complex system will
no longer obstruct our view, and we will virtually be able to look through the complexity
of the system at the heart of things.

The entire procedure of modeling and simulation is governed by its purpose of problem-
solving – otherwise, it would be a mere l’art pour l’art. As [4] puts it, “modeling and simu-
lation are always goal-driven, that is, we should know the purpose of our potential model
before we sit down to create it”. It is hence natural to define fundamental concepts such
as the term model with a special emphasis on the purpose-oriented or teleological nature
of modeling and simulation. (Note that teleology is a philosophical discipline dealing with
aims and purposes, and the term teleology itself originates from the Greek word telos, which
means end or purpose [5].) Similar teleological definitions of other fundamental terms, such
as system, simulation, and mathematical model, are given below.

1.2.2 Modeling and Simulation Scheme

Conceptually, the investigation of complex systems using models can be divided into the
following steps:

Note 1.2.3 (Modeling and simulation scheme)
Definitions

● Definition of a problem that is to be solved or of a question that is to be answered
● Definition of a system, that is, a part of reality that pertains to this problem or question

Systems Analysis
● Identification of parts of the system that are relevant for the problem or question

Modeling
● Development of a model of the system based on the results of the system analysis step

Simulation
● Application of the model to the problem or question
● Derivation of a strategy to solve the problem or answer the question

Validation
● Does the strategy derived in the simulation step solve the problem or answer the ques-

tion for the real system?

The application of this scheme to the examples discussed above is obvious: in the car
example, the problem is that the car does not start and the car itself is the system. This
is the “definitions” step of the above scheme. The “systems analysis” step identifies the
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battery and fuel levels as the relevant parts of the system, as explained above. Then, in
the “modeling” step of the scheme, a model consisting of a battery and a tank such as
in Figure 1.1 is developed. The application of this model to the given problem in the
“simulation” step of the scheme then leads to the strategy “check battery and fuel level”.
This strategy can then be applied to the real car in the “validation” step. If it works, that
is, if the car really starts after refilling its battery or tank, we say that the model is valid or
validated. If not, we probably need a mechanic who will then look at other parts of the car,
that is, who will apply more complex models of the car until the problem is solved.

In a real modeling and simulation project, the systems analysis step of the above scheme
can be very time-consuming. It will usually involve a thorough evaluation of the literature.
In many cases, the literature evaluation will show that similar investigations have been
performed in the past, and one should of course try to profit from the experiences made
by others that are described in the literature. Beyond this, the system analysis step usu-
ally involves a lot of discussions and meetings that bring together people from different
disciplines who can answer your questions regarding the system. These discussions will
usually show that new data are needed for a better understanding of the system and for the
validation of the models in the validation step of the above scheme. Hence, the definition
of an experimental program is also another typical part of the systems analysis step.

The modeling step will also involve the identification of appropriate software that can
solve the equations of the mathematical model. In many cases, it will be possible to use
standard software such as the software tools discussed in the next chapters. Beyond this,
it may be necessary to write your own software in cases where the mathematical model
involves nonstandard equations. An example of this case is the modeling of the press section
of paper machines, which involves highly convection-dominated diffusion equations that
cannot be treated by standard software with sufficient precision and hence needs specifi-
cally tailored numerical software [6].

In the validation step, the model results will be compared with experimental data. These
data may come from the literature or from experiments that have been specifically designed
to validate the model. Usually, a model is required to fit the data not only quantitatively
but also qualitatively, in the sense that it reproduces the general shape of the data as
closely as possible. See Section 3.2.3.4 for an example of a qualitative misfit between a
model and data. But, of course, even a model that perfectly fits the data quantitatively and
qualitatively may fail the validation step of the above scheme if it cannot be used to solve
the problem that is to be solved, which is the most important criterion for a successful
validation.

The modeling and simulation scheme (Note 1.2.3) focuses on the essential steps of mod-
eling and simulation, giving a rather simplified picture of what really happens in a concrete
modeling and simulation project. For different fields of application, you may find a num-
ber of more sophisticated descriptions of the modeling and simulation process in books
such as [7–10]. An important thing that you should note is that a real modeling and sim-
ulation project will very rarely go straight through the steps of the above scheme; rather,
there will be a lot of interaction between the individual steps of the scheme. For example,
if the validation step fails, this will bring you back to one of the earlier steps in a loop-like
structure: you may then improve your model formulation, reanalyze the system, or even
redefine your problem formulation (if your original problem formulation turns out to be
unrealistic).
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Note 1.2.4 (Start with simple models!) To find the best model in the sense of
Note 1.2.2, start with the simplest possible model and then generate a sequence
of increasingly complex model formulations until the last model in the sequence passes
the validation step.

1.2.3 Simulation

So far we have given a definition of the term model only. The above modeling and simulation
schemes involve other terms, such as system and simulation, which we may view as being
implicitly defined by their role in the above scheme. Can this be made more precise? In the
literature, you will find a number of different definitions, for example, of the term simula-
tion. These differences can be explained by different interests of the authors. For example,
in a book with a focus on the so-called discrete event simulation, which emphasizes the
development of a system over time, simulation is defined as “the imitation of the operation
of a real-world process or system over time” [7]. In general terms, simulation can be defined
as follows:

Definition 1.2.2 (Simulation) Simulation is the application of a model with the
objective to derive strategies that help solve a problem or answer a question pertaining
to a system.

Note that the term simulation originates from the Latin word “simulare”, which means
“to pretend”: in a simulation, the model pretends to be the real system. A similar definition
has been given by Fritzson [8] who defined simulation as “an experiment performed on
a model”. Beyond this, the above definition is a teleological (purpose-oriented) definition
similar to Definition 1.2.1, that is, this definition again emphasizes the fact that simula-
tion is always used to achieve some goal. Although Fritzson’s definition is more general,
the above definition reflects the real use of simulation in science and engineering more
closely.

1.2.4 System

Regarding the term system, you will again find a number of different definitions in the
literature, and again some of the differences between these definitions can be explained by
the different interests of their authors. For example, [11] defines a system as “a collection
of entities, for example, people or machines, that act and interact together toward the
accomplishment of some logical end”. According to [12], a system is “a collection of objects
and relations between objects”. In the context of mathematical models, we believe it makes
sense to think of a “system” in very general terms. Any kind of object can serve as a system
here if we have a question relating to that object and if this question can be answered using
mathematics. Our view of systems is similar to a definition that has been given by [13]
(see also the discussion of this definition in [4]): “A system is whatever is distinguished
as a system”. [4] gave another definition of a “system” very close to our view of systems
here: “A system is a potential source of data”. This definition emphasizes the fact that
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a system can be of scientific interest only if there is some communication between the
system and the outside world, as will be discussed below in Section 1.3.1. A definition
that includes the teleological principle discussed above has been given by Fritzson [8]
as follows:

Definition 1.2.3 (System) A system is an object or a collection of objects whose prop-
erties we want to study.

1.2.5 Conceptual and Physical Models

The model used in the car example is something that exists in our minds only. We can
write it down on paper in a few sentences and/or sketches, but it does not have any
physical reality. Models of this kind are called conceptual models [12]. Conceptual models
are used by each of us to solve everyday problems such as the car that refuses to start.
As K.R. Popper puts it, “all life is problem-solving”, and conceptual models provide us with
an important tool to solve our everyday problems [14]. They are also applied by engineers
or scientists to simple problems or questions similar to the car example. If their problem or
question is complex enough, however, they rely on experiments, and this leads us to other
types of models. To see this, let us use the modeling and simulation scheme (Note 1.2.3)
to describe a possible procedure followed by an engineer who wants to reduce the fuel
consumption of an engine: In this case, the problem is the reduction of fuel consumption,
and the system is the engine. Assume that the systems analysis leads the engineer to the
conclusion that the fuel injection pump needs to be optimized. Typically, the engineer will
then create some experimental setting where they can study the details of the fuel injection
process.

Such an experimental setting is then a model in the sense that it will typically be a very
simplified version of that engine, that is, it will typically involve only a few parts of the
engine that are closely connected with the fuel injection process. In contrast to a concep-
tual model, however, it is not only an idea in our mind but also a real part of the physical
world, and this is why models of this kind are called physical models [12]. The engineer will
then use the physical model of the fuel injection process to derive strategies – for example,
a new construction of the fuel injection pump – to reduce the engine’s fuel consumption,
which is the simulation step of the above modeling and simulation scheme. Afterward,
in the validation step of the scheme, the potential of these new constructions to reduce
fuel consumption will be tested in the engine itself, that is, in the real system. Physical
models are applied by scientists in a similar way. For example, let us think of a scientist
who wants to understand the photosynthesis process in plants. Similar to an engineer, the
scientist will set up a simplified experimental setting – which might be some container
with a plant cell culture – in which they can easily observe and measure the important
variables, such as CO2, water, light, and so on. For the same reasons as above, anything
like this is a physical model. As before, any conclusion drawn from such a physical model
corresponds to the simulation step of the above scheme, and the conclusions need to be
validated by data obtained from the real system, that is, data obtained from real plants in
this case.
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Figure 1.2 (a) Communication of a system with the outside world. (b) General form of an
experimental dataset.

1.3 Mathematics as a Natural Modeling Language

1.3.1 Input–Output Systems

Any system that is investigated in science or engineering must be observable in the sense
that it produces some kind of output that can be measured (a system that would not sat-
isfy this minimum requirement would have to be treated by theologians rather than by
scientists or engineers). Note that this observability condition can also be satisfied by sys-
tems where nothing can be measured directly, such as black holes, which produce measur-
able gravitational effects in their surroundings. Most systems investigated in engineering
or science also accept some kind of input data, which can then be studied in relation to
the output of the system (Figure 1.2a). For example, a scientist who wants to understand
photosynthesis will probably construct experiments where the carbohydrate production of
a plant is measured at various levels of light, CO2, water supply, and so on. In this case,
the plant cell is the system; the light, CO2, and water levels are the input quantities; and
the measured carbohydrate production is the output quantity. Or, an engineer who wants
to optimize a fuel injection pump will probably change the construction of that pump in
various ways and then measure the fuel consumption resulting from these modified con-
structions. In this case, the fuel injection pump is the system, the construction parameters
changed by the engineer are the input parameters, and the resulting fuel consumption is
the output quantity.

Note 1.3.1 (Input–output systems) Scientists or engineers investigate “input–
output systems”, which transform given input parameters into output parameters.

Note that there are of course situations where scientists are looking at the system
itself and not at its input–output relations, for example, when a botanist just wants to
describe and classify the anatomy of a newly discovered plant. Typically, however, such
purely descriptive studies raise questions about the way in which the system works, and
this is when input–output relations come into play. Engineers, on the other hand, are
always concerned with input–output relations since they are concerned with technology.
The Encyclopedia Britannica defines technology as “the application of scientific knowledge
to the practical aims of human life”. These “practical aims” will usually be expressible
in terms of a system output, and the tuning of system input toward optimized system
output is precisely what engineers typically do, and what is in fact the genuine task of
engineering.
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1.3.2 General Form of Experimental Data

The experimental procedure described above is used very generally in engineering and in
the (empirical) sciences to understand, develop, or optimize systems. It is useful to think of
it as a means to explore black boxes. At the beginning of an experimental study, the system
under investigation is similar to such a “black box” in the sense that there is some uncer-
tainty about the processes that happen inside the system when the input is transformed into
the output. In an extreme case, the experimenter may know only that “something” hap-
pens inside the system that transforms input into output, that is, the system may be really
a black box. Typically, however, the experimenter will have some hypotheses about the
internal processes that they want to prove or disprove in the course of their study. That
is, experimenters typically are concerned with systems as gray boxes, which are located
somewhere between black and white boxes (more details in Section 1.5).

Depending on the hypothesis that the experimenter wants to investigate, they confront
the system with appropriate input quantities, hoping that the outputs produced by the
system will help prove or disprove their hypothesis. This is similar to a question-and-answer
game: the experimenter poses questions to the system, which is the input, and the sys-
tem answers to these questions in terms of measurable output quantities. The result is
a dataset of the general form shown in Figure 1.2b. In rare cases, particularly if one is
concerned with very simple systems, the internal processes of the system may already be
evident from the dataset itself. Typically, however, this experimental question-and-answer
game is similar to the questioning of an oracle: we know there is some information about the
system in the dataset, but it depends on the application of appropriate ideas and methods
if one wants to uncover the information content of the data and, so to speak, shed some
light into the black box.

1.3.3 Distinguished Role of Numerical Data

Now what is an appropriate method for the analysis of experimental datasets? To answer
this question, it is important to note that in most cases experimental data are numbers and
can be quantified. The input and output data of Figure 1.2b will typically consist of columns
of numbers. Hence, it is natural to think of a system in mathematical terms. In fact, a system
can be naturally seen as a mathematical function that maps given input quantities x into
output quantities y = f (x) (Figure 1.2a). This means that if one wants to understand the
internal mechanics of a system “black box”, that is, if one wants to understand the pro-
cesses inside the real system that transform input into output, a natural thing to do is to
translate all these processes into mathematical operations. If this is done, one arrives at a
simplified representation of the real system in mathematical terms. Now remember that a
simplified description of a real system (along with a problem we want to solve) is a model
by definition (Definition 1.2.1). The representation of a real system in mathematical terms
is thus a mathematical model of that system.

Note 1.3.2 (Naturalness of mathematical models) Input–output systems usually
generate numerical (or quantifiable) data that can be described naturally in mathemat-
ical terms.
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This simple idea, that is, the mapping of the internal mechanics of real systems into
mathematical operations, has proved to be extremely fruitful to the understanding, opti-
mization, or development of systems in science and engineering. The tremendous success
of this idea can only be explained by the naturalness of this approach – mathematical
modeling is simply the best and most natural thing one can do if one is concerned
with scientific or engineering problems. Looking back at Figure 1.2a, it is evident that
mathematical structures emanate from the very heart of science and engineering. Anyone
concerned with systems and their input–output relations is also concerned with math-
ematical problems – regardless of their preferences and regardless of whether they treat
the system appropriately using mathematical models or not. The success of their work,
however, depends very much on the appropriate use of mathematical models.

1.4 Definition of Mathematical Models

To understand mathematical models, let us start with a general definition. Many different
definitions of mathematical models can be found in the literature. The differences between
these definitions can usually be explained by the different scientific interests of their
authors. For example, Bellomo and Preziosi [15] define a mathematical model to be a set
of equations that can be used to compute the time–space evolution of a physical system.
Although this definition suffices for the problems treated by Bellomo and Preziosi, it is
obvious that it excludes a great number of mathematical models. For example, many
economic or sociological problems cannot be treated in a time–space framework or based
on equations alone. Thus, a more general definition of mathematical models is needed if
one wants to cover all kinds of mathematical models used in science and engineering. Let
us start with the following attempt of a definition:

A mathematical model is a set of mathematical statements M = {Σ1,Σ2,… ,Σn}.

Certainly, this definition covers all kinds of mathematical models used in science and
engineering as required. But there is a problem with this definition. For example, a simple
mathematical statement such as f (x) = ex would be a mathematical model in the sense of
this definition. In the sense of Minsky’s definition of a model (Definition 1.2.1), however,
such a statement is not a model as long as it lacks any connection with some system and with
a question we have relating to that system. The above attempt of a definition is incomplete
since it pertains to the word “mathematical” of “mathematical model” only, without any
reference to purposes or goals. Following the philosophy of the teleological definitions of
the terms model, simulation, and system in Section 1.2, let us define instead:

Definition 1.4.1 (Mathematical model) A mathematical model is a triplet (S,Q,M)
where S is a system, Q is a question relating to S, and M is a set of mathematical state-
ments M = {Σ1,Σ2,… ,Σn} which can be used to answer Q.

Note that this is again a formal definition in the sense of Note 1.2.1 in Section 1.2. Again, it
is justified by the mere fact that it helps us to understand the nature of mathematical models
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and that it allows us to talk about mathematical models in a concise way. A similar defini-
tion was given by Bender [16]: “A mathematical model is an abstract, simplified, math-
ematical construct related to a part of reality and created for a particular purpose”. Note
that Definition 1.4.1 is not restricted to physical systems. It covers psychological models as
well that may deal with essentially metaphysical quantities, such as thoughts, intentions,
feelings, and so on. Even mathematics itself is covered by the above definition. Suppose, for
example, that S is the set of natural numbers and our question Q relating to S is whether
there are infinitely many prime numbers or not. Then, a set (S,Q,M) is a mathematical
model in the sense of Definition 1.4.1 if M contains the statement “There are infinitely many
prime numbers” along with other statements which prove this statement. In this sense, the
entire mathematical theory can be viewed as a collection of mathematical models.

The notation (S,Q,M) in Definition 1.4.1 emphasizes the chronological order in which
the constituents of a mathematical model usually appear. Typically, a system is given first,
then there is a question regarding that system, and only then a mathematical model is
developed. Each of the constituents of the triplet (S,Q,M) is an indispensable part of the
whole. Regarding M, this is obvious, but S and Q are important as well. Without S, we
would not be able to formulate a question Q; without a question Q, there would be vir-
tually “nothing to do” for the mathematical model; and without S and Q, the remaining
M would be no more than “l’art pour l’art”. The formula f (x) = ex, for example, is such a
purely mathematical “l’art pour l’art” statement as long as we do not connect it with a sys-
tem and a question. It becomes a mathematical model only when we define a system S and
a question Q relating to it. For example, viewed as an expression of the exponential growth
period of plants (Section 3.10.4), f (x) = ex is a mathematical model which can be used to
answer questions regarding plant growth. One can say it is a genuine property of mathe-
matical models to be more than “l’art pour l’art”, and this is exactly the intention behind
the notation (S,Q,M) in Definition 2.3.1. Note that the definition of mathematical models
by Bellomo and Preziosi [15] discussed above appears as a special case of Definition 1.4.1 if
we restrict S to physical systems, M to equations, and only allow questions Q, which refer
to the space–time evolution of S.

Note 1.4.1 (More than “l’art pour l’art”) The system and the question relating to
the system are indispensable parts of a mathematical model. It is a genuine property of
mathematical models to be more than mathematical “l’art pour l’art”.

Let us look at another famous example that shows the importance of Q. Suppose we
want to predict the behavior of some mechanical system S. Then the appropriate mathe-
matical model depends on the problem we want to solve, that is, on the question Q. If Q is
asking for the behavior of S at moderate velocities, classical (Newtonian) mechanics can be
used, that is, M = {equations of Newtonian mechanics}. If, on the other hand, Q is asking for
the behavior of S at velocities close to the speed of light, then we have to set M = {equations
of relativistic mechanics} instead.

1.5 Examples and Some More Definitions

Generally speaking, one can say we are concerned with mathematical models in the sense
of Definition 1.4.1 whenever we perform computations in our everyday life, or whenever
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we apply the mathematics we have learned in schools and universities. Since everybody
computes in their everyday life, everybody uses mathematical models, and this is why it
was valid to say that “everyone models and simulates” in the preface of this book. Let us
look at a few examples of mathematical models now, which will lead us to the definitions
of some further important concepts.

Note 1.5.1 (Everyone models and simulates) Mathematical models in the sense of
Definition 1.4.1 appear whenever we perform computations in our everyday life.

1 m

x (m)

0

5

Figure 1.3 Tank problem.

Suppose we want to know the mean age of some group
of people. Then, we apply a mathematical model (S,Q,M),
where S is that group of people, Q asks for their mean age,
and M is the mean value formula x = (

∑n
i=1 xi)∕n. Or, suppose

we want to know the mass X of some substance in the cylin-
drical tank of Figure 1.3, given a constant concentration c of
the substance in that tank. Then, a multiplication of the tank
volume with c gives the mass X of the substance, that is,

X = 5𝜋 c (1.1)

This means we apply a model (S,Q,M), where S is the tank,
Q asks for the mass of the substance, and M is Equation 1.1.
An example involving more than simple algebraic operations

is obtained if we assume that the concentration c in the tank in Figure 1.3 depends on the
height coordinate, x. In that case, Equation 1.1 turns into

X = 𝜋 ⋅ ∫
5

0
c(x)dx (1.2)

This involves an integral, that is, we have entered the realms of calculus now.

Note 1.5.2 (Notational convention) Variables such as X and c in Equation 1.1,
which are used without further specification, are always assumed to be real numbers,
and functions such as c(x) in Equation 1.2 are always assumed to be real functions with
suitable ranges and domains of definition (such as c ∶ [0,5] → ℝ+ in the above example)
unless otherwise stated.

In many mathematical models (S,Q,M) involving calculus, the question Q asks for the
optimization of some quantity. Suppose, for example, we want to minimize the material
consumption of a cylindrical tin having a volume of 1 l. In this case,

M = {𝜋 r2h = 1,A = 2𝜋 r2 + 2𝜋 rh → min } (1.3)

can be used to solve the problem. Denoting by r and h the radius and height of the tin,
the first statement in Equation 1.3 expresses the fact that the tin volume is 1 l. The second
statement requires the surface area of the tin to be minimal, which is equivalent to a min-
imization of the metal used to build the tin. The mathematical Problem 3 can be solved if
one inserts the first equation of 1.3 into the second equation of 1.3, which leads to

A(r) = 2𝜋 r2 + 2
r
→ min (1.4)
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This can then be treated using standard calculus (A′(r) = 0, etc.), and the optimal tin
geometry obtained in this way is

r = 3

√
1

2𝜋
≈ 0.54 dm (1.5)

h = 3

√
4
𝜋

≈ 1.08 dm (1.6)

1.5.1 State Variables and System Parameters

Several general observations can be made by referring to the examples in the last section.
As discussed in Section 1.1 above, the main benefit of the modeling procedure lies in the
fact that the complexity of the original system is reduced. This can be nicely seen in the
last example. Of course, each of us knows that a cylindrical tin can be described very easily
based on its radius r and its height h. This means everyone of us automatically applies the
correct mathematical model, and hence, similar to the car problem discussed in Section 1.1,
everybody automatically believes that the system in the tin problem is a simple thing. But
if we do not apply this model to the tin, it becomes a complex system. Imagine a Martian or
some other extraterrestrial being who has never seen a cylinder before. Suppose we say to
this Martian: “Look, here you have some sheets of metal and a sample tin filled with water.
Make a tin of the same shape which can hold that amount of water, and use as little metal
as possible”. Then this Martian will – at least initially – see the original complexity of the
problem. If they are smart, which we assume, they will note that infinitely many possible
tin geometries are involved here. They will realize that an infinite set of (x, y) coordinates
would be required to describe the sample tin based on its set of coordinates. They will realize
that infinitely many measurements or, equivalently, algebraic operations would be required
to obtain the material consumption based on the surface area of the sample tin (assuming
that they did not learn about transcendental numbers such as 𝜋 in their Martian school …).

From this original (“Martian”) point of view, we thus see that the system S of the tin
example is quite complex, in fact an infinite-dimensional system. And we see the power
of the mathematical modeling procedure, which reduces those infinite dimensions to only
two, since the mathematical solution of the above problem involves only two parameters: r
and h (or, equivalently, r and A). Originally, the system “tin” in the above example was an
infinite-dimensional thing not only with respect to its set of coordinates or the other aspects
mentioned above but also with respect to many other aspects that have been neglected in
the mathematical model since they are unimportant for the solution of the problem, for
example, the thickness of the metal sheets or its material, color, hardness, roughness, and
so on. All the information that was contained in the original system S = “tin” is reduced
to a description of the system as a mere Sr = {r, h} in terms of the mathematical model.
Here, we have used the notation Sr to indicate that Sr is not the original system, which we
denote S, but rather the description of S in terms of the mathematical model, which we call
the “reduced system”. The index “r” indicates that the information content of the original
system S is reduced as we go from S to Sr.

Note 1.5.3 (A main benefit) The reduction of the information content of complex
systems in terms of reduced systems (Definition 1.5.2) is one of the main benefits of math-
ematical models.
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A formal definition of the reduced system Sr can be given in two steps as follows:

Definition 1.5.1 (State variables) Let (S,Q,M) be a mathematical model. Mathe-
matical quantities s1, s2,… , sn which describe the state of the system S in terms of M
and which are required to answer Q are called the state variables of (S,Q,M).

Definition 1.5.2 (Reduced system and system parameters) Let s1, s2,… , sn
be the state variables of a mathematical model (S,Q,M). Let p1, p2,… , pm be math-
ematical quantities (numbers, variables, functions) that describe properties of the
system S in terms of M, and which are needed to compute the state variables. Then
Sr = {p1, p2,… , pm} is the reduced system and p1, p2,… , pm are the system parameters
of (S,Q,M).

This means that the state variables describe the system properties we are really interested
in, while the system parameters describe the system properties needed to obtain the state
variables mathematically. Although we finally need the state variables to answer Q, the
information needed to answer Q is already in the system parameters, that is, in the reduced
system Sr. Using Sr, this information is expressed in terms of the state variables by means
of mathematical operations, and this is then the final basis to answer Q. For example, in
the tank problem above we were interested in the mass of the substance; hence, in this
example we have one state variable, that is, n = 1 and s1 = X . To obtain s1, we used the
concentration c; hence, we have one system parameter in that example, that is, m = 1 and
p1 = c. The reduced system in this case is Sr = {c}. By definition, the reduced system con-
tains all the information about the system that we need to get the state variable, that is, to
answer Q. In the tin example, we needed the surface area of the tin to answer Q, that is, in
that case, we had again one state variable s1 = A. On the other hand, two system parame-
ters p1 = r and p2 = h were needed to obtain s1, that is, in this case, the reduced system is
Sr = {r, h}.

Let us look at another example. In Section 3.10.4 below, a plant growth model will be dis-
cussed, which is intended to predict the time evolution of the overall biomass of a plant. To
achieve this, none of the complex details of the system “plant” will be considered except for
its growth rate. This means the complex system S = “plant” is reduced to a single param-
eter in this model: the growth rate r of the plant. In the above notation, this means we
have Sr = {r} (Figure 1.4). It is not necessary to be a botanist to understand how dramatic
this information reduction really is: everything except for the growth rate is neglected,
including all kinds of macroscopic and microscopic substructures of the plant, its roots,

Sr = { r}

(a) (b)

Figure 1.4 (a) Potted plant. (b) The same potted plant
written as a reduced system.
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its stem, its leaves, as well as its cell structure, all the details of the processes that happen
inside the cells, and so on. From the point of view of such a brutally simplified model, it
makes no difference whether it is really concerned with the complex system “plant” (see
also Sections 5.2 and 5.3 for more details), with some shapeless green pulp of biomass that
might be obtained after sending the plant through a shredder, or even with entirely other
systems, such as a bacteria culture or a balloon that is being inflated.

All that counts from the point of view of this model is that a growth rate can be assigned
to the system under consideration. Naturally, botanists do not really like this brutal kind of
model, which virtually sends their beloved ones through a shredder. Anyone who presents
such a model at a botanists’ conference should be prepared to hear a number of questions
beginning with “Why does your model disregard…”. At this point we already know how to
answer this kind of question: we know that according to Definition 1.4.1, a mathematical
model is a triplet (S,Q,M) consisting of a system S, a question Q, and a set of mathematical
statements M, and that the details of the system S that are represented in M depend on
the question Q that is to be answered by the model. In this case, Q was asking for the time
development of the plant biomass, and this can be sufficiently answered based on a model
that represents the system S = “plant” as Sr = {r}. Generally one can say that the reduced
system of a well-formulated mathematical model will consist of no more than exactly those
properties of the original system that are important to answer the question Q that is being
investigated.

Note 1.5.4 (Importance of experiments) Typically, the properties (parameters)
of the reduced system are those, which need experimental characterization. In this
way, the modeling procedure guides the experiments, and instead of making the
experimenter superfluous (a frequent misunderstanding), it helps to avoid superfluous
experiments.

1.5.2 Using Computer Algebra Software

Coming back to the “1 l tin” model, Equation 1.4, it will now be demonstrated how the
mathematical problem behind this example can be efficiently solved using computer
algebra. In this book, we use the open-source computer algebra software Maxima, cf. the
Crashcourse Maxima in Section 6.2. Listing 1.1 provides a Maxima-based solution of the
tin problem.

Listing 1.1 Solution of the tin problem, Equation 1.4 (cf. book software Code Tin.mac).
1: A(r):=2*%pi*rˆ2+2/r;

2: define(A1(r),diff(A(r),r));

3: define(A2(r),diff(A1(r),r));

4: res:solve(A1(r)=0);

5: res[3],numer;

6: A2(r),res[3],numer;

7: A2(r)>0,res[3],pred;

8: solve(%pi*rˆ2*h=1,h),res[3],numer;

9: mms_real(e):= block ([rsol: []],for r in ratsimp(rectform(e)) do (

10: if freeof(%i,r) then rsol: cons(r,rsol)),rsol)$

11: mms_real(res);
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Figure 1.5 Result of Listing 1.1 in wxMaxima.

Lines 1–3 of the code define the function given in Equation 1.4 (denoted A(r)) and its
first and second derivatives (denoted A1(r) and A2(r)). Cf. §20 ff in the Crashcourse
Maxima for an explanation of function and derivative commands. The function A(r) and
its derivatives computed in lines 1–3 appear in the lines labeled (%o1)-(%o3) of the
wxMaxima output shown in Figure 1.5.

Line 4 of Listing 1.1 solves equation A′(r) = 0 as required by standard calculus for the
optimization of A (cf. §15 of the Crashcourse Maxima for more information on the solve
command). The result appears in the line labeled (%o4) of Figure 1.5 as a list of three
solutions. As can be seen, the first two solutions involve the imaginary number denoted %i
in Maxima. These solutions are thus complex numbers and irrelevant for the tin problem.
The third solution is the correct, real-valued solution of the problem.

Line 5 of Listing 1.1 refers to the solution list that has been assigned to the variable res
in line 4, takes the third solution using notation res[3], and applies Maxima’s numer
option to enforce the decimal number format appearing in output line (%o5) of Figure 1.5
(cf. §12 of the Crashcourse regarding options in Maxima). This corresponds to the solution
reported above in Equation 1.5 as r = 0.54

In the standard optimization procedure of calculus, the second derivative is used to
decide whether r = 0.54… is a maximum or minimum. This is done in line 6, which inserts
the third solution res[3] into the second derivative and writes the result in numerical for-
mat, cf. the output line labeled (%o6) of Figure 1.5. The resulting value A′′(0.54…) ≈ 37.7
is positive, and hence r = 0.54… dm minimizes the material usage as required. Line 7
checks the validity of A′′(0.54…) > 0 using Maxima’s pred option (cf. §39 in the Crash-
course Maxima), which yields true in output line (%o7) (cf. Figure 1.5), confirming
again that r = 0.54… dm is a minimum.
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Line 8 of Listing 1.1 uses the solution res[3] to compute tin height h using the first
equation of Model 1.3, which gives h ≈ 1.08 dm corresponding to Equation 1.6, cf. output
(%o8) in Figure 1.5. Finally, lines 9–11 demonstrate how real values can be automatically
extracted from solution lists. Lines 9 and 10 define a function mms_real extracting real
values from lists using a for loop construction (cf. §40 ff. in the Crashcourse Maxima).
Line 11 applies this command to the solution list res obtained in line 4, giving the real
solution discussed above (cf. output (%o10) in Figure 1.5).

1.5.3 The Problem-Solving Scheme

In this example – and similarly in many other cases – one can clearly distinguish between
the formulation of a mathematical model on the one hand and the solution of the resulting
mathematical problem on the other hand, which can be done with appropriate software.
A number of examples will show this below. This means that it is not necessary to
be a professional mathematician if one wants to work with mathematical models. Of
course, it is useful to have mathematical expertise. Mathematical expertise is particularly
important if one wants to solve more advanced problems or if one wants to make sure
that the results obtained with mathematical software are really solutions of the original
problem and not numerical artifacts. As we will see below, the latter point is of particular
importance in the solution of partial differential equations (PDEs). However, people with
insufficient mathematical expertise may of course just ask a mathematician. Typically,
mathematical modeling projects will have an inter-disciplinary character. The important
point that we should note here is the fact that the formulation of mathematical models
can also be done by nonmathematicians. Above all, the people formulating the models
should be experts regarding the system under consideration. This book is intended to
provide particularly nonmathematicians with enough knowledge about the mathematical
aspects of modeling such that they can deal at least with simple mathematical models on
their own.

Note 1.5.5 (Role of software) Typically, the formulation of a mathematical model is
clearly separated from the solution of the mathematical problems implied by the model.
The latter (“the hard work”) can be done by software in many cases. People working
with mathematical models hence do not need to be professional mathematicians.

The tin example shows another important advantage of mathematical modeling. After
the tin problem was formulated mathematically (Equation 1.4), the powerful and well-
established mathematical methods of calculus became applicable. Using the appropriate
software (see Listing 1.1), the problem could then be solved with little effort. Without the
mathematical model for this problem, on the other hand, an experimental solution of this
problem would have taken much more time. In a similar way, many other problems in sci-
ence and engineering can be solved effectively using mathematics. From the point of view
of science and engineering, mathematics can be seen as a big resource of powerful meth-
ods and instruments that can be used to solve problems, and it is the role of mathematical
models to make these methods and instruments applicable to originally nonmathemati-
cal problems. Figure 1.6 visualizes this process. The starting point is a real-world system
S together with a question Q relating to S. A mathematical model (S,Q,M) then opens up
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System S
Question Q

Answer A

Mathematical model (S,Q,M)

Real world

Mathematics

Mathematical
problem M Answer A*

Figure 1.6 Problem-solving scheme.

the way into the “mathematical universe”, where the problem can be solved using power-
ful mathematical methods. This leads to a problem solution in mathematical terms (A★),
which is then translated into an answer A to the original question Q in the last step.

Note 1.5.6 (Mathematical models as door opener) Translating originally non-
mathematical problems into the language of mathematics, mathematical models
virtually serve as a door opener toward the “mathematical universe” where powerful
mathematical methods become applicable to originally nonmathematical problems.

As the figure shows, the mathematical model virtually controls the “problem-solving
traffic” between the real and mathematical worlds, and hence, its natural position is located
exactly at the borderline between these worlds. The role of mathematics in Figure 1.6 can
be described like a subway train: since it would be a too long and hard way to go from the
system S and question Q to the desired answer A in the real world, smart problem solvers
go into the “mathematical underground”, where powerful mathematical methods provide
fast trains toward the problem solution.

1.5.4 Strategies to Set Up Simple Models

In many cases, a simple three-step procedure can be used to set up a mathematical model.
Consider the following:

Problem 1:
Which volumes of fluids A and B should be mixed to obtain 150 l of a fluid C that contains
70 g l−1 of a substance if A and B contain 50 and 80 g l−1, respectively?

For this simple problem, many of us will immediately write down the correct equations:

x + y = 150 (1.7)

50x + 80y = 70 ⋅ 150 (1.8)

where x [l ] and y [l ] are the unknown volumes of the fluids A and B. For more complex
problems, however, it is good to have a systematic procedure to set up the equations. A well-
proven procedure that works for a great number of problems can be described as follows:
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Note 1.5.7 (Three steps to setup a model)

● Step 1. Determine the number of unknowns, that is, the number of quantities that
must be determined in the problem. In many problem formulations, you just have to
read the last sentence where the question is asked.

● Step 2. Give precise definitions of the unknowns, including units. It is a practical expe-
rience that this should not be lumped with step 1.

● Step 3. Read the problem formulation sentence by sentence, translate this information
into mathematical statements, which involve the unknowns defined in step 2.

Let us apply this to Problem 1 above. In step 1 and step 2, we would ascertain that Problem 1
asks for two unknowns, which can be defined as

● x: volume of fluid A in the mixture [ l]
● y: volume of fluid B in the mixture [ l]

These steps are important because they tell us about the unknowns that can be used in
the equations. As long as the unknowns are unknown to us, it will be hard to write down
meaningful equations in step 3. Indeed, it is a frequent beginner’s mistake in mathematical
modeling to write down equations, which involve unknowns that are not sufficiently well
defined. People often just pick up symbols that appear in the problem formulation – such
as A, B, C in problem 1 above – and then write down equations like

50A + 80B = 70 (1.9)

This equation is indeed almost correct, but it is hard to check its correctness as long as
we lack any precise definitions of the unknowns. The intrinsic problem with equations
such as Equation 1.9 lies in the fact that A, B, C are already defined in the problem formu-
lation. There, they refer to the names of the fluids, although they are (implicitly) used to
express the volumes of the fluids in Equation 1.9. Thus, let us now write down the same
equation using the unknowns x and y defined above:

50x + 80y = 70 (1.10)

Now the definitions of x and y can be used to check this equation. What we see here
is that on the left-hand side of Equation 1.10, the unit is (grams), which results from the
multiplication of 50 g l−1 with x [l]. On the right-hand side of Equation 1.10, however, the
unit is grams per liter. So we have different units on the different sides of the equation,
which proves that this is a wrong equation. At the same time, a comparison of the units
may help us to get an idea of what must be done to obtain a correct equation. In this case,
it is obvious that a multiplication of the right-hand side of Equation 1.10 with some quan-
tity expressed in liters would solve the unit problem. The only quantity of this kind in the
problem formulation is the 150 l volume, which is required as the volume of the mixture,
and multiplying the 70 in Equation 1.10 with 150 indeed solves the problem in this case.

Note 1.5.8 (Check the units!) Always check that the units on both sides of your
equations are the same. Try to “repair” any differences that you may find using appro-
priate data of your problem.
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A major problem in step 3 is to identify those statements in the problem formulation
that correspond to mathematical statements, such as equations, inequalities, and so on.
The following note can be taken as a general guideline for this:

Note 1.5.9 (Where are the equations?) The statements of the problem formulation
that can be translated into mathematical statements, such as equations, inequalities,
and so on, are characterized by the fact that they impose restrictions on the values of the
unknowns.

Let us analyze some of the statements in Problem 1 above in the light of this strategy:

● Statement 1. 150 l of fluid C is required.
● Statement 2. Fluid A contains 50 g l−1 of the substance.
● Statement 3. Fluid B contains 80 g l−1 of the substance.
● Statement 4. Fluid C contains 70 g l−1 of the substance.

Obviously, statement 1 is a restriction on the values of x and y, which translates immedi-
ately into the equation:

x + y = 150 (1.11)

Statement 2 and statement 3, on the other hand, impose no restriction on the unknowns.
Arbitrary values of x and y are compatible with the fact that fluids A and B contain 50 and
80 g l−1 of the substance, respectively. Statement 4, however, does impose a restriction on
x and y. For example, given a value of x, a concentration of 70 g l−1 in fluid C can be real-
ized only for one particular value of y. Mathematically, statement 4 can be expressed by
Equation 1.8 above. You may be able to write down this equation immediately. If you have
problems to do this, you may follow a heuristic (i.e. not 100% mathematical) procedure,
where you try to start as close to the statement in the problem formulation as possible. In
this case, we could begin with expressing statement 4 as

{Concentration of substance in fluid C} = 70 (1.12)

Then, you would use the definition of a concentration as follows:

{Mass of substance in fluid C}
{Volume of the mixture}

= 70 (1.13)

The next step would be to ascertain two things:

● The mass of the substance in fluid C comes from fluids A and B.
● The volume of the mixture is 150 l.

This leads to
{Mass of substance in fluid A} + {Mass of substance in fluid B}

150
= 70 (1.14)

The masses of the substance in A and B can be easily derived using the concentrations
given in Problem 1 above:

50x + 80y
150

= 70 (1.15)
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This is Equation 1.8 again. The heuristic procedure that we have used here to derive this
equation is particularly useful if you are concerned with more complex problems where it
is difficult to write down an equation like Equation 1.8 just based on intuition (and where
it is dangerous to do this since your intuition can be misleading). Hence, we generally
recommend the following:

Note 1.5.10 (Heuristic procedure to set up mathematical statements) If you
want to translate a statement in a problem formulation into a mathematical state-
ment, such as an equation or inequality, begin by mimicking the statement in the
problem formulation as closely as possible. Your initial formulation may involve
nonmathematical statements similar to Equation 1.12 above. Try then to replace all
nonmathematical statements with expressions involving the unknowns.

Note that what we have described here corresponds to the systems analysis and model-
ing steps of the modeling and simulation scheme in Note 1.2.3. Equations 1.7 and 1.8 can
be easily solved (by hand and …) on the computer using Maxima’s solve command as
was described in Section 1.5.2 above. In this case, the Maxima command (cf. §15 in the
Crashcourse Maxima in Section 6.2)
solve([x+y=150,50*x+80*y=70*150]);

yields the following result:
[[x=50,y=100]]

As can be seen, the result is written in a nested list structure (lists are written in the form
“[a, b, c,…]” in Maxima): the inner list [x = 50, y = 100] gives the values of
the unknowns of the solution computed by Maxima, while the outer list brackets are nec-
essary to treat situations where the solution is nonunique (see the example in Section 1.5.2
above).

1.5.4.1 Mixture Problem
Since Problem 1 in the last section was rather easy to solve and the various recommenda-
tions made there may thus seem unnecessary at least with respect to this particular problem,
let us now see how a more complex problem is solved using these ideas:

Problem 2:
Suppose the fluids A, B, C, and D contain the substances S1, S2, and S3 according to the
following table (concentrations in grams per liter):

A B C D

S1 2.5 8.2 6.4 12.7
S2 3.2 15.1 13.2 0.4
S3 1.1 0.9 2.2 3.1

What is the concentration of S3 in a mixture of these fluids that contains 75% (percent
by volume) of fluids A and B and 4 and 5 g l−1 of the substances S1 and S2, respectively?
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Referring to step 1 and step 2 of the three-step procedure described in Note 1.5.7, it is
obvious that we have only one unknown here, which can be defined as follows:

● x: concentration of S3 in the mixture (grams per liter)

Now step 3 requires us to write down mathematical statements involving x. According
to Note 1.5.9, we need to look for statements in the above problem formulation that impose
a restriction on the unknown x. Three statements of this kind can be identified:

● Statement 1. 75% of the mixture consists of A and B.
● Statement 2. The mixture contains 4 g l−1 of S1.
● Statement 3. The mixture contains 5 g l−1 of S2.

Each of these statements excludes a great number of possible mixtures and thus imposes
a restriction on x. Beginning with statement 1, it is obvious that this statement cannot be
formulated in terms of x. We are here in a situation where a number of auxiliary variables
are needed to translate the problem formulation into mathematics.

Note 1.5.11 (Auxiliary variables) In some cases, the translation of a problem into
mathematics may require the introduction of auxiliary variables. These variables are
“auxiliary” in the sense that they help us to determine the unknowns. Usually, the prob-
lem formulation will provide enough information such that the auxiliary variables and
the unknowns can be determined (i.e. the auxiliary variables will just increase the size
of the system of equations).

In this case, we obviously need the following auxiliary variables:

● a: percent (by volume) of fluid A in the mixture
● b: percent (by volume) of fluid B in the mixture
● c: percent (by volume) of fluid C in the mixture
● d: percent (by volume) of fluid D in the mixture

Now statement 1 can be easily expressed as

a + b = 0.75 (1.16)

Similar to above, statement 2 and statement 3 can be formulated as

{Concentration of S1 in the mixture} = 4 (1.17)

and

{Concentration of S2 in the mixture} = 5 (1.18)

Based on the information provided in the above table (and again following a similar
procedure as in the previous section), these equations translate to

2.5a + 8.2b + 6.4c + 12.7d = 4 (1.19)

and

3.2a + 15.1b + 13.2c + 0.4d = 5 (1.20)
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Since x is the concentration of S3 in the mixture, a similar argumentation shows

1.1a + 0.9b + 2.2c + 3.1d = x (1.21)

So far we have the four Equations 1.16, 1.19, 1.20, and 1.21 for the five unknowns x, a,
b, c, and d, that is, we need one more equation. In this case, the missing equation is given
implicitly by the definition of a, b, c, and d. These variables express percent values, and
hence, we have

a + b + c + d = 1 (1.22)

Altogether, we have now obtained the following system of linear equations:

a + b = 0.75 (1.23)

2.5a + 8.2b + 6.4c + 12.7d = 4 (1.24)

3.2a + 15.1b + 13.2c + 0.4d = 5 (1.25)

1.1a + 0.9b + 2.2c + 3.1d = x (1.26)

a + b + c + d = 1 (1.27)

Again, this system of equations can be solved similar to above using Maxima. In the
Maxima program Mix1.mac in the book software (see Section 6.4), the problem is solved
using the following code:

Listing 1.2 Code Mix1.mac (cf. book software, Section 6.4).
1: res:solve([

2: a+b=0.75

3: ,2.5*a+8.2*b+6.4*c+12.7*d=4

4: ,3.2*a+15.1*b+13.2*c+0.4*d=5

5: ,1.1*a+0.9*b+2.2*c+3.1*d=x

6: ,a+b+c+d=1

7: ]);

8: res,numer;

which yields the following result in Maxima:[[
x = 141 437

98 620
, d = 1365

19 724
, c = 1783

9862
, b = 77

4931
, a = 14 485

19 724

]]
(1.28)

[[x = 1.43… , d = 0.069… , c = 0.18… , b = 0.015… , a = 0.73…]] (1.29)

As can be seen, the equation system (1.23–1.27) corresponds to lines 2–6 of the above code
and these lines of code are embedded into Maxima’s solve command similar to the dis-
cussion in Section 1.5.4 above. The only new thing is that the result of the solve command
is stored in a variable named res in line 1 of Listing 1.2. This variable is then used in
line 8 of the code to produce a decimal result using Maxima’s numer command. This is
why the Maxima output above consists of two parts: Output 1.28 is the immediate output
of the solve command, and as you can see above, the solution is expressed in terms of
fractions. Although this is the most precise way to express the solution, one may prefer
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Figure 1.7 (a) Tank front side with volume labels. (b) Unknowns and auxiliary variables of the tank
labeling problem.

decimal numbers in practice. To achieve this, the numer command is applied in line 8 of
Listing 1.2 and yields output 1.29, using the Maxima’s option notation explained in §12 of
the Crashcourse Maxima (cf. Section 6.2). So we can finally say that the solution of Problem
2 is x ≈ 1.43 g l−1, which is the approximate concentration of S3 in the mixture.

1.5.4.2 Tank Labeling Problem
When fluids are stored in horizontal, cylindrical tanks similar to the one shown in
Figure 1.7b, one typically wants to have labels on the front side of the tank as shown in
Figure 1.7a. In practice, this problem is often solved “experimentally”, that is, by filling the
tank with well-defined fluid volumes and then setting the labels at the position of the fluid
surface that can be seen from outside. This procedure may of course be inapplicable in
situations where the fluid surface cannot be seen from outside. More important, however,
is the cost argument: this experimental procedure is expensive in terms of time (working
time of the people who are performing the experiment) and material (e.g. the water that is
wasted during the experiment). It is much cheaper here to apply the mathematical model
that will be developed below. Unfortunately, the situation in this example – where the
problem could be solved cheaply and efficiently using mathematical models and open-
source software, but where expensive experimental procedures or, in some cases, expensive
commercial software solutions are used – is still rather the rule than the exception in many
fields.

Let us start with the development of an appropriate mathematical model. Let h (decime-
ters) be the height of a label at the front side of the tank as indicated in Figure 1.7b, and let
V(h) (cubic decimeters) be the filling volume of the tank that corresponds to h. If we want
to determine the label height for some filling volume Vf , then the following equation must
be solved for h:

V(h) = Vf (1.30)

Referring to Figure 1.7b, V(h) can be expressed as

V(h) = ACD ⋅ L (1.31)

where ACD (square decimeters) corresponds to the surface at the front side of the tank that
is enclosed by the line segments AC, CD, and DA. ACD can be expressed as

ACD = ABCD − ABC (1.32)
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where the circular segment ABCD is

ABCD = 2𝛼
2𝜋

𝜋 r2 = 𝛼r2 (1.33)

In the last equation, 𝛼 is expressed in radians (which makes sense here since the prob-
lem is solved based on Maxima below, which uses radians in its trigonometric functions).
The surface of the triangle ABC is

ABC = x(r − h) (1.34)

where

x =
√

r2 − (r − h)2 (1.35)

due to the theorem of Pythagoras. Using the last five equations and

𝛼 = cos−1
(

r − h
r

)
(1.36)

in Equation 1.30 yields

L ⋅ cos−1
(

r − h
r

)
r2 − L

√
r2 − (r − h)2(r − h) = Vf (1.37)

Unlike the equations treated in the last sections, this is now a transcendental equation
that cannot be solved in closed form using Maxima’s solve command as before. To solve
Equation 1.37, numerical methods such as the bisection method or Newton’s method must
be applied [17]. In Maxima, the find_root command can be applied as follows:

Listing 1.3 Code Label.mac (cf. book software, Section 6.4).
1: V:10000$ L:20$

2: r:sqrt(V/%pi/L);

3: for i:1 thru 4 do (

4: res:find_root(

5: L*acos((r-h)/r)*rˆ2-L*sqrt(rˆ2-(r-h)ˆ2)*(r-h)=i*1000

6: ,h,0,r),

7: print("Label for V=",i*1000,"l:",res,"dm")

8: )$

This code solves the tank labeling problem by assuming a 10 000-l tank of length L = 2 m
based on Equation 1.37. Equation 1.37 appears in line 5 of the code, with its right-hand
side replaced by i*1000, which successively generates 1000, 2000, 3000, and 4000 as the
right-hand side of the equation due to the for command applied in line 3, so the problem
is solved for 1000, 2000, 3000, and 4000 l of filling volume in a single run of the code. What
the for …thru …do command in line 3 precisely does is this: it first sets i = 1 and then
executes the entire code between the brackets in lines 3 and 8, which solves the problem
for Vf = 1000 l; then, it sets i = 2 and executes the entire code between the brackets in lines
2 and 8 again, which solves the problem for Vf = 2000, and so on until the same has been
done for i = 4 (the upper limit given by “thru” in line 1). More information on the for-
loop construction can be found in §40 ff. of the Crashcourse Maxima (cf. Section 6.2).

Note that the arguments of the find_root command are in lines 5 and 6, between the
brackets in lines 4 and 6. Its first argument is the equation that is to be solved (line 5) fol-
lowed by three more arguments in line 6: the variable to be solved for (h in this case) and
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upper and lower limits for the interval in which the numerical algorithm is expected to
look for a solution of the equation (0 and r in this case). Usually, reasonable values for
these limits can be derived from the application – in this case, it is obvious that h > 0, and it
is likewise obvious that we will have h = r for 5000-l filling volume since a 10 000-l tank is
assumed, which means that we will have h < r for filling volumes below 5000 l. The print
command prints the result to the computer screen. Note how text, numbers, and variables
(such as the variable res that contains the result of the find_root command, see line 4)
can be mixed in this command. Since the print command is a part of the for …thru
… do environment, it is invoked four times and generates the following result:

Label for V = 1000 1: 3.948086422946864 dm

Label for V = 2000 1: 6.410499677168014 dm

Label for V = 3000 1: 8.582542383270068 dm

Label for V = 4000 1: 10.62571600771833 dm

More information on find_root can be found in §18 ff. of the Crashcourse Maxima
(cf. Section 6.2).

1.5.4.3 Financial Mathematics
Sometimes, even simple mathematical models may lead to surprisingly complex solutions
that can be treated efficiently using computer algebra. Suppose we want to finance a
machine value P after four years using the capital K and an additional capital G expected
after one year. Mathematically, the following equation can be used to compute the interest
rate i from the given values K, G, and P:

K(1 + i)4 + G(1 + i)3 = P (1.38)

This is too complex for hand computation, so we use the following Maxima command:

(%i1) erg:solve(K*(1+i)ˆ4+G*(1+i)ˆ3=P,i)$ erg;

Since Equation 1.38 is of 4th order, this gives four very complex solutions in the list erg,
which are suppressed here since this would fill several book pages (execute the above code
in wxMaxima to see the formulas). To decide which of the four solutions is the right one,
we apply a heuristic procedure and write a few more lines in Maxima:

(%i2) erg[1],K:1,G:1,P:3,numer;
(%o2) i = - 2.658098067372152
(%i3) erg[2],K:1,G:1,P:3,numer;
(%o3) i = 0.1222909134350642
(%i4) erg[3],K:1,G:1,P:3,numer;
(%o4) i = - 1.248311578607314 %i - 1.232096423031456
(%i5) erg[4],K:1,G:1,P:3,numer;
(%o5) i = 1.248311578607314 %i - 1.232096423031456

Here, sample values K = 1, G = 1, and P = 3 are inserted into the four solutions
erg[1]–erg[4] and the results are negative for erg[1] and complex for erg[3] and erg [4]
since the last two solutions involve the imaginary unit %i (which may be written as√
−1 depending on the output settings of your Maxima installation). Only erg[2] can be

interpreted as an interest rate of about 12% as required. Figure 1.8 shows the complexity of
this solution (result of erg[2]; in Maxima).
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The solution erg[2] can be used in Excel, CALC, or other programming languages based
on a text conversion of the expression in Figure 1.8. The following lines of code convert
erg[2], e.g. into a text expression that can be copied and pasted into Excel or Calc:

(%i6) s:string(erg[2]);

(%o6) i = sqrt((-(sqrt(3)*K*((-(G+4*K)ˆ3/Kˆ3)+(4*(G+4*K)
*(3*G+6*K))/(K*K)-(8*(3*G+4*K))/K))/(2*sqrt((12*Kˆ2
*((P*sqrt(256*Kˆ3*P+27*Gˆ4))/(2*3ˆ(3/2)*Kˆ3)+((3*

… 21 more lines of code skipped here …

(%i7) s:ssubst("","i",s)$ s:ssubst("SQRT","sqrt",s)$
s:ssubst("KK","K",s)$
s:ssubst("GG","G",s)$ s:ssubst("PP","P",s);

(%o7) = SQRT((-(SQRT(3)*KK*((-(GG+4*KK)ˆ3/KKˆ3)+
(4*(GG+4*KK)*(3*GG+6*KK))/(KK*KK)-(8*(3*GG+4*KK))/KK))/
(2*SQRT((12*KKˆ2*((PP*SQRT(256*KKˆ3*PP+27*GGˆ4))/(2*

… 25 more lines of code skipped here …

Here, (%i6) generates the text expression in (%o6), which is then modified in (%i7)
such that an Excel/Calc-compatible expression is obtained in (%o7). In (%i7), the Maxima
notation “sqrt” for the square root is replaced by Excel/Calc’s “SQRT” notation (which is
optional here but would be important if Excel/Calc is used in other languages), and the
other ssubst commands replace the variables K, G, and P by the notation KK, GG, and
PP, which is required because Excel/Calc would misunderstand single-letter variables like
K, G, and P as column names. The formula in (%o7) works in Excel/Calc after the cells
containing the values of K, G, and P have been properly named as KK, GG, and PP using
the appropriate name input boxes of Excel or Calc. The above code and the complete
output are available in Code 88da5324 of the Crashcourse Maxima, see Section 6.2.

1.5.5 Linear Programming

All mathematical models considered so far were formulated in terms of equations only.
Remember that according to Definition 1.4.1, a mathematical model may involve any
kind of mathematical statement. For example, it may involve inequalities. One of the
simplest classes of problems involving inequalities is linear programming problems that
are frequently used e.g. in operations research. Consider the following example from
agriculture:

Linear programming example
Suppose 30 hectares are available for two alternative crops A and B. Also, assume that
50 units of fertilizer and 200 of units insecticide can be used. 1 unit of fertilizer and
6 units of insecticide are required for each hectare planted with crop A, while crop B
needs 2 units of fertilizer and 7 units of insecticide. Now if crop A can be sold for 300€ and
crop B for 400€ per hectare, how much land should be assigned to A and B to maximize
the farmers profit?
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Denoting the area planted with A and B as a and b, respectively, the problem can be
formulated as follows:

a, b ≥ 0 (1.39)

a + b ≤ 30 (1.40)

1 ⋅ a + 2 ⋅ b ≤ 50 (1.41)

6 ⋅ a + 7 ⋅ b ≤ 200 (1.42)

300 ⋅ a + 400 ⋅ b → max (1.43)

Here, Equation 1.39 expresses the fact that the farmer cannot plant negative areas,
Equation 1.40 says that no more than the given 30 hectares of farmland can be used,
Equations 1.41 and 1.42 describe the fertilizer and insecticide limits, and Equation 1.43
demands profit maximization. Taking Equations 1.39–1.43 as M and the system S as the
farmland and asking question Q: “How many hectares should be planted with crops A and
B to maximize the revenue?”, a mathematical model (S,Q,M) is obtained.

The problem in Equations 1.39–1.43 is classified as a linear programming or linear
optimization problem. In their standard form, these problems consist of a linear objective
function to be maximized or minimized (Equation 1.43 in the above example), problem
constraints (typically as inequalities similar to Equations 1.40–1.42), and non-negativity
conditions like Equation 1.39.

Listing 1.4 Solution of the linear programming example in Maxima (cf. book software
Code Farm.mac).

1: load(simplex)$

2: U:[

3: a>=0

4: ,b>=0

5: ,a+b<=30

6: ,1*a+2*b<=50

7: ,6*a+7*b<=200

8: ]$

9: Z:300*a+400*b$

10: maximize_lp(Z,U);

Linear programming problems can be easily solved in Maxima, as demonstrated in
Listing 1.4 for the above example: line 1 of this code loads Maxima’s simplex package
required for linear programming problems. Lines 2–8 define the inequalities, correspond-
ing to Equations 1.39–1.42 above. Note that these code lines store the list of inequalities
in a variable U, which is then used in line 10 by the maximize_lp command that finally
solves the problem and requires the objective function Z defined in line 9 as its second
argument. The result of the computation is:

[11000,[a=10,b=20]]

Hence, a maximum revenue of 11 000 is obtained if the farmer plants 10 hectares of
A and 20 hectares of B. Note that in minimization problems, the alternative command
minimize_lp can be used.
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1.5.6 Modeling a Black Box System

In Section 1.3, it was mentioned that the systems investigated by scientists or engineers
typically are “input–output systems”, which means they transform the given input parame-
ters into output parameters. Note that the previous examples were indeed referring to such
“input–output systems”. In the tin example, the radius and height of the tin are input param-
eters and the surface area of the tin is the output parameter. In the plant growth example, the
growth rate of the plant and its initial biomass are the input and the resulting time–biomass
curve is the output (details in Chapter 3). In the tank example, the geometrical data of the
tank and the concentration distribution are input parameters, while the mass of the sub-
stance is the output. In the linear programming examples, the areas planted with wheat or
barley are the input quantities and the resulting revenue is the output. Similarly, all systems
in the examples that will follow can be interpreted as input–output systems.

The exploration of an example input–output system in some more detail will now lead us
to further important concepts and definitions. Assume a “system 1” as in Figure 1.9, which
produces an output length y (centimeters) for every given input force x [N]. Furthermore,
assume that we do not know about the processes inside the system that transform x into y,
that is, let this system be a “black box” to us as described above. Consider the following
problem:

Q: Find an input x that generates an output y = 20 cm.

This defines the question Q of the mathematical model (S,Q,M) that we are going to
define. S is the “system 1” in Figure 1.9a, and we are now looking for an appropriate set of
mathematical statements M that can help us to answer Q.

All that the investigator of system 1 can do is produce some data using the system, hoping
that these data will reveal something about the processes occurring inside the “black box”.
Assume that the data in the file spring.csv (which you find in the book software, see
Section 6.4) have been obtained from this system, see Figure 1.9b. To see what happens,
the investigator will probably produce a plot of the data as shown in Figure 1.10a. Note
that the plots in Figure 1.10 were generated using the scatter plot option of LibreOffice.org
Calc. Figure 1.10a suggests that there is an approximately linear dependence between the
x- and y-data. Mathematically, this means that the function y = f (x) behind the data is a
straight line:

f (x) = ax + b (1.44)

Now the investigator can apply a statistical method called linear regression (which will
be explained in detail in Section 2.2) to determine the coefficients a and b of this equation
from the data, which leads to the “regression line”,

f (x) = 0.33x − 0.5 (1.45)

 x (N)
y (cm)

10 20 30 40 50
3 5 11 12 16

x ySystem 1

(b)(a)

Figure 1.9 (a) System 1 with input x (N) and output y (cm). (b) System 1 data (file spring.csv in
the book software).
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Figure 1.10 (a) Plot of the data in spring.csv. (b) System 1 data with regression line. Both
plots generated using Calc, see Section 2.1.1.1.

Figure 1.10b shows that there is a good coincidence or, in statistical terminology, a good
“fit” between this regression line and the data. Equation 1.45 can now be used as the M
of a mathematical model of system 1. The question Q stated above (“Which system input x
generates a desired output y = 20 cm?”) can then be easily answered by setting y = f (x) = 20
in Equation 1.45, that is,

20 = 0.33x − 0.5 (1.46)

which gives x ≈ 62.1 N. Of course, this is just an approximate result for several reasons.
First of all, Figure 1.10 shows that there are some deviations between the regression line
and the data. These deviations may be due to measurement errors, but they may also
reflect some really existing effects. If the deviations are due to measurement errors, then
the precise location of the regression line and, hence, the prediction of x for y = 20 cm are
affected by these errors. If, on the other hand, the deviations reflect some really existing
effects, then Equation 1.45 is no more than an approximate model of the processes that
transform x into y in system 1, and hence, the prediction of x for y = 20 cm will be only
approximate. Beyond this, predictions based on data such as the data in Figure 1.9b are
always approximative for principal reasons. The y-range of these data ends at 16 cm, and
system 1 may behave entirely different for y-values beyond 16 cm, which we would not be
able to see in such a dataset. Therefore, the experimental validation of predictions derived
from mathematical models is always an indispensable part of the modeling procedure
(see Section 1.2). See also Chapter 2 for a deeper discussion of the quality of predictions
obtained from black box models.

The example shows the importance of statistical methods in mathematical modeling.
First of all, statistics itself is a collection of mathematical models that can be used to
describe data or to draw inferences from data [18]. Beyond this, statistical methods
provide a necessary link between nonstatistical mathematical models and the real world.
In mathematical modeling, one is always concerned with experimental data, not only to
validate model predictions but also to develop hypotheses about the system, which help
to set up appropriate equations. In the example, the data led us to the hypothesis that
there is a linear relation between x and y. We have used a plot of the data (Figure 1.10)
and the regression method to find the coefficients in Equation 1.45. These are methods
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of descriptive statistics, which can be used to summarize or describe data. Beyond this,
inferential statistics provides methods that allow conclusions to be drawn from data in a
way that accounts for randomness and uncertainty. Some important methods of descriptive
and inductive statistics will be introduced below (Section 2.1).

Note 1.5.12 Statistical methods provide the link between mathematical models and
the real world.

The reader might say that the estimate of x above could also have been obtained without
any reference to models or computations, by a simple tuning of the input using the real,
physical system 1. We agree that there is no reason why models should be used in situa-
tions where this can be done with little effort. In fact, we do not want to propose any kind
of a fundamentalist “mathematical modeling and simulation” paradigm here. A pragmatic
approach should be used, that is, any problem in science and engineering should be treated
using appropriate methods, may this be mathematical models or a tuning of input param-
eters using the real system. It is just a fact that in many cases the latter cannot be done in
a simple way. The generation of data such as in Figure 1.9 may be expensive, and thus, an
experimental tuning of x toward the desired y may be inapplicable. Or, the investigator may
be facing a very complex interaction of several input and output parameters, which is rather
the rule than the exception as explained in Section 1.1. In such cases, the representation of
a system in mathematical terms can be the only efficient way to solve the problem.

1.6 Even More Definitions

1.6.1 Phenomenological and Mechanistic Models

The mathematical model used above to describe system 1 is called a phenomenological
model since it was constructed based on experimental data only, treating the system as a
black box, that is, without using any information about the internal processes occurring
inside system 1 when x is transformed into y. On the other hand, models that are con-
structed using information about the system S are called mechanistic models, since such
models are virtually based on a look into the internal mechanics of S. Let us define this as
follows [12]:

Definition 1.6.1 (Phenomenological and mechanistic models) A mathematical
model (S,Q,M) is called

● phenomenological, if it was constructed based on experimental data only, using no a
priori information about S,

● mechanistic, if some of the statements in M are based on a priori information about S.

Phenomenological models are also called empirical models, statistical models, data-driven
models, descriptive models, or black box models for obvious reasons. Mechanistic models, for
which all necessary information about S is available are also called white box models. Most
mechanistic models are located somewhere between the extreme black and white box cases,
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that is, they are based on some information about S while some other important informa-
tion is unavailable. Such models are sometimes called gray box models or semi-empirical
models [19].

x

x

y
y

Figure 1.11 Internal
mechanics of system 1.

To better understand the differences between phenomeno-
logical and mechanistic models, let us now construct an alter-
native mechanistic model for system 1 (Figure 1.9). Above,
we have treated system 1 as a black box, that is, we have
used no information about the way, in which system 1 trans-
forms some given input x into the output y (Figure 1.9). Let us
now assume that the internal mechanics of system 1 looks as

shown in Figure 1.11, that is, assume that system 1 is a mechanical spring, x is a force acting
on that spring, and y is the resulting elongation. This is now an a priori information about
system 1 in the sense of Definition 1.6.1 above, and it can be used to construct a mech-
anistic mathematical model based on elementary physical knowledge. As is well known,
mechanical springs can be described by Hooke’s law, which in this case reads

x = k ⋅ y (1.47)

where k is the spring constant (newtons per centimeter), a measure of the elasticity of
the spring. The parameter k is either known (e.g. from the manufacturer of the spring)
or estimated based on data such as those in Figure 1.9. Now the following mechanistic
mathematical model (S,Q,M) is obtained:

● S: System 1
● Q: Which system input x generates a desired output of y = 20 cm?
● M: Equation 1.47

Based on this model, question Q can be answered as before by setting y = 20 cm in the
model equation 1.47, which leads to

x = k ⋅ 20 (1.48)

that is, we can answer the question Q depending on the value of the spring constant, k.
For example, assuming a value of k ≈ 3.11 N cm−1 for the spring constant, we would get
the same estimate x ≈ 62.1 N as above. The mechanistic model of system 1 has several
important advantages compared to the phenomenological model, and these advantages
are characteristic advantages of the mechanistic approach. First of all, mechanistic mod-
els generally allow better predictions of system behavior. The phenomenological model
equation 1.45 was derived from the data in Figure 1.9. These data involve forces x between
10 and 50 N. As mentioned below in our discussion of regression methods, this means that
one can expect Equation 1.45 to be valid only close to this range of data between 10 and 50 N.
The mechanistic model equation 1.47, on the other hand, is based on the well-established
physical theory of a spring. Hence, we have good reason to expect its validity even outside
the range of our own experimental testing.

Mechanistic models also allow better predictions of modified systems. Assume, for
example, that system 1 in Figure 1.11 is replaced by a system 2 that consists of two springs.
Furthermore, assume that each of these system 2 springs has the same spring constant k
as the system 1 spring. Then, in the phenomenological approach, the model developed
for system 1 would be of no use, since we would not know about the similarity of these



34 1 Principles of Mathematical Modeling

two systems (remember that the phenomenological approach assumes that no details are
known about the internal mechanics of the system under consideration). This means
that a new phenomenological model would have to be developed for system 2. A new
dataset similar to Figure 1.9 would be required, appropriate experiments would have to
be performed, and afterward, a new regression line similar to Figure 1.10 would have to
be derived from the data. In the mechanistic approach, on the other hand, Hooke’s law
would immediately tell us that in the case of two springs, the appropriate modification of
Equation 1.47 is

x = 2k ⋅ y (1.49)

Another advantage of mechanistic models is the fact that they usually involve physically
interpretable parameters, that is, parameters that represent real properties of the system.
To wit, the numerical coefficients of the phenomenological model equation 1.44 are just
numbers that cannot be related to the system. The parameter k of the mechanistic model
equation 1.47, on the other hand, can be related to system properties, and this is of particu-
lar importance when we want to optimize system performance. For example, if we want
smaller forces x to be required for a given elongation y, then in the phenomenological
approach we would have to test a number of systems 2, 3, 4, …, until we would eventu-
ally arrive at some system with the desired properties. That is, we would have to apply a
trial-and-error method. The mechanistic model, on the other hand, tells us exactly what we
have to do: we have to replace the system 1 spring with a spring having a smaller spring
constant k, and this will reduce the force x required for a given elongation y. In this simple
example, it may be hard to imagine that someone would really use the phenomenological
approach instead of Hooke’s law. But the example captures an essential difference between
phenomenological and mechanistic models, and it tells us that we should use mechanistic
models if possible.

So, if mechanistic models could be set up easily in every imaginable situation, we would
not have to talk about phenomenological models here. However, in many situations, it is
not possible or feasible to use mechanistic models. As an essential prerequisite, mechanistic
models need a priori knowledge of the system. If nothing is known about the system, then we
are in the “black box” situation and have to apply phenomenological models. Suppose, for
example, we want to understand why some roses wilt earlier than others (this example will
be explained in more detail in Section 2.3). Suppose we assume that this is related to the
concentrations of certain carbohydrates that can be measured. Then we cannot set up a
mechanistic model as long as we do not know all the relevant processes that connect those
carbohydrate concentrations with the observed freshness of the rose. Unless these processes
are known, all we can do is produce some data (carbohydrate concentration versus some
appropriate measure of rose freshness) and analyze these data using phenomenological
models.

This kind of situation where little is known about the system under investigation is rather
the rule than the exception, particularly at the early stages of a scientific investigation,
or at the early stages of product development in engineering. We may also be in a situa-
tion where we principally know enough details about the system under investigation, but
where the system is so complex that it would take too much time and resources to setup
a mechanistic model. An example is the optimization of the wear resistance of compos-
ite materials: Suppose that a composite material is made of the materials M1,M2,… ,Mn,
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and we want to know how the relative proportions of these materials should be chosen in
order to maximize the composite material’s resistance to wear. Then, the wear resistance of
the composite material can depend in an extremely complex way on its composition. The
author has investigated a situation of this kind where mechanistic modeling attempts failed
due to the complexity of the overall system, and where a black box-type phenomenological
neural network approach (see Section 2.6) was used instead [20]. An important advantage
of phenomenological models is that they can be used in black box situations of this kind
and that they typically require much less time and resources. Pragmatic considerations
should decide which type of model is used in practice. A mechanistic model will certainly
be a bad choice if we need three weeks to make it work and if it does not give substantially
better answers to our question Q compared to a phenomenological model, which can be set
up within a day.

Note 1.6.1 (Phenomenological versus mechanistic) Phenomenological models
are universally applicable, easy to set up, but limited in scope. Mechanistic models
typically involve physically interpretable parameters, allow deeper insights into system
performance and better predictions, but they require a priori information on the system
and often need more time and resources.

1.6.2 Stationary and Instationary Models

It was already mentioned above that the question Q is an important factor that determines
the appropriate mathematical model (S,Q,M). As an example, we have considered the
alternative treatment of mechanical problems with the equations of classical or relativistic
mechanics depending on the question Q that is investigated. In the system 1 example, we
have used Q: “Which system input x generates a desired output of y = 20 cm?” Let us now
modify this Q in order to find other important classes of mathematical models. Consider
the following question:

Q: If a constant force x acts on the spring beginning with t = 0, what is the resulting
elongation y(t) of the spring at times t > 0?

This question cannot be answered based on the models developed above. The phe-
nomenological model (Equation 1.45) as well as the mechanistic model (Equation 1.47)
both refer to the so-called stationary state of system 1. This means that the elongation y
expressed by these equations represents the time-independent (= stationary) state of the
spring, which is achieved after the spring has been elongated into the state of equilibrium
where the force x exactly matches the force of the spring. On the other hand, the above
question asks for the instationary (i.e. time-dependent) development of the elongation y(t),
beginning with time t = 0 when the force x is applied to the spring. To compute this y(t), an
instationary mathematical model (S,Q,M) is needed where the mathematical statements
in M involve the time t. Models of this kind can be defined based on ordinary differential
equations (ODEs) (details in Chapter 3). To make this important distinction between
stationary and instationary models precise, let us define.
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Definition 1.6.2 (Stationary/instationary models) A mathematical model
(S,Q,M) is called

● instationary, if at least one of its system parameters or state variables depends on time
and

● stationary otherwise.

Note that the alternative terms static models and dynamic models are used in the context
of virtual plants (Sections 5.2 and 5.3).

1.6.3 Distributed and Lumped Models

Suppose now that the spring in system 1 broke into pieces under normal operational con-
ditions and that it is now attempted to construct a more robust spring. In such a situation,
it is natural to ask the following question:

Q: Which part of the spring should be reinforced?

Naturally, those parts of the spring that bear the highest mechanical stresses should be
reinforced. To identify these regions, we need to know the distribution of stresses inside
the spring under load. Let 𝜎(x, y, z) denote the mechanical stress distribution inside the
spring depending on the spatial coordinates x, y, and z. Then we need a mathematical
model with 𝜎(x, y, z) as a state variable. Such a mathematical model can be formulated
based on PDEs as will be explained in Chapter 4. The important difference between this
model and the previous models of system 1 lies in the fact that in this case the state variable
depends on the spatial coordinates. To predict the equilibrium elongation of the spring
using Equation 1.44 or 1.47, it was sufficient to describe the spring based on the spring con-
stant k only. These equations, however, cannot be used to derive any spatially distributed
information regarding the spring. In this kind of models, all spatial information is lumped
together into the parameter k. In the case above, this was justified by the fact that the equi-
librium position of a spring can be predicted with sufficient precision using k. On the other
hand, if one is asking for the internal stress distribution in the spring, a spatially distributed
description of the stresses inside the spring is needed. This motivates the following:

Definition 1.6.3 (Distributed/lumped models) A mathematical model (S,Q,M)
is called

● distributed, if at least one of its system parameters or state variables depends on a space
variable,

● lumped otherwise.

1.7 Classification of Mathematical Models

Based on the examples in the last section, the reader can now distinguish between some
basic classes of mathematical models. We will now widen our perspective toward a look



1.7 Classification of Mathematical Models 37

at the entire “space of mathematical models”, that is, this section will give you an idea of
various types of mathematical models that are used in practice.

Note 1.7.1 The practical use of a classification of mathematical models lies in the
fact that you understand “where you are” in the space of mathematical models and
which types of models might be applicable to your problem beyond the models that you
have already used.

1.7.1 From Black to White Box Models

The “space of mathematical models” evolves naturally from Definition 1.4.1, where we have
defined a mathematical model to be a triple (S,Q,M) consisting of a system S, a question
Q, and a set of mathematical statements M. Based on this definition, it is natural to classify
mathematical models in an SQM space. Figure 1.12a shows one possible approach to visu-
alize this SQM space of mathematical models, based on a classification of mathematical
models between black and white box models. Psychological and social systems constitute
the “black box” end of the spectrum. Only very vague phenomenological models can be
developed for these systems due to their complexity and the fact that too many subpro-
cesses are involved, which are not sufficiently understood. On the other hand, mechanical
systems, electrical circuits, etc., are at the white box end of the spectrum since they can be
very well understood in terms of mechanistic models (a famous example is Newton’s model
of planetary motion).

Note that the three dimensions of a mathematical model (S,Q,M) can be seen in the
figure: the systems (S) are classified on top of the bar, immediately below the bar there is
a list of objectives that mathematical models in each of the segments may have (which is
Q), and at the bottom end there are corresponding mathematical structures (M) ranging
from algebraic equations (AEs) to DEs. Equation 1.44 (Section 1.5.6) is an example of a
mathematical model in the form of an AE. As suggested by Figure 1.12, black box regres-
sion models of this kind are widely used for the modeling, for example, of psychological,
social, or economic systems (see Chapter 2 for more on regression models). On the other
hand, the wine fermentation model discussed in Section 3.10.2 exemplifies the modeling
of a biological/chemical system using ODEs (see Chapters 3 and 4 for more examples of
DE models).

The “Q”-criteria in Figure 1.12a illustrate that mathematical models can be used to solve
increasingly challenging problems as the model gradually turns from a black box to a white
box model. At the black box end of the spectrum, models can be used to make more or
less reliable predictions based on data. For example, you may think here of attempts that
have been made to predict share prices using the neural network methods described in
Chapter 2 [21]. The model of a biological predator–prey system discussed in Section 3.10.1
is already “white enough” such that it can be used for an analysis of the dynamical system
behavior in terms of phase plot diagrams such as Figure 3.18. Beyond this, models of chem-
ical systems can be so precise that they can be used for control of a process such as the wine
fermentation process discussed in Section 3.10.2.

At the white box end of the spectrum, mathematical models can be applied to design,
test, and optimize systems and processes on the computer before they are actually phys-
ically realized. This is used e.g. in virtual engineering, which includes techniques such as
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Figure 1.12 (a) Classification of mathematical models between black and white box models
(adapted from [4]). (b) Classification of mathematical models in the SQM space.

interactive design using computational fluid dynamic (CFD) (see [22] and Section 4.12), vir-
tual prototyping [8, 23, 24], or performing in-silico experiments using virtual plants with the
goal of optimizing crop performance (Sections 5.2 and 5.3). As an example, you may think
of the computation of the temperature distribution within a three-dimensional device using
finite volume software, as it will be discussed in Section 4.10 below. Based on the method
described there, what-if studies can be performed, that is, it can be investigated what hap-
pens with the temperature distribution if you change certain characteristics of the device
virtually on the computer, and this can then be used to optimize the construction of the
device so as to achieve certain desired characteristics of the temperature distribution.

1.7.2 SQM Space Classification: S Axis

Since mathematical models are characterized by their respective individual S, Q, and M
“values”, one can also think of each model as being located somewhere in the “SQM space”
of Figure 1.12b. On each of the S-, Q-, and M-axes of the figure, mathematical models are
classified with respect to a number of criteria, which were compiled based on various classi-
fication attempts in the literature [4, 12, 19, 25–29]. Let us explain these criteria, beginning
with the S axis of Figure 1.12b:

Physical–conceptual. Physical systems are part of the real world, for example, a fish or a car.
Conceptual systems are made up of thoughts and ideas, for example, a set of mathemat-
ical axioms. This book focuses entirely on physical systems.

Natural–technical. Naturally, a natural system is a part of nature, such as a fish or a flower,
while a technical system is a car, a machine, and so on. An example of a natural system
is the predator–prey system treated in Section 3.10.1; the stormer viscometer treated in
Section 2.4 exemplifies a technical system.

Stochastic–deterministic. Stochastic systems involve random effects, such as rolling dice,
share prices, and so on. Deterministic systems involve no or very little random effects,
for example, mechanical systems such as the planetary system, a pendulum, and so on.
In a deterministic system, a particular state A of the system is always followed by one and
the same state B, while A may be followed by B, C, or other states in an unpredictable
way if the system is stochastic [30]. Below, stochastic models will be considered mainly
in Chapter 2 and deterministic models mainly in Chapters 3 and 4.
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Continuous–discrete. Continuous systems involve quantities that change continuously with
time, such as sugar and ethanol concentrations in a wine fermenter (Section 3.10.2).
Discrete systems, on the other hand, involve quantities that change at discrete times only,
such as the number of individuals in animal populations (Section 3.10.1). Note that on
the M axis of Figure 1.12, continuous systems can be represented by discrete mathemat-
ical statements and vice versa (e.g. a continuous mathematical formulation is used in
Section 3.10.1 to describe the discrete predator–prey system).

Dimension. Depending on their spatial symmetries, physical systems can be described using
1, 2, or 3 space variables. As will be discussed in Section 4.3.3, the number of space vari-
ables used to describe a physical system is called its dimension (frequently denoted 1D,
2D, or 3D). Examples: a 1D temperature distribution is computed in Section 4.6 and a 3D
temperature distribution in Section 4.10.

Field of application. We can distinguish between chemical systems, physical systems, bio-
logical systems, and so on. Systems from these and more fields of application will be
considered below.

1.7.3 SQM Space Classification: Q Axis

On the Q-axis of Figure 1.12b, we have the following categories:

Phenomenological–mechanistic. This has been discussed in detail in Section 1.6. Phe-
nomenological models are treated in Chapter 2 and mechanistic models in Chapters 3
and 4.

Stationary–instationary. Again, this has been discussed in Section 1.6. As discussed there,
it depends on the question that we are asking (i.e. on the “Q” of a mathematical model
(S,Q,M)) whether a stationary (time-independent) or instationary (time-dependent)
model is appropriate. See also Problem 1 (instationary) and Problem 2 (stationary) in
Section 4.1.3.

Lumped–distributed. Again, see Section 1.6. As was discussed there, it depends on the ques-
tion that we are asking (i.e. on the “Q” of a mathematical model (S,Q,M)) whether
a lumped (space-independent) or distributed (space-dependent) model is appropriate.
The wine fermentation model (Section 3.10.2) is an example of a lumped model since it
does not use spatial coordinates. On the other hand, the computation of a 3D temperature
distribution in Section 4.10 is based on a distributed model.

Direct–inverse. Consider an input–output system as in Figure 1.2a. If Q assumes given input
and system parameters and asks for the output, the model solves a so-called direct prob-
lem [4]. Most of the models below refer to direct problems. If, on the other hand, Q asks
for the input or for parameters of S, the model solves a so-called inverse problem [31]. If
Q asks for parameters of S, the resulting problem is also called a parameter identification
problem. Examples are the regression and neural network models discussed in Chapter 2
and the fitting of ODEs to data discussed in Section 3.9. If Q asks for input parameters,
the resulting problem is also called a control problem, since in this case the problem is to
control the input in a way that generates some desired output ([32] and Section 4.14.3).

Research–management. Research models are used if Q aims at the understanding of S; man-
agement models, on the other hand, are used if the focus is on the solution of practical
problems related to S. As pointed out in [19], research models tend to be more complex
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and less manageable from a practical point of view. Depending on Q, the same mathe-
matical equations can be a part of a research or a management model. For example, the
predator–prey model described in Section 3.10.1 is a research model if the investigator
just wants to understand the oscillations of the predator and prey populations, and it is
a management model if it is used to control the predator and prey populations (but as
discussed in Section 3.10.1, this model is so simple that it cannot be seriously used as a
management model).

Speculation–design. See the above discussion of Figure 1.12a.
Scale. Depending on Q, the model will describe the system on an appropriate scale. For

example, depending on Q it can be appropriate to virtually follow a fluid particle on its
way through the complex channels of a porous medium or just to compute the pressure
drop across a porous medium based on its permeability. Obviously, these cases corre-
spond to a description of a porous medium on two scales (microscopic/macroscopic).
Details of this example will follow in Section 4.11.2.

1.7.4 SQM Space Classification: M Axis

Finally, let us look at the categories on the M-axis of Figure 1.12b:

Linear–nonlinear. In linear models, the unknowns (or their derivatives) are combined using
linear mathematical operations only, such as addition/subtraction or multiplication with
parameters. Nonlinear models, on the other hand, may involve the multiplication of
unknowns, the application of transcendental functions, and so on. Nonlinear models
typically have more (and more interesting) solutions but are harder to solve. Examples
are linear or nonlinear regression models (Sections 2.2 and 2.4, respectively) and linear
or nonlinear ODEs (Section 3.5).

Analytical–numerical. In analytic models, the system behavior can be expressed in terms of
mathematical formulas involving the system parameters. Based on these models, quali-
tative effects of parameters and the entire system behavior can be studied theoretically,
without using concrete values for the parameters. Numerical models, on the other hand,
can be used to obtain the system behavior for specific parameter values. See Section 3.6
for a general discussion of analytical models (which are also called closed form models)
versus numerical models.

Autonomous–nonautonomous. This is a mathematical classification of instationary models
(see above). If an equation does not depend explicitly on time, it is called autonomous,
otherwise nonautonomous; see the examples in Section 3.5.

Continuous–discrete. In continuous models, the independent variables may assume
arbitrary (typically real) values within some interval. For example, many of the ODE
models discussed in Chapter 3 use time (within some time interval) as the inde-
pendent variable. In discrete models, on the other hand, the independent variables
may assume some discrete values only. An example is the discrete event simulation
technique discussed in Section 2.10.2, or the Nicholson–Bailey host–parasite interaction
model discussed in Section 4.14.1, where the time variable just counts the number of
breeding seasons instead of expressing the (continuous) physical time. In contrast, some
virtual plant models discussed in Sections 5.2 and 5.3 consider independent variables
with both continuous (e.g. time, light, or temperature) and discrete (e.g. rank) values
(e.g. Equation 5.7).
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Difference equations. In difference equations, the quantity of interest is obtained as a
sequence of discrete values. Usually, this is expressed in terms of recurrence relations in
which each term of the sequence depends on previous terms. Difference equations are
frequently used to describe discrete systems. See the examples in Section 4.14.1.

Differential equations. DEs are equations involving derivatives of an unknown function.
They are a main tool to set up continuous mechanistic models, see the examples in
Chapters 3, 4, and 5.

Integral equations. Integral equations are equations involving an integral of an unknown
function.

Algebraic equations. AEs are equations involving the usual algebraic operations such as
addition, subtraction, division, and so on. Examples are Equation 1.1 or 1.4 in Section 1.5,
or the regression equations discussed in Chapter 2.

Note that some of the above categorizations of mathematical models overlap. For
example, both phenomenological and mechanistic models can be lumped or distributed,
stationary or instationary, and so on. Thus, it may have confused the reader if a single
chapter would have been devoted to each of these categorizations. Instead, it was decided to
select the categorization between phenomenological models (Chapter 2) and mechanistic
models (Chapters 3 and 4) as the main perspective and as a principle to organize the
book. Only in Chapter 5 do we discuss both phenomenological and mechanistic models
in order to best present advanced application examples (Section 5.3). The other model
categorizations are treated within this perspective, that is, they will be referred to in the
context of appropriate examples. Note that referring to Figure 1.12b we can say that the cat-
egorization of mathematical models between phenomenological and mechanistic models
divides the SQM space of mathematical models into two different “half-spaces” along the
Q-axis. We will repeatedly come back to the above classification of mathematical models
in the course of this book, using it like a compass (or, in more up-to-date terminology, like
a GPS) so that the reader will always know about their actual position in the overall space
of mathematical models.

1.8 Everything Looks Like a Nail?

To some extent, the modeling and simulation scheme discussed above is just an idealistic
theory of how mathematical modeling should work, and this must of course be distin-
guished from the way in which people are dealing with mathematical models in practice.
Being aware of this fact, Golomb [33] compiled the following:

Note 1.8.1 (Don’ts of mathematical modeling)

1) Don’t believe that the model is the reality.
2) Don’t extrapolate beyond the region of fit.
3) Don’t distort reality to fit the model.
4) Don’t retain a discredited model.
5) Don’t fall in love with your model.
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Figure 1.13 Plato’s cave allegory: Don’t believe that the model is the reality! (Figure: Birgid
Velten; https://commons.wikimedia.org/wiki/File:Hoehlengleichnis.svg; https://creativecommons
.org/licenses/by-sa/3.0/deed.en).

Don’t No. 1 reminds us of the limitations of our models, that is, we should always be aware
of the simplifying assumptions made in a model when discussing its implications for the
real system. You may know the cave allegory of the Greek philosopher Plato, which pro-
vides a nice picture of the relationship between a model and the reality, Figure 1.13 [34]. In
this allegory, prisoners are chained deep inside a cave in a way that restricts their view to
one particular wall of the cave. Behind the prisoners, there is a big fire and some people are
using the light of that fire to project three-dimensional objects such as puppets, animals,
and plants onto the cave wall. Plato assumes that the prisoners are chained in the cave
since their childhood and thus have never seen anything else apart from the shadows on
that cave wall. Thus, they believe that these shadows are the reality, although the shad-
ows are of course no more than simplified, two-dimensional models of the real, three-
dimensional objects behind them. Very similarly, we must be aware of the fact that we are
always “chained” in some way as long as we think about reality in terms of a scientific
model, which restricts our view on the real system more or less depending on its inherent
assumptions.

Don’t No. 2 says that models should be used for prediction only in those regions of
the parameter space where they are sufficiently supported by experimental data (see
Section 2.2.2 and Note 2.2.4 for more details), while Don’ts Nos 3–5 basically require us
to abandon models that fail to pass the validation step of the modeling and simulation
scheme (Note 1.2.3). In [12], the message of Don’t Nos 3–5 is expressed as follows:

When you have a hammer, you look for a nail.
When you have a good hammer, everything looks like a nail.

You understand the message: People always tend to solve problems similar to the way
in which they successfully solved problems in the past. Yesterday, our problem might have
been to drive a nail into a piece of wood, and we might have solved this problem adequately
using a hammer. Today, however, we may have to drive a screw into a piece of wood, and
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it is of course not quite such a good idea to use the hammer again. Similarly, mathemati-
cal models are like tools that help us to solve problems, and we will always tend to reuse
the models that helped us to solve our yesterday’s problems. This is like a law of nature
in mathematical modeling, similar to Newton’s law of inertia; let us call it the law of iner-
tia of mathematical modeling. Forces need to be applied to physical bodies to change their
state of motion, and in a similar way, forces need to be applied in a mathematical modeler’s
mind before they will eventually agree to replace established models with more adequate
approaches. Even great scientists such as A. Einstein were affected by this kind of inertia.
Einstein did not like the idea that the physical universe is probabilistic rather than deter-
ministic (a consequence of the “Copenhagen interpretation” of quantum mechanics), and
he expressed this aversion in his famous quote “God does not play dice with the universe”
[35]. But do not take this as an excuse for any violation of Golomb’s Don’ts. It just shows
that everybody, including yourself, should use models with care.


