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The Asymptotic Perturbation Method for Nonlinear
Oscillators

1.1 Introduction

Oscillations are a fundamental topic in physics. When a system is near its equilib-
rium point, it begins to oscillate, but if the displacement increases, then the nonlin-
ear terms are not negligible. The starting point is the differential equation for the
harmonic oscillator

d2X
dt

+ 𝜔2X(t) = 0 (1.1)

where X(t) is the displacement and ω the circular frequency. The most general solu-
tion is

X(t) = 2𝜌 cos(−𝜔t + 𝜃) (1.2)

where 𝜌 and 𝜃 are fixed by the initial conditions (the Cauchy problem)

if X(0) = X0 for the displacement
and Ẋ(0) = Ẋ0 for the initial velocity

then we easily get

2𝜌 =

√√√√(
(X0)2 +

( Ẋ0

𝜔

)2)
(1.3)

and

tan𝜃 =
( Ẋ0

𝜔X0

)
(1.4)

Now, we can consider a weakly nonlinear part in the differential Eq. (1.1) or, on the
contrary, a strongly nonlinear part but with small solutions. The first consequence is
that the amplitude and the phase are slowly varying with time, so we can introduce
another slow time

𝜏 = 𝜀qt (1.5)

where 𝜀 is a bookkeeping device and q is a rational number that will be chosen after-
wards. If we want to study the asymptotic solution behavior (t →∞) and 𝜀→ 0, then
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𝜏 must assume finite values. So, we assume that an approximate solution is given by

X(t) = 2𝜌(𝜏) cos(−𝜔t + 𝜃(𝜏)) = (𝜌(𝜏) exp(−i𝜔t + i𝜃) + c.c.) (1.6)

or better

X(t) = 𝜀(1+r)𝛹0 + (𝜀𝛹1 exp(−i𝜔t) + 𝜀2𝛹2 exp(−2𝜔t) + 𝜀3𝛹3 exp(−3i𝜔t) + c.c. + h.o. t.)
(1.7)

where c. c. stands for complex conjugate and h. o. t. for higher order terms.
Following this path, we are mixing the most important features of two well-known

perturbation methods, the harmonic balance and the multiple scale methods (for
more details about these two perturbation methods, see Refs. [202, 203, 249]).

If we consider a weakly nonlinear differential equation

d2X
dt

+ 𝜔2X(t) = NL (1.8)

where NL stands for the nonlinear part, for instance,

aX(t)2 + bX(t)3 (1.9)

we can insert the solution (1.7) in the nonlinear Eq. (1.8) and with some algebra
manipulation, we get for n = 0

𝜔2𝜀(1+r)𝛹0 = 2a𝜀2|𝛹 |2 (1.10)

then r = 1, for n = 2

−3𝜔2𝜀2𝛹2 = a𝜀2𝛹 2 (1.11)

and for n = 1

−2i𝜔𝜀q𝜓𝜏 = 2a(𝜀82 + r)𝛹0𝛹 + 𝜀2𝛹2(c.c.𝛹 ) + 3b𝜀2|𝛹 |2𝛹 (1.12)

then, q = 2 for the proper nonlinear term balance and with some algebra
manipulation

d𝛹
d𝜏

= iA
2𝜔

|𝛹 |2𝛹 (1.13)

where

A = 10a2

3𝜔2 + b (1.14)

d𝜌
d𝜏

= 0 d𝜃
d𝜏

= A
2𝜔

𝜌2 (1.15)

We observe that the variable change (1.5) implies that
d
dt

→ −in𝜔 + 𝜀q d
d𝜏

(1.16)

when the temporal differential operator acts on the function

𝛹n(𝜏) exp(−in𝜔t) (1.17)

From Eq. (1.10), we can see that the approximate solution is always periodic, the
amplitude is constant, but the period changes and becomes
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T = 2𝜋
𝛺

where 𝛺 = 𝜔 − A
2𝜔

𝜌2 (1.18)

However, if

b = −
(

10a2

3𝜔2

)
(1.19)

the period does not change and is equal to the linear case period.
In this chapter, we want to extend this method and study a generalized Van der

Pol–Duffing oscillator in resonance with a periodic excitation

Ẍ(t) + X(t) + f2X2(t) + f3X3(t) = g0Ẋ(t) + g1X(t)Ẋ(t) + g2X2(t)Ẋ(t) + 2F cos(𝛺t)
(1.20)

We use the asymptotic perturbation (AP) method based on Fourier expansion and
time rescaling (see above) and demonstrate through a second-order perturbation
analysis the existence of one or two limit cycles. Moreover, we identify a sufficient
condition to obtain a doubly periodic motion when a second low frequency appears,
in addition to the forcing frequency. The comparison with the solution obtained by
the numerical integration confirms the validity of our analysis.

1.2 Nonlinear Dynamical Systems

The study of nonlinear dynamical systems has interested many researchers, and var-
ious methods have been used. Historically, the AP method was first applied in order
to study the most important characteristics of a nonlocal oscillator [112, 113, 118].

We now devote our attention to the following type of nonlinear equation

Ẍ(t) + f (X(t)) = g (X(t), Ẋ(t)) (1.21)

where the dot denotes differentiation with respect to the time and the functions f (x)
and g(x, y) are supposed to be analytic.

The limit cycles of the modified Van der Pol equation

Ẍ(t) + X(t) + X3(t) = 𝜀(1 − X2(t))Ẋ(t) (1.22)

have been studied in Ref. [23] by means of a time transformation method.
Phase portraits and dynamical properties of the equation

Ẍ(t) + (𝛼 + 𝛽X2(t))Ẋ(t) + 𝛾X(t) + 𝛿X3(t) = 0 (1.23)

have been investigated with the methods of differentiable dynamics [74] and the
equation

Ẍ(t) + X(t) = 𝜀f(X(t), Ẋ(t)) (1.24)

with the method of averaging, the KBM method, the method of multiple scales, and
the Poincaré–Lindstedt method [202, 203].

Note that Eqs. (1.22)–(1.24) belong to the general class (1.21) and are characterized
by the fact that f (x) is an odd function of x.
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We restrict our study to the following particular case of Eq. (1.21)

Ẍ(t) + X(t) + f2X2(t) + f3X3(t) = g0Ẋ(t) + g1X(t)Ẋ(t) + g2X2(t)Ẋ(t) (1.25)

Eq. (1.5) can be considered a generalized Van der Pol–Duffing equation because it
includes as particular cases the Van der Pol oscillator (f 2, f 3, g1 = 0 and g0 = − g2 ≠ 0)
and the Duffing equation (f 2 = g1 = g2 = 0 and g0 = f 3 ≠ 0). Many authors have stud-
ied the problem of approximating the limit cycle of the Van der Pol equation. Stokes
[249] used the nonlinear Galerkin method and developed a series representation;
Deprit and Schmidt [47] utilized the Poincaré–Lindstedt method to find the ampli-
tude and frequency of the limit cycle; and Garcia-Magallo and Bejarano [57] consid-
ered a generalized Van der Pol equation by means of the harmonic balance method.
The steady-state behavior of the Van der Pol oscillator has also been studied by inte-
gral manifold methods and symbolic manipulation packages by Gilsinn [59, 61].
Mehri and Ghorashi [195] considered the periodically forced Duffing equation in
order to establish sufficient conditions to have a periodic solution, and Qaisi [233]
studied a similar problem using an analytical approach based on the power series
method. In a series of papers [69–71], Hassan used the higher order method of mul-
tiple scales with reconstitution and the harmonic balance method to determine the
periodic state response of the Duffing oscillator.

In our treatment of Eq. (1.25), no conditions are imposed on the coefficients f 2, f 3,
g1, and g2, which can be of order 1. Only the dissipative coefficient g0 is supposed to
be of order e2. Eq. (1.25) transforms into

Ẍ(t) + X(t) + f2X2(t) + f3X3(t) = 𝜀2g0Ẋ(t) + g1X(t)Ẋ(t) + g2X2(t)Ẋ(t) (1.26)

In the second section, we calculate the approximate solution good to the order
of 𝜀4 and construct accurate expressions for the limit cycle of Eq. (1.26). Moreover,
we demonstrate that, in the first approximation, the behavior of the solution can be
described by means of a model system of differential equations, which represents
the characteristics of Eq. (1.26) by means of a reduced set of parameters.

Usually, perturbation analysis is carried out only to the first order because, in many
cases, a second order-calculation does not change the qualitative behavior of the
solution. However, in Section 1.2, we demonstrate that if the parameters are appro-
priately chosen, we can find two limit cycles and can calculate their positions only
by a second-order perturbation analysis.

In Section 1.3, a comparison with the results of the numerical integration permits
discussion of the validity of the AP method.

In Section 1.4, we treat an extension of Eq. (1.26) that is a nonlinear oscillator
forced by a small periodic excitation, of order e2, in resonance with the natural fre-
quency of the oscillator

Ẍ(t) + X(t) + f2X2(t) + f3X3(t) = 𝜀2g0Ẋ(t) + g1X(t)Ẋ(t) + g2X2(t)Ẋ(t) + 2𝜀2f cos(t)
(1.27)

We demonstrate that, under appropriate conditions, a stable limit cycle appears
and calculate the relative approximate solution. Moreover, we derive sufficient
conditions for the existence of a doubly periodic motion when the fundamental
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oscillation is subjected to a slight modulation, with an amplitude proportional to
the magnitude of the periodic excitation.

Finally, in the last section, we briefly recapitulate the most important results and
indicate some possible generalizations of the present study.

1.3 The Approximate Solution

The AP method we use to calculate the approximate solution was first developed in
Refs. [1, 2], and then in this section, we sketch the main steps of this perturbation
technique.

First of all, we now introduce a rational number

q = rational number (1.28)

the temporal rescaling

t = eqt (1.29)

where the rational number q will be fixed afterwards because it establishes to what
extent we can push the temporal asymptotic limit in such a way that the nonlinear
effects become consistent and not negligible. If t →∞, then 𝜀→ 0, when 𝜏 assumes
a finite value.

If we take 𝜀 = 0 in Eqs. (1.26) and neglect nonlinear terms, we see that it admits
simple harmonic solutions X(t) = A exp(−it)+ c. c., where A is a constant depend-
ing on initial conditions and c. c. stands for complex conjugate. Nonlinear effects
induce a modulation of the amplitude A and the appearance of higher harmonics.
The modulation is best described in terms of the rescaled variable t that accounts for
the need to look on larger time scales, to obtain a nonnegligible contribution from
the nonlinear term.

The assumed solution X(t) of (1.26) can be expressed by means of a power series
in the expansion parameter 𝜀, we formally write

X(t) =
+∞∑

n=−∞
𝜀𝛾n𝛹n(t, 𝜀) exp(−int) (1.30a)

with 𝛾n = |n| for n≠ 0, and 𝛾0 = r is a positive number, which will be fixed later on;
in consequence of the reality of (1.30a)

𝛹n(t, 𝜀) = c.c.(𝛹(−n)(t, 𝜀)) (1.30b)

The assumed solution (1.30a) can be considered a combination of the different har-
monics, solutions of the linear equation, i.e. of the equation obtained after neglecting
all the nonlinear terms, and the coefficients of this combination depend on 𝜏 and 𝜀.

Eq. (1.30a) can be written more explicitly

X(t) = 𝜀r𝛹0(t; 𝜀) + 𝜀𝛹1(t; 𝜀) exp(−it) + 𝜀2𝛹2(t; 𝜀) exp(−2it) + 𝜀3𝛹3(t; 𝜀) exp(−3it)o(𝜀4)
(1.30c)
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The functions 𝛹n(t, 𝜀) depend on the parameter 𝜀, and we suppose that 𝛹n’s limit
for 𝜀→ 0 exists and is finite and, moreover, they can be expanded in power series of
𝜀, i.e.

𝛹n(𝜏; 𝜀) =
∞∑

i=0
𝜀i𝛹

(i)
n (𝜏) (1.31)

In the following, for simplicity, we use the abbreviations 𝛹 (0)
n = 𝛹n for n≠ 1 and

𝛹
(0)
1 = 𝛹 for n = 1.
Note that the variable change (1.29) implies that

(𝜕𝜓n exp(−int))
𝜕t

=
(
−in𝜓n + 𝜀q 𝜕𝜓n

𝜕t

)
exp(−int) (1.32)

After inserting this expansion into Eq. (1.26), we obtain equations for every har-
monic and for a fixed order of approximation, which are right for the purpose of
determining the coefficients.

For n = 0, we obtain

𝜀r𝛹0 + 2f2|𝛹 |2𝜀2 + o(𝜀4, 𝜀r+2) = 0 (1.33a)

A correct balance of terms shows r = 2, and then we derive the following relation

𝜀2𝛹0 = −2𝜀2f2(|𝛹 |2) + O(𝜀4) (1.33b)

For n = 2, taking into account Eq. (1.32), we have

−3𝜀2𝛹2 + f2𝛹
2𝜀2 = −ig1𝜀

2𝛹 2 + o(𝜀4, 𝜀2+q) (1.34a)

and then

𝜀2𝛹2 =
f2 + ig1

3
𝜀2𝛹 2 + o(𝜀4) (1.34b)

For n = 1, Eq. (1.26) yields for the right-hand side

−2i d𝛹
dt

𝜀1+q + 2f2(𝛹0𝛹𝜀3 + 𝛹2(c.c.(𝛹 ))𝜀3) + 3f3|𝛹 |2𝛹𝜀3 (1.35a)

and for the left-hand side

i𝜀3g0𝛹 − ig1(𝛹0𝛹𝜀3 + 𝛹𝛹2(c.c.𝛹 )𝜀3) − i𝜀3g2|𝛹 |2𝛹 + o(𝜀5, 𝜀1+2q) (1.35b)

If q = 2, the first term has the same magnitude order of nonlinear terms.
Taking into account Eqs. (1.33b) and (1.34b), we can derive a differential equation,

which involves only 𝛹 ,
d𝛹
dt

= 𝛼1𝛹 + (𝛽1 + i𝛽2)|𝛹 |2𝛹 (1.36)

with

𝛼1 =
g0

2
(1.37)

𝛽1 =
g2

2
−

g1f2

2
(1.38)

𝛽2 =
g2

1

6
− 3

2
f3 +

5
3

f 2
2 (1.39)
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Substituting the polar form

𝛹 (𝜏) = 𝜌(𝜏) exp(i𝜃(𝜏)) (1.40)

into Eq. (1.36), and separating real and imaginary parts, we arrive at the following
model system:

d𝜌
dt

= 𝛼1𝜌 + 𝛽1𝜌
3 (1.41)

dJ
dt

= 𝛽2𝜌
2 (1.42)

As we can see from Eqs. (1.30c), (1.31), and (1.40), the approximate solution of
Eq. (1.26) can be written as a sum of a contribution of order 𝜀 and a contribution of
order 𝜀2

X(t) = 𝜀X1(t) + 𝜀2X2(t) + o(𝜀3),
X1(t) = 2𝜌(𝜏) cos(−t + 𝜃(𝜏)),

X2(t) = −2f2𝜌
2(𝜏) + 2

3
f2𝜌

2(𝜏) cos(−2t + 2𝜃(𝜏)) + 2
3

g1𝜌
2(𝜏) sin(−2t + 2𝜃(𝜏))

(1.43)

By inspection of Eq. (1.41), which can be easily integrated, we conclude that a
stable steady-state response is possible if 𝛼1 > 0 and 𝛽1 < 0. In this case, we obtain a
stable equilibrium point, which corresponds to a stable limit cycle for Eq. (1.26), and
its approximate expression is given by (1.43), with

𝜌(t) = 𝜌E =
√

−
𝛼1

𝛽1
= constant, 𝜃(t) = 𝛽2𝜌Et (1.44)

The natural frequency of the oscillator is subject to a slight modification and
becomes

𝜔E = 𝜔 − 𝛽2𝜌E (1.45)

If we want to improve the validity of the approximate solution, we must include
higher order terms. However, we can easily conclude that 𝛹

(1)
0 = 𝛹

(1)
1 = 𝛹

(1)
2 = 0

(for their definition, see Eq. (1.31)). Indeed, we consider Eq. (1.26) for n = 0 and
Eqs. (1.33b) and (1.34a) for n = 0 and n = 2 in such a way to obtain

𝛹
(1)
0 = −2f2

(
𝛹

(1)
1 (c.c.𝛹 ) + 𝛹c.c.

(
𝛹

(1)
1

))
, 𝛹

(1)
2 = 2

3
( f2 + ig1)𝛹

(1)
1 𝛹 (1.46)

After inserting (1.26b) into (1.26a), we see that the resulting equation is satisfied
if 𝛹 (1)

1 = 0. Recall that we can always assume that the initial condition is 𝛹 (1)
1 (0) = 0,

because the initial conditions associated with equation (1.25), X(0) = X0 and
Ẋ(0) = Ẋ0, can be used to determine 𝛹 (0) = 𝜌(0) exp(i𝜃(0)).

A valid higher order approximation can be derived only if we take into account
𝛹

(2)
1 , 𝛹

(2)
2 , 𝛹

(2)
0 .

For n = 0, we derive the following relation

𝜀2𝛹0 + 𝜀4𝛹
(2)
0 =

(
(−2f2𝜀

2 + A1𝜀
4)|𝛹 |2 − 2f2𝜀

4
(
𝛹

(2)
1 (c.c.𝛹 )

+
(

c.c.𝛹 (2)
1

)
𝛹
)
+ A2𝜀

4|𝛹 |4) + h.o.t. (1.47a)
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where h. o. t = higher order terms and

A1 = g0g1, A2 = 10f3f2 −
38
9

f 3
2 + g1g2 −

11
9

f2g2
1 (1.47b)

The obvious conclusion is

𝛹
(2)
0 = (A1|𝛹 |2 + A2|𝛹 |4) − 2f2(c.c.𝛹 )𝛹 (2)

1 + 𝛹 (c.c.𝛹 )(2)1 (1.47c)

In a similar way, for n = 2, we obtain

𝛹
(2)
2 = (B1 + iB̃1)𝛹 2 + (B2 + iB̃2)|𝛹 |2𝛹 2 + 2

3
(f2 + ig1)𝛹𝛹

(2)
1 (1.48)

with

B1 = −
( 7

18
g0g1

)
, B̃1 = 2

9
f2g0 (1.49a)

B2 = − 7
18

f 32 − 5
4

f2f3 −
19
36

g1g2 +
7

18
g21 f2 (1.49b)

B̃2 = − 19
288

g3
1 −

29
12

f2g2 +
15
4

f3g1 −
15
4

f 2
2 g1 (1.49c)

If we neglect only terms of order 𝜀6 or higher, Eq. (1.33a–c) transforms into

+ 𝜀5

(
−2i

d𝛹 (2)
1

dt
+ (2f2 + ig1)

(
𝛹0𝛹

(2)
1 + 𝛹2𝛹

(2)
1

)
+ (6f3 + 2ig2)|𝛹 |2𝛹 (2)

1

+ (3f3 + ig2)𝛹 2𝛹
(2)
1 + ig0𝛹

(2)
1

)
+ 𝜀5

(
d2𝛹

d𝜏2 + (2f2 + ig1)
(
𝛹

(2)
0 𝛹 + 𝛹

(2)
2 (c.c.𝛹 ) + (2f2 + ig1)𝛹3(c.c.𝛹2)

))
+ 𝜀5 ((6f3 + 2ig2)|𝛹2|2 + (3f3 + ig2)𝛹 2

0𝛹
)

+ 𝜀5
(
(6f3 + 2ig2)𝛹2𝛹0(c.c.𝛹 ) − g0

d𝛹
d𝜏

−
g2

3
d|𝛹 |2𝛹

d𝜏

)
+ 𝜀5

(
g1

2

( (d(𝛹0𝛹 + 𝛹2(c.c.𝛹 )))
(d𝜏)

))
+ o(𝜀7) (1.50)

The term d2𝛹

dt2 in Eq. (1.50) can be eliminated taking into account that if we differ-
entiate Eq. (1.36), we have

d2𝛹

dt2 = 𝛼12𝛹 + 4𝛼1(𝛽1 + i𝛽2)|𝛹 |2𝛹 +
(
3𝛽2

1 + 4i𝛽1𝛽2 − 𝛽2
2
) |𝛹 |4𝛹 (1.51)

Moreover, from (1.50), we see that it is necessary to consider Eq. (1.26) for n = 3

𝛹3 = (C1 + iC2)𝛹 3 (1.52a)

where

C1 =
3f3 + 2f 2

2 − 24g2
1

24
,C2 =

(3g2 + 5f2g1)
24

(1.52b)

If we use the abbreviation

𝛹m = 𝛹 + e2𝛹
(2)
1 (1.53a)
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and Eq. (1.47c),(1.48), and (1.52a), then the final form of Eq. (1.46) is

d𝛹m

dt
= (𝛼1 + i𝛼2)𝛹m + (𝛽1 + 𝛽1 + i𝛽2 + i𝛽2)|𝛹m|2𝛹m + (̃g1 + ĩg2)|𝛹m|4𝛹m

(1.53b)

with

𝛼2 = −

(
𝛼2

1

2

)
+

g0𝛼1

2
(1.54)

𝛽1 =
g1

2
A1 + f2B̃1 +

g1

2
B − 1

24
g0g2

1 −
3
4

g0f3 +
5
6

g0f 2
2 (1.55)

𝛽2 =
g1

2
B̃1 − f2B1 − f2A1 −

g0g2

2
− 3

8
g0g1f2 (1.56)

�̃�1 =
g1

2
A2 + f2B̃2 +

g1

2
B2 +

11
72

g2g2
1 +

1
36

f2g3
1 +

63
18

g2f 2
2 − 35

36
g1f 3

2

−5
4

f3g2 +
21
24

g1f2f3 (1.57)

�̃�2 =
g1

2
B̃2 − f2B2 − f2A2 −

g2
2

8
−

g2g1f2

8
+ 9

8
f 3
2 + 25

18
f 4
2 − 53

6
f3f 2

2

−11
24

f3g2
1 +

7
18

g2
1f 2

2 (1.58)

and we arrive at the following modified system model
d𝜌
dt

= 𝛼1𝜌 + (𝛽1 + 𝛽1)𝜌3 + �̃�1𝜌
5 (1.59)

d𝜃
dt

= (𝛽2 + 𝛽2)𝜌2 + �̃�2𝜌
4 (1.60)

The approximate solution up to the o(e4)-th order is

X(t) = 𝜀X1(t) + 𝜀2X2(t) + 𝜀3X3(t) + 𝜀4X4(t) + o(𝜀5),

X1(t) = 2𝜌(t) cos(−t + 𝜃(t)),

X2(t) = − 2f2𝜌
2(t) + 2

3
f2𝜌

2(t) cos(−2t + 2𝜃(t)) + 2
3

g1𝜌
2(t) sin(−2t + 2𝜃(t)),

X3(t) = 2C1𝜌
3(t) cos(−3t + 3𝜃(t)) + 2C2𝜌

3(t) sin(−3t + 3𝜃(t))

X4(t) = 2D1𝜌
4(t) cos(−4t + 4𝜃(t)) + 2D2𝜌

4(t) sin(−4t + 4𝜃(t)). (1.61a)

where

D1 = 1
15

( 5
18

f 3
2 + 5

4
f2f3 −

31
9

g2
1f2 −

11
6

g1g2

)
(1.61b)

D2 = 1
15

(43
36

g1f 3
2 + 19

12
f2g2 +

3
2

f3g1 −
38
9

g3
1

)
(1.61c)

We can calculate a more accurate expression for the limit cycle, and equations
(1.44) and (1.45) become

𝜌M
E = 𝜌E

(
1 +

�̃�1𝛼1 − 𝛽1𝛽1

2𝛽2
1

)
(1.62)
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𝜔M
E = 𝜔E + 𝛼2 + 𝛽2

(
𝜌M

E
)2 + 𝛾2𝜌

4
E (1.63)

If we examine the Eq. (1.59) carefully, we can easily understand that there is the
possibility of two limit cycles and then of a qualitative change in the behavior of the
oscillator with respect to the previsions of the first-order approximation. In fact, we
suppose now that the dissipative coefficient g0 is of order e4 and g2 is chosen in such
a way that g2 − g1f 2 is of order 𝜀, then 𝛼1 (see (1.37)) and 𝛽1 (see (1.38)) are of order
𝜀4 and 𝜀2, respectively. For example, we can take g0 = 0.0001, g1 = 1, g2 = 1.01, and
f 2 = 1.

Taking into account that 𝜌 must be of order e, then all terms in (39) have the same
magnitude order and we can obtain for the equilibrium values of 𝜌 two positive roots
of order e and then two different limit cycles. Depending on the parameters, the
larger limit cycle and the origin can be asymptotically stable and the smaller unstable
or vice-versa.

By means of the variable change

t →
|̃g1|
𝛽21

t, 𝜌 →

√|||||
𝛽1

g̃1

|||||𝜌 (1.64)

which implies

𝛼1 →
|�̃�1|𝛼1

𝛽21
(1.65)

we can always set (𝛽1 + 𝛽1) = ±1, �̃�1 = ±1.
There are four distinct cases:

(i) (𝛽1 + 𝛽1) = 1, �̃�1 = 1: for 𝛼1 < 0, there is an unstable limit cycle, and for 𝛼1 > 0,
no limit cycle appears;

(ii) (𝛽1 + 𝛽1) = −1, �̃�1 = −1: for 𝛼1 < 0, there is no limit cycle, and for 𝛼1 > 0, only a
stable limit cycle appears. Note that cases (i) and (ii) are connected by a simple
temporal inversion, followed by the change of the sign of 𝛼1.

(iii) (𝛽1 + 𝛽1) = −1, �̃�1 = 1: for 𝛼1 < 0, we have a larger stable limit cycle and a
smaller unstable limit cycle; for 𝛼1 > 0, only the stable limit cycle is present
(Figure 1.1).

(iv) (𝛽1 + 𝛽1) = 1, �̃�1 = −1: for 𝛼1 < 0, there is only an unstable limit cycle and for
𝛼1 > 0, a larger unstable limit cycle and a smaller stable limit cycle are present.
Note that the last cases are also connected by a temporal inversion.

In all these cases, the origin is stable for 𝛼1 < 0 and unstable for 𝛼1 > 0.

1.4 Comparison with the Results of the Numerical
Integration

To verify our analysis, we have computed a numerical solution of (1.26), by means of
the standard Runge–Kutta method. A computer search was conducted to find these
solutions, and their periodicity was verified. We have chosen the following set of
parameters

f2 = 2, f3 = 1, g0 = 0.01, g1 = 2, g2 = −2
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0.5 0.0 0.5
Dissipation coefficient

0.3

0.6
Amplitude

Figure 1.1 Dissipation (𝛼1)–response (𝜌E ) space. Rectangles are stable limit cycles, and
crosses represent unstable limit cycles.

We expect the appearance of a stable limit cycle with amplitude 𝜌M
E = 0.035 (see

equation (42) and case (iii) of the precedent section). In Figure 1.2, we show a com-
parison between the approximate solution (41) and the numerical solution: crosses
represent the approximate solution and circles represent the numerical solution.

Only a cycle is represented, as the solution repeats itself one cycle after another.
The agreement of the results appears to be excellent because the maximum differ-
ence is 6 ⋅ 10−5 and the medium difference is 2 ⋅ 10−5, i.e. of order e5 as expected.

In Figure 1.3, we have increased the dissipation coefficient of an order of magni-
tude (g0 = 0.1), and even in this case, we expect the appearance of a stable limit cycle
with amplitude 𝜌M

E = 0.141 (see Eq. (1.42) and case (iii) of the precedent section). The
maximum difference between the approximate solution (1.61a–c) and the numerical
solution is now 5 ⋅ 10−2 and the medium difference is 2 ⋅ 10−3.

The AP method is then a valid tool to approximate solutions of nonlinear oscilla-
tors with small dissipation coefficients.

1.5 External Excitation in Resonance with the Oscillator

In this section, we consider a nonlinear oscillator in resonance with an external force
(see (1.27)). The AP method can be applied by following the same direction as in the
preceding section. We obtain

d𝛹
dt

= 𝛼1𝛹 + (𝛽1 + i𝛽2)|𝛹 |2𝛹 + i
f
2

(1.66)
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Y
0.10

0.05

–0.05

–0.10

–0.05–0.10 0.05 0.10 X

Figure 1.2 Phase space diagram (X(t), Y (t)) with Y(t) = Ẋ(t) with f 2 = 2, f 3 = 1, g0 = 0.01,
g1 = 2, and g2 = 2. Circles are the numerical solution, and crosses represent the
approximate solution.

0.4

0.2

–0.2

–0.4

–0.4 –0.2 0.2 0.4 X

Y

Figure 1.3 Phase space diagram (X(t), Y (t)) with Y(t) = Ẋ(t) and f 2 = 2, f 3 = 1, g0 = 0.1,
g1 = 2, and g2 =−2. Circles are the numerical solution and crosses represent the
approximate solution.
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and then
d𝜌
dt

= 𝛼1𝜌 + 𝛽1𝜌
3 +

f
2

sin𝜃 (1.67)

𝜌
dJ
dt

= 𝛽2𝜌
3 +

f
2

cos 𝜃 (1.68)

We can easily determine the equilibrium points and their possible stability. By
means of the variable change

t → 1|𝛼1| t, 𝜌 →

√||||𝛼1

𝛽1

||||𝜌 (1.69)

which implies

𝛽2 → |𝛽1|𝛽2, 𝛼2 → |𝛼1|𝛼2 (1.70)

we can always set 𝛼1 = ± 1, 𝛽1 = ± 1.
The equilibrium points 𝜌0 must satisfy the equation

Br3 + 2sr2 + r −
f 2

4
= 0 r = 𝜌2

0 (1.71a)

𝜃0 = arctan
(
𝛼1 + 𝛽1r

𝛽2r

)
(1.71b)

where

B = 1 + 𝛽2
2 s = 𝛼1𝛽1 = ±1 (1.71c)

Every equilibrium point of (1.71a–c) corresponds to a periodic solution of the start-
ing system (1.27), and it is easily calculated by means of the standard formulas for
the roots of a third-order equation.

The standard linearization method permits the computation of the Lyapunov
exponents relative to each equilibrium point. They are

𝜆1 = 𝛼1 + r(2𝛽1 +
√
𝛥), 𝜆2 = 𝛼1 + r(2𝛽1 −

√
𝛥) (1.72a)

where

𝛥 = 1 − 3𝛽2
2 (1.72b)

We can now follow the stationary solutions of (1.71a–c) as the amplitude of
the external force is varied, and at each step, along the curve that develops in
external force–response space, the stability of the solution of (51) is determined by
Eq. (52).

If 3B> 4, we have only an equilibrium point (Figure 1.4). If 3B< 4, s> 0, there is
only an equilibrium point (Figure 1.5).If 3B< 4, s< 0, we have one, two, or three
equilibrium points (Figure 1.6); we observe a saddle–node fold (or cyclic fold) bifur-
cation, and the solution jumps up to a larger stable orbit as the amplitude of the
external force is increased. A fold bifurcation corresponds to a vertical tangency in
the external force–response space, where the derivative of the response with respect
to the control parameter is infinite.
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Amplitude
1.0

0.5

1.0 2.0
External force

Figure 1.4 External force–response space. Circles are sources.

Amplitude
2.0

1.0

0.5 1.0
External force

Figure 1.5 External force–response space. Rectangles are sinks.
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Amplitude
2.0

1.0

0.5 1.0
External force

Figure 1.6 External force–response space. Rectangles are sinks, crosses represent saddle
points, and circles stand for sources.

We now consider the system (1.67)–(1.68) when 𝜌(t) is near (1.44). If the external
excitation is sufficiently small, we obtain

d𝜌
dt

= −2𝛼1(𝜌 − 𝜌2) +
f
2

sin(𝛺t + 𝜃0) (1.73)

with

𝜃(t) = 𝛺t + 𝜃0 (1.74a)

𝛺 =
𝛼2𝛽1 − 𝛽2𝛼1

𝛽1
(1.74b)

where 𝜃0 depends on the initial conditions.
Equation (1.85) can be easily resolved and we get

𝜌(t) = 𝜌2 + (𝜌0 − 𝜌2) exp(−2𝛼1t)

+ 𝜈
2𝛼1 sin(𝛺t + 𝜃0)−𝛺 cos(𝛺t + 𝜃0)+(−2𝛼1 sin(𝜃0)+𝛺 cos(𝜃0)) exp(−2𝛼1t)

4𝛼21 +𝛺2

(1.75)

where 𝜌0 depends on the initial conditions.
We conclude that the resulting motion is quasiperiodic, with the frequencies of 1

and Ω.
If we insert (1.74) and (1.75) into (1.43), we obtain the approximate solution up to

the O(e3)-th order.
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Y
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–0.10–0.20 0.10 0.20 X

Figure 1.7 Associated map of the nonautonomous Eq. (1.27) with f 2 = −1, f 3 = −1,
g0 = 0.02, g1 = 1, g2 = −3, and f = 3.5 ⋅ 10−4. Crosses are the approximate solution, and
circles represent the numerical solution.

In Figure 1.7, we show a comparison between the approximate solution (1.43)
and the numerical solution. We represent the associated map of the nonau-
tonomous Eq. (1.27), which is obtained with the values (X(0),Y (0)), (X(T),Y (T)),
(X(2T),Y (2T)),…, where T is the period of the external excitation. Crosses represent
the approximate solution and circles represent the numerical solution.

The closed curves reveal that the motion is quasiperiodic because of the presence
of the frequency (1.74a). The agreement of the results is excellent because the max-
imum difference is 0.0075 and the medium difference is 0.0058, i.e. of order 𝜀3 as
expected.

1.6 Conclusion

We have demonstrated the power of the AP method and how it produces useful
approximate solutions. In particular, we have treated a class of strongly nonlinear
oscillators subject to an external periodic force in resonance with the natural fre-
quency of the oscillator.

We have found bifurcations and limit cycles, which are influenced by the presence
of external excitation. In addition, we can observe a quasiperiodic motion, charac-
terized by the combination of the natural frequency with a low frequency connected
to the external excitation.
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We indicate two possible extensions of the present chapter:

(i) study of subharmonic and superharmonic resonances for the system (6), with
the observation of period-doubling bifurcations;

(ii) study of more complicated dynamical systems, such as three-dimensional sys-
tems or coupled oscillators, eventually subject to external excitations.




