
3

1

Introduction

Beginnings are hard.
—Chaim Potok

Nothing is more expensive than a start.
—Friedreich Nietzsche

We start this book with a description of how computational physics (CP) fits into the broader
field of computational science, and how CP fits into physics. We describe the subjects we
cover, the coordinated video lectures, and how the book may be used in a CP course. Finally,
we get down to business by discussing the Python language and its many packages, some
of which we’ll use. In Chapter 2 we give an introduction to Python programming, and in
Chapter 7 we examine Python’s treatment of matrices.

1.1 Computational Physics and Science

As illustrated in Figure 1.1, we view CP as a bridge that connects physics, computer science
(CS), and applied mathematics. Whereas CS studies computing for its own intrinsic inter-
est and develops the hardware and software tools that computational scientists use, and
while applied mathematics develops and studies the algorithms that computational scien-
tists use, CP focuses on using all of that to do better and new physics. Furthermore, just
as an experimentalist must understand many aspects of an experiment to ensure that her
measurements are accurate and believable, so should every physicist undertaking a com-
putation understand the CS and math well enough to ensure that her computations are
accurate and precise.

As CP has matured, we see it not only as a bridge among disciplines, but also as a specialty
containing core elements of its own, such as data-mining tools, computational methods,
and a problem-solving mindset. To us, CP’s commonality of tools and viewpoint with other
computational sciences makes it a good training ground for students, and a welcome change
from the overspecialization found in so much of physics.

As part of this book’s emphasis on problem solving, we strive to present the subjects
within a problem-solving paradigm, as illustrated on the right of Figure 1.1. Ours is a hands-
on, inquiry-based approach in which there are problems to solve, a theory or an appro-
priate model to apply, an appropriate algorithm to use, and an assessment of the results.

Computational Physics: Problem Solving with Python, Fourth Edition.
Rubin H. Landau, Manuel J. Páez, and Cristian C. Bordeianu.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.



4 1 Introduction

Scientific
truth

Scientific problem solving

Math

techniques

Physics

application

C
P

CS

hard/software SimulationTheory

Experiment

Figure 1.1 On the left a view of computational physics as a discipline encompassing physics,
applied mathematics, and computer science. On the right is a broader view of computational
physics fitting into various components of scientific problem solving.

This approach can be traced back to the post-World War II research techniques developed at
US national laboratories. They deserve the credit for extending the traditional experimental
and theoretical approaches of physics to also include simulation. Recent developments have
also introduced powerful data mining tools, such as neural networks, artificial intelligence,
and quantum computing.

1.2 This Book’s Subjects

We do not intend this book to be a scholarly exposition of the foundations of CP. Instead,
we employ a learn-by-doing approach with many exercises, problems, and ready-to-run
codes. We survey many of the subjects that constitute CP at a level appropriate for under-
graduate education, except maybe for the latter parts of some chapters. Our experience is
that many graduate students and professionals may also benefit from this survey approach
in which a basic understanding of a broad range of topics facilitates further in-depth study.

Chapters 1–8 cover basic numerics, ordinary differential equations with (many) appli-
cations, matrix computing using well-developed linear algebra libraries, and Monte-Carlo
methods. Some powerful data mining tools such as discrete Fourier transforms, wavelet
analysis, principal component analysis, and neural networks are covered in the middle of
the book.

A traditional way to view the materials in this text is in terms of their use in courses.
For a one-quarter class, we used approximately the first-third of the text, with its emphasis
on computing tool familiarity with a compiled language [CPUG, 2009]. The latter two-thirds
of the text, with its greater emphasis on physics, has typically been used in a two-quarter
(20-week) course. What with many of the topics taken from research, these materials can
easily be used for a full year’s course, and for supplementary research projects.

1.3 Video Lecture Supplements

As an extension of the concept of a “text,” we provide some 60 video lecture modules
(as in Figure 1.2) that cover almost every topic in the book. The modules were originally



1.4 This Book’s Codes and Problems 5

Figure 1.2 A screenshot from a lecture module showing a dynamic table of contents, a talking
head, video controls, a slide with live scribbling, and some old man. (Originally in Flash, now as
mpegs.)

a mix of Flash, Java, HTML, and mpeg, but with Flash no longer supported, we provide
them as mp4 videos and PDF slides. They are available on our website: https://sites.science
.oregonstate.edu/~landaur/Books/CPbook/eBook/Lectures, as well as on our YouTube
channel under Landau Computational Physics Course: https://www.youtube.com/playlist?
list=PLnWQ_pnPVzmJnp794rQXIcwJIjwy7Nb2U.

The video lectures can be used to preview or review materials, as part of an online course,
or in a blended course in which they replace some lectures, thereby freeing up time for lab
work with the instructor.

1.4 This Book’s Codes and Problems

Separate from the problems and exercises throughout the text, almost every chapter starts
off with a keynote “Problem” that leads into the various steps in computational prob-
lem solving (Figure 1.1). The additional problems and exercises distributed throughout the
chapters are essential ingredients for learning, and are meant to be worked through. This
entails studying the text, writing, debugging, and running programs, visualizing the results,
and expressing in words what has been performed, and what can be concluded. We asked
our students to write up mini lab reports containing

Equations solved Numerical method Code listing
Visualization Discussion Critique

Although we recognize that programming is a valuable skill for scientists, we also
know that it is incredibly exacting and time-consuming. In order to lighten the workload,
we provide programs for most of the problems in the text, both at the end of each chapter and
online at: sites.science.oregonstate.edu/~landaur/Books/CPbook/Codes.



6 1 Introduction

A complete list is given in the Appendix. We recommend that these codes be used as
guides for the reader when writing their own programs, or, at the least, tested and extended
to solve the problem at hand. We have been told that learning how to use someone else’s
code is a valuable workplace skill to develop; as with programs encountered in a workplace,
they should be understood before use!

1.5 Our Language: The Python Ecosystem

The codes in this edition of Computational Physics employ the computer language Python.
Previous editions have employed Java, Fortran, and C, and used post-computation tools for
visualization.1 Python’s combination of language plus packages now makes it the standard
for the explorative and interactive computing that typifies present-day scientific research.

Although valuable for research, we have also found Python to be the best language yet
for teaching and learning CP. It is free, robust (programs don’t crash), portable (programs
run without modifications on various devices), universal (available for most every com-
puter system), has a clean syntax that permits rapid learning, has dynamic typing (changes
data types automatically as needed), has high-level, built-in data types (such as complex
numbers), and built-in visualization. Furthermore, because Python is interpreted, students
can learn the language by executing and analyzing individual statements within an inter-
active shell, or within a notebook environment, or by running an entire program in one fell
swoop. Finally, it is easy to use the myriad of free Python packages supporting numerical
algorithms, state-of-the-art visualizations, as well as specialized toolkits that rival those in
Matlab and Mathematica/Maple. And did we mention, all of this is free?

Although we do not expect the readers to be programming experts, it is essential to be able
to run and modify the sample codes in this book. For learning Python, we recommend the
online tutorials [PyTut, 2023; Pguide, 2023; Plearn, 2023], the book [Langtangen, 2016], and
the many books in the “Python for Scientists and Engineers” genre. For general numerical
methods, [Press et al., 2007] is the standard, and fun to read. The NITS Digital Library of
Mathematical Functions [NIST, 2022] is a convenient reference for mathematical functions
and numerical methods.

Python has developed rapidly since its first implementation in December 1989 [History,
2022]. The rapid developments of Python have led to a succession of new versions and the
inevitable incompatibilities. The codes presented in the book are in the present standard,
Python 3. The major difference from Python 2 is the print statement:

1 >>> p r i n t ’Hello, World!’ # Python 2
>>> p r i n t (’Hello, World!’ ) # Python 3

1.6 The Easy Way: Python Distributions

The Python language plus its family of packages comprise a veritable ecosystem for com-
puting. A package, or library, or module, is a collection of related methods, or classes of

1 All of our codes, even the old ones, are available online.



1.6 The Easy Way: Python Distributions 7

methods, that are assembled and designed to work together. Inclusion of the appropriate
packages extends the language to meet the specialized needs of various science and engi-
neering disciplines [CiSE, 2015]. The Python Package Index [PyPi, 2023], a repository of
free Python packages, currently contains 425,320 projects and 7,313,641 files. In this book,
we use:

Jupyter Notebooks: A web-based, interactive Python computing environment combining
live code, type-set equations, narrative text, visualizations, and whatever. Some of our
programs (.ipynb suffix) were developed in Jupyter, and our programs using Vpython
work only within Jupyter. There is a previous edition of this text in notebook form at
sites.science.oregonstate.edu/~landaur/Books/CPbook/eBook.
The interactive Python shell, IPython can also be used within Jupyter.

Numpy (Numerical Python): A comprehensive library of mathematical functions,
random number generators, linear algebra routines, Fourier transforms, and most
everything else. Permits the use of fast, high-level multidimensional arrays (explained
in Chapter 7). The successor to both Numeric and NumArray, NumPy is used by Visual
and Matplotlib.

Matplotlib (Mathematics Plotting Library): A 2D and 3D graphics library that uses
NumPy, produces publication-quality figures in a variety of hard copy formats, and that
permits interactive graphics. Similar to Matlab’s plotting (except Matplotlib is free and
doesn’t need its license renewed yearly).

Pandas (Python Data Analysis Library): A collection of high-performance, user-
friendly data structures, and data analysis tools (used in Chapter 11).

SymPy (Symbolic Python): A system for symbolic mathematics using pure Python
(no external libraries) that provides a simple computer algebra system including
calculus, differential equations, etc. Similar to Maple or Mathematica, with the Sage
package being even more complete. Examples in Section 2.3.6.

Visual (Vpython): The Python language plus the no-longer-supported Visual graph-
ics module (superseded by GlowScript). Particularly easy for creating educational
3D demonstrations and animations. Still useful as Web Vpython and within Jupyter
Notebooks.

Although most Python packages are free, there is true value for both users and ven-
dors to distribute a collection of packages that have been engineered and tuned to work
well together, and that can be installed in one fell swoop. (This is similar to what Red Hat
and Debian distributions do for Linux.) These distributions can be thought of as complete,
Python ecosystems and are highly recommended. In particular, all you really need to do to
get started with Python computing for this book is to load:

AnaConda: A free Python distribution including more than 8000 packages for science,
mathematics, engineering, machine learning, and data analysis. Anaconda installs in its
own directory and so runs independently from other Python installations on your com-
puter. Go to https://www.anaconda.com/products/distribution to download Anaconda.
Once you install Anaconda, the Navigator should open, and it will let you choose all that
you will need.

Spyder IDE: The Scientific PYthon Development EnviRonment. An Integrated Develop-
ment Environment (IDE) with advanced editing, interactive testing of code, debugging,
and more.



8 1 Introduction

Jupyter Notebook: The Web-based interactive computing notebook environment used for
editing and running type-set-like documents, while also running Python code within the
documents. As we have already said, a notebook (.ipyn) version of an earlier edition of
this text is at sites.science.oregonstate.edu/~landaur/Books/CPbook/eBook.

Powershell Prompt: A powerful terminal that runs conda commands under the Windows
shell environments cmd.exe (Command Prompt) and powershell.exe. Apple has a Ter-
minal app where you will find a command prompt.

Conda: A package management and environment system included in Anaconda that finds,
installs, and updates packages and their dependencies for you.

In Chapter 11 we describe how to load and run Google’s TensorFlow package for machine
learning, and in Chapter 12 we describe how to load and run the Quantum Computing
packages, Cirq, IBM Quantum, and Qiskit.


