
Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 25

�

� �

�

IN DIESEM KAPITEL

Was sind Algorithmen?
..

Wie man Algorithmen klar formuliert
..

Der Pseudocode
..

Die Korrektheit von Algorithmen
..

Kapitel 1
Algorithmen

Die »bedrohliche Macht der Algorithmen« und die »finsteren Datenkraken«, die sie
nutzen, um unser Leben in ihren Griff zu bekommen, sind in aller Munde. Gemeint
sind natürlich Algorithmen zur Analyse der Daten, die jeder bei seinem Gang durchs

Leben produziert. Man mag davon halten, was man will, ein Gutes hat die Sache: Jeder hat
den Begriff Algorithmus schon einmal gehört. Doch was genau ist ein Algorithmus?

Das sind Algorithmen
Algorithmen sind Verfahren, mit denen ein Problem gelöst oder eine Aufgabe erfüllt wird.
Ein Verfahren braucht jemanden, der es ausführt. Dieser Jemand kann vielleicht nur ein
einziges Verfahren, dann ist es eine spezialisierte Maschine. Papas alte Quarzuhr aus den
Achtzigern kann zum Beispiel nichts weiter als die Zeit anzeigen und lässt sich auch nicht
umprogrammieren. Die geniale Idee der Informatik sind aber die allgemeinen Maschinen,
die Computer, die Beschreibungen beliebiger Verfahren akzeptieren und ausführen können.

Die Verfahren für Computer werden als Programme verfasst. Warum reden wir also noch
von Algorithmen und nicht gleich von Programmen? Nun, weil Programme und Algorith-
men nicht das Gleiche sind. Algorithmen sind der wesentliche Kern, der Gedanke, der durch
völlig verschiedene Programme ausgedrückt werden kann. Programme werden in Program-
miersprachen aufgeschrieben, Algorithmen meist in Pseudocode. Pseudocode ist nicht noch
eine Programmiersprache. Es ist eine Notation für Algorithmen, also eine spezielle Schreib-
weise, mit der sich Menschen besser über den Ablauf eines Verfahrens austauschen können.
Pseudocode ist eine einfache und doch klare Methode, Algorithmen aufzuschreiben, die
unabhängig von den Moden der Programmiersprachen auch noch in 20 Jahren aktuell und
lesbar sein wird wie heute.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 26

�

� �

�

26 TEIL I Grundbegriffe

In diesem Abschnitt beschäftigen wir uns darum mit folgenden Themen etwas genauer:

✔ Was genau versteht man unter einem Algorithmus?

✔ In welchem Verhältnis stehen

• Programme und Algorithmen sowie

• Funktionen und Algorithmen?

✔ Was ist Pseudocode und warum wird er verwendet?

✔ Warum spielt die mathematische Modellierung eine wichtige Rolle bei der Formulie-
rung von Algorithmen?

Algorithmen lösen Probleme
Backrezepte sind Algorithmen. Natürlich werden dabei keine Daten verarbeitet, sondern
Backzutaten. Auch wenn man bei einem Algorithmus heute an Daten denkt, so ist doch der
Begriff Algorithmus etwas allgemeiner definiert.

Ein Algorithmus ist ein

✔ wohldefiniertes,

✔ endlich beschreibbares,

✔ schrittweises

✔ Verfahren zum Lösen eines Problems oder der Erfüllung einer Aufgabe.

Bei einem Algorithmus geht es darum, dass nur Dinge formuliert werden, die wirklich mach-
bar sind und keinerlei »magische Aktionen« erfordern. Beispielsweise ist folgendes Verfah-
ren kein Algorithmus:

1. Hole einen Lottoschein.

2. Mache eine Zeitreise in die nächste Woche und beobachte, welche Zahlen gezogen
werden.

3. Trage diese in den Schein ein und

4. gib ihn im Lottobüro ab.

Die notwendige Zeitreise ist nämlich etwas, das nur von ganz besonders befähigten Perso-
nen oder Maschinen ausgeführt werden kann. Wer einen Algorithmus liest und versteht,
soll anschließend wissen, was genau er zu tun hat und wie er es tun soll. Auch das Pizza-
rezept in Abbildung 1.1 ist kein guter Algorithmus, denn auch wenn damit jeder zu einer
Pizza kommt, lässt es doch zu viele Fragen offen. Und selbst wenn man in Einzelfällen viel-
leicht darüber streiten kann, was genau »wohldefiniert« ist und was nicht – das Prinzip ist
sicher klar.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 27

�

� �

�

KAPITEL 1 Algorithmen 27

Abbildung 1.1: Dieses Backrezept erfüllt nicht die strengen Anforderungen an
gute Algorithmen.

Bei den Algorithmen, die uns in diesem Buch am meisten interessieren, werden allerdings
keine Backzutaten, sondern Daten verarbeitet. Freiheit von Magie bedeutet, dass alle
Aktionen des Algorithmus auch von einem einfachen Computer ausgeführt werden
können. Computer mit adressierbaren Speicherzellen, in denen Werte liegen, die durch
Zuweisungen und Rechenoperationen modifiziert werden können, sind die Basis für alle
solchen Algorithmen.

Jeder Algorithmus hat ein Ziel. Er soll eine Aufgabe erfüllen oder ein Problem lösen. Begin-
nen wir mal mit einer einfachen Aufgabe, die wir großspurig Summationsproblem nennen.

Problem: Summation

Eingabe: eine natürliche Zahl n

Berechne: die Summe s aller natürlichen Zahlen, die kleiner oder gleich n sind:

s =
n∑

i=1
i = 1 + 2 + · · · + n

Wollen wir die Summe bis zu einem bestimmten Wert berechnen, sagen wir bis n = 100,
dann haben wir es mit einer Instanz des Problems zu tun. Die allgemeine Fassung der Auf-
gabenstellung ist also das Problem, eine ganz spezielle Aufgabenstellung mit festgelegten
Eingabedaten ist eine Probleminstanz.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.November 2025 8:15 P.M. Page 28

�

� �

�

28 TEIL I Grundbegriffe

Probleme kann man auf verschiedene Arten lösen. Am einfachsten ist es, wenn man die
Lösung in einem Buch nachschlagen oder im Internet suchen kann. Aber das zählt hier
nicht. Unsere Methoden sollen das Problem nämlich selbst lösen.

Für das Summationsproblem gibt es zwei Verfahren, von denen zumindest das erste jeder
kennt. Entweder können wir die Zahlen, eine nach der anderen, aufaddieren. Alternativ
können wir auch die sogenannte gaußsche Summenformel anwenden (Abbildung 1.2). Ein
Problem, zwei Algorithmen, die auf unterschiedlichen Ideen zur Lösung des Problems be-
ruhen. Hier zunächst der naive Aufaddier-Algorithmus: »Nimm als Eingabe eine natürliche
Zahl n. Nun initialisiere die Summe s mit 0. Zähle anschließend alle Zahlen von 1 bis n auf
und addiere sie jeweils zu s hinzu. Gib am Ende s zurück.«

Abbildung 1.2: Die gaußsche Summenformel

Ein einfacher Algorithmus wie dieser lässt sich noch ganz gut auf Deutsch hinschreiben.
Sobald die Algorithmen aber etwas komplizierter werden – und es werden in diesem
Buch noch um einiges kompliziertere Algorithmen vorkommen –, wird es mit Pseudocode
übersichtlicher. Hier also der gleiche Algorithmus in Pseudocode:

Summation1(n) n: eine natürliche Zahl
s ← 0 beginne mit 0 als bisher berechneter Summe
s ← s + 1 addiere 1 zur Summe s
if n = 1 wenn n = 1 ist,

return s fertig
s ← s + 2 addiere 2 zur Summe s
if n = 2 wenn n = 2 ist,

return s fertig

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 29

�

� �

�

KAPITEL 1 Algorithmen 29

s ← s + 3 addiere 3 zur Summe s
if n = 3 wenn n = 3 ist,

return s fertig
s ← s + 4 addiere 4 zur Summe s
if n = 4 wenn n = 4 ist,

return s fertig
... und so weiter, und so weiter

Die drei Pünktchen »...« sollen andeuten, dass der Pseudocode immer weiter und weiter
und weiter geht. Schließlich kann das n beliebig groß sein. Aber Moment mal, das ist ja
blöd, denn ein Algorithmus soll schließlich endlich beschreibbar sein! Wenn man einen un-
endlich langen Text braucht, um den Algorithmus aufzuschreiben – dann ist das überhaupt
kein Algorithmus. Zugegeben: Wir haben auch keinen unendlich langen Text hingeschrie-
ben (sonst wäre das Buch ja viel zu dick geworden), sondern ihn mit »...« abgekürzt. Diese
drei Punkte sind allerdings ein wenig ungenau, denn es wird ja nicht direkt gesagt, was wie-
derholt werden soll. Wenn man den Algorithmus verstehen will, muss man im Abschnitt
vor den drei Punkten nach einem wiederkehrenden Muster suchen. In diesem Fall wäre das
zum Beispiel: »Die Zahl, die zu s addiert wird, wird jedes mal um 1 größer, und anschließend
vergleicht man n auch immer mit dieser um 1 größeren Zahl«. Ein solcher Interpretations-
bedarf ist aber umständlich, und darum wollen wir hier lieber eine Schreibweise verwenden,
die explizit, also klipp und klar sagt, was genau zu tun ist:

Summation1(n) n: eine natürliche Zahl
s ← 0 beginne mit 0 als bisher berechneter Summe
for i ← 1, ..., n nimm jede Zahl i von 1 bis n

s ← s + i und addiere sie zur bisher berechneten Summe
return s fertig

Das ist immer noch der gleiche Algorithmus Summation1 wie oben, nur deutlicher hin-
geschrieben. Was die ganzen Zeichen wie der Pfeil ← oder Wörter wie for und return
bedeuten, werden wir etwas später noch genauer sagen. Nun erst einmal zur alternativen
Methode mit gaußscher Summenformel:

Summation2(n)
s ← n⋅(n+1)

2
berechne die Summe mit der gaußschen Formel

return s fertig

Bei der Summation handelt es sich um ein Berechnungsproblem, bei dem aus Eingabedaten
Ausgabedaten berechnet werden. Wenn man nur eine Ja-/Nein-Antwort haben will, dann
handelt es sich um ein Entscheidungsproblem, und wenn man die beste unter vielen mögli-
chen Lösungen benötigt, dann hat man es mit einem Optimierungsproblem zu tun.

Die Lösung, die ein Algorithmus zu einer Instanz des Problems liefert, muss natürlich kor-
rekt sein. Beim einfachen Aufaddieren ist die Korrektheit offensichtlich. Die Formel liefert
ebenfalls das korrekte Ergebnis. Das ist nicht ganz so offensichtlich, aber mit etwas Nach-
denken oder der Hilfe von Wikipedia kann man sich davon überzeugen.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 30

�

� �

�

30 TEIL I Grundbegriffe

Fassen wir zusammen:

Ein Algorithmus ist ein Verfahren zur Lösung eines Problems. Es gibt verschiede-
ne Arten von Problemen:

✔ Berechnungsprobleme,

✔ Entscheidungsprobleme und

✔ Optimierungsprobleme.

Eine Probleminstanz ist ein Problem für ganz bestimmte Eingabedaten.

Algorithmen basieren auf einem
einfachen Maschinenmodell
Am Beginn der Informatik standen folgende Fragen aus dem Bereich der Grundlagenfor-
schung in Mathematik und Informatik: Was darf man denn überhaupt hinschreiben, wenn
man eine Berechnung definiert? Welche Rechnungen können tatsächlich ausgeführt wer-
den? Was also ist überhaupt »rechenbar«? Daraus ist die Theorie der Berechenbarkeit ent-
standen. Am Schluss war man sich einig, dass etwas »rechenbar« ist, wenn es von einer wohl-
definierten einfachen Maschine ausgeführt werden kann. Von allen Maschinenmodellen ist
die Turingmaschine (Abbildung 1.3) wohl die bekannteste. Sie besteht aus einem einfachen
Steuerautomaten, der sozusagen das Programm der Maschine beinhaltet, und hat darüber
hinaus ein unbegrenzt langes Speicherband, in dem Buchstaben aus einem endlichen Alpha-
bet gespeichert werden können. Mit einem Schreib-/Lesekopf kann die Turingmaschine in
jedem Schritt eine Zelle des Speicherbands auslesen und verändern und anschließend darf
sie den Schreib-/Lesekopf um ein Feld nach links oder rechts bewegen. Das ist also eine
denkbar einfache Maschine, die jedoch erstaunlich vielseitig ist.

Manch andere Maschinen sind eingeschränkter und man kann weniger mit ihnen berechnen
als mit einer Turingmaschine. Nimmt man der Turingmaschine beispielsweise ihr Speicher-
band weg, sodass sie nur noch ein endlicher Automat ist, verliert sie deutlich an Möglichkei-
ten. Andere Maschinenmodelle hingegen können genauso viel wie die Turingmaschine, sie
sind Turing-vollständig. Es gibt die unterschiedlichsten Turing-vollständigen Maschinen-
modelle, die nach sehr verschiedenen Prinzipien funktionieren, aber wenn die eine Maschi-
ne ans Ziel kommt, dann schaffen das die anderen auch immer irgendwie.

Für die Theorie der Algorithmen verwendet man meist die sogenannte Random Access Ma-
chine (RAM), was auf Deutsch mit »Maschine mit wahlfreiem Speicherzugriff« übersetzt
werden könnte. Das ist ein einfacher hypothetischer Computer mit einer unbegrenzten Zahl
an adressierbaren Speicherstellen, auf dem Programme mit Zuweisungen und den üblichen
Kontrollanweisungen ablaufen können. Das Gute an der RAM: Sie ist den heute üblichen
Computern hinreichend ähnlich, sodass jeder mit ein wenig Programmiererfahrung sofort
ein Gefühl dafür hat, was für die RAM eine »elementare« Operation sein könnte und was
nicht. Wie reale Computer ist sie außerdem Turing-vollständig und eignet sich damit aus-
gezeichnet als Grundlage für Algorithmen. In Pseudocode soll alles erlaubt sein, was in
Aktionen einer RAM übersetzt werden kann.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 31

�

� �

�

KAPITEL 1 Algorithmen 31

Abbildung 1.3: Turingmaschine und RAM sind zwei Maschinenmodelle.

Die RAM hat folgende Fähigkeiten:

✔ Sie hat Speicherstellen für beliebige endliche Daten.

✔ Diese können mit Zuweisungen und den üblichen arithmetischen Operationen mani-
puliert werden.

Daneben kann die RAM auch Kontrollanweisungen ausführen, nämlich

✔ bedingte Anweisungen,

✔ Schleifen sowie

✔ (rekursive) Funktions- und Prozedurdefinitionen.

Im Zweifelsfall müsste noch spezifiziert werden, welche Operationen im Detail zur
Verfügung stehen. Reelle Zahlen sind beispielsweise nicht mit endlichem Speicher exakt
darstellbar, sie gehören darum nicht zu den elementaren Daten der RAM. Wenn das

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 32

�

� �

�

32 TEIL I Grundbegriffe

von Relevanz ist, dann muss zum Algorithmus angegeben werden, wie genau die Zahlen
angenähert dargestellt werden und welche Operationen mit wie vielen Schritten diese
Zahlen verarbeiten. Ist es irrelevant, dann wird das Thema ignoriert.

Algorithmen sind bewertbar
Wenn man nicht gerade ein Lehrer ist, der mal seine Ruhe haben will und seine Schüler
dazu mit Rechenarbeiten beschäftigt hält, dann ist die zweite Methode der Summation, die
mit der gaußschen Formel, natürlich die bessere. Statt wie Summation1 n − 1 Additionen
zu benötigen, wird von Summation2 die Summe von 1 bis n mit nur einer Addition, einer
Multiplikation und einer Division berechnet.

Wir haben gerade die Effizienz der beiden Algorithmen bewertet. Genauer gesagt die
Laufzeit-Effizienz. Dabei geht es darum, wie viele elementare Rechenschritte ein Algorith-
mus ausführen muss, um das Problem zu lösen. Die Zahl der Rechenschritte hängt in der
Regel von der Eingabe ab. Für ein großes n werden bei der ersten Summationsmethode
mehr Rechenschritte benötigt als bei einem kleinen n. Die Zahl der Rechenschritte bei der
Anwendung der gaußschen Formel ist dagegen unabhängig von der Eingabe. Allerdings ist
für sehr kleines n wie zum Beispiel n = 2 die Berechnung der Summe mit der gaußschen
Formel

s = 2 ⋅ (2 + 1)
2

= 3

sicher weniger effizient als das einfache Aufaddieren

s = 1 + 2 = 3

Um solche Ausreißer zu vermeiden, lässt man kleine Werte darum bei der Bewertung der
Effizienz eines Algorithmus außer Acht.

Die Laufzeit-Effizienz eines Algorithmus sagt etwas darüber aus, wie die Zahl
der Rechenschritte, die der Algorithmus für eine bestimmte Eingabe ausführt,
von deren Größe abhängt. Mehr darüber erfahren Sie in Kapitel 2.

Fassen wir zusammen:

Ein Problem kann oft von mehreren unterschiedlichen Algorithmen gelöst wer-
den, die sich in ihrer Effizienz unterscheiden. Die Laufzeiteffizienz ist das wich-
tigste Effizienzkriterium. Sie gibt an, wie viele Rechenschritte ein Algorithmus
bei der Ausführung benötigt.

Algorithmen agieren in Modellwelten
Im Prinzip kann ein Algorithmus mit beliebigen Dingen umgehen. Ein Kochrezept ist ein Al-
gorithmus, der mit Kochzutaten arbeitet. Wir betrachten aber nur Algorithmen, die Daten
verarbeiten. Natürlich stammen die Daten meist aus der realen Welt und die vom Algorith-
mus berechneten Daten wirken auch wieder auf die reale Welt ein.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 33

�

� �

�

KAPITEL 1 Algorithmen 33

Ein Programm, das den kürzesten Weg zwischen zwei Orten sucht, läuft nicht in der Ge-
gend herum, sondern arbeitet mit Daten, welche die Landschaft repräsentieren. Die digitale
Version einer Landkarte enthält viele Informationen, von denen nur manche für das aktuel-
le Problem relevant sind. Bei dem Problem des kürzesten Weges sind das beispielsweise die
Orte und Wege, die sie verbinden, und deren jeweilige Länge.

Ein Algorithmus zur Wegfindung wird so formuliert, dass er nur die auf das Wesentliche
konzentrierten Informationen als Eingabe hat. Bei der Wegfindung ist das ein Graph: Objek-
te und ihre mit einer Bewertung versehen Verbindungen. In der Welt der Algorithmen und
Datenstrukturen verwendet man gerne Konzepte aus der diskreten Mathematik: Mengen,
Relationen, Graphen. Damit können die wesentlichen Informationen einer Problemstellung
und deren Lösung leicht und übersichtlich zum Ausdruck gebracht werden.

Ein Programm, das mit einer bestimmte Form einer digitalen Landkarte arbeitet, muss
natürlich mit den Daten in der konkreten Form arbeiten, in der sie zur Verfügung stehen.
Das können Tabellen einer Datenbank sein, Klassen und Objekte einer objektorientierten
Programmiersprache und vieles mehr. Ein Algorithmus löst das Problem in der mathema-
tischen Modellwelt. Das ist sozusagen die »Zeichnung« der Lösung. Wird der Algorithmus
in einer bestimmten Programmiersprache implementiert, dann transferiert man die
Aktionen des Algorithmus auf »mathematischen Objekten« in Aktionen des Programms
auf konkreten Daten (Abbildung 1.4).

Abbildung 1.4: Algorithmen und Programme in Modellwelten

Algorithmen sind keine Programme
Ein Algorithmus ist ein Verfahren zur Lösung eines Problems, bei dem man sich auf das
Wesentliche konzentriert: Welche relevanten Informationen werden mit welchen elemen-
taren Schritten in eine Lösung transformiert? Das ist wie eine Melodie, die man singen oder
auf diversen Musikinstrumenten spielen kann. Unterschiedlich, aber irgendwie doch immer
das erkennbar Gleiche.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 34

�

� �

�

34 TEIL I Grundbegriffe

Pseudocode entspricht der Notenschrift, in der das Wesentliche aufgeschrieben wird:
knapp, klar und unabhängig von bestimmten Instrumenten. Ein Programm ist etwas, das
ein Prozessor ausführen kann, zum Beispiel eine bestimmte synaptische Struktur im Gehirn
eines Sängers, eine Rille in einer Schallplatte, Nullen und Einsen in einer MP3-Datei und
so weiter. Bei einer Ausführung beziehungsweise Aufführung wird das Programm vom
Prozessor abgearbeitet (Abbildung 1.5). Die Musik ertönt entsprechend der Melodie, und
wenn die Noten nicht verloren gehen, wird sie noch genauso zum Klingen gebracht werden
können, wenn jede Erinnerung an Schallplatten und MP3-Dateien vergangen ist.

Abbildung 1.5: Ein Algorithmus und drei ausführbare Programme, die ihn implementieren

Programme und Algorithmen sind also unterschiedliche Dinge. Eine Programmiersprache
hat auch viel mehr zu leisten, als nur eine Notation für die Ausführung von Algorithmen zu
sein. Sie muss

✔ in effizienten Maschinencode übersetzbar oder von einem Interpreter ausführbar sein,

✔ von ihren Anwendern effektiv zu nutzen sein und

✔ bestimmten softwaretechnischen Anforderungen genügen.

Programmiersprachen haben immer ein exakt definiertes beschränktes und festes Reper-
toire an Ausdrucksmitteln. Dazu gehört vieles, das nicht direkt mit Algorithmen zu tun hat.
Manche legen Wert darauf, dass die Sprache mit wenig Mühe schnell erlernbar ist, andere
dass sie in einem bestimmten Anwendungsgebiet besonders effektives Arbeiten ermöglicht
oder dass sie die Konstruktion von Anwendungen mit hunderttausenden von Zeilen Quell-
code effektiv unterstützt etc.

Diese Ziele widersprechen sich teilweise. Um sie zu erreichen, gibt es diverse Ebenen, auf
denen sich die Programmierer bewegen können, und eine mehr oder weniger umfangrei-
che Sammlung von Konzepten zur Modularisierung und Abstraktion: Klassen, Funktionen,
Pakete, generische Klassen, Module, was auch immer. All das unterliegt nicht nur dem ak-
tuellen Zeitgeist, der mal hierhin und mal dahin weht. Es unterscheidet sich auch drastisch
von Sprache zu Sprache je nach deren Einsatzgebiet, vermuteter Kompetenz der Entwickler
und so weiter.

All dies ist sehr wichtig, lenkt aber hier nur vom eigentlichen Kern der Dinge, dem Algo-
rithmus, ab.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 35

�

� �

�

KAPITEL 1 Algorithmen 35

Algorithmen klar beschreiben
Algorithmen werden oft in Pseudocode beschrieben. Pseudocode ist für Menschen gemacht.
Er darf darum deren Kreativität ausschöpfen. Alles Magische ist verboten, alles andere prin-
zipiell erlaubt. Magisch ist das, was sich nicht in Aktionen der RAM ausdrücken lässt. Im
Sinne einer guten Lesbarkeit und Präzision versucht man in der Regel alles möglichst formal
hinzuschreiben. Unter guten Freunden darf man aber auch manchmal etwas vage bleiben
und einzelne Schritte zum Beispiel auf Deutsch beschreiben. Es muss aber immer klar sein,
wie diese Notation in zählbare Aktionen auf der RAM umgesetzt werden kann.

Sprechen Sie Pseudocode?
Der Sprachumfang des Pseudocodes muss nicht bis ins Detail formal definiert werden, denn
es handelt sich ja nicht um eine Programmiersprache, sondern um ein Kommunikationsme-
dium, mit dem sich Menschen über Algorithmen austauschen. Wir wollen trotzdem einmal
die wichtigsten »Sprachelemente« durchgehen und uns darüber verständigen, was wir damit
meinen.

In diesem Buch wird ein Pseudocode benutzt, der weithin übliche Sprachelemente benutzt
und vielleicht ein wenig an die Programmiersprache Python erinnert. Anweisungsblöcke in
einer Schleife oder solche, die in einer if-Anweisung ausgeführt werden, werden durch eine
gemeinsame Einrückung nach rechts gekennzeichnet, enden also da, wo die Anweisungen
nicht mehr rechts eingerückt sind.

Algorithmen
Algorithmen im Pseudocode entsprechen grob den Funktionen, Prozeduren oder Metho-
den in den Programmiersprachen. Jeder Algorithmus beginnt zunächst mit seinem Namen
gefolgt von einer Liste an Eingabeparametern in runden Klammern:

Algo(n) Algo ist ein Algorithmus, der n als Eingabe bekommt

Die gleiche Notation verwenden wir beim Aufruf eines Algorithmus.

Variablen und Zuweisungen
Variablen dienen zum Speichern von Daten aller Art. Sie ändern ihren Wert durch eine
Zuweisung. Wir verwenden für Zuweisungen nicht wie oft üblich ein Gleichheitszeichen,
sondern einen Pfeil:

i ← 17 die Variable i wird auf den Wert 17 gesetzt
j ← i + 1 j ist nun 18, i bleibt 17

Das Gleichheitszeichen »=« reservieren wir für Vergleiche.

Variablen sind in der Regel lokal, das heißt, sie gelten nur innerhalb des aktuellen Aufrufs
des Algorithmus. Das ist insbesondere bei rekursiven Algorithmen nützlich.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 36

�

� �

�

36 TEIL I Grundbegriffe

Schleifen
Bei einer Schleife wird ein Anweisungsblock mehrfach ausgeführt. Wir verwenden zwei un-
terschiedliche Arten von Schleifen, die for- und die while-Schleife.

Bei der for-Schleife wird eine Variable nacheinander auf eine Reihe von Werten gesetzt und
dann jeweils ein Anweisungsblock ausgeführt:

for i ← 1, ..., 17 i wird nacheinander auf 1, 2, ..., 17 gesetzt ...
Algo(i) ... und für jedes i der Algorithmus Algo aufgerufen

Algo(100) diese Zeile wird erst nach der Schleife ausgeführt

Bei der while-Schleife wird zunächst eine Bedingung geprüft und im Fall, dass diese erfüllt
ist, ein Anweisungsblock ausgeführt. Dies wird so lange wiederholt, bis die Bedingung zum
ersten Mal nicht erfüllt wurde:

i ← 1 die Variable i wird auf den Wert 1 gesetzt
while i ≤ 17 solange i ≤ 17 ist ...

Algo(i) ... rufe Algo mit i als Parameter auf ...
i ← i + 1 ... und erhöhe i um 1

Algo(100) diese Zeile wird erst ausgeführt, wenn i > 17 ist.

Bedingte Anweisungen
Mit if wird eine Bedingung geprüft, und wenn sie erfüllt ist, wird ein Anweisungsblock
ausgeführt:

if i ≥ 17 wenn i ≥ 17 ist, ...
Algo(i) ... rufe den Algorithmus Algo mit i als Parameter auf

Folgt nach einem if ein else, so wird der nachfolgende Anweisungsblock ausgeführt, wenn
die Bedingung der vorangegangenen if-Anweisung nicht erfüllt war:

if i ≥ 17 wenn i ≥ 17 ist, ...
Algo(i) ... rufe den Algorithmus Algo mit i als Parameter auf

else ansonsten, also wenn i < 17 ist, ...
Algo(100) ... rufe den Algorithmus Algo mit Parameter 100 auf

Sonstiges
Mit break verlässt man die aktuelle Schleife.

Mit return beendet man den aktuellen Aufruf eines Algorithmus. Dabei kann man optional
auch noch einen Rückgabewert für den aufrufenden Algorithmus zurückgeben.

Weitere Sprachelemente werden bei der Diskussion der Datenstrukturen in den
Kapiteln 3 bis 6 eingeführt.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 37

�

� �

�

KAPITEL 1 Algorithmen 37

Mathematische Ausdrücke sind erlaubt
Im Pseudocode verwenden wir viele Elemente der üblichen mathematischen Notation. Wir
nutzen zum Beispiel Mengendefinitionen, bei denen man nicht jedes einzelne Element auf-
zählt, sondern die Elemente der Menge über eine Eigenschaft bestimmt. Wenn M zum
Beispiel eine Menge ist, können wir Folgendes schreiben:

a ← {x ∈ M | x ist gerade} a ist die Menge aller geraden Zahlen in M

Entsprechendes kann man auch für geordnete Folgen L definieren, nur dann mit eckigen
statt geschweiften Klammern:

b ← [x ∈ L | x ist gerade] b ist eine Liste, die alle geraden Zahlen aus L enthält

Derartige Konstrukte erleichtern die Formulierung von Algorithmen enorm. Sie werden von
vielen modernen Programmiersprachen unterstützt (leider nicht von Java) und dort zum
Beispiel For-Comprehension genannt.

Wenn man mag, kann man es auch noch weitertreiben und zum Beispiel noch ein Summen-
zeichen davor schreiben:

s ←
∑

{x ∈ M | x ist gerade} s ist die Summe aller geraden Zahlen in M

Das ist deshalb kein Problem, weil jeder Leser des Pseudocodes sofort weiß, wie er das in
»normalen« Pseudocode umsetzen kann, nämlich zum Beispiel so:

s ← 0 s auf 0 initialisieren
for x ← M alle Elemente in M durchlaufen

if x ist gerade sobald eine gerade Zahl x gefunden wurde, ...
s ← s + x ... wird sie zu s addiert

Die Regel lautet immer: Alles ist erlaubt, solange jeder versteht, was gemeint ist und wie
man es in elementare Operationen des Maschinenmodells (also zum Beispiel der RAM)
umsetzen kann.

Algorithmen sprechen sogar Deutsch
Wenn man möchte, darf man im Pseudocode sogar einfach die deutsche Sprache verwen-
den, wie wir das zum Beispiel gerade mit dem Ausdruck »x ist gerade« getan haben. Das
ist vollkommen in Ordnung, solange jedem im Prinzip klar ist, wie man auf der RAM prüfen
kann, ob eine Zahl gerade oder ungerade ist. Bei Bedarf kann man das natürlich weiter aus-
formulieren, zum Beispiel mit »x modulo 2 = 0«. Dabei gehen wir davon aus, dass für
die RAM wie für alle gängigen Computer die Operation modulo zu den Basisoperationen
gehört, so dass sie den Rest einer Division zweier ganzen Zahlen berechnen kann.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 38

�

� �

�

38 TEIL I Grundbegriffe

Wenn man es eilig hat und in einem Algorithmus die Summe aller geraden Zahlen in einer
Menge M benötigt, so könnte man das im Pseudocode auch einfach so schreiben:

s ← die Summe aller geraden Zahlen in M

Aber Vorsicht: Im Zweifelsfall müssen Sie immer in der Lage sein, das genauer zu erklären,
es also bis auf elementare Operationen einer RAM herunterzubrechen. Nachdem wir im
vorangegangenen Abschnitt ausführlich darüber geredet haben, sollte das nun ja auch kein
Problem mehr sein.

Algorithmen sind Lösungen, keine Probleme
Wenn wir mathematische Definitionen oder sogar deutsche Sätze in unsere Algorithmen
einbauen, müssen wir allerdings aufpassen, dass am Ende auch wirklich ein Algorithmus
dabei herauskommt. Ein Algorithmus ist ein Verfahren zum Lösen eines Problems, nicht
das Problem selbst. Mathematiker haben zum Beispiel keine Hemmungen, Mengen zu de-
finieren, von denen niemand weiß, wie man sie tatsächlich berechnen könnte. Bei manchen
mathematischen Mengen kann man sogar beweisen, dass man sie gar nicht berechnen kann.
Im Abschnitt Das Halteproblem ist unlösbar werden Sie eine solche Menge kennenlernen.
Ein Problem bloß zu definieren, ist also etwas ganz anderes, als es auch zu lösen.

Lassen Sie uns dazu eine Aufgabe betrachten, die schon die Landvermesser im alten
Ägypten zu lösen hatten, nämlich der Suche nach dem größten gemeinsamen Teiler zweier
natürlicher Zahlen, also zweier Zahlen aus der Menge ℕ = {1, 2, 3, ...}:

Problem: Größter Gemeinsamer Teiler (GGT)

Eingabe: zwei natürliche Zahlen n und m

Berechne: die größte natürliche Zahl t, die sowohl ein Teiler von n als auch von m ist

Man könnte versuchen, das Problem auf folgende Weise zu lösen:

GGT1(n, m) n und m seien natürliche Zahlen
t ← max{x ∈ ℕ | x teilt n und x teilt m} berechne den GGT
return t

Lassen Sie uns der Klarheit halber die Menge noch einmal in Form einer Schleife ausformu-
lieren:

GGT1(n, m) n und m seien natürliche Zahlen
t ← 1 1 ist ein gemeinsamer Teiler von n und m
for x ← ℕ durchlaufe alle Zahlen aus ℕ in aufsteigender Reihenfolge

if x teilt n und x teilt m wenn x gemeinsamer Teiler von n und m ist, ...
t ← x ... merke dir x

return t

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.November 2025 8:15 P.M. Page 39

�

� �

�

KAPITEL 1 Algorithmen 39

Das ist der gleiche Algorithmus, nur anders hingeschrieben. Allerdings gibt es ein Problem:
Es gibt unendlich viele natürliche Zahlen, also wird die for-Schleife niemals damit fertig, sie
aufzuzählen. Der Algorithmus ist in einer unendlichen Schleife gefangen, umgangssprach-
lich ausgedrückt: Er hängt sich auf .

Dass sich Algorithmen »aufhängen« können, wird uns gleich noch ausführlich beschäftigen.
Zum Glück kann man den Algorithmus leicht retten: Alle Zahlen größer als n sind keine
Teiler von n, und alle Zahlen größer als m keine Teiler von m. Der GGT muss also sowohl
≤ n also auch ≤ m bleiben, das heißt, es reicht aus, die Schleife bis zum Minimum von m
und n laufen zu lassen:

GGT2(n, m) n und m seien natürliche Zahlen
t ← 1 1 ist ein gemeinsamer Teiler von n und m
for x ← 2, ..., min(n, m) durchlaufe alle Zahlen von 2 bis min(n, m)

if x teilt n und x teilt m wenn x gemeinsamer Teiler von n und m ist, ...
t ← x ... merke dir x

return t

Das können wir dann auch wieder verkürzt als mathematische Menge formulieren und wie
folgt hinschreiben:

GGT2(m, n) n und m seien natürliche Zahlen
g ← min(n, m) g sei das Minimum von n und m
t ← max{x ∈ {1, ..., g} | x teilt n und x teilt m} berechne den GGT

return t

Das ist zwar nicht der schnellste Weg zur Berechnung des GGT, aber immerhin eine Mög-
lichkeit.

Algorithmen haben zählbare Schritte
Wenn wir später Algorithmen miteinander vergleichen wollen, so sollte exakt bestimmbar
sein, wie viele elementare Schritte ein Algorithmus benötigt, wenn man ihn auf einer Ein-
gabe einer gegebenen Größe ausführt. Die Laufzeit des Algorithmus GGT2 zur Berechnung
des größten gemeinsamen Teilers wird zum Beispiel entscheidend vom Minimum der bei-
den Eingabewerte n und m beeinflusst: Bis zu diesem Wert läuft die Schleife.

In jedem Schleifendurchlauf des Algorithmus wird eine Zahl x daraufhin geprüft, ob sie
ein Teiler von n und m ist. Diese Prüfung kann natürlich auch auf unterschiedliche Arten
erfolgen. Man könnte beispielsweise x so lange von m beziehungsweise n subtrahieren, bis
das Ergebnis 0 oder eine Zahl kleiner 0 ist. Endet man bei 0, dann ist x ein Teiler, ansonsten
nicht. Damit hat unser Algorithmus dann die folgende Definition:

GGT3(n, m) n und m seien natürliche Zahlen
t ← 1 1 ist ein gemeinsamer Teiler von n und m
for x ← 2, ..., min(n, m) durchlaufe alle Zahlen von 2 bis min(n, m)

if isDivisor(x, m) und isDivisor(x, n) wenn x Teiler von n und m ist, ...
t ← x ... merke dir x

return t

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.November 2025 8:15 P.M. Page 40

�

� �

�

40 TEIL I Grundbegriffe

isDivisor(x, z) prüft, ob x ein Teiler von z ist
while z > 0 solange noch z größer als 0 ist, ...

z ← z − x ... ziehe x von z ab
return (z = 0) wenn am Ende z = 0 ist, war z am Anfang

durch x teilbar, sonst nicht

Natürlich braucht ein Algorithmus, der die Teilbarkeit in einem Schritt bestimmen kann,
weniger Schritte als einer, der für jeden Test eine Schleife laufen lassen muss. Die meisten
modernen Prozessoren unterstützen die Modulo-Operation »n modulo x«, die den Rest
einer ganzzahligen Division von n geteilt durch x berechnet. In vielen Programmiersprachen
wird diese Operation mit einem %-Zeichen geschrieben, andere schreiben dafür mod. Ist
dieser Rest gleich 0, so ist n offenbar durch x teilbar; ist der Rest hingegen ungleich 0, so ist n
nicht durch x teilbar. Dieser Test geht schnell, in einem einzigen Schritt. Es ist darum legitim
anzunehmen, dass der Test auf Teilbarkeit unabhängig von der Größe der involvierten Werte
ist. Wir unterstellen unserer RAM einfach die entsprechende Fähigkeit.

Wenn der Algorithmus andererseits auf einer Maschine läuft, bei der dies nicht gegeben
ist, dann sieht die Sache völlig anders aus. Die Berechnung kann dann unter Umständen
nicht mehr in einem Schritt erfolgen, sondern benötigt zum Beispiel eine Extraschleife, de-
ren Laufzeit von x und n abhängt. In diesem Fall sollte man das bei der Beschreibung des
Algorithmus auch dringend so hinschreiben, damit niemand auf die irrige Idee kommt, dass
die Teilbarkeit eine elementare Operation des hinter dem Algorithmus stehenden Maschi-
nenmodells ist.

Mehr über die Abschätzung und den Vergleich der Laufzeiten von Algorithmen
finden Sie in Kapitel 2.

Algorithmen sollten korrekt sein
Wenn Sie sich einen Algorithmus ausdenken und hinschreiben, dann möchten Sie natürlich
auch, dass er korrekt ist. Er soll genau das tun, was Sie von ihm wollen, und zwar bei jeder
zulässigen Eingabe. Wie aber kann man dafür sorgen, dass ein Algorithmus tatsächlich so
funktioniert, wie man sich das wünscht?

Die kurze Antwort auf diese Frage: Dafür gibt es kein Patentrezept. Algorithmen können im
Allgemeinen nämlich ziemlich schwer zu durchschauen sein.

Betrachten Sie zum Beispiel einmal den folgenden unbekannten Algorithmus, und
überlegen Sie, was er berechnet, wenn man ihm zwei natürliche Zahlen x und y übergibt:

Riddle(n, m) n und m seien zwei natürliche Zahlen
x ← n
y ← m
p ← 0

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 41

�

� �

�

KAPITEL 1 Algorithmen 41

while x ≥ 1
if x ist gerade

x ← x
2

else
p ← p + y
x ← x−1

2
y ← 2 ⋅ y

return p

Am besten setzen Sie einfach ein paar Zahlen für n und m ein, finden heraus, was Riddle
bei diesen Eingaben berechnet, und stellen anschließend eine Hypothese darüber auf, was
der Algorithmus wohl berechnen könnte. Die Auflösung des Rätsels finden Sie im Abschnitt
Die Lösung des Rätsels.

Algorithmen können sich aufhängen
Algorithmen sollten sich möglichst nicht »aufhängen«, also keine unendliche Laufzeit ha-
ben, weil sie sich zum Beispiel in einer unendlichen Schleife verfangen haben. Wenn sich ein
Algorithmus einfach aufhängt, brauchen wir über seine Korrektheit gar nicht mehr nach-
zudenken. Ein Ausdruck wie

t ← max{x ∈ ℕ | x teilt n und x teilt m}

ist darum nicht erlaubt. Deswegen hängt sich der Algorithmus GGT1 im Abschnitt Algo-
rithmen sind Lösungen, keine Probleme ja auch auf.

Im Fall einer Mengennotation, die ja letztlich nur eine verkürzte Schreibweise für eine
for-Schleife ist, kann man das auch sehr gut erkennen und vermeiden, denn bei einer
for-Schleife sieht man ja von Anfang an, wie oft die Schleife durchlaufen wird. Schwieriger
wird das bei while-Schleifen oder auch bei rekursiven Algorithmen, also Algorithmen, die
sich wiederholt selbst aufrufen. Da ist es oft gar nicht so leicht zu erkennen, was sie tun und
ob sie überhaupt irgendwann einmal fertig werden. Betrachten Sie zum Beispiel folgenden
einfachen Algorithmus:

Collatz(n) n: eine natürliche Zahl
while n > 1 solange n noch größer als 1 ist, tue Folgendes:

if n ist gerade
n ← n

2
wenn n gerade ist, teile n durch 2

else
n ← 3 ⋅ n + 1 ansonsten multipliziere n mit 3 und addiere 1 dazu

Kommt dieser Algorithmus immer irgendwann zu einem Ende, oder gibt es Eingaben n, bei
der er immer weiterläuft und niemals endet? Der Mathematiker Lothar Collatz hat diese
Frage erstmals vor über 80 Jahren gestellt, und sie ist bis heute unbeantwortet geblieben.
Zwar wurde noch keine Zahl n gefunden, bei der sich der Algorithmus aufhängen würde,
umgekehrt hat aber auch noch niemand bewiesen, dass es keine solche Zahl gibt. Schaut
man sich an, wie sich n im Laufe des Algorithmus verändert, so erkennt man, dass n immer

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 42

�

� �

�

42 TEIL I Grundbegriffe

wieder wild rauf- und runterspringt. In Abbildung 1.6 sehen Sie das am Beispiel n = 25: Für
diese Eingabe braucht der Algorithmus 23 Durchläufe der while-Schleife, und n erreicht
dabei eine maximale Höhe von 88. Wären wir stattdessen bei n = 27 gestartet, hätten wir
111 Schleifendurchläufe benötigt, und n wäre dabei bis in eine Höhe von 9323 aufgestiegen.
Größere Startwerte bedeuten aber nicht zwangsläufig längere Laufzeiten; bei n = 32 geht es
zum Beispiel immer bergab und die »Talstation« ist nach nur fünf Schritten erreicht.

Abbildung 1.6: Der Startpunkt n = 25 für den Pfad durch das Collatz-Gebirge

Das Halteproblem ist unlösbar
Bei der Wanderung durch das »Collatz-Gebirge« sind Abstürze also nicht ausgeschlossen.
Aber warum ist es bloß so schwer herauszufinden, ob ein Algorithmus irgendwann endet
oder nicht? Könnte man nicht eine generelle Methode finden, um genau das zu entscheiden?
Lassen Sie es uns als algorithmisches Problem formulieren:

Problem: das Halteproblem

Eingabe: ein Algorithmus A und eine Eingabe x

Berechne: Entscheide, ob A gestartet auf x irgendwann anhält oder ob sich der Algo-
rithmus aufhängt

Leider gibt es keinen Algorithmus, der das Halteproblem für beliebige Eingaben A und x
löst. Das kann man sogar beweisen. Das Halteproblem ist ein klassisches Beispiel für ein
nicht berechenbares Problem. Zwar könnte man einfach A mit der Eingabe x starten und
sehen, was passiert, wenn aber A endlos weiterläuft, dann findet man das auf diese Weise
auch erst nach unendlich langer Zeit – also niemals – heraus. Der Ausdruck

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 43

�

� �

�

KAPITEL 1 Algorithmen 43

{(A, x)|A ist ein Algorithmus, x eine Eingabe, und A(x)hängt sich nicht auf}

ist also ein Beispiel für eine Menge, die man zwar durchaus mathematisch korrekt definieren
kann, für die es aber keine Berechnungsmethode gibt.

Zwar kann man bei vielen Algorithmen tatsächlich beweisen, dass sie sich nicht aufhängen,
es gibt nur kein Verfahren, mit dem sich das für beliebige Algorithmen zeigen ließe.

Wenn wir es also schwer haben, herauszufinden, ob sich ein Algorithmus aufhängt oder
nicht, warum verändern wir dann nicht einfach unser Maschinenmodell auf eine Weise, dass
sich Algorithmen grundsätzlich nicht mehr aufhängen können? Lassen Sie uns doch die gan-
zen bösen while-Schleifen und Rekursionen verbieten, die uns so große Probleme bereiten.
Stattdessen könnten wir uns zum Beispiel auf die sicheren for-Schleifen beschränken. Ja, das
würde gehen, hätte allerdings einen Nachteil: Unser Maschinenmodell wäre anschließend
nicht mehr Turing-vollständig. Gäbe es nämlich ein Turing-vollständiges Maschinenmodell,
das sich nicht aufhängen kann, so könnte man damit das Halteproblem lösen, und das ist
wie gesagt gar nicht möglich. So gesehen ist es also eigentlich ganz gut, dass Algorithmen
grundsätzlich die Möglichkeit haben, sich aufzuhängen, denn nur dadurch können Sie ihr
volles Potenzial ausschöpfen.

Algorithmen können sich »aufhängen«, das heißt, sie laufen immer weiter und
enden nie. Ob sich ein Algorithmus aufhängt oder nicht, lässt sich leider oft nur
schwer abschätzen, und es gibt es keine formale Methode, mit der sich das immer
sicher verhindern lässt.

Algorithmen richtig verstehen
Wenn es schon schwer ist, festzustellen, ob ein Algorithmus irgendwann anhält oder nicht,
dann kann es sicherlich auch nicht leichter sein, herauszufinden, was der Algorithmus
überhaupt tut, und ob er auch das tut, was man sich von ihm erwünscht.

Die Lösung des Rätsels
Um das zu veranschaulichen, lassen Sie uns über den geheimnisvollen Algorithmus Riddle
weiter vorne in diesem Kapitel reden.

Man kann ziemlich leicht erkennen, dass sich der Algorithmus immerhin nicht aufhängt.
Bei jedem Durchlauf der while-Schleife verringert sich nämlich der Wert von x, und das tut
er so lange, bis x < 1 ist und die Schleife abbricht.

Was genau berechnet der Algorithmus denn nun? Haben Sie es herausgefunden?

Die Antwort ist einfach: Riddle berechnet das Produkt aus den beiden Eingaben n und m,
also

Riddle(n, m) = n ⋅ m

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 44

�

� �

�

44 TEIL I Grundbegriffe

Übrigens nennt man den Algorithmus auch »ägyptische Multiplikation«. Die Metho-
de scheint auch tatsächlich zu funktionieren. Wenn man eine Stichprobe macht und
irgendwelche Werte für x und y einsetzt, kommt jedenfalls das Richtige dabei heraus.

Aber können wir uns sicher sein, dass Riddle tatsächlich immer das Produkt von n und m
berechnet? Nur weil es bei ein paar Beispielen für n und m gestimmt hat, muss es ja nicht
für alle Eingaben funktionieren. Wenn wir ganz sicher sein wollen, müssten wir das Ergebnis
eigentlich für alle möglichen natürlichen Zahlen n und m überprüfen. Aber das geht nicht,
denn dann hätten wir ja unendlich viel zu tun.

Nun hätte man das Gleiche auch für praktisch alle anderen Algorithmen sagen können, die
wir bisher in diesem Buch besprochen haben. Wie können wir uns beispielsweise sicher
sein, dass GGT2 im Abschnitt Algorithmen sind Lösungen, keine Probleme auch tatsächlich
den größten gemeinsamen Teiler ausrechnet, und zwar für alle möglichen Eingaben? Auch
hierfür gibt es ja wieder unendlich viele Möglichkeiten, und die können wir unmöglich al-
le ausprobiert haben. Der Unterschied zwischen den beiden Algorithmen ist, dass GGT2
sehr einfach zu verstehen ist, während man bei Riddle nicht sofort einsieht, warum der
Algorithmus überhaupt funktioniert.

Wenn wir uns sicher sein wollen, dass ein Algorithmus korrekt ist, müssen wir ihn also
wirklich verstehen. Ihn ganz und gar durchdringen. Dafür reicht es nicht aus, dass man
den Algorithmus für Beispieleingaben Schritt für Schritt nachvollziehen kann. Jede einzel-
ne Zeile in Riddle ist klar und verständlich, aber in ihrem Zusammenspiel ergeben sich
Konsequenzen, die man nicht direkt überblickt.

Am besten wäre es, wenn uns jemand den Algorithmus erklären könnte; wenn wir einen
Text hätten, der mit klaren, nachvollziehbaren Argumenten schlüssig begründet, warum
der Algorithmus das Produkt seiner Eingaben n und m berechnet. Was wir also brauchen,
ist ein Beweis.

Wenn bei einem Algorithmus nicht offensichtlich ist, dass er das tut, was er soll,
dann benötigt man einen Beweis, um ihn richtig zu verstehen und seine Korrekt-
heit einzusehen.

Korrektheit beweisen
Wenn ein Algorithmus nur eine feste Anzahl von Anweisungen nacheinander ausführt,
dann ist es noch vergleichsweise einfach, seine Korrektheit zu überprüfen. Schwieriger wird
es, wenn die Anzahl der Anweisungen, die während eines Algorithmus ausgeführten wer-
den, nicht von Anfang an feststeht, sondern von der Eingabe abhängt. In Riddle gibt es eine
while-Schleife, die so lange durchlaufen wird, bis der Wert x < 1 wird. Am Anfang wird x
auf den Eingabewert n gesetzt und anschließend bei jedem Schleifendurchlauf halbiert und
dabei abgerundet, bis x schließlich den Wert 0 erreicht hat und die Schleife abbricht. Je grö-
ßer n ist, desto häufiger wird also die Schleife durchlaufen. Da n beliebig groß sein kann,
kann die Schleife beliebig oft durchlaufen werden. Unser Beweis soll aber nicht aus unend-
lich viel Text bestehen, also brauchen wir eine Methode, die Korrektheit des Algorithmus
zu begründen, ohne für jeden einzelnen Schleifendurchlauf extra zu argumentieren.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 45

�

� �

�

KAPITEL 1 Algorithmen 45

Der Trick, den man in diesem Fall gewöhnlich verwendet, heißt Induktionsbeweis. Die Idee
dabei ist, dass man wie folgt argumentiert:

»Wenn bis zum i-ten Schleifendurchlauf alles korrekt funktioniert hat, dann funktio-
niert auch im nachfolgenden i + 1-ten Schleifendurchlauf alles korrekt.«

Dabei muss man sich natürlich erst einmal im Klaren darüber sein, was es genau heißen soll,
dass bei einem Schleifendurchlauf »alles korrekt funktioniert«. Hierzu verwendet man ge-
wöhnlich eine sogenannte Schleifeninvariante. Das ist zum Beispiel eine Größe, die sowohl
vor als auch nach jedem Schleifendurchlauf gleich bleibt, oder allgemein eine Aussage, die
sowohl vor als auch nach jedem Schleifendurchlauf gültig ist. Im Fall der ägyptischen Mul-
tiplikation (also des Algorithmus Riddle weiter vorne in diesem Kapitel) könnten wir zum
Beispiel folgende Gleichung als Schleifeninvariante (SI) verwenden:

n ⋅ m = x ⋅ y + p

Der Korrektheitsbeweis läuft dann so:

1. Ganz am Anfang, also bevor die while-Schleife das erste Mal durchlaufen wird,
gilt die SI, denn es wird x ← n, y ← m und p ← 0 gesetzt, und das bedeutet, dass
n ⋅ m = x ⋅ y + p ist (Induktionsanfang)

2. Angenommen, wir stehen am Anfang eines Schleifendurchlaufs, und bisher gilt
die SI. Wir müssen zeigen, dass die SI auch am Ende des Schleifendurchlaufs gilt
(Induktionsschritt). Zwei Fälle sind zu unterscheiden (siehe Abbildung 1.7):

a. Fall 1: x ist am Anfang des Schleifendurchlaufs gerade. Dann wird x halbiert und
y verdoppelt, das Produkt x ⋅ y bleibt also gleich. Da sich p ebenfalls nicht ändert,
verändert sich der Ausdruck x ⋅ y + p nicht, und die SI behält auch nach dem
Schleifendurchlauf ihre Gültigkeit.

b. Fall 2: x ist am Anfang des Schleifendurchlaufs ungerade. Nun wird beim Halbie-
ren von x abgerundet, und wie man in Abbildung 1.7 sehen kann, wird dadurch
das Produkt x ⋅ y um die schwarzen Kästchen kleiner. Diese gehen zum Glück
nicht verloren, sondern werden zu p hinzugezählt. Am Ende der Schleife hat
sich x ⋅ y + p also nicht geändert, die SI gilt somit immer noch.

3. Die while-Schleife endet, wenn x nicht mehr ≥ 1 ist. Das passiert, sobald x = 0
geworden ist; und wenn x = 0 ist, dann ist auch x ⋅ y = 0. Da die SI über alle Schlei-
fendurchläufe hinweg bestanden hat, gilt sie auch jetzt noch, und somit ist n ⋅ m =
x ⋅ y + p = p. Der Algorithmus liefert p als Ergebnis zurück und berechnet somit
das Produkt aus n und m.

Korrektheitsbeweise von Algorithmen sind häufig Induktionsbeweise, die über
die Durchläufe einer Schleife hinweg die Gültigkeit einer Schleifeninvariante be-
legen. Dabei ist eine Schleifeninvariante etwas, das über die Schleifendurchläufe
hinweg »invariant« ist, also gleich bleibt.

Trim Size: 176mm x 240mm NewDummies c01.tex V1 - 13.˜November 2025 8:15 P.M. Page 46

�

� �

�

46 TEIL I Grundbegriffe

Abbildung 1.7: Die zwei Fälle der ägyptischen Multiplikation

Auf der Suche nach einem Korrektheitsbeweis können Schleifeninvarianten also nützlich
sein. Dabei reicht es allerdings nicht aus, irgendeine Schleifeninvariante zu finden, denn
letztlich soll sie auch dazu geeignet sein, die Korrektheit des Algorithmus zu beweisen. Aber
wie findet man denn eine geeignete Schleifeninvariante? Sie ahnen es sicherlich: Auch dafür
gibt es kein Patentrezept. Beim Führen von Beweisen sind Sie leider auf ihre eigene Kreati-
vität angewiesen.

