Inhaltsverzeichnis

Über den Autor .. 5

Einführung .. 13

1 Alles, was Sie jemals über Tabellenkalkulationen wissen wollen, sich aber nicht zu fragen getraut haben 23
 1.1 Beispieldaten ... 24
 1.2 Sich schnell mit der Steuerungstaste bewegen 25
 1.3 Formeln und Daten schnell kopieren 26
 1.4 Zellen formatieren ... 28
 1.5 Inhalte einfügen ... 29
 1.6 Diagramme hinzufügen 30
 1.7 Die Menüs »Suchen« und »Ersetzen« 32
 1.8 Formeln für das Auffinden und Entnehmen von Werten ... 32
 1.9 SVERWEIS verwenden, um Daten zusammenzuführen 34
 1.10 Filtern und sortieren 35
 1.11 Pivot-Tabellen verwenden 39
 1.12 Array-Formeln verwenden 42
 1.13 Probleme mit dem Solver lösen 44
 1.14 OpenSolver: Ich wünschte, wir würden ihn nicht benötigen. Dem ist aber nicht so .. 50
 1.15 Zusammenfassung .. 51

2 Clusteranalyse Teil I: Die Kundenbasis mit k-Means aufteilen 53
 2.1 Mädchen tanzen mit Mädchen, und Jungens kratzen sich am Kopf . 55
 2.2 Es wird ernst: k-Means-Clusterbildung bei Abonnenten eines E-Mail- Marketings ... 60
 2.2.1 Joey Bag O’ Donuts Weinhandel 60
 2.2.2 Die Ausgangsdaten 61
 2.2.3 Festlegen, was zu bewerten ist 62
 2.2.4 Mit vier Clustern beginnen 65
 2.2.5 Euklidischer Abstand: Abstandsmessung auf kürzestem Weg 67
 2.2.6 Abstände und Clusterzuweisungen für jedermann 69
 2.2.7 Clusterzentren bestimmen 71
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.8 Aus den Ergebnissen schlau werden 74</td>
</tr>
<tr>
<td>2.2.9 Die Top-Verkäufe je Cluster erhalten 75</td>
</tr>
<tr>
<td>2.2.10 Die Silhouette: Ein guter Weg, um es unterschiedliche k-Werte unter sich ausfechten zu lassen 79</td>
</tr>
<tr>
<td>2.2.11 Was halten Sie von fünf Clustern? 87</td>
</tr>
<tr>
<td>2.2.12 Eine Lösung für fünf Cluster 88</td>
</tr>
<tr>
<td>2.2.13 Die Top-Verkäufe der fünf Cluster erhalten 89</td>
</tr>
<tr>
<td>2.2.14 Die Silhouette für die 5-Means-Clusterbildung berechnen 92</td>
</tr>
<tr>
<td>2.3 K-Medians-Clusterbildung und asymmetrische Abstandsmessungen 93</td>
</tr>
<tr>
<td>2.3.1 Die k-Medians-Clusterbildung 94</td>
</tr>
<tr>
<td>2.3.2 Eine geeignetere Abstandsmetrik erhalten 94</td>
</tr>
<tr>
<td>2.3.3 Bringen Sie das alles in Excel unter 97</td>
</tr>
<tr>
<td>2.3.4 Die Top-Verkäufe der 5-Medians-Cluster 98</td>
</tr>
<tr>
<td>2.4 Zusammenfassung .. 102</td>
</tr>
<tr>
<td>3 Naives Bayes und wie unglaublich leicht es ist, ein Idiot zu sein . 105</td>
</tr>
<tr>
<td>3.1 Wenn Sie ein Produkt »Mandrill« nennen, erhalten Sie Signale und Nebengeräusche .. 105</td>
</tr>
<tr>
<td>3.2 Die kürzeste Einführung in die Wahrscheinlichkeitsrechnung der Welt 108</td>
</tr>
<tr>
<td>3.2.1 Bedingte Wahrscheinlichkeiten summieren 108</td>
</tr>
<tr>
<td>3.2.2 Die Verbundwahrscheinlichkeit, die Kettenregel und die Unabhängigkeit ... 109</td>
</tr>
<tr>
<td>3.2.3 Was geschieht in einer abhängigen Situation? 110</td>
</tr>
<tr>
<td>3.2.4 Die Bayes-Regel .. 110</td>
</tr>
<tr>
<td>3.3 Die Bayes-Regel verwenden, um ein KI-Modell zu erstellen 111</td>
</tr>
<tr>
<td>3.3.1 Klassenwahrscheinlichkeiten auf hohem Niveau werden oft miteinander gleichgesetzt ... 113</td>
</tr>
<tr>
<td>3.3.2 Und noch ein paar Kleinigkeiten 114</td>
</tr>
<tr>
<td>3.4 Auf geht's mit Excel 116</td>
</tr>
<tr>
<td>3.4.1 Für die Sache irrelevante Interpunktion entfernen 117</td>
</tr>
<tr>
<td>3.4.2 An Leerzeichen auf trennen 118</td>
</tr>
<tr>
<td>3.4.3 Token zählen und Wahrscheinlichkeiten berechnen 122</td>
</tr>
<tr>
<td>3.4.4 Wir haben ein Modell! Nutzen wir es! 124</td>
</tr>
<tr>
<td>3.5 Zusammenfassung ... 130</td>
</tr>
<tr>
<td>4 Optimierungsmodellierung: Weil der »frisch gepresste« Orangensaft sich nicht selbst herstellt 133</td>
</tr>
<tr>
<td>4.1 Warum sollten Data Scientists wissen, was Optimierung bedeutet? 134</td>
</tr>
<tr>
<td>4.2 Mit einem einfachen Zielkonflikt geht es los 135</td>
</tr>
<tr>
<td>4.2.1 Das Problem als Polytop darstellen 136</td>
</tr>
<tr>
<td>4.2.2 Löschen durch Verschieben der Niveaumenge 139</td>
</tr>
<tr>
<td>4.2.3 Das Simplex-Verfahren: in den Ecken herumstöbern 140</td>
</tr>
<tr>
<td>4.2.4</td>
</tr>
<tr>
<td>4.2.5</td>
</tr>
<tr>
<td>4.3</td>
</tr>
<tr>
<td>4.3.1</td>
</tr>
<tr>
<td>4.3.2</td>
</tr>
<tr>
<td>4.3.3</td>
</tr>
<tr>
<td>4.3.4</td>
</tr>
<tr>
<td>4.3.5</td>
</tr>
<tr>
<td>4.3.6</td>
</tr>
<tr>
<td>4.3.7</td>
</tr>
<tr>
<td>4.3.8</td>
</tr>
<tr>
<td>4.3.9</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.4.1</td>
</tr>
<tr>
<td>4.5</td>
</tr>
</tbody>
</table>

5	Clusteranalyse Teil II: Netzwerkdiagramme und die Entdeckung der Community	195
5.1	Was ist ein Netzwerkdiagramm?	196
5.2	Einen einfachen Graphen darstellen	197
5.3	Eine kurze Einführung in Gephi	200
5.3.1	Die Installation von Gephi und die Vorbereitung der Dateien	201
5.3.2	Den Graphen gestalten	203
5.3.3	Rangfolge von Knoten	205
5.3.4	Drucken	208
5.3.5	Dem Graphen an die Daten gehen	209
5.4	Aus den Daten des Weinhandels einen Graphen bilden	210
5.4.1	Eine Kosinus-Ähnlichkeitsmatrix erstellen	213
5.4.2	Einen r-Nachbarschaftsgraphen entwickeln	216
5.5	Wie viel ist eine Kante wert? Normale Punkte und Penaltys bei der Modularität von Graphen	221
5.5.1	Was ist ein Punkt und woraus besteht ein Penalty?	221
5.5.2	Das Arbeitsblatt für die Bewertungen einrichten	225
5.6	Lassen Sie uns Cluster bilden!	227
5.6.1	Aufteilung Nummer 1	228
5.6.2	Aufteilung 2: Electric Boogaloo	234
5.6.3	Und … Aufteilung 3: Aufteilung mit Vergeltung	236
5.6.4	Die Communitys decodieren und analysieren	237
5.7	Einmal hin und wieder zurück: eine Gephi-Tabelle	242
5.8	Zusammenfassung	247
Inhaltsverzeichnis

6 Der Großvater der betreuten künstlichen Intelligenz – die Regression 249
 6.1 He, was bist du? Schwanger? 249
 6.2 Machen Sie sich nicht selbst verrückt 250
 6.3 Die Schwangerschaft von Kundinnen bei RetailMart mithilfe der
 linearen Regression vorhersagen 251
 6.3.1 Welche Funktionen benötigt werden 252
 6.3.2 Die Trainingsdaten zusammenstellen 253
 6.3.3 Dummy-Variablen erzeugen 255
 6.3.4 Backen wir uns unsere eigene lineare Regression 258
 6.3.5 Statistiken und lineare Regression: R-Quadrat, F-Test und
 t-Tests .. 268
 6.3.6 Vorhersagen anhand neuer Daten tätigen und die Leistungs-
 fähigkeit messen .. 279
 6.4 Mit einer logistischen Regression Schwangerschaften in Kundenhaus-
 halten vorhersagen .. 290
 6.4.1 Als Erstes benötigen Sie eine Verknüpfungsfunktion 290
 6.4.2 Die logistische Funktion einbinden und alles neu optimieren 292
 6.4.3 Eine echte logistische Regression zusammenbauen ... 294
 6.4.4 Modellauswahl – die Leistungsfähigkeit des linearen mit der
 des logistischen Modells vergleichen 297
 6.5 Wenn Sie mehr wissen wollen 300
 6.6 Zusammenfassung .. 301

7 Ensemble-Modelle: eine Menge mieser Pizza 303
 7.1 Die Daten aus Kapitel 6 verwenden 304
 7.2 Bagging: zufällig anordnen, trainieren, wiederholen 306
 7.2.1 Decision Stump ist keine sehr sexy Bezeichnung für eine
 blöde Vorhersage .. 307
 7.2.2 Das sieht für mich gar nicht mal so dumm aus! 308
 7.2.3 Das Modell untersuchen 319
 7.3 Boosting: Wenn das Ergebnis falsch ist, verstärken Sie es und versuchen
 es auf ein Neues .. 324
 7.3.1 Das Modell trainieren – jedes Merkmal wird angesprochen .. 325
 7.3.2 Das verstärkte Modell auswerten 333
 7.4 Zusammenfassung .. 337

8 Prognosen: Atmen Sie tief durch, Sie können nicht gewinnen 339
 8.1 Der Handel mit Schwertern stottert 340
 8.2 Mit Zeitreihen vertraut werden 341
 8.3 Langsam Fahrt aufnehmen mit einer einfachen exponentiellen Glättung
 8.3.1 Prognosen mit der einfachen exponentiellen Glättung
 einrichten ... 343

10
Inhaltsverzeichnis

8.4 Es könnte ein Trend vorliegen .. 351
8.5 Die lineare exponentielle Glättung nach Holt 355
 8.5.1 Die lineare exponentielle Glättung nach Holt in einem
 Arbeitsblatt einrichten ... 356
 8.5.2 Sind Sie nun fertig? Einen Blick auf Autokorrelationen werfen 362
8.6 Die multiplikative Glättung nach Holt-Winters 369
 8.6.1 Die Anfangswerte für Niveau, Trend und Saisonabhängigkeit
 festlegen .. 371
 8.6.2 Die Prognose ins Rollen bringen 376
 8.6.3 Optimieren! ... 381
 8.6.4 Bestätigen Sie mir jetzt bitte, dass wir fertig sind 383
 8.6.5 Um die Prognose einen Vorhersagebereich legen 383
 8.6.6 Für die Galerie: Ein Fan-Chart anlegen 388
8.7 Zusammenfassung ... 390

9 Die Entdeckung von Ausreißern: Nur weil sie sonderbar sind, heißt
 das nicht, dass sie auch unwichtig sind 393
 9.1 Auch Ausreißer sind nur (schlechte?) Menschen 394
 9.2 Der faszinierende Fall von Hadlum gegen Hadlum 395
 9.2.1 Tukey-Begrenzungen ... 396
 9.2.2 Tukey-Begrenzungen in einem Arbeitsblatt anwenden 397
 9.2.3 Die Grenzen dieser einfachen Vorgehensweise 399
 9.3 In nichts wirklich schlecht, aber auch nirgends wirklich gut 401
 9.3.1 Daten für einen Graphen vorbereiten 402
 9.3.2 Einen Graphen erstellen 405
 9.3.3 Die k nächsten Nachbarn erhalten 407
 9.3.4 Methode 1 zum Entdecken von Ausreißern in einem
 Graphen: Verwenden Sie einfach den Indegree 408
 9.3.5 Methode 2 zum Entdecken von Ausreißern in einem
 Graphen: Differenzierte Ergebnisse mit k-Abstand erhalten 412
 9.3.6 Methode 3 zum Entdecken von Ausreißern in einem Gra-
 pheh: Local Outlier Factors sind dort, wo die Musik spielt 414
 9.4 Zusammenfassung ... 419

10 Von der Tabellenkalkulation zu R wechseln 421
 10.1 Mit R loslegen ... 422
 10.1.1 Ein paar einfache Fingerübungen 423
 10.1.2 Daten in R einlesen .. 431
 10.2 Sich aktiv mit Data Science beschäftigen 433
 10.2.1 Ein paar Zeilen sphärisches k-Means für Wein-Daten 433

11
Inhaltsverzeichnis

10.3 Mit den Schwangerschaftsdaten ein KI-Modell entwickeln 440
 10.3.1 Prognosen in R tätigen . 449
 10.3.2 Sich um das Entdecken von Ausreißern kümmern 454
10.4 Zusammenfassung . 458

Stichwortverzeichnis . 459