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Chapter 1

Crystal Lattices

1. The copper atoms depicted in Fig. 1.1 are arranged in a cubic unit cell. Each
edge of the cell has the same length: a = b = c = 3.6147 Å. Determine the
distances between the planes with (a) (1 1 1), (b) (2 2 2), and (c) (3 3 3)
indices.

Solution:

(a) The (1 1 1) plane (shown with dashed lines) is parallel to – and equidis-
tant from – two other (1 1 1) planes that contain an origin, o. Thus the
plane must pass through the center of the unit cell, dividing the diagonal
of the unit cell in half:

d111 =
(
√

3)(3.6147 Å)
2

= 3.1304 Å.

(b) The (2 2 2) planes (which include the (1 1 1) planes) divide the diagonal
into fourths:

d222 =
(
√

3)(3.6147 Å)
4

= 1.5652 Å =
d111

2
.
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(c) The (3 3 3) planes (which also include the (1 1 1) planes) divide the
diagonal into sixths:

d222 =
(
√

3)(3.6147 Å)
6

= 1.0434 Å =
d111

3
.

2. Consider two 2-dimensional unit cells, each with the same axial lengths: a =
2.40 Å and b = 3.20 Å. For unit cell A, γ = 90o; for unit cell B, γ = 117o.
A point p is located in each unit cell at the end of the sum of a vector of
magnitude 1.80 Å, parallel to the a axis and a vector of magnitude 2.40 Å,
parallel to the b axis. (a) Determine the fractional coordinates of point p in
each unit cell. (b) Determine the distance from the origin to point p in each
unit cell.

Solution:

(a) The fractional coordinates are the same for both unit cells:

xf =
1.80 Å
2.40 Å

= 0.75

yf =
2.40 Å
3.20 Å

= 0.75.

(b) For unit cell A we use the Pythagorean theorem (or note that it is a
3:4:5 right triangle):

|−−−→oApA| = ((1.80 Å)2 + (2.40 Å)2)1/2 = 3.00 Å.

For unit cell B we use the Law of Cosines (Fig. 1.24):

|−−−→oBpB| = ((1.80 Å)2 + (2.40 Å)2 − 2× 1.80 Å× 2.40 Å× cos(63o))1/2

= 2.25 Å.
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3. (a) Derive a formula for the inverse of a 2×2 matrix and use matrix multipli-
cation to demonstrate that your formula is correct (DD−1 = I). (b) Compute
the inverse of the following matrix:

D =

 1.000 2.000 3.000
2.000 1.000 3.000
3.000 2.000 1.000

 .

(c) Demonstrate that the matrix calculated in part (b) is D−1.

Solution:

(a)

D =
[

d11 d12

d21 d22

]
|D| = d11d22 − d12d21

Dc =
[

d22 −d21

−d12 d11

]
DT

c =
[

d22 −d12

−d21 d11

]
D−1 =

1
d11d22 − d12d21

[
d22 −d12

−d21 d11

]
DD−1 =

1
d11d22 − d12d21

[
d11 d12

d21 d22

] [
d22 −d12

−d21 d11

]
=
[

1 0
0 1

]
.

(b) Using Eqn. 1.78,

D−1 =

 −0.417 0.333 0.250
0.583 −0.667 0.250
0.083 0.333 −0.250

 .

(c) Using Eqn. 1.48, 1.000 2.000 3.000
2.000 1.000 3.000
3.000 2.000 1.000

 −0.417 0.333 0.250
0.583 −0.667 0.250
0.083 0.333 −0.250

 =

 0.998 −0.002 0.000
−0.002 0.998 0.000
−0.002 −0.002 1.000

 .

4. Show that (a) the inverse of a matrix for the rotation of angle ϕ about a
coordinate axis (e.g., the x axis) is the rotation matrix for the −ϕ rotation
about the same axis, (b) the matrix for a reflection across a coordinate plane
(e.g., the xz plane) is its own inverse, and (c) the inversion matrix is its own
inverse.

Solution:

(a) Choosing a rotation about the y axis as an example,

Ry(ϕ) =

 cos ϕ 0 sinϕ
0 1 0

− sinϕ 0 cos ϕ

 Ry(−ϕ) =

 cos ϕ 0 − sinϕ
0 1 0

sinϕ 0 cos ϕ


3



Ry(ϕ)Ry(−ϕ) =

 (cos2 ϕ + sin2 ϕ) 0 (− cos ϕ sinϕ + cos ϕ sinϕ)
0 1 0

(− cos ϕ sinϕ + cos ϕ sinϕ) 0 (cos2 ϕ + sin2 ϕ)


=

 1 0 0
0 1 0
0 0 1

 =⇒ (Ry(ϕ))−1 = Ry(−ϕ).

(b)

RxyRxy =

 1 0 0
0 1 0
0 0 −1

 1 0 0
0 1 0
0 0 −1

 =

 1 0 0
0 1 0
0 0 1

 .

(c)

RiRi =

 −1 0 0
0 −1 0
0 0 −1

 −1 0 0
0 −1 0
0 0 −1

 =

 1 0 0
0 1 0
0 0 1

 .

5. Using matrices, show that sequential rotations about a coordinate axis of ϕ1

followed by ϕ2 is equivalent to a single rotation of (ϕ1 + ϕ2) about the same
axis.

Solution:

Choosing rotation about the x axis as an example,

Rx(ϕ2)Rx(ϕ1) =

 1 0 0
0 cos ϕ1 − sinϕ1

0 sinϕ1 cos ϕ1

 1 0 0
0 cos ϕ2 − sinϕ2

0 sinϕ2 cos ϕ2


=

 1 0 0
0 (cos ϕ1 cos ϕ2 − sinϕ1 sinϕ2) (− sinϕ1 cos ϕ2 − cos ϕ1 sinϕ2)
0 (cos ϕ1 sinϕ2 + sinϕ1 cos ϕ2) (cos ϕ1 cos ϕ2 − sinϕ1 sinϕ2)


From the trigonometric identities, cos(ϕ1 + ϕ2) = cos ϕ1 cos ϕ2− sinϕ1 sinϕ2

and sin(ϕ1 + ϕ2) = cos ϕ1 sinϕ2 + sinϕ1 cos ϕ2,

Rx(ϕ2)Rx(ϕ1) =

 1 0 0
0 cos(ϕ1 + ϕ2) − sin(ϕ1 + ϕ2)
0 sin(ϕ1 + ϕ2) cos(ϕ1 + ϕ2)


= Rx(ϕ1 + ϕ2).

6. Show that (a) the rotation matrices for rotation about the coordinate axes are
orthonormal matrices, (b) the inverses of these matrices are their transposes,
and (c) the rotation of a general vector effected by any of these matrices does
not alter the length of the vector.
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Solution:

(a) Choosing rotation about the z axis as an example, the three column
vectors of the rotation matrix are:

v1 =

 cos ϕ
− sinϕ

0

 v2 =

 sinϕ
cos ϕ

0

 v3 =

 0
0
1


All column vectors are orthogonal and have unit lengths:

v1 · v2 = cos ϕ sinϕ− sinϕ cos ϕ + 0 = 0
v1 · v3 = 0 + 0 + 0 = 0
v2 · v3 = 0 + 0 + 0 = 0

v2
1 = cos2 ϕ + sin2 ϕ + 02 = 1

v2
2 = sin2 ϕ + cos2 ϕ + 02 = 1

v2
3 = 02 + 02 + 12 = 1

(b) Again, using rotation about z,

RzRT
z =

 cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

 cos ϕ − sinϕ 0
sinϕ cos ϕ 0

0 0 1


=

 (cos2 ϕ + sin2 ϕ) (− cos ϕ sinϕ + cos ϕ sinϕ) 0
(− cos ϕ sinϕ + cos ϕ sinϕ) (cos2 ϕ + sin2 ϕ) 0

0 0 1


=

 1 0 0
0 1 0
0 0 1

 .

(c) Using z rotation yet again, cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

 v1

v2

v3

 =

 v1 cos ϕ + v2 sinϕ
−v1 sinϕ + v2 cos ϕ

v3


v2 = v2

1 + v2
2 + v2

3

v′2 = (v1 cos ϕ + v2 sinϕ)2 + (−v1 sinϕ + v2 cos ϕ)2 + v2
3

= v2
1 cos2 ϕ + 2v1v2 cos ϕ sinϕ + v2

2 sin2 ϕ

+v2
1 sin2 ϕ− 2v1v2 cos ϕ sinϕ + v2

2 cos2 ϕ + v2
3

= v2
1(cos2 ϕ + sin2 ϕ) + v2

2(cos2 ϕ + sin2 ϕ) + v2
3

= v2
1 + v2

2 + v2
3 .

7. The monoclinic unit cell of CuO has the following parameters: a = 4.6837(5)Å,
b = 3.4226(6)Å, c = 5.1288(6)Å, α = 90.00o, β = 99.54o(1) and γ = 90.00o.∗

∗Åsbrink, S. and Norrby, L.-J., Acta. Cryst., B26, 8(1970).
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The fractional coordinates of the contents of the unit cell are

atom xf yf zf atom xf yf zf

Cu1 0.2500 0.2500 0.0000 O1 0.0000 0.4184 0.2500
Cu2 0.7500 0.7500 0.5000 O2 0.5000 0.9184 0.2500
Cu3 0.2500 0.7500 0.5000 O3 0.0000 0.5816 0.7500
Cu4 0.7500 0.2500 0.5000 O4 0.5000 0.0816 0.7500

(a) Determine the shortest (contact) distance between the copper(II) ions and
the oxide ions in the unit cell. (b) Determine the volume of the unit cell. (c)
Determine the mass of the unit cell in grams. (d) Determine the density of
solid copper(II) oxide in g/cm3.

Solution:

(a) Selecting the Cu1 atom, the oxygen atom with the nearest fractional
coordinates appears to be O1 (in more complex crystal structures this
will rarely be as obvious). The B matrix to convert fractional coordinates
to Cartesian coordinates is determined from the cell parameters:

B =

 4.6837 0.0000 −0.8500
0.0000 3.4226 0.0000
0.0000 0.0000 5.0579



vCu1 = B

 0.2500
0.2500
0.0000

 =

 1.1709
0.8557
0.0000


vO1 = B

 0.0000
0.4184
0.2500

 =

 −0.2125
1.4320
1.2645


vCuO = vCu1 − vO1 =

 1.3834
−0.5763
−1.2645


vCuO = ((1.3834 Å)2 + (−0.5763 Å)2 + (−1.2645 Å)2)1/2 = 1.9608 Å.

(b) From the unit cell parameters,

V = (4.6837 Å)(3.4226 Å)(5.1288 Å)×

(1− 0− cos2(99.54o)− 0 + 2(0))1/2 = 81.08 Å
3
.

(c) Each unit cell contains four copper atoms and four oxygen atoms. The
mass of 6.022×1023 atoms of Cu is 63.546 g. A single Cu atom has a mass
of 63.546/(6.022× 1023) g = 1.055× 10−22 g. The mass of a mole of O
atoms is 15.9994 g. The mass of an oxygen atom is 2.657×10−23 g. The
mass of a unit cell is therefore 4(1.055× 10−22 g)+4(2.657× 10−23 g) =
5.283× 10−22 g.
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(d) 1Å=10−8 cm. =⇒ 1Å3 = 10−24 cm3, and

DCuO =
5.283× 10−22 g

81.08× 10−24 cm3
= 6.515 g/cm3.

8. The orthorhombic unit cell of CuSO4 has the following parameters:∗ a =
8.39Å, b = 6.89Å c = 4.83Å, α = 90.00o, β = 90.00o and γ = 90.00o

The fractional coordinates of the unique atoms in the unit cell (repeated by
symmetry in order to fill the cell) are

atom xf yf zf atom xf yf zf

Cu1 0.000 0.000 0.000 O2 0.375 0.250 0.439
S1 0.185 0.250 0.445 O3 0.129 0.069 0.307
O1 0.141 0.250 0.755

(a) Determine the average sulfur-oxygen distance and the average O-S-O angle
in the sulfate ion. (b) The experimentally measured density of anhydrous
copper sulfate is 3.6 g/cm3. How many CuSO4 units are in the unit cell? (c)
The basic unit in the unit cell seems to be missing an oxygen atom. How can
this be if the stoichiometry in the crystal is CuSO4? Hint: The basic unit in
the unit cell is called the asymmetric unit. You may have to read ahead in
Chapter 2 to answer this question. The space group of the crystal is Pnma.

Solution:

(a) The B matrix to convert fractional coordinates to Cartesian coordinates
is straightforward, since all the angles are 90o:

B =

 8.39 0.00 0.00
0.00 6.89 0.00
0.00 0.00 4.83



vS1 = B

 0.185
0.250
0.445

 =

 1.552
1.723
2.149


vO1 = B

 0.141
0.250
0.755

 =

 1.183
1.723
3.647


vO2 = B

 0.375
0.250
0.439

 =

 3.146
1.723
2.120


∗Rao, B.R., Acta. Cryst., 14, 321(1961).
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vSO1 = vS1 − vO1 =

 0.369
0.000
−1.498


vSO2 = vS1 − vO2 =

 −1.594
0.000
0.029


vSO1 = ((0.369 Å)2 + (0.000 Å)2 + (−1.498 Å)2)1/2 = 1.542 Å.

vSO2 = ((−1.594 Å)2 + (0.000 Å)2 + (0.029 Å)2)1/2 = 1.594 Å.

Similarly, vSO3 = 1.490 Å and 〈vSO〉 = 1.542 Å.

cos(∠(O1− S−O2)) =
vSO1 · vSO2

vSO1vSO2

=
(0.369)(−1.594) + (0)(0) + (−1.498)(0.029)

(1.542)(1.594)
= −0.257

∠(O1− S−O2) = 104.89o.

Similarly, ∠(O1− S−O3) = 111.03o, ∠(O2− S−O3) = 107.89o and
〈∠(O− S−O)〉 = 107.94o.

(b) Unit cell volume: V = (8.39)(6.89)(4.83)
√

(1− 0− 0− 0 + 0) Å
3

=
279 Å

3
= 2.79 × 10−22 cm3. Unit cell mass: 3.6 g/cm3 × 2.79 ×

10−22 cm3 = 1.004 × 10−21 g. Mass of a mole of CuSO4 formula
units = (63.546 + 32.066 + 4 × 15.9994) g = 159.61 g. Mass of one
formula unit: 159.61 g/6.022 × 1023 = 2.65 × 10−22 g. Number of for-
mula units in the unit cell: (Unit cell mass)/(formula unit mass) =
1.004× 10−21 g/2.65× 10−22 g = 3.8 ' 4.

(c) The fourth oxygen atom bonded to the sulfur atom is generated by a
symmetry operation that retains the values of xf and zf , but changes yf

by subtracting it from 1/2:

atom xf yf zf atom xf yf zf

Cu1 0.000 0.000 0.000 O2 0.375 0.250 0.439
S1 0.185 0.250 0.445 O3 0.129 0.069 0.307
O1 0.141 0.250 0.755 O3′ 0.129 0.431 0.307

vO3′ = B

 0.129
0.431
0.307

 =

 1.083
2.970
1.483


vSO3′ = 1.490 Å (the same as vSO3)
∠(O1− S−O3) = 111.03o (the same as vSO3).
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Chapter 2

Crystal Symmetry

1. A ball and stick model of the POF3 molecule is shown below:

The fluorine atoms are all equivalent by symmetry. (a) Determine the sym-
metry elements and operations for the molecule. (b) Determine the point
symmetry group of the molecule. (c) Create a multiplication table for the
symmetry operations and show that the operations constitute a mathemati-
cal group (the point group in (b)) (d) Compare your multiplication table to
Table 2.1. What can you conclude about the relationship between the point
group of POF3 and the point group of PF5 from this comparison?.

Solution:

(a) Symmetry elements: C3 rotation axis and three vertical mirror planes:
P→O vector ≡ C3 rotation axis, POF plane ≡ σv, POF′ plane ≡ σ′v and
POF′′ plane ≡ σ′′v . Set of symmetry operations: {E,C1

3 , C2
3 , σv, σ′v, σ′′v}.

(b) Beginning with Fig. 2.9, n > 2? Yes, n = 3. Multiple C3 axes? No
⇒ Fig. 2.10. n > 1? Yes, N = 3. S6 coincident with C3 only? No.
3C2 axes perpendicular to C3? No. σh? No. 3σv mirror planes? Yes.
n = ∞? No. The point group is C3v.
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(c) The table is generated by analyzing all of the products of the operations
in the set. As an example, σvC1

3 = σ′v:

Multiplication table:

E C1
3 C2

3 σv σ
′

v σ
′′

v

E E C1
3 C2

3 σv σ
′

v σ
′′

v

C1
3 C1

3 C2
3 E σ

′′

v σv σ
′

v

C2
3 C2

3 E C1
3 σ

′

v σ
′′

v σv

σv σv σ
′

v σ
′′

v E C1
3 C2

3

σ
′

v σ
′

v σ
′′

v σv C2
3 E C1

3

σ
′′

v σ
′′

v σv σ
′

v C1
3 C2

3 E

Properties of the set {E,C1
3 , C2

3 , σv, σ′v, σ′′v}: The multiplication table
demonstrates that the product of any two operations in the set produces
another operation in the set. Focusing on the first row and column in the
table, for the general operation, O, OE = EO = O, for every operation
in the set. Thus the set has an identity element, E. All products of
operations, e.g., OiOjOk, are associative: Oi(OjOk) = (OiOj)Ok. For
every operation in the set, Oi, there is another operation, Oj , such that
OiOj = OjOi = E. Thus every element in the set has an inverse. The
set of operations is a mathematical group.

(d) The D3h (6m2) point group contains every element of the C3v (3m)
point group — thus the C3v point group is a subgroup of the D3h point
group. Note that removal of the columns and rows for the C2, S3,
and σh operations from the D3h multiplication table results in the C3v

multiplication table.

2. Generate the matrix products for the (a)C ′
2S

2
3 and (b) S2

3C ′
2 operation prod-

ucts for the D3h point group. (c) Assess whether or not the matrix products
produce the same results as the products of the operations given in Table 2.1.
(d) Is the complete set of matrices for the D3h point group a mathematical
group? Explain your answer (why or why not?).
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Solution:

(a) C ′
2S

2
3 : − 1
2 −

√
3

2 0
−
√

3
2

1
2 0

0 0 −1


 − 1

2

√
3

2 0
−
√

3
2 − 1

2 0
0 0 −1

 =

 ( 1
4 + 3

4 ) (−
√

3
4 +

√
3

4 ) 0
(
√

3
4 −

√
3

4 ) (− 3
4 −

1
4 ) 0

0 0 1


=

 1 0 0
0 −1 0
0 0 1

 .

(b) S2
3C ′

2: − 1
2

√
3

2 0
−
√

3
2 − 1

2 0
0 0 −1


 − 1

2 −
√

3
2 0

−
√

3
2

1
2 0

0 0 −1

 =

 ( 1
4 −

3
4 ) (

√
3

4 +
√

3
4 ) 0

(
√

3
4 +

√
3

4 ) ( 3
4 −

1
4 ) 0

0 0 1


=

 − 1
2

√
3

2 0√
3

2
1
2 0

0 0 1

 .

(c) The matrix product in part (a) corresponds to the matrix for the σv op-
eration; the matrix product in part (b) corresponds to the σ′′v operation.
The results are consistent with those derived from the products of the
symmetry operations (Table 2.1).

(d) A multiplication table derived from the matrix products will correspond
exactly to the products in Table 2.1. Since the matrix operations parallel
the products of the operations, the matrix representation of a group is
itself a mathematical group.

3. Using the scheme outlined in Figs. 2.9 and 2.10, verify the assignment of the
Schönflies symbols for the point groups of lattices with a single rotoinversion
axis.

Solution:

All of the point groups are lower symmetry point groups. The scheme in
Fig. 2.9 leads to the one in Fig. 2.10 in each case.

(a) 1̄ only (Fig. 2.19(a)). Axis of highest symmetry: C1 ⇒ n = 1. S2

coincident with C1 only? Yes. The point group is S2.

(b) 2̄ only (Fig. 2.19(b)). Axis of highest symmetry: C1 ⇒ n = 1. S2

coincident with C1 only? No. n > 1? No. σh? Yes. The point group is
Cs.

(c) 3̄ only (Fig. 2.19(c)). Axis of highest symmetry: C3 ⇒ n = 3. S6

coincident with C3 only? Yes. The point group is S6.

(d) 4̄ only (Fig. 2.19(d)). Axis of highest symmetry: C2 ⇒ n = 2. S4

coincident with C2 only? Yes. The point group is S4.
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(e) 6̄ only (Fig. 2.19(a)). Axis of highest symmetry: C3 ⇒ n = 3. S6

coincident with C3 only? No. n > 1? Yes. 3C2s ⊥ C3? No. σh? Yes.
The point group is C3h.

4. Using the scheme outlined in Figs. 2.9 and 2.10, determine Schönflies and
Hermann-Mauguin notations for the point groups of the Bravais lattices for
each crystal system. Figs. 2.11 and 2.42 may prove useful.

Solution:

(a) Triclinic → Fig. 2.9: Axis of highest symmetry: C1 ⇒ n = 1. n > 2?
No. → Fig. 2.10: S2 coincident with C1 only? No. n > 1? No. σh? No.
i? Yes. The point group is Ci ≡ 1̄.

(b) Monoclinic → Fig. 2.9: Axis of highest symmetry: C2 ⇒ n = 2. n > 2?
No. → Fig. 2.10: S4 coincident with C2 only? No. n > 1? Yes. 2C2s ⊥
C2? No. σh? Yes. The point group is C2h ≡ 2/m.

(c) Orthorhombic → Fig. 2.9: Axis of highest symmetry: C2 ⇒ n = 2.
n > 2? No. → Fig. 2.10: S4 coincident with C2 only? No. n > 1?
Yes. 2C2s ⊥ C2? Yes. σh? Yes. n = ∞? No. The point group is
D2h ≡ mmm.

(d) Tetragonal → Fig. 2.9: Axis of highest symmetry: C4 ⇒ n = 4. n > 2?
Yes. Multiple C4 axes? No. → Fig. 2.10: S8 coincident with C4 only?
No. n > 1? Yes. 4C2s ⊥ C4? Yes. σh? Yes. n = ∞? No. The point
group is D4h ≡ 4/mmm.

(e) Cubic → Fig. 2.9: Axis of highest symmetry: C4 ⇒ n = 4. n > 2? Yes,
n = 4. Multiple C4 axes? Yes. n = 5? No. n = 4? Yes. σ? Yes. The
point group is Oh ≡ m3m.

(f) Trigonal(H )/Hexagonal → Fig. 2.9: Axis of highest symmetry: C6 ⇒
n = 6. n > 2? Yes. Multiple C6 axes? No. → Fig. 2.10: S12 coincident
with C6 only? No. n > 1? Yes. 6C2s ⊥ C6? Yes. σh? Yes. n = ∞? No.
The point group is D6h ≡ 6/mmm.

(g) Rhombohedral → Fig. 2.9: Axis of highest symmetry: C3 ⇒ n = 3.
n > 2? Yes. Multiple C3 axes? No. → Fig. 2.10: S6 coincident with C3

only? No. n > 1? Yes. 3C2s ⊥ C3? Yes. σh? No. 3σds? Yes. The point
group is D3d ≡ 3̄m. Referring to Fig. 2.42, the dihedral mirror planes
pass through the lattice points and the center of the cell. The diad axes
bisect the dihedral angles between these planes.

5. The unit cell for the 2-mercaptopyridine crystal structure (Sec. 1.5.3 ) is
described in a non-standard space group – P21/n. The standard setting is
P21/c. (a) Determine the unit cell parameters for the P21/c unit cell. (b)
Determine the fractional coordinates of the S(1), C(1), and N(1) atoms in the
P21/c unit cell. (c) Verify the transformed coordinates in (b) by calculating
the C(1)–S(1) and C(1)–N(2) interatomic distances and the N(1)–C(1)–S(1)
interatomic angle in the P21/c unit cell.
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Solution:

(a) The transformation is identical to the Pn → Pc transformation de-
scribed in Sec. 2.4.4:

B =

 6.112 0 −2.861
0 6.326 0
0 0 14.025

 =
[
ac bc cc

]
,

where ac, bc, and cc are the a, b, and c axes for the P21/n unit cell in
crystal Cartesian coordinates. Denoting the P21/c axes as a′c, b′c, and
c′c,

a′c = cc =

 −2.861
0

14.025

 b′c = bc =

 0
6.326

0


c′c = −(ac + cc) =

 −3.251
0

−14.025


a′ = c = 14.314 Å
b′ = b = 6.326Å
c′ = ((−3.251)2 + (−14.025)2)1/2 = 14.392Å

cos β′ =
a′c · c′c

a′c′
=

(−2.861)(−3.251) + (14.025)(−14.025)
14.318 · 14.392

= −0.90987

β′ = 155.43o.

(b)

S(1) :

 1̄ 0 1
0 1 0
1̄ 0 0

 0.7403
0.0629
0.4073

 =

 −0.3330
0.0629

−0.7403


C(1) :

 1̄ 0 1
0 1 0
1̄ 0 0

 0.5501
0.2608
0.3860

 =

 −0.1641
0.2608

−0.5501


N(1) :

 1̄ 0 1
0 1 0
1̄ 0 0

 0.3705
0.2616
0.4294

 =

 0.0589
0.2616

−0.3705


(c)

B =

 14.314 0 −13.089
0 6.326 0
0 0 5.984


S(1) : B

 −0.3330
0.0629

−0.7403

 =

 4.294
0.398

−4.430

 C(1) : B

 −0.1641
0.2608

−0.5501

 =

 4.851
1.650

−3.292


N(1) : B

 0.0589
0.2616

−0.3705

 =

 5.693
1.650

−2.217

 .
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−−−−−−→
C(1)S(1) = [(4.923) (0.398)(−4.430)]− [(4.851) (1.650) (−3.292)]

= [(0.072) (−1.252) (−1.138)]
−−−−−−→
C(1)N(1) = [(5.693) (1.655)(−2.217)]− [(4.851) (1.650) (−3.292)]

= [(0.842) (0.005) (1.0758)]

|
−−−−−−→
C(1)S(1)| = ((0.072)2 + (−1.252)2 + (−1.138)2)1/2 = 1.693Å

|
−−−−−−→
C(1)N(1)| = ((0.842)2 + (0.005)2 + (1.075)2)1/2 = 1.365Å
−−−−−−→
C(1)S(1) ·

−−−−−−→
C(1)N(1) = −1.169

cos ν =
−1.169

(1.693)(1.365)
= −0.506.

ν = 120.4o.

6. Recall that the product of local operations of a space group must generate an-
other local operation if the translations generated by the product are negated
(or ignored!). (a) For the P2/c space group, diad rotation axes are postulated
to result from a combination of c-glide operations, inversion operations, and
translation group operations: S(2) = S(tj)S(1̄)S(c). Determine the locations
of the diad axes in the P2/c unit cell. (b) Verify that the S(2) operator in the
P2/c space group is given by Eqn. 2.36. (c) For the P21/c space group, c-glide
planes are postulated to result from a combination of diad screw operations
(about axes at the locations determined in part (a)), inversion operations,
and translation group operations: S(c) = S(tj)S(1̄)S(21). Determine the lo-
cations of the glide planes in the P21/c unit cell. (d) Verify that the S(c)
operator in the P21/c space group is given by Eqn. 2.37.

Solution:

(a)

S(c)

 xf

yf

zf

 =

 xf

ȳf

zf + 1
2


S(1̄)S(c)

 xf

yf

zf

 =

 x̄f

yf

z̄f + 1
2


S(tj)S(1̄)S(c)

 xf

yf

zf

 =

 m1 − xf

m2 + yf

m3 − zf + 1
2

 .

The S(2) operation on an atom at the point of intersection of the diad
axis with the ac plane, [x∗f 0z∗f ], leaves the atom position unchanged,
and  x∗f

0
z∗f

 =

 m1 − x∗f
m2 + 0

m3 − z∗f + 1
2

 , resulting in

x∗f =
m1

2
y∗f = 0 z∗f =

m3

2
+

1
4
.
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Thus, for m1 and m3 zero or one, x∗f = 0 or x∗f = 1
2 ; z∗f = 1

4 or z∗f = 3
4 .

Diad axes intersect the ac plane at [12 0 1
4 ], [ 12 0 3

4 ], [0 0 1
4 ], and [0 0 3

4 ].
(b) Rotation of a point at [xf yf zf ] about the diad axis at [ 12 0 1

4 ]: Translate
to origin → [(xf − 1

2 ) yf (zf − 1
4 )]. Diad rotation about b → [−(xf −

1
2 ) yf − (zf − 1

4 )]. Translate to original location → [(−(xf − 1
2 ) +

1
2 ) yf (−(zf − 1

4 ) + 1
4 )] = [x̄f yf (z̄ + 1

2 )] This is effectively the same
as rotating [xf yf zf ] about the b axis, followed by a translation of 1

2c
along c; S(2) = R(2) + [0 0 1

2 ]:

S(2)

 xf

yf

zf

 =

 1̄ 0 0
0 1 0
0 0 1̄

 xf

yf

zf

+

 0
0
1
2

 =

 x̄f

yf

z̄f + 1
2

 .

(c) The S(21) operation is the S(2) operation in the P2/c space group from
part (b), followed by a translation of 1

2b along the b axis: S(21) =
R(2) + [0 0 1

2 ] + [0 1
2 0] = R(2) + [0 1

2
1
2 ], and

S(21)

 xf

yf

zf

 =

 x̄f

yf + 1
2

z̄f + 1
2


S(1̄)S(21)

 xf

yf

zf

 =

 xf

ȳf + 1
2

zf + 1
2


S(tj)S(1̄)S(21)

 xf

yf

zf

 =

 m1 + xf

m2 − yf + 1
2

m3 + zf + 1
2

 .

The reflection portion of the S(c) operation on an atom [0 y∗f 0] at the
point of intersection of the glide plane with the b axis, leaves the atom
position unchanged, but the c translation places a symmetry-equivalent
atom at [0 y∗f

1
2 ], and 0

y∗f
1
2

 =

 m1 + 0
m2 − y∗f + 1

2

m3 + 0 + 1
2

 , resulting in

x∗f = 0 y∗f =
m2

2
z∗f = 0.

For m2 zero or one, y∗f = 1
4 or y∗f = 3

4 . The glide planes intersect the b

axis at [0 1
4 0] and [0 3

4 0].
(d) Reflection of a point at [xf yf zf ] across the plane at [0 1

4 0]] changes
yf to 1

2 − yf (Fig. 2.60). This is effectively a reflection across the ac
plane (R(m)), followed by a translation of 1

2b along b. The c-glide
operation adds 1

2 to zf : [xf yf zf ] → [xf (ȳf + 1
2 ) zf + 1

2 ] ⇒ S(c) =
R(m) + [0 1

2 0] + [0 0 1
2 ] = R(m) + [0 1

2
1
2 ]:

S(c)

 xf

yf

zf

 =

 1 0 0
0 1̄ 0
0 0 1

 xf

yf

yf

+

 0
1
2
1
2

 =

 xf

ȳf + 1
2

zf + 1
2

 .
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7. The transformation of unit cells from one setting to another does not affect
the locations of the atoms, and therefore does not affect the locations of
the symmetry elements in the lattice. (a)Use the locations of the points of
intersection of the screw axes with the ac plane and the glide planes with
the b axis in the P21/c unit cell to determine the location of these symmetry
elements in the P21/n unit cell.∗ (b) Determine the symmetry operators, S(n)
and S(21), for the n-glide and diad screw operations in the P21/n unit cell. (c)
Given the general position, [xf yf zf ], in the P21/n unit cell, determine the
symmetry-equivalent general positions within the unit cell. (d) Determine the
location of all the S(1)-C(1) bonded pairs in the 2-mercaptopyridine crystal
structure (Sec. 1.5.3 ). Verify that all of the transformed pairs have the same
internuclear distance.

Solution:

(a) Since the b axis and ac plane in the lattice do not change when the
P21/c unit cell is transformed into the P21/n unit cell the points of
intersection of the glide planes and screw axes will remain in the same
positions in the lattice. Only their coordinates will be affected by the
change of basis – we can transform the points as if they were atoms in
the unit cell. Denoting vn as a vector in the P21/n unit cell and vc as
the same vector in the P21/c unit cell, the transformation of coordinates
in P21/n to coordinates in P21/c is given by Eqn. 2.17: −1 0 1

0 1 0
−1 0 0

vn = vc.

To transform the intersection points from P21/c to P21/n we have

vn =

 1̄ 0 1
0 1 0
1̄ 0 0

−1

vc =

 0 0 1̄
0 1 0
1 0 1̄

vc.

The diad screw axes intersect the ac plane in the P21/c unit cell at
[0 0 1

4 ], [ 12 0 1
4 ], [0 0 3

4 ], and [ 12 0 3
4 ]. In the P21/n unit cell, 0 0 1̄

0 1 0
1 0 1̄

 0
0
1
4

 =

 − 1
4
0

− 1
4

 =

 3
4
0
3
4


 0 0 1̄

0 1 0
1 0 1̄

 1
2
0
1
4

 =

 − 1
4
0
1
4

 =

 3
4
0
1
4


 0 0 1̄

0 1 0
1 0 1̄

 0
0
3
4

 =

 − 3
4
0

− 3
4

 =

 1
4
0
1
4


 0 0 1̄

0 1 0
1 0 1̄

 1
2
0
3
4

 =

 − 3
4
0

− 1
4

 =

 1
4
0
3
4


∗You can also locate these points using the “group theory” approach. You might wish to do it

both ways!
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The glide plane intersects the b axis at [0 1
4 0] in the P21/c unit cell.

Since the b axis is the same axis in both unit cells, we would not expect
a change in the coordinates of the intersection point: 0 0 1̄

0 1 0
1 0 1̄

 0
1
4
0

 =

 0
1
4
0

 .

The same holds for the glide plane intersecting the b axis at [0 3
4 0].

(b) The glide operation involves a reflection across a plane at [0 1
4 0] ⇒

S(m) = R(m) + [0 1
2 0], followed by a translation of [ 12 0 1

2 ] along the
diagonal. Thus S(n) = R(m) + [0 1

2 0] + [ 12 0 1
2 ] = S(m) + [ 12

1
2

1
2 ].

The diad screw operator at [ 14 0 3
4 ] is generated by considering the trans-

formation of a general point at [xf yf zf ]: Translate to origin → [(xf −
1
4 ) yf (zf − 3

4 )]. Diad rotation about b → [(−(xf − 1
4 )) yf (−(zf − 3

4 ))].
Translate to original location → [(−(xf − 1

4 ) + 1
4 ) yf (−(zf − 3

4 ) + 3
4 )] =

[(x̄f + 1
2 ) yf (z̄ + 3

2 )] ≡ [(x̄f + 1
2 ) yf (z̄ + 1

2 )]. The screw operation is
completed by translating 1

2b along b → [(x̄f + 1
2 ) (yf + 1

2 ) (z̄ + 1
2 )]. This

is effectively the same as rotating [xf yf zf ] about the b axis, followed by
a translation of 1

2 along each of the axes. Thus S(21) = R(2) + [ 12
1
2

1
2 ].

(c) Given [xf yf zf ] (1),

S(21)

 xf

yf

zf

 =

 x̄f + 1
2

yf + 1
2

z̄f + 1
2

 (2) S(1̄)

 xf

yf

zf

 =

 x̄f

ȳf

z̄f

 (3)

S(1̄)

 x̄f + 1
2

yf + 1
2

z̄f + 1
2

 =

 xf + 1
2

ȳf + 1
2

zf + 1
2

 (4).

(d)

S(1) : (0.7403, 0.0629, 0.4073) (1)
S(1)′ : (−0.7403,−0.0629,−0.4073) = (1− 0.7403, 1− 0.0629, 1− 0.4073)

= (0.2597, 0.9371, 0.5927) (2)
S(1)′′ : (−0.7403 + 0.5, 0.0629 + 0.5,−0.4073 + 0.5)

= (0.7597, 0.5629, 0.0927) (3)
S(1)′′′ : (−0.7597,−0.5629,−0.0927)

= (0.2403, 0.4371, 0.9073) (4)
C(1) : (0.5501, 0.2608, 0.3860) (1)
C(1)′ : (0.4499, 0.7392, 0.6140) (2)
C(1)′′ : (0.9499, 0.7608, 0.1140) (3)
C(1)′′′ : (0.0501, 0.2392, 0.8860) (4).
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Cartesian coordinates for S(1)′ and C(1)′:

S(1) : B

 0.2597
0.9371
0.5927

 =

 −0.1080
5.9281
8.3126


C(1) : B

 0.4499
0.7392
0.6140

 =

 0.9931
4.6762
8.6114


−−−−−−−→
C(1)′S(1)′ =

 −1.1011
1.2519

−0.2988


|
−−−−−−−→
C(1)′S(1)′| = 1.694 Å, etc.

8. Referring to Fig. 2.47, it was postulated that the symmetry element located
at the 2′ location was a diad rotational axis, but this assertion was not proved
(any symmetry element that would transform an atom onto itself would have
worked). (a) Show that an axis located at the position in the figure is a two-
fold rotational axis. (b) Prove that any axis with a location resulting from
a general product of a diad rotational operation about an axis at the origin
followed by a translation from a vector in the translation group, S(tj)S(2),
tj = [m1 m2 m3], is a diad rotational axis. m1, m2, and m3 are arbitrary
integers.

Solution:

(a) To prove this we transfer the origin to the point of intersection of the
axis where it crosses the ac plane at [− 1

2 0 1]. This is accomplished
by subtracting [− 1

2 0 1] from the coordinates of the original point at
[xf yf zf ] and a symmetry-equivalent point generated from the initial
rotation and translation at [(x̄f − 1) yf (z̄f + 2)]. The coordinates of
these points with respect to the new origin are [(xf + 1

2 ) yf (zf −1)] and
[(x̄f − 1

2 ) yf (z̄f + 1)], respectively. Diad rotation of the original point
about the axis generates the symmetry-equivalent point: 1̄ 0 0

0 1 0
0 0 1̄

 xf + 1
2

yf

zf − 1

 =

 −(xf + 1
2 )

yf

−(zf − 1)

 =

 x̄f − 1
2

yf

z̄f + 1

 .

(b) The general symmetry element (putative diad axis) intersects the ac

plane at
[m1

2
0

m3

2

]
. The original point is at [xf yf zf ]. The rota-

tion of this point (a vector to this point) about a diad axis intersecting
the ac plane at [0 0 0], followed by a [m1 0 m3] translation, gener-
ates a symmetry-equivalent point at [(x̄f + m1) yf (z̄f + m3)]. Re-

establishing the origin at
[m1

2
0

m3

2

]
transforms the original vector to[(

xf −
m1

2

)
yf

(
zf −

m3

2

)]
, and the vector to the symmetry equiva-

lent point to
[(

x̄f +
m1

2

)
yf

(
z̄ +

m3

2

)]
. Diad rotation of a point at
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[(
xf −

m1

2

)
yf

(
zf −

m3

2

)]
about an axis located on the translated

origin results in

 1̄ 0 0
0 1 0
0 0 1̄




xf −
m1

2
yf

zf −
m3

2

 =


−(xf −

m1

2
)

yf

−(zf −
m3

2
)

 =


x̄f +

m1

2
yf

z̄f +
m3

2

 .

The original point is related to the symmetry-equivalent point through
a diad rotation about the axis.

9. The general positions for the P212121 space group are listed in the Inter-
national Tables for Crystallography as: (1) x, y, z (2) x̄ + 1

2 , ȳ, z + 1
2 (3)

x̄, y + 1
2 , z̄ + 1

2 (4) x + 1
2 , ȳ + 1

2 , z̄. (a) Determine the matrix operators
for the local operators in P212121 from these general positions. (b) Demon-
strate that the set of local operations resulting from the application of these
operators to a general vector behaves like a mathematical group if symmetry-
equivalent positions due to translations from vectors in the translation group
are transformed to equivalent positions without the translations.

Solution:

(a)

S(1) =

 1 0 0
0 1 0
0 0 1

+

 0
0
0

 S(2) =

 1̄ 0 0
0 1 0
0 0 1̄

+

 1
2
0
1
2


S(3) =

 1̄ 0 0
0 1 0
0 0 1̄

+

 0
1
2
1
2

 S(4) =

 1 0 0
0 1̄ 0
0 0 1̄

+

 1
2
1
2
0

 .

(b) The simplest approach is to generate all of the possible products
(i.e., a multiplication table). We begin with the effects of each operator
on a general vector:

S(1)

 xf

yf

zf

 =

 xf

yf

zf

 S(2)

 xf

yf

zf

 =

 x̄f + 1
2

ȳf

zf + 1
2


S(3)

 xf

yf

zf

 =

 x̄f

yf + 1
2

z̄f + 1
2

 S(4)

 xf

yf

zf

 =

 xf + 1
2

ȳf + 1
2

zf


i. Identity Rule:

S(1)S(2)

 xf

yf

zf

 = S(1)

 x̄f + 1
2

ȳf

zf + 1
2

 =

 x̄f + 1
2

ȳf

zf + 1
2


=⇒ S(1)S(2) = S(2).

Clearly, S(1)S(1) = S(1), S(1)S(2) = S(2)S(1) = S(2), S(1)S(3) =
S(3)S(1) = S(3), and S(1)S(4) = S(4)S(1) = S(4). Thus S(1) ≡
S(E) ≡ E.
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ii. Inverse Rule:

S(2)S(2)

 xf

yf

zf

 = S(2)

 x̄f + 1
2

ȳf

zf + 1
2

 =

 xf − 1
2 + 1

2
yf

zf + 1
2 + 1

2

 =

 xf

yf

zf

+

 0
0
1

 .

Similarly,

S(3)S(3)

 xf

yf

zf

 =

 xf

yf

zf

+

 0
1
0

 and S(4)S(4)

 xf

yf

zf

 =

 xf

yf

zf

+

 1
0
0

 .

Translating each of these positions back to the original positions
from their symmetry-equivalent locations in an adjacent unit cell
renders each of the products effectively equal to the identity: S(1)S(1) ≡
E, S(2)S(2) ≡ E, S(3)S(3) ≡ E, and S(4)S(4) ≡ E. Ignoring
symmetry-equivalent translations, every operation is its own inverse.

iii. Closure Rule:
In addition to the products above,

S(3)S(2)

 xf

yf

zf

 = S(3)

 x̄f + 1
2

ȳf

zf + 1
2

 =

 xf − 1
2

ȳf + 1
2

z̄f − 1
2 + 1

2

 =

 xf + 1
2

ȳf + 1
2

z̄f


S(2)S(3)

 xf

yf

zf

 = S(2)

 x̄f

yf + 1
2

z̄f + 1
2

 =

 xf + 1
2

ȳf − 1
2

z̄f + 1
2 + 1

2

 =

 xf + 1
2

ȳf + 1
2

z̄f + 1

 .

Translating the second product back to the originating unit cell by
[0 0 1̄ ] renders S(3)S(2) ≡ S(2)S(3) ≡ S(4). Similarly, S(2)S(4) ≡
S(4)S(2) ≡ S(3) and S(3)S(4) ≡ S(4)S(3) ≡ S(2). Provided that
symmetry-equivalent translations are negated, every product of op-
erations results in another operation.

iv. Associativity:
S(3)

(
S(2)S(4)

)
≡ S(2)S(2) ≡ E and

(
S(3)S(2)

)
S(4) ≡ S(4)S(4) ≡

E, etc.
Note that every product in this particular “group” is commutative.
A commutative group is known as an Abelian group.

10. Referring to Exercise 8 at the end of Chapter 1, the CuSO4 crystal structure
was reported to pack in the Pnma space group. This is space group No. 62 in
the International Tables for Crystallography. Although it is more common to
transform a unit cell in a non-standard setting into one in the standard setting
(in this case Pnma), consider transforming the unit cell and its contents into
the non-standard Pmcn unit cell. (a) Determine the cell parameters of the
transformed unit cell and develop a matrix that will transform the fractional
coordinates of the Cu, S, and O atoms from the Pnma unit cell to the Pmcn
unit cell. (b) Look up the general and special positions in the Pnma unit
cell and determine their locations in the Pmcn unit cell. (c) Determine the
coordinates of the atoms in the asymmetric unit of the Pmcn unit cell. Are
the contents of the cell consistent with CuSO4 stoichiometry? (e) When the
unit cell is transformed from Pnma to Pmcn, what happens to the indices
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of reflections from each set of lattice planes in the crystal? (You may have to
read ahead in Chapter 3 to answer this question).

Solution:

(a) Unit cell axes and glide/mirror planes for Pnma and Pmcn:

Thus a′ = b, b′ = c, and c′ = a. Both unit cells are right-handed (no
need to change signs of coordinates): a× b = c and a′ × b′ = c′.
a′ = 6.89Å, b′ = 4.83Å c′ = 8.39Å, α = 90.00o, β = 90.00o and
γ = 90.00o.

To determine the transformation matrix write a general vector in both
coordinate bases:

vf = xf a + yf b + zf c

= x′f a′ + y′f b′ + z′f c′

= x′f b + y′f c + z′f a

= z′f a + x′f b + y′f c.

Thus x′f = yf , y′f = zf , z′f = xf , and 0 1 0
0 0 1
1 0 0

 xf

yf

zf

 =

 yf

zf

xf

 =

 x′f
y′f
z′f

 .

(b) The matrix in (a) will transform any coordinates in the Pnma unit cell
into coordinates in the Pmcn unit cell. This includes those of the general
and special positions: 0 1 0

0 0 1
1 0 0

 x̄f + 1
2

ȳf

zf + 1
2

 =

 ȳf

zf + 1
2

x̄f + 1
2

 =

 x′f
y′f + 1

2

z̄′f + 1
2


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 0 1 0
0 0 1
1 0 0

 x̄f

yf + 1
2

z̄f

 =

 yf + 1
2

z̄f

x̄f

 =

 x′f + 1
2

ȳ′f
z̄′f


 0 1 0

0 0 1
1 0 0

 xf + 1
2

ȳf + 1
2

z̄f

 =

 ȳf + 1
2

z̄f + 1
2

xf + 1
2

 =

 x̄′f + 1
2

ȳ′f + 1
2

z′f + 1
2

 .

These three general positions, along with [x′f y′f z′f ] are related to the
other four general positions by inversion operations (the inversion centers
remain in their same positions), and are obtained simply by negating the
coordinates. The multiplicity of the general position is 8. The special
positions each have a multiplicity of 4, and include two positions on each
mirror plane – and the inversion centers characteristic of a centrosym-
metric unit cell. In the Pnma unit cell the mirror planes are parallel to
the ac plane and intersect the b axis at [0 1

4 0] and [0 3
4 0]. The special

positions are denoted by x 1
4 z, etc. These positions transform to 0 1 0

0 0 1
1 0 0

 xf
1
4
zf

 =

 1
4
zf

xf

 =

 1
4
y′f
z′f

 .

The special position in the Pmcn unit cell is on a mirror plane that
intersects the a axis at [0 1

4 0] and is parallel to the bc plane, as expected.
The inversion centers transform as 0 1 0

0 0 1
1 0 0

 0
0
1
2

 =

 0
1
2
0

 , etc.

An inversion center bisecting c in Pnma is now bisecting b′ in Pmcn,
again as expected.

(c) Location of the asymmetric unit in the Pmcn unit cell:

atom xf yf zf atom xf yf zf

Cu1 0.000 0.000 0.000 O2 0.250 0.439 0.375
S1 0.250 0.445 0.185 O3 0.069 0.307 0.129
O1 0.250 0.755 0.141

Cu1 is on a special position – an inversion center at the origin with a
multiplicity of 4. S1, O1, and O2 are all on special positions, located
on the mirror planes, each with a multiplicity of 4. O3 is in a general
position with a multiplicity of 8. There are therefore 4 Cu atoms, 4 S
atoms, and 16 O atoms in the unit cell – four formula units of CuSO4

in the unit cell.

(d) The indices of the reflections are the indices of the hkl planes from
which the reflections are observed when diffraction occurs. With this
knowledge it is possible to solve the problem here, although a knowledge
of diffraction and the reciprocal lattice will make the solution here more
obvious. Recall that the indices of the planes, h, k, l, were the integer
number of equal segments that each set of planes divide the a, b and c
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axes into. The first of these sets of parallel planes intersects the origin,
and the second intersects a, b and c at [1/h 0 0], [0 1/k 0], and [0 0 1/l],
respectively. These fractional coordinates will transform just as any
fractional coordinates do. This is made simpler if we create the vector
[1/h 1/k 1/l] and transform it: 0 1 0

0 0 1
1 0 0

 1/h
1/k
1/l

 =

 1/k
1/l
1/h

 =

 1/h′

1/k′

1/l′

 .

Thus 1/h′ = 1/k, etc. and h′ = k, k′ = l and l′ = h; the vector [h k l]
transforms just like [xf yf zf ]. Vectors with components that are indices
will take on special significance in Chapter 3.
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Chapter 3

Crystal Diffraction: Theory

1. Consider four equally spaced hydrogen atoms, arranged in a line along the x
axis of a Cartesian coordinate system:

A monochromatic, in-phase X-ray beam with λ = 1.500Å is directed parallel
to the y axis; the atom at the origin is selected as the scattering (phase)
reference. A wave detector is placed at a distance of one meter from the
origin. The maximum electric field due to each atom observed at the detector
(measured in the absence of the other atoms) is Ea. (a) Determine general
formulae for the maximum amplitude of the resultant wave observed at the
detector, Eo,r, and its relative phase, ϕr, with respect to a wave scattered
from the origin. (b) Determine Eo,r when L = 1.125Å, L = 2.250Å, and
L = 4.500Å. Note that since the frequencies of all of the waves and the
resultant wave are the same, all of the wave vectors rotate together in time.
Thus Eo,r and ϕr remain constant, and are conveniently evaluated at t = 0.
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Solution:

(a) The general case (ν = c/λ):

Ei(t) = Ea cos(2πν t) + Ea cos
(

2πν

(
t +

L

c

))
+ Ea cos

(
2πν

(
t +

2L

c

))
+ Ea cos

(
2πν

(
t +

3L

c

))
= Ea

3∑
k=0

cos
(

2π

(
t +

kL

λ

))

Ej(t) = Ea

3∑
k=0

sin
(

2π

(
t +

kL

λ

))
Eo,r = (Ei(t)2 + Ej(t)2)1/2 ϕo(t) = arctan

Ej(t)
Ei(t)

.

At t = 0 the scattering from the atom at the origin has cos(2πν t) = 1
and sin(2πν t) = 0; its wave vector is coincident with the x axis. Thus
ϕr = ϕo(0), and

Ei(0) = Ea

3∑
k=0

cos
(

2π

(
kL

λ

))
Ej(0) = Ea

3∑
k=0

sin
(

2π

(
kL

λ

))
Eo,r = (Ei(0)2 + Ej(0)2)1/2 ϕr = arctan

Ej(0)
Ei(0)

.
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(b) L = 1.125Å = 3λ/4:

Ei(0) = Ea

3∑
k=0

cos
(

π

(
3k

2

))
= (1 + 0− 1 + 0)Ea = 0

Ej(0) = Ea

3∑
k=0

sin
(

π

(
3k

2

))
= (0− 1 + 0 + 1)Ea = 0

Eo,r = 0.

L = 2.250Å = 3λ/2:

Ei(0) = Ea

3∑
k=0

cos (π3k) = (1− 1 + 1− 1)Ea = 0

Ei(0) = Ea

3∑
k=0

sin (π3k) = (0 + 0 + 0 + 0)Ea = 0

Eo,r = 0.

L = 4.500Å = 3λ:

Ei(0) = Ea

3∑
k=0

cos (π6k) = (1 + 1 + 1 + 1)Ea = 4Ea

Ei(0) = Ea

3∑
k=0

sin (π6k) = (0 + 0 + 0 + 0)Ea = 0

Eo,r = 4Ea;

the atoms are separated by an integral number of wavelengths and the
waves scattered from all four atoms are in phase.

2. The detector in Exercise 1 can be rotated in the xy plane so that its distance
from the origin remains constant. Because the distances between the atoms
are orders of magnitude different from the distance to the detector, the waves
emanating from each atom can be considered to be traveling along parallel
vectors toward a point on the detector in any direction (See Fig. 3.8). (a)
Determine general formulae for the maximum amplitude of the resultant wave
observed at the detector, Eo,r, and its relative phase, ϕr. These formulae will
be similar to those derived in Exercise 1, but will contain the detector angle,
θ, between a vector to the center of the detector and the y axis. (b) Determine
the smallest non-zero angle through which the detector must be rotated to
observe a maximum intensity at the detector (a diffraction maximum) and
Eo,r and ϕr for this angle for L = 1.125Å, L = 2.250Å, and L = 4.500Å.
(c) Determine the smallest angle through which the detector must be rotated
to observe a minimum intensity at the detector (a diffraction minimum) and
Eo,r and ϕr for this angle for L = 1.125Å, L = 2.250Å, and L = 4.500Å.
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Solution:

(a) Equal vectors of length L between atoms result in equal projections on
the parallel wave vectors, each of length D. The differences in distances
to the detector for waves scattered from each atom now depends on
D = L cos(90o − θ) = L sin θ.

Referring to the solution for Exercise 1,

Ei(t) = Ea

3∑
k=0

cos
(

2π

(
t +

kD

λ

))
≡ Ea

3∑
k=0

cos
(

2π

(
t +

kL sin θ

λ

))

Ej(t) = Ea

3∑
k=0

sin
(

2π

(
t +

kD

λ

))
≡ Ea

3∑
k=0

sin
(

2π

(
t +

kL sin θ

λ

))
Eo,r = (Ei(t)2 + Ej(t)2)1/2 ϕo(t) = arctan

Ej(t)
Ei(t)

.

(b) An intensity maximum will be observed at the detector when the angle
is set so that the waves emanating from each atom in the direction of
the path to the detector are all in phase, separated by an integer number
of wavelengths, i.e., D = nλ. The first maximum will be observed at
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D = λ. Evaluating the superposition of waves at t = 0 gives

Ei(0) = Ea

3∑
k=0

cos
(

2π

(
kλ

λ

))
= Ea

3∑
k=0

cos 2kπ = 4 Ea

Ej(0) = Ea

3∑
k=0

sin
(

2π

(
kλ

λ

))
= Ea

3∑
k=0

sin 2kπ = 0

Eo,r = 4 Ea ϕr = arctan
Ej(0)
Ei(0)

= 0.

The phase of the resultant wave is the same as the phases (all identical)
of the waves scattering from each atom.

For D = λ, sin θ = D/L = λ/L. For L = 1.125Å = 3λ/4, sin θ = 4/3,
which is impossible. There are no diffraction maxima for L < λ. For
L = 2.250Å = 3λ/2, sin θ = 2/3 and θ = 41.8o. For L = 4.450Å = 3λ,
sin θ = 1/3 and θ = 19.5o.

(c) An intensity minimum will be observed at the detector when the angle
is set so that the waves emanating from each atom in the direction of the
path to the detector are 180o out of phase with those emanating from an
adjacent atom (we can consider superpositioning the waves in pairs, then
superpositioning the resultant from each pair). This will occur when the
waves differ by a half integral number of wavelengths. The first minimum
will be observed at D = λ/2. Evaluating the superposition of waves at
t = 0 gives

Ei(0) = Ea

3∑
k=0

cos
(

2π

(
kλ

2λ

))
= Ea

3∑
k=0

cos kπ = 0

Ej(0) = Ea

3∑
k=0

sin
(

2π

(
kλ

2λ

))
= Ea

3∑
k=0

sin kπ = 0

Eo,r = 0.

For D = λ/2, sin θ = D/L = λ/(2L). For L = 1.125Å = 3λ/4, sin θ =
2/3, and θ = 41.8o. For L = 2.250Å = 3λ/2, sin θ = 1/3 and θ = 19.5o.
For L = 4.450Å = 3λ, sin θ = 1/6 and θ = 9.6o.

3. The detector and the X-ray source in Exercise 2 are modified so that vectors
in the direction of the X-ray beam and vectors toward the detector both make
equal angles with the y axis (Fig. 3.11). (a) Determine general formulae for
the maximum amplitude of the resultant wave observed at the detector, Eo,r,
and its relative phase, ϕr. (b) Determine the smallest angle through which
the detector must be rotated to observe a maximum intensity at the detector
(a diffraction maximum) and Eo,r and ϕr for this angle for L = 1.125Å,
L = 2.250Å, and L = 4.500Å. (c) Determine the smallest angle through
which the detector must be rotated to observe a minimum intensity at the
detector (a diffraction minimum) and Eo,r and ϕr for this angle for L =
1.125Å, L = 2.250Å, and L = 4.500Å.
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Solution:

(a) As in Exercise 2, equal vectors of length L between atoms results in
equal projections on the parallel wave vectors, each of length D. The
wave scattered from each atom travels an additional distance of 2D in
comparison with an atom to its right, where D = L sin θ:

Referring to the solution for Exercise 2,

Ei(t) = Ea

3∑
k=0

cos
(

2π

(
t +

k(2D)
λ

))
≡ Ea

3∑
k=0

cos
(

2π

(
t +

kL2 sin θ

λ

))

Ej(t) = Ea

3∑
k=0

sin
(

2π

(
t +

k(2D)
λ

))
≡ Ea

3∑
k=0

sin
(

2π

(
t +

kL2 sin θ

λ

))
Eo,r = (Ei(t)2 + Ej(t)2)1/2 ϕo(t) = arctan

Ej(t)
Ei(t)

.

(b) The first maximum will be observed at D = λ/2, since 2D = λ. Evalu-
ating the superposition of waves at t = 0 gives

Ei(0) = Ea

3∑
k=0

cos
(

2π

(
k2λ

2λ

))
= Ea

3∑
k=0

cos 2kπ = 4 Ea

Ej(0) = Ea

3∑
k=0

sin
(

2π

(
k2λ

2λ

))
= Ea

3∑
k=0

sin 2kπ = 0

Eo,r = 4 Ea ϕr = arctan
Ej(0)
Ei(0)

= 0.
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Just as in Exercise 2, the phase of the resultant wave is the same as the
phases (all identical) of the waves scattering from each atom.

For D = λ/2, sin θ = D/L = λ/2L. For L = 1.125Å = 3λ/4, sin θ = 2/3,
and θ = 41.8o. For L = 2.250Å = 3λ/2, sin θ = 1/3 and θ = 19.5o. For
L = 4.450Å = 3λ, sin θ = 1/6 and θ = 9.6o.

The first minimum will be observed at D = λ/4, since 2D = λ/2. Eval-
uating the superposition of waves at t = 0 gives

Ei(0) = Ea

3∑
k=0

cos
(

2π

(
k2λ

4λ

))
= Ea

3∑
k=0

cos kπ = 0

Ej(0) = Ea

3∑
k=0

sin
(

2π

(
k2λ

4λ

))
= Ea

3∑
k=0

sin kπ = 0

Eo,r = 0.

For D = λ/4, sin θ = D/L = λ/(4L). For L = 1.125Å = 3λ/4, sin θ =
1/3, and θ = 19.5o. For L = 2.250Å = 3λ/2, sin θ = 1/6 and θ = 9.6o.
For L = 4.450Å = 3λ, sin θ = 1/12 and θ = 4.8o.

4. X-rays for crystal structure determination are commonly generated by bom-
barding specific metals with high-energy electrons. The metals most often
used are copper and molybdenum, which emit average wavelengths of 1.5418
Å and 0.7107 Å, respectively, after passing through a monochromator. Refer-
ring to Fig. 3.15, with the area detector (screen) at a distance of 0.1 meters
from the crystal, consider a one-dimensional crystal lattice with a = 10 Å
– typical of a small-molecule crystal structure. The spots on the screen are
finite in size – with widths on the order of a millimeter. To measure the inten-
sity of a single spot, it must not overlap with adjacent spots. (a) Determine
the number of diffraction maxima (spots on the screen) that it is possible to
observe for each wavelength. (b) Determine the distance between the spots
on the screen for h = 1 and h = 2. (c) Repeat (a) for a unit cell with a = 100
Å, typical of a macromolecular crystal structure. (d) Repeat (b) for the 100
Å unit cell.

Solution:

(a) As the crystal is rotated, a reciprocal lattice vector with index h and
length h= |h|/a will fail to cross the circle of reflection if h is greater
than 2/λ. For a reflection to be observed, |h| ≤ 2a/λ:

Cu : |h| ≤ 20Å
1.5418Å

≤ 12.97 =⇒ −12 ≤ h ≤ 12. 24 reflections.

Mo : |h| ≤ 20Å
0.7107Å

≤ 28.14 =⇒ −28 ≤ h ≤ 28. 56 reflections.

(b) The distance from the crystal to the screen, d, is orders of magnitude
greater than the distances between lattice points, and can be considered
essentially constant as the reciprocal lattice is rotated through the cir-
cle of reflection. Thus the relationship between adjacent points in the
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reciprocal lattice and the images on the screen can be approximated by
two similar isosceles triangles:

x

d
=

1/a

1/λ
=

λ

a

Cu :
x

0.1m
=

1.5418Å
10Å

=⇒ x = 0.015m = 15mm

Mo :
x

0.1m
=

0.7107Å
10Å

=⇒ x = 0.007m = 7mm.

(c)

Cu : |h| ≤ 200Å
1.5418Å

≤ 129.71 =⇒ −129 ≤ h ≤ 129. 258 reflections.

Mo : |h| ≤ 200Å
0.7107Å

≤ 281.41 =⇒ −281 ≤ h ≤ 281. 562 reflections.
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(d)

Cu :
x

0.1m
=

1.5418Å
100Å

=⇒ x = 0.0015m = 1.5mm

Mo :
x

0.1m
=

0.7107Å
100Å

=⇒ x = 0.0007m = 0.7mm.

5. In Chapter 1 an expression for the unit cell volume in terms of the unit
cell parameters was derived for a general (triclinic) unit cell. In Chapter
3 relationships between the direct and reciprocal unit cell parameters were
derived for the general case. (a) Derive explicit expressions for the unit cell
volumes of monoclinic, orthorhombic, tetragonal, cubic, trigonal/hexagonal,
and rhombohedral unit cells. (b) Derive expressions for the direct↔reciprocal
unit cell relationships for each of the unit cell types in part (a).

Solution:

(a) The volume expressions are all derived from the triclinic formula:

Triclinic : V = abc(1− cos2 α− cos2 β − cos2 γ + 2 cos α cos β cos γ)1/2

Monoclinic : V = abc(1− 0− cos2 β − 0 + 2(0))1/2 = abc(1− cos2 β)1/2

= abc sinβ

Orthorhombic : V = abc(1− 0− 0− 0 + 2(0))1/2 = abc

Tetragonal : V = aac(1− 0− 0− 0 + 2(0))1/2 = a2c

Cubic : V = aaa(1− 0− 0− 0 + 2(0))1/2 = a3

Trigonal/Hexagonal : V = aac(1− cos2 γ)1/2 = a2c sin γ = a2c

√
3

2
Rhombohedral : V = aaa(1− cos2 α− cos2 α− cos2 α + 2 cos α cos α cos α)1/2

= a3(2 cos3 α− 3 cos2 α + 1)1/2.

(b) The direct lattice formulas are obtained from the reciprocal lattice for-
mulas below by adding asterisks to the parameters without an asterisk,
and removing it from those that do:

Monoclinic :

a∗ =
bc sinα

abc sinβ
=

1
a sinβ

b∗ =
ac sinβ

abc sinβ
=

1
b

c∗ =
ab sin γ

abc sinβ
=

1
c sinβ

cos α∗ =
0− 0

1
= 0 cos β∗ =

0− cos β

sinα sin γ
= − cos β cos γ∗ =

0− 0
1

= 0

Orthorhombic :

a∗ =
bc

abc
=

1
a

b∗ =
ac

abc
=

1
b

c∗ =
ab

abc
=

1
c

cos α∗ =
0− 0

1
= 0 cos β∗ =

0− 0
1

= 0 cos γ∗ =
0− 0

1
= 0

Tetragonal :

a∗ =
bc

abc
=

1
a

c∗ =
ab

abc
=

1
c

cos α∗ = cos β∗ = cos γ∗ = 0
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Cubic :

a∗ =
bc

abc
=

1
a

cos α∗ = cos β∗ = cos γ∗ = 0

Trigonal/Hexagonal (α = β = 90o, γ = 120o) :

a∗ =
ac sinα

a2c sin γ
=

2
a
√

3
c∗ =

a2 sin γ

a2c sin γ
=

1
c

cos α∗ = cos β∗ = 0 cos γ∗ =
0− cos γ

sinα sinβ
= − cos γ = −1

2
Rhombohedral (a = b = c, α = β = γ) :

a∗ =
aa sinα

a3(2 cos3 α− 3 cos2 α + 1)1/2
=

sinα

a(2 cos3 α− 3 cos2 α + 1)1/2

cos α∗ =
cos2 α− cos α

sin2 α
.

6. In Chapter 1 the B matrix was derived to transform a direct lattice vector,
[xf yf zf ], into Cartesian coordinates, [xc yc zc]. Using identical arguments
(see Fig. 4.14), a vector in reciprocal fractional coordinates, [x∗f y∗f z∗f ], can
be transformed into a vector in reciprocal Cartesian coordinates, [x∗c y∗c z∗c ]
by the B∗ matrix for the structure. (a) Using the cell parameters for the mer-
captopyridine unit cell in Sec. 1.5.3, determine the reciprocal cell parameters
and the B∗ matrix for the structure. (b) Determine the distance between the
planes with (h k l) = (1 2 3) in the mercaptopyridine lattice. (c) Determine
the distance between the planes with (h k l) = (4 5 6). (d) Calculate the
Bragg diffraction angles for the reflections from both sets of planes for copper
and molybdenum radiation (the wavelengths are given in Exercise 4).

Solution:

(a) Monoclinic unit cell with a = 6.112 Å, b = 6.326 Å, c = 14.314 Å,
β = 101.53o, V = 542.3 Å3. From the monoclinic formula in the solution
for Exercise 5, a∗ = 0.1670 Å−1, b∗ = 0.1581 Å−1, c∗ = 0.0713 Å−1,
α∗ = 90.00o, β∗ = 78.47o, γ∗ = 90.00o, and V ∗ = 1.844× 10−3 Å−3.

B∗ =

 a∗ b∗ cos γ∗ c∗ cos β∗

0 b∗ sin γ∗ c∗(cos α∗−cos β∗ cos γ∗)
sin γ∗

0 0 V ∗

a∗b∗sinγ∗


=

 0.1670 0.0000 0.0143
0.0000 0.1581 0.0000
0.0000 0.0000 0.0699

 .

(b) h123 = [x∗f y∗f z∗f ] = [1 2 3]:

B∗

 1
2
3

 =

 0.2099
0.3162
0.2907

 =

 x∗c
y∗c
z∗c


h123 = (x2

c + y2
c + z2

c )1/2 = 0.4336 Å
−1

d123 =
1

h123
= 2.306 Å.

34



(c) h456 = [x∗f y∗f z∗f ] = [4 5 6]:

B∗

 4
5
6

 =

 0.7358
0.7905
0.4194

 =

 x∗c
y∗c
z∗c


h456 = (x2

c + y2
c + z2

c )1/2 = 1.1585 Å
−1

d456 =
1

h456
= 0.8631 Å.

(d) sin θhkl = λ/(2dhkl) = λ hhkl/2:

sin θ123(Cu) =
1.5418 Å× 0.4336Å

−1

2
= 0.334 θ123 = 19.51o

sin θ123(Mo) =
0.7107 Å× 0.4336Å

−1

2
= 0.154 θ123 = 8.86o

sin θ456(Cu) =
1.5418 Å× 0.8631Å

−1

2
= 0.665 θ456 = 41.71o

sin θ456(Mo) =
0.7107 Å× 0.8631Å

−1

2
= 0.307 θ456 = 17.86o.

7. The hypothetical two-dimensional carbon monoxide structure modeled in
Fig. 3.33 has a = 4.855 Å, b = 6.953 Å, and γ = 98.8o. (a) Referring to
Fig. 3.20, determine expressions for the two-dimensional reciprocal cell pa-
rameters — a∗, b∗, and γ∗. (b) Adopting the convention that the a and a∗

axes are coincident with the the unit vector i in their respective orthonor-
mal coordinate systems, derive the B and B∗ matrices that convert vectors
in direct and reciprocal fractional coordinates to Cartesian coordinates. (c)
Determine a∗, b∗, and γ∗ for the CO unit cell. (d) Determine the distances
between the (1 2) and (2 3) lines in the two-dimensional lattice.

Solution:
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(a) a∗ = h10 ⇒ a∗ = h10 = 1/d10, b∗ = h01 ⇒ b∗ = h01 = 1/d01, and
sin γ∗ = (1/a)/a∗ = 1/(aa∗).

sin(π − γ) = sin γ =
d10

a
=

1
h10a

=
1

a∗a

a∗ =
1

a sin γ
.

sin(π − γ) = sin γ =
d01

b
=

1
h01b

=
1

b∗b

b∗ =
1

b sin γ
.

sin γ∗ =
1

a∗a
= sin γ.

Since γ∗ is an acute angle, γ∗ = π − γ.

(b) The Cartesian components of the direct lattice vectors are

ac = axi + ayj = ai + 0j
bc = bxi + byj = b cos γ i + b sin γ j.

C =
[

a 0
b cos γ b sin γ

]
B = CT =

[
a b cos γ
0 b sin γ

]
.

Substituting a∗, b∗, and γ∗ in the figure above:

B∗ =
[

a∗ b∗ cos γ∗

0 b∗ sin γ∗

]
.
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(c)

a∗ =
1

4.855Å sin(98.8o)
= 0.208 Å

−1

b∗ =
1

6.953Å sin(98.8o)
= 0.146 Å

−1

γ∗ = π − γ = 81.2o.

(d)

B∗ =
[

0.208 0.022
0 0.144

]
h12 : B∗

[
1
2

]
=
[

0.252
0.288

]
h12 = (0.2522 + 0.2882)1/2 = 0.383 Å

−1

d12 =
1

h12
=

1

0.362Å
−1 = 2.613Å

h23 : B∗
[

2
3

]
=
[

0.482
0.432

]
h23 = (0.4822 + 0.4322)1/2 = 0.647 Å

−1

d23 =
1

h23
=

1

0.647Å
−1 = 1.545Å.

8. The hypothetical carbon monoxide unit cell in Exercise 7 has the following
contents:

atom x y

C1 0.567 0.278
O1 0.377 0.262
C2 0.433 0.722
O2 0.623 0.738

The parameters for Eqn. 3.100 for the scattering factors of carbon and oxygen
are:

a1 b1 a2 b2 a3 b3 a4 b4 c

C 2.3100 20.8439 1.0200 10.2075 1.5886 0.5687 0.8650 51.6512 0.2156
O 3.0485 13.2771 2.2868 5.7011 1.5463 0.3239 0.8670 32.9089 0.2508

Determine the amplitudes and phase angles of the structure factors for the
(1 2) and (2 3) reflections (Hint: Do Exercise 7 first).
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Solution:

Scattering factors for the (1 2) reflection (s12 = h12/2 = 0.192):

C : fC(1, 2) = 2.3100 e−20.8439 s2
12 + 1.0200 e−10.2075 s2

12

+1.5886 e−0.5687 s2
12 + 0.8650 e−51.6512 s2

12 + 0.2156
= 3.678

O : fO(1, 2) = 5.767.

A12 = 3.678 cos(−2π((1)(0.567) + (2)(0.278)))
+ 5.767 cos(−2π((1)(0.377) + (2)(0.262)))
+ 3.678 cos(−2π((1)(0.433) + (2)(0.722)))
+ 5.767 cos(−2π((1)(0.623) + (2)(0.738)))

= 14.640
B12 = 3.678 sin(−2π((1)(0.567) + (2)(0.278))

+ 5.767 sin(−2π((1)(0.377) + (2)(0.262)))
+ 3.678 sin(−2π((1)(0.433) + (2)(0.722)))
+ 5.767 sin(−2π((1)(0.623) + (2)(0.738)))

= 0
F12 = (14.6402 + (0)2)1/2 = 14.640

sinϕ12 =
B12

F12
= 0; cos ϕ12 =

A12

F12
= 1

ϕ12 = 0.

Similarly, s23 = h23/2 = 0.324, fC(2, 3) = 2.323, fO(2, 3) = 3.785, A23 =
−2.779, B23 = 0 and F23 = 2.779; sinϕ23 = 0, cos ϕ23 = −1, and ϕ23 = π.

9. Given the following “experimental” structure factor amplitudes and phases
for the hypothetical carbon monoxide crystal in Exercises 7 and 8, calculate
the electron density at (a) the origin of the unit cell, (b) the center of O1,
and (c) the midpoint between C1 and O1.

h k Fhk ϕhk h k Fhk ϕhk h k Fhk ϕhk

0 0 28.000 0 1 0 19.496 π 2 0 4.865 0

0 1 3.065 π 1 1 3.510 π 2 1 4.782 0

0 2 21.171 π 1 2 14.640 0 2 2 3.580 π

0 3 5.727 0 1 3 0.210 0 2 3 2.779 π

0 4 11.950 0 1 4 8.757 π 2 4 2.128 0

0 5 5.699 π 1 5 1.439 0 2 5 1.317 0
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h k Fhk ϕhk h k Fhk ϕhk h k Fhk ϕhk

3 0 3.884 0 4 0 6.155 π 5 0 5.034 0

3 1 1.270 π 4 1 2.836 π 5 1 5.075 0

3 2 3.937 π 4 2 6.581 0 5 2 5.940 π

3 3 1.353 0 4 3 1.427 0 5 3 3.372 π

3 4 3.587 0 4 4 6.370 π 5 4 6.210 0

3 5 1.432 π 4 5 0.060 π 5 5 1.640 0

Solution:

The two-dimensional analog of Eqn. 3.111 is

ρ(x, y) =
1
Ac

∑
h

∑
k

Fhk cos(2π(hx + ky)− ϕhk),

where Ac = ab sin γ. The two-dimensional version of Eqn. 3.114 can also be
used here, since the structure is centrosymmetric.

(a) Substituting x = 0 and y = 0 along with the amplitudes and phases
from the table gives

ρ(0, 0) = 0.31 e/Å
2
.

(b) O1 is at x = 0.377 and y = 0.262, giving

ρ(0.377, 0.262) = 4.71 e/Å
2
.

(c) The midpoint between C1 and O1 is at x = (0.567 + 0.377)/2 and y =
(0.278 + 0.262)/2:

ρ(0.472, 0.270) = 2.10 e/Å
2
.
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Chapter 4

Crystal Diffraction:
Experiment

1. A crystal of mercaptopyridine (Sec. 1.5.3) is aligned so that its a axis is per-
pendicular to the direction of the incident X-ray beam (λ = 0.7107 Å) along
the z axis of the laboratory reference frame. An area detector is positioned
so that its plane is perpendicular to the incident beam at a distance of 9
cm from the crystal. (a) Predict the distance between the horizontal rows of
diffraction maxima (spots) on the detector surface. (b) Predict the location
of the spots on the detector surface from the (0 1 0) and (0 0 1) reflections.

Solution:

(a) The b∗c∗ plane is perpendicular to the a (rotation) axis; The xy plane
contains the (0 k l) reciprocal lattice points. The (0 k l) and (1 k l)
reciprocal lattice planes generate spots on the detector surface as they
pass through the sphere of reflection, resulting in triangles similar to
those in Fig. 4.5. In this case d∗ is the projection of a∗ onto a, and
a = λ/ sin η.

sin η =
λ

a
=

0.7107 Å
6.112 Å

= 0.116

η = 6.677o

tan η =
L

D
=

L

9 cm
= 0.117

L = 1.05 cm.

(b) The (0 1 0) reciprocal lattice point is at the end of the b∗ = [0 1 0]
vector. Referring to Fig. 4.1, the point lies in the xy plane, intersecting
the sphere when h = b∗. The diffraction vector, d, will be at angle 2θ010
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with respect to the incident beam, with sin θ010 = λ b∗/2. Thus,

b∗ =
1
b

= 0.1581 Å
−1

sin θ010 =
0.7107 Å0.1581 Å

−1

2
= 0.056.

θ010 = 3.22o

xd = D tan 2θ010 = 1.02 cm
yd = 0.

Similarly, c∗ = 1/(c sinβ) = 0.0713 Å−1 and sin θ001 = λ c∗/2, resulting
in xd = 0.46 cm and yd = 0.

2. The orientation matrix for the mercaptopyridine crystal used to determine
the structure discussed in Sec 1.5.3, employing Mo Kα radiation (0.71073
Å), was

A∗ =

 0.02650 −0.04430 0.06840
−0.04094 −0.14859 −0.02004

0.15986 −0.03066 −0.00154

 .

(a) Determine the Eulerian angles and detector angle for the (2 4̄ 11) reflection
for the rotation of the crystal and the observation of a diffraction maximum in
the bisecting position. (b) A reflection is located with the following Eulerian
and detector angles: 2θ = 21.673o, ω = 0.114o, ϕ = 119.921o, χ = 60.878o,
2θ = 21.673o. What are its indices?

Solution:

(a)

tanϕ = − (0.02650)(2) + (−0.04430)(−4) + (0.06840)(11)
(−0.04094)(2) + (−0.14859)(−4) + (−0.02004)(11)

= −3.3646
ϕ = −73.45o = 286.55o

tanχ =
(0.15986)(2) + (−0.03066)(−4) + (−0.00154)(11)

(−0.04094)(2) + (−0.14859)(−4) + (−0.02004)(11)
cos 73.45o

= 0.4149
χ = 22.54o

sinω = − (0.15986)(2) + (−0.03066)(−4) + (−0.00154)(11)
2 sin 22.54o

0.71073

= 0.3944
ω = θ = 23.23o

2θ = 46.46o.

(b) θ = 10.837o, ω − θ = −10.723o and

2 sin 10.37o

0.71073 Å
= 0.529 Å

−1
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hl = 0.529 Å
−1

 (−0.488)(−0.186)− (0.873)(0.487)(0.983)
(0.873)(−0.186) + (−0.488)(0.487)(0.983)

(0.874)(0.983)


=

 −0.172
−0.209

0.454


A∗−1 =

 −0.2090 −1.1736 5.9896
−1.7704 −5.9483 −1.2299
13.5542 −3.3978 −3.1171


A∗−1hl =

 k
k
l

 =

 3.00
0.98

−3.04

 ≡
 3

1
3̄

 .

3. In part (a) of the previous exercise the reflection vector, hr, was oriented with
the angles ω, χ, and ϕ into the diffraction condition in the bisecting position
with specific Eulerian angles for each reflection. When an area detector is
employed, χ, ϕ, and the detector angle, τ , are fixed; hr is oriented with ω
alone. From Eqn. 4.26, for a given reflection, XΦA∗h is a specified vector,
v, oriented by ω: Ωv = hr. (a) Derive an expression for ω in terms of hr =
[hx hy hz] and v = [vx vy vz]. (b) For χ = 54.73o and φ = 270o, determine the
ω angle that will orient the (2 4̄ 11) reflection vector of the mercaptopyridine
crystal in the previous exercise into the diffraction condition. (c) Determine
the location of the (2 4̄ 11) “spot” on an area detector surface for the settings
of χ and ϕ in (b), a crystal-to-detector distance of 6 cm, and a detector angle
of 26o.

Solution:

(a) Using Ωv = hr, cos ω − sinω 0
sinω cos ω 0

0 0 1

 vx

vy

vz

 =

 hx

hy

hz


vx cos ω − vy sinω = hx

vy cos ω + vx sinω = hy

vx

vy
cos ω − sinω =

hx

vy

vy

vx
cos ω + sinω =

hy

vx

Adding the last two equations results in

cos ω =
hxvx + hyvy

v2
x + v2

y

ω = arccos
(

hxvx + hyvy

v2
x + v2

y

)
.
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(b) In the diffraction condition hx = −2 sin2 θ/λ, hz = vz, and we need
to determine only θ and hy in order to obtain ω; both θ and hy can be
derived from the magnitude of the reflection vector, h= |h| = |hr| = |hl|:

A∗h = A∗

 2
4̄
11

 =

 0.9826
0.2920
0.4254

 = hl;

h = (0.98262 + 0.29202 + 0.42542)1/2 = 1.110 Å
−1

θ = arcsin

(
1.110 Å

−1
0.71073 Å
2

)
= 23.23o

The vector, v, is now determined from v = XΦA∗h = XΦhl:

v =

 vx

vy

vz

 =

 1 0 0
0 0.5774 0.8164
0 −0.8164 0.5744

 1 1̄ 0
1 0 0
0 0 1

 0.9826
0.2920
0.4254


=

 −0.2920
0.9147

−0.5566


hx =

−2 sin2 23.23o

0.71073
= −0.4377

hz = −0.5566
hy = (1.1102 − 0.43772 − 0.55662)1/2 = 0.8546

cos ω = 0.9865
ω = 9.41o.

(c) The detector is at τ = 26o, and 0.8988 0.4384 0
−0.4384 0.8988 0

0 0 1

 (0.71073)(−0.4377) + 1
(0.71073)(0.8546)

(0.71073)(−0.5566)

 =

 0.8854
0.2439

−0.3956

 =

 x′

y′

z′


xd = −6.00

(
0.2439
0.8854

)
cm = −1.65 cm

yd = 6.00
(
−0.3956
0.8854

)
cm = −2.68 cm.

4. The mercaptopyridine crystal in Exercise 2 provided 14 reflections with the
following refined diffractometer angles:

Reflection # 2θ ω φ χ

1 7.951 −0.633 229.286 54.806
2 9.389 0.113 318.467 56.348
3 10.222 0.174 294.654 49.341
4 13.746 −0.272 89.943 75.436
5 14.861 0.069 310.896 77.474
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Reflection # 2θ ω φ χ

6 15.929 0.315 269.490 3.521
7 16.010 0.327 215.404 18.527
8 17.496 0.286 245.219 358.839
9 18.831 −0.213 309.305 57.254
10 19.954 0.257 70.621 43.299
11 21.673 0.114 119.921 60.878
12 22.477 0.079 19.438 73.882
13 23.399 −0.208 239.967 65.376
14 24.324 0.132 285.315 69.025

In the search for axial solutions using integer triples ranging from (n1, n2, n3)
= (−5,−5,−5) to (5, 5, 5), 57 potential unit cell axes, v = [vx vy vz], with
lengths of 25 Å or less were determined using Eqn. 4.40 — based on Z−1

created from the first three reflections in the list:

vx = n1z
i
11 + n2z

i
21 + n3z

i
31

vy = n1z
i
12 + n2z

i
22 + n3z

i
32

vz = n1z
i
13 + n2z

i
23 + n3z

i
33.

These trial solutions were tested using Eqn. 4.41, which must provide an
integer (in practice, a number close to an integer) for hl ≡ z for each reflection:

vxzx + vyzy + vzzz = m.

The candidates that meet this test are the Cartesian components of each
potential unit cell axis; the selection of the “best” unit cell is facilitated by
computing their lengths and angles with respect to one another, looking for
short axes with angles approaching 90o. Although the solutions for this crystal
provided the monoclinic unit cell described in the text, we consider another
possible solution from the 57 candidates (the “u” subscript indicates that the
unit cell is not the reduced unit cell for the lattice — see Exercise 5):

axis n1 n2 n3 vx vy vz

au 1 1 1 −0.1980 −1.1664 5.9618
bu −1 −2 −2 −1.5685 −4.7848 −7.1966
cu 2 2 3 15.1534 1.4349 4.0624

(a) Determine the parameters for the unit cell. (b) Determine the indices of
the reflections in the list based on the unit cell.
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Solution:

(a) Axial lengths and angles are determined from the vector components:

a = ((−0.1980)2 + (−1.1664)2 + (5.9618)2)1/2 = 6.078 Å
b = ((−1.5685)2 + (−4.7848)2 + (−7.1966)2)1/2 = 8.783 Å
c = ((15.1534)2 + (1.4349)2 + (4.0624)2)1/2 = 15.754 Å

cos α =
(−1.5685)(15.1534) + (−4.7848)(1.4349) + (−7.1966)(4.0624)

(8.783)(15.754)
α = 115.64o

β = 78.22o

γ = 133.89o.

(b) The A matrix consists of the Cartesian components of the axial vectors:

A =

 −0.1980 −1.1664 5.9618
−1.5685 −4.7848 −7.1966
15.1534 1.4349 4.0624


The indices of the reflections are given by hi = Azi. For example, for
reflection #10, using Eqn. 4.37,

ω10 − θ10 = 0.257o − 9.997o = −9.74o

z10 =
2 sin 9.997o

0.71073
× cos 70.621o sin−9.74o − sin 70.621o cos 43.299o cos−9.74o

sin 70.621o sin−9.74o + cos 70.621o cos 43.299o cos−9.74o

sin 43.299o cos−9.74o


=

 −0.3572
0.0384
0.3296


h10 = Az10 =

 1.99
−2.00
−4.02

 ≡
 2

2̄
4̄

 .

Indices for all 14 reflections:

Reflection # h k l Reflection # h k l

1 1 1̄ 2 8 0 0 6
2 1 2̄ 2 9 2 4̄ 4
3 1 2̄ 3 10 2 2̄ 4̄
4 2 2̄ 0 11 3 2̄ 1̄
5 2 3̄ 2 12 3 4̄ 0
6 0 1̄ 6 13 3 4̄ 6
7 1 0 4 14 3 5̄ 5

46



5. When refined by the method of least squares, the unreduced cell in the pre-
vious problem results in the following orientation matrix:

A∗ =

 −0.01781 0.02410 0.06840
−0.18953 −0.16863 −0.02004

0.12920 −0.03220 −0.00154

 .

Eqns. 4.68 can be utilized to produce linear combinations of the Cartesian
components of the refined unit cell axes in order to produce a “Buerger”
reduced cell. For the unreduced unit cell defined by the orientation matrix
above, the integers (p, q, r) ranging from (−2,−2,−2) to (2, 2, 2) produce 124
lattice vectors, 62 of which are unique (for every vector created from (p, q, r),
its negative will be created with (−p,−q,−r)). The shortest 20 of these are
tabulated below:

axis p q r length axis p q r length
v1 1 0 0 6.1071 v11 1 0 −1 15.6495
v2 1 1 0 6.3268 v12 1 2 1 15.6555
v3 2 1 0 8.7917 v13 0 0 1 15.7231
v4 0 1 0 8.7952 v14 2 2 1 15.7272
v5 2 0 0 12.2141 v15 1 −1 −1 16.6519
v6 2 2 0 12.6537 v16 2 1 1 16.8559
v7 1 −1 0 13.7577 v17 0 2 0 17.5904
v8 1 2 0 14.0525 v18 2 0 −1 17.8098
v9 0 1 1 14.3168 v19 0 2 1 17.8168
v10 1 1 1 14.3962 v20 1 0 1 18.0033

(a) Determine the Cartesian components of the refined unit cell axes. (b)
Determine “Buerger” cell parameters for the lattice. (c) Use the Buerger unit
cell to determine the “Niggli” reduced cell for the lattice. (c) Determine the
indices for the reflections listed in Exercise 4 based on the reduced cell.

Solution:

(a) The row vectors of the direct lattice matrix, A = A∗−1, are the Cartesian
components of the unit cell axes:

A = A∗−1 =

 −0.20899 −1.17358 5.98960
−1.56146 −4.77470 −7.21943
15.11567 1.37692 4.10327


au = axi + ayj + azk = (−0.20899)i + (−1.17358)j + (5.98960)k
bu = bxi + byj + bzk = (−1.56146)i + (−4.77470)j + (−7.21943)k
cu = cxi + cyj + czk = (15.11567)i + (1.37692)j + (4.10327)k.
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(b) Cartesian components for potential reduced cell axes:

vr = pau + q bu + r cu = vxi + vyj + vzk

= (pax + qbx + rcx)i + (pay + qby + rcy)j + (pay + qby + rcy)k.

v1 = 1au and v2 = 1au + 1bu are the two shortest vectors. v3 is the
vector sum of v1 and v2:

v3 = 2au + 1bu = 1au + (1au + 1bu) = v1 + v2.

Similarly, v4 = v2 − v1, v5 = 2v1, v6 = 2v2, v7 = 2v1 − v2, and
v8 = 2v2 − v1. All of these vectors lie in the same plane as v1 and
v2. v9 is the first vector in the sequence with a component for cu, and
therefore not coplanar with v1 and v2; the three shortest non-coplanar
vectors are v1, v2, and v9. Assigning ar, br, and cr in order of increasing
length gives:

axis p q r vx vy vz length
ar 1 0 0 −0.2090 −1.1736 5.9896 6.107
br 1 1 0 −1.7704 −5.9483 −1.2298 6.327
cr 0 1 1 13.5542 −3.3978 −3.1162 14.317

(c) The Niggli matrix,[
37.30 40.03 204.97
0.04 −17.51 0.00

]
,

is consistent with the criteria in Table 4.1. The Buerger reduced unit
cell is a Type I Niggli reduced cell.

(d) hi = Azi, where the A matrix consists of the Cartesian components of
the axial vectors:

hi =

 −0.2090 −1.1736 5.9896
−1.7704 −5.9483 −1.2298
13.5542 −3.3978 −3.1162

 zi.

See the solution to the previous exercise for the computation of the
hl ≡ z vectors. The resulting indices:

h k l 2θ ω φ χ

1 0 1 7.951 −0.633 229.286 54.806
1 1̄ 0 9.389 0.113 318.467 56.348
1 1̄ 1 10.222 0.174 294.654 49.341
2 0 2̄ 13.746 −0.272 89.943 75.436
2 1̄ 1̄ 14.861 0.069 310.896 77.474
0 1̄ 5 15.929 0.315 269.490 3.521
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h k l 2θ ω φ χ

1 1 4 16.010 0.327 215.404 18.527
0 0 6 17.496 0.286 245.219 358.839
2 2̄ 0 18.831 −0.213 309.305 57.254
2 0 6̄ 19.954 0.257 70.621 43.299
3 1 3̄ 21.673 0.114 119.921 60.878
3 1̄ 4̄ 22.477 0.079 19.438 73.882
3 1̄ 2 23.399 −0.208 239.967 65.376
3 2̄ 0 24.324 0.132 285.315 69.025

6. According to Eqn, 4.37, any three indexed reflections that are linearly inde-
pendent (so that H−1 has an inverse) are sufficient to define the orientation
matrix and unit cell parameters. Reflections 11, 13, and 7 in the array in
Exercise 2 have indices of (2 0 6̄), (3 1̄ 2), and (1 1 4), respectively. (a)
Demonstrate that the reciprocal lattice vectors for the reflections are linearly
independent. (b) Determine the orientation matrix based solely on the three
reflections. (c) Calculate the metric tensor and determine the unit cell pa-
rameters based solely on the three reflections.

Solution:

(a) Linear independence is illustrated by showing that the matrix of recip-
rocal lattice vector components is invertible, i.e., that it has a non-zero
determinant:

H =

 2 3 1
0 1̄ 1
6̄ 2 4

 ;

∣∣∣∣∣∣∣
2 3 1
0 1̄ 1
6̄ 2 4

∣∣∣∣∣∣∣ = −36 6= 0.

(b) Using Eqn. 4.37,

ω206̄ − θ206̄ = 0.257o − 9.997o = −9.74o

z206̄ =
2 sin 9.997o

0.71073
× cos 70.621o sin−9.74o − sin 70.621o cos 43.299o cos−9.74o

sin 70.621o sin−9.74o + cos 70.621o cos 43.299o cos−9.74o

sin 43.299o cos−9.74o


=

 −0.3572
0.0384
0.3296

 , etc.

Z =

 −0.3572 0.2603 0.2560
0.0384 −0.0145 −0.2698
0.3296 0.5076 0.1234


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A∗ = ZH−1 =

 0.0265 −0.0440 0.0634
−0.0410 −0.1486 −0.0200

0.1601 −0.0304 −0.0016

 .

(c) Using Eqn. 4.46,

A = A∗−1 =

 −0.2049 −1.1646 5.9820
−1.7746 −5.9527 −1.2301
13.5617 −3.3805 −3.1121


G = AAT =

 37.1869 −0.0628 −17.4598
−0.0628 40.0974 −0.1155
−17.4598 −0.1155 205.0339


a =

√
37.1869 = 6.098 Å

b =
√

40.0974 = 6.332 Å
c =

√
205.0339 = 14.319 Å

α = arccos
(
−0.1155

bc

)
= 90.07o

β = arccos
(
−17.4598

ac

)
= 101.53o

α = arccos
(
−0.0628

ab

)
= 90.09o

V =
√
|G| = 541.76 Å

3
.

7. Show that a c-glide plane perpendicular to the b axis has the same effect on
the symmetry of the intensity weighted reciprocal lattice as a mirror plane
perpendicular to the b axis (without the translational symmetry).

Solution:

For the mirror plane, the electron density at (xf , yf , zf ) is identical to that
at (xf ,−yf , zf ). The scattered wave for the reflection with reciprocal lattice
vector h′ = [h′ k′ l′] is

−→
E h′k′l′ = D

∫ Vc

0

ρ(xf ,−yf , zf )e−2πi(h′xf +k′−yf +l′zf )dV.

= D

∫ Vc

0

ρ(xf , yf , zf )e−2πi(h′xf−k′yf +l′zf )dV.

Replacing h′ = h, k′ = k̄ and l′ = l,

−→
E hk̄l = D

∫ Vc

0

ρ(xf , yf , zf )e−2πi(hxf +kyf +lzf )dV =
−→
E hkl,

E2
hk̄l

= E2
hkl, and I2

hk̄l
= I2

hkl.
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The glide plane has identical electron density at (xf , yf , zf ) and (xf ,−yf , zf +
1/2), and

−→
E h′k′l′ = D

∫ Vc

0

ρ(xf ,−yf , (zf + 1/2))e−2πi(−h′xf +k′−yf +l′(zf +1/2))dV

= D e−πi l

∫ Vc

0

ρ(xf , yf , zf )e−2πi(h′xf−k′yf +l′zf )dV.

Replacing h′ = h, k′ = k̄ and l′ = l,

−→
E hk̄l = e−πil−→E hkl.

As with the diad screw axis, the scattered wave has a modified phase, due to
the presence of the translational symmetry in the crystal – but the intensity
is proportional to E2

hk̄l
and

E2
hk̄l =

−→
E hk̄l

−→
E ∗hk̄l = e−πi l−→E hkl e

πi l−→E ∗hkl = e0E2
hkl = E2

hkl.

Again, Ihkl = Ihk̄l and Fhkl = Fhk̄l. The glide plane produces the same
reflection symmetry as the mirror plane.

8. The simplest tetragonal space group is P4, which represents the 4/m Laue
group. (a) Referring to Sec. 2.4.7, determine the symmetry-equivalent posi-
tions in the P4 space group for the general direct lattice vector, [xf yf zf ].
(b) Determine the symmetry-equivalent intensities in the intensity-weighted
reciprocal lattice for a general reciprocal lattice vector, [h k l], in the P4 space
group.

Solution:

(a) Referring to Fig. 2.82, the four equivalent positions are (1) [xf yf zf ],
(2) [−yf xf zf ], (3) [−xf − yf zf ], and (4) [yf − xf zf ].

(b) R(41) establishes symmetry-equivalent electron density at (−yf , xf , zf ).
For the general reciprocal lattice vector, h′ = [h′ k′ l′],

−→
E h′k′l′ = D

∫ Vc

0

ρ(−yf , xf , zf )e−2πi(h′−yf +k′xf +l′zf )dV.

= D

∫ Vc

0

ρ(xf , yf , zf )e−2πi(k′xf−h′yf +l′zf )dV.

Replacing h′ = k̄, k′ = h and l′ = l,

−→
E k̄hl =

−→
E hkl =⇒ Ik̄hl = Ihkl.

Similarly, for R(42), Ih̄k̄l = Ihkl, and for R(43), Ikh̄l = Ihkl.

9. Consider crystals of a small molecule (S) and a protein (P), each rectangular
solids with dimensions 0.3mm × 0.4mm × 0.5mm. Both molecules pack in
orthorhombic space groups. The unit cell dimensions for the small molecule
lattice are a = 8 Å, b = 10 Å, and c = 12 Å, while the unit cell dimensions
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for the protein lattice are a = 48 Å, b = 50 Å, and c = 52 Å. Suppose that
a structure factor, F0k0, fortuitously has the same value for both structures.
Using the integrated intensity of this reflection as an estimate of the compar-
ative “diffracting power” of the crystals, calculate the ratio IS

0k0/IP
0k0. For

simplicity assume that sin 2θP/ sin 2θS ' sin θP/ sin θS.

Solution:

Let VS be the volume of the small molecule unit cell and VP the volume of
the protein unit cell. The volume of each crystal, Vx, is the same for both.
Using Eqn. 4.111,

I S
0k0

I P
0k0

=
sin 2θP

sin 2θS

(
VP

VS

)2

' sin θP

sin θS

(
VP

VS

)2

.

Since the unit cells are orthorhombic, b∗ = 1/b, and h0k0 = 2 sin θ/λ0k0 =
kb∗ = k/b. Thus sin θP/ sin θS = (k/50)/(k/10) = 1/5, and

I S
0k0

I P
0k0

=
1
5

(
48 Å× 50 Å× 52 Å
8 Å× 10 Å× 12 Å

)2

= 3380.

10. A data-to-parameter ratio in the vicinity of 10:1 is often cited as a criterion
for a “good” (atomic resolution) crystal structure. Referring to Exercise 9,
assume that the small molecule asymmetric unit contains seven non-hydrogen
atoms, the protein asymmetric unit contains 1800 non-hydrogen atoms, and
that data are collected with Cu Kα radiation (λ = 1.5418 Å). (a) Determine
the maximum value of the diffraction angle, 2θ, necessary to attain a 10:1
data-to-parameter ratio for the small molecule and protein structures. (b)
Determine the data-to-parameter ratios for the protein crystal at 1 Å (atomic)
resolution, 2.5 Å resolution, and 5 Å resolution.

Solution:

(a) For the small molecule structure, three positional and six displacement
parameters per atom ⇒ 63 parameters. The 10:1 data-to-parameter
ratio indicates that 630 unique reflections must be collected. The Laue
group is mmm, with a degeneracy of 8, and the limiting sphere must
therefore contain 630× 8 = 5040 reflections. From Eqn. 4.122,

hmax =
(

3× 5040

4π × 960 Å
3

)1/3

= 1.08 Å
−1

2 sin θmax

1.5418 Å
= 1.08 Å

−1

θmax = 56.2o

2θmax = 112.4o.

For the protein structure, three positional and a single displacement
parameter per atom ⇒ 7200 parameters. For a 10:1 parameter ratio the
limiting sphere must contain 7200× 10× 8 = 576 000 reflections:

hmax =
(

3× 576 000

4π × 124 800 Å
3

)1/3

= 1.03 Å
−1

2θmax = 105.1o.
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(b) At 1 Å resolution, hmax = 0.917/1 Å = 0.917 Å
−1

.

M =
4π

3
(0.917 Å

−1
)3(124 800 Å

3
) = 403 098 reflections

number of unique reflections =
403 098

8
= 50 387

data to parameter ratio =
50 387
7200

= 7.0.

At 2.5 Å resolution, hmax = 0.917/2.5 Å = 0.367 Å
−1

.

M =
4π

3
(0.367 Å

−1
)3(124 800 Å

3
) = 25 840 reflections

number of unique reflections =
25 840

8
= 3230

data to parameter ratio =
3230
7200

= 0.4.

At 5 Å resolution, hmax = 0.917/5 Å = 0.184 Å
−1

.

M =
4π

3
(0.184 Å

−1
)3(124 800 Å

3
) = 3224 reflections

number of unique reflections =
3224

8
= 403

data to parameter ratio =
403
7200

= 0.06.
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Chapter 5

Crystal Diffraction: Data

1. In a diffraction experiment the integrated intensity of a reflection is measured
repeatedly and found to have an average value of 7500 counts per second
(cps). Determine the probability that a single measurement of the intensity
will provide a value less than or equal to (a) 7450 cps, (b) 7400 cps, (c) 7300
cps, and (d) 7200 cps.

Solution:

(a) The mean intensity: Ī = 7500. Counting events are characterized by
a Poisson distribution: σ(I) =

√
7500 = 86.60. The number of counts

observed in the X-ray experiment is nearly always large enough to render
the Poisson distribution effectively symmetric, and closely approximated
by a Gaussian distribution. Thus,

Pr(0 ≤ I ≤ 7450) =
erf(t7450)− erf(t0)

2

t7450 =
7450− 7500

86.60
√

2
= −0.408

t0 =
0− 7500
86.60

√
2

= −61.23

From Eqn. 5.66,

erf(t7450) = erf(−0.408) = −erf(0.408) = −0.4362
erf(t0) = erf(−61.23) = −erf(61.23) = −1.0000

Pr(0 ≤ I ≤ 7450) =
−0.4362 + 1.0000

2
= 0.28 (28%).

28 in 100 measurements will yield I ≤ 7450.

(b) t7400 = −0.816; Pr(0 ≤ I ≤ 7400) = 0.12 (12%).

(c) t7300 = −1.63; Pr(0 ≤ I ≤ 7300) = 0.01 (1%).

(d) t7200 = −2.45; Pr(0 ≤ I ≤ 7200) = 0.0003 (∼ 0%).
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2. Determine the diffraction angles, 2θ, for which the polarization correction will
be at a maximum and a minimum and the values of the correction factor at
these angles. Ignore secondary polarization effects such as those arising from
a monochromator.

Solution:

The polarization correction,

P =
1
2

+
1
2

cos2 2θ,

has minima and maxima when dP/d(2θ) = 0:

dP

d(2θ)
=

1
2
2(cos 2θ)(− sin 2θ) = − cos 2θ sin 2θ = 0.

There is no angle that simultaneously has a sine and cosine equal to zero.
Thus there are two possibilities:

(a) cos 2θ = 0 ⇒ 2θ = 90o and P = 1/2 + 1/2(0) = 1/2. The intensity is
attenuated to half of its unpolarized magnitude.

(b) sin 2θ = 0 ⇒ 2θ = 0o, cos 2θ = 1, and P = 1/2 + 1/2(1) = 1 (no
polarization).

3. The orientation matrix and X-ray wavelength for the data collected for the
mercaptopyridine crystal discussed in Chapter 1 are given in Exercise 2 of
Chapter 4. (a) Using the orientation matrix, determine the Lorentz correction
factor for the (2 4̄ 11) reflection for the case in which the integrated intensity
is collected with a serial detector. For comparative purposes, use the form of
the factor that includes the wavelength. (b) Determine the Lorentz correction
factor for the reflection when its intensity is measured using an area detector
at ω = 9.41o, with χ fixed at 54.73o and ϕ set at 270o.

Solution:

(a) A∗h = hl provides the Cartesian components of the reciprocal lattice
vector for the reflection:

A∗ =

 0.02650 −0.04430 0.06840
−0.04094 −0.14859 −0.02004

0.15986 −0.03066 −0.00154

 2
4̄
11

 =

 0.9826
0.2920
0.4254

 .

The magnitude of the vector, h = 2 sin θ/λ, provides θ and the Lorentz
correction factor:

h = (0.98262 + 0.29202 + 0.42542)1/2 = 1.110 Å
−1

θ = arcsin

(
1.110 Å

−1
0.71073 Å
2

)
= 23.23o

L =
1
hy

=
0.71073

2 sin(23.23o)(cos 23.23o)
= 0.98.
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(b) The y component of the reciprocal lattice vector in the diffractometer
coordinate system is

hy = (cos(270o) sin(9.41o)− sin(270o) cos(54.73o) cos(9.41o))× 0.9826
+ (sin(270o) sin(9.41o) + cos(270o) cos(54.73o) cos(9.41o))× 0.2920
+ (sin(54.73o) sin(9.41o)× 0.4254 = 0.8546.

L =
1
hy

= 1.17.

4. The mercaptopyridine molecule, C5H4NSH, is a common ligand in organometal-
lic chemistry. It often occurs as a bridging ligand, attaching itself to more
than one metal center in a complex. For example, in the complex
Re2Os2 ((C6H5)3P)2(CO)11(µ-SNC5H4), the ligand bonds to an osmium atom
and a rhenium atom through its sulfur atom, and another rhenium atom via
its nitrogen atom (the “µ” indicates that the sulfur atom “bridges” two metal
atoms). The unit cell for a crystal of the ligand has a volume of 542.3 Å3;
the space group is P21/n. The unit cell of a crystal of the complex has a
volume of 4920.66 Å3 in the P21/c space group. The table below gives the
mass absorption coefficients (µm = µl/ρ (cm2/g)) for the elements in these
compounds for both copper and molybdenum radiation:

Element CuKα MoKα Element CuKα MoKα

H 0.435 0.380 S 89.1 9.55
C 4.60 0.625 P 77.28 7.87
N 7.52 0.916 Re 178.1 98.7
O 11.5 1.31 Os 181.8 100.2

(a) Determine the linear absorption coefficients of crystals of the ligand for
CuKα and Mo Kα radiation. (b) Determine the linear absorption coefficients
of crystals of the complex for CuKα and Mo Kα radiation.

Solution:

(a) Molar mass of the ligand = 111.16 g/mol. Assuming Z = 4, the mass of
a unit cell is

mc =
111.16

6.022× 1023
g/molecule× 4 molecules = 7.385× 10−22 g.

The density of the ligand crystal is therefore

ρ(lig) =
7.385× 10−22 g

542.3× 10−24 cm3
= 1.36 g/cm3

.

The fractional masses of the elements in the compound are

fH =
5× 1.0079

111.16
= 0.045 fN =

1× 14.007
111.16

= 0.126

fC =
5× 12.011

111.16
= 0.540 fS =

1× 32.065
111.16

= 0.288.
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µl = (fHµH
m + fCµC

m + fNµN
m + fSµS

m)ρ(lig)
µl(CuKα) = 39.65 cm−1

µl(MoKα) = 4.38 cm−1

(b) Molar mass of the complex = 1695.60 g/mol. Assuming Z = 4,

mc =
1695.60

6.022× 1023
g/molecule× 4 molecules = 1.126× 10−20 g.

The density of the complex crystal is therefore

ρ(cpx) =
1.126× 10−20 g

4920.66× 10−24 cm3
= 2.29 g/cm3

.

The fractional masses of the elements in the compound are

fH =
34× 1.0079

1695.6
= 0.020 fOs =

2× 190.23
1695.6

= 0.224

fC =
52× 12.011

1695.6
= 0.368 fP =

2× 30.974
1695.6

= 0.037

fN =
1× 14.007

1695.6
= 0.008 fRe =

2× 186.21
1695.6

= 0.220

fO =
11× 15.994

1695.6
= 0.104 fS =

1× 32.065
1695.6

= 0.0.019.

µl = (fHµH
m + fCµC

m + fNµN
m + fOµO

m + fOsµ
Os
m

+fPµP
m + fReµ

Re
m + fSµS

m)ρ(cpx)
µl(CuKα) = 200.18 cm−1

µl(MoKα) = 103.07 cm−1.

5. Iron pyrite, FeS2, packs in a simple cubic lattice with four formula units per
unit cell and a = 5.4187 Å. The crystals are often found in nature in the form
of cubes. A cube of FeS2 with edge length d is mounted between a Mo Kα
X-ray source and a detector that intercepts the beam. We assume that the
beam has a comparatively negligible width, so that its cross-section uniformly
passes through the cube as it is rotated. The mass absorption coefficients for
Fe and S are 17.74 cm2/g and 9.63 cm2/g respectively. Calculate the ratio of
the minimum and maximum intensities observed as the crystal is rotated in
the beam for (a) d = 0.1 mm, (b) d = 0.5 mm, and (c) d = 1.0 mm.

Solution:

I

I0
= e−µl x

The maximum absorption (minimum intensity) will occur for the longest path
through the crystal, along the cube diagonal, for which x = d

√
3. The max-

imum intensity will be observed with the beam parallel to the edge of the
cube; x = d. Thus

Imin

Imax
=

Imin/I0

Imax/I0
=

e−µl d
√

3

e−µl d
= e(1−

√
3)µl d = e−0.732µl d.
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Vc = (5.4187−8 cm)3 = 1.591× 10−22cm3

mc =
119.98 g/mol

6.022× 1023 fu/mol
× 4 fu/cell = 7.969−22g/cell.

ρ(FeS2) = 5.01g/cm3

fFe =
53.845
119.98

= 0.465 fS =
2× 32.065

119.98
= 0.535

µl = ((0.465× 17.72) + (0.535× 9.63))cm2/g × 5.01g/cm3

= 67.09 cm−1.

(a)

Imin

Imax
= e−0.732(67.09 cm−1)(0.01 cm) = e−0.491 = 0.61.

(b)

Imin

Imax
= e−0.732(67.09 cm−1)(0.05 cm) = e−2.455 = 0.09.

(c)

Imin

Imax
= e−0.732(67.09 cm−1)(0.10 cm) = e−4.910 = 0.01.

6. Although the carbon monoselenide molecule, CSe, is known only in the gas
phase, its analog, carbon monosulfide, CS, tends to form (CS)n polymers.
Consider a hypothetical crystal of CSe containing a single molecule in a tri-
clinic unit cell. The carbon atom is at the origin, and the selenium atom is at
(0.375, 0,375, 0.375). Using the dispersion and scattering factor data below,

atom f110 ∆ f ′(Cu Kα) ∆ f ′′(Cu Kα) ∆ f ′(Mo Kα) ∆ f ′′(Mo Kα)

C 5.4 0.017 0.009 0.002 0.002
Se 30.6 -0.879 1.139 -0.178 2.223

(a) determine the amplitudes and phases for F110 and F1̄1̄0 for Cu Kα radi-
ation, and (b) for Mo Kα radiation.

Solution:

ξC = −2π(1 · 0 + 1 · 0 + 0 · 0) = 0

ξSe = −2π(1 · 0.375 + 1 · 0.375 + 0 · 0.375) = −2π

(
3
4

)
= −3π

2
=

π

2
A110 = (fC,110 + ∆ f ′C) cos(0)−∆f ′′C sin(0)

+(fSe,110 + ∆ f ′Se) cos
(π

2

)
−∆f ′′Se sin

(π

2

)
= fC,110 + ∆ f ′C −∆f ′′Se
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B110 = (fC,110 + ∆ f ′C) sin(0) + ∆f ′′C cos(0)

+(fSe,110 + ∆ f ′Se) sin
(π

2

)
+ ∆f ′′Se cos

(π

2

)
= ∆f ′′C + fSe,110 + ∆ f ′Se

A1̄1̄0 = (fC,110 + ∆ f ′C) cos(0)−∆f ′′C sin(0)

+(fSe,110 + ∆ f ′Se) cos
(
−π

2

)
−∆f ′′Se sin

(
−π

2

)
= fC,110 + ∆ f ′C + ∆f ′′Se

B1̄1̄0 = (fC,110 + ∆ f ′C) sin(0) + ∆f ′′C cos(0)

+(fSe,110 + ∆ f ′Se) sin
(
−π

2

)
+ ∆f ′′Se cos

(
−π

2

)
= ∆f ′′C − fSe,110 −∆ f ′Se

(a) For Cu Kα radiation,

A110 = 5.4 + 0.017− 1.139 = 4.278
B110 = 0.009 + 30.6− 0.879 = 29.73
F110 = (4.2782 + 29.732)1/2 = 30.04

ϕ110 = arctan
(

29.73
4.278

)
= 81.81o

A1̄1̄0 = 5.4 + 0.017 + 1.139 = 6.556
B1̄1̄0 = 0.009− 30.6 + 0.879 = −29.71
F1̄1̄0 = (6.5562 + 29.712)1/2 = 30.42

ϕ1̄1̄0 = arctan
(
−29.71
6.556

)
= −77.56o.

(b) For Mo Kα radiation,

A110 = 5.4 + 0.002− 2.223 = 3.179
B110 = 0.002 + 30.6− 0.178 = 30.42
F110 = (3.1792 + 30.422)1/2 = 30.58

ϕ110 = arctan
(

30.42
3.179

)
= 84.03o

A1̄1̄0 = 5.4 + 0.002 + 2.223 = 7.625
B1̄1̄0 = 0.002− 30.6 + 0.178 = −30.42
F1̄1̄0 = (7.6252 + 30.422)1/2 = 31.36

ϕ1̄1̄0 = arctan
(
−30.42
7.625

)
= −75.92o.

7. A terminal oxygen atom in a typical metal carbonyl complex has the fol-
lowing displacement parameters when refined from data collected at 298 K:
U11 = 0.06396, U22 = 0.08275, U33 = 0.07527, U12 = −0.04411, U13 =
−0.00590, and U23 = 0.01226. A typical metal carbonyl complex with data
collected at 100 K provides the following refined displacement parameters:
U11 = 0.04448, U22 = 0.03012, U33 = 0.03846, U12 = 0.01193, U13 = 0.01169,
and U23 = 0.00365. (a) Compute the equivalent squared isotropic displace-
ment, u2

iso, for the oxygen atoms observed at both temperatures. (b) For
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the intensity of a reflection collected at 2θ = 35o with Mo Kα radiation
(λ = 0.71073) determine the percentage of the “scattering power” that is
lost due to vibration by comparing the effective atomic scattering factor at
both temperatures to that of a hypothetical oxygen at rest. The scattering
factor parameters for oxygen (Eqn. 3.100) are given in Exercise 8 at the end
of Chapter 3.

Solution:

(a)

u2
iso(298) =

0.06396 + 0.08275 + 0.07527
3

= 0.074 Å
2

u2
iso(100) =

0.04448 + 0.03012 + 0.03846
3

= 0.038 Å
2

(b) For the atom at rest, θ = 17.5o, s = sin(17.5o)/0.71073 = 0.423, and

fθ = 3.0485 e−13.2771 s2
+ 2.2868 e−5.7011 s2

+1.5463 e−0.3239 s2
+ 0.8670 e−32.9089 s2

+ 0.2508
= 2.820

For the vibrating atom,

Tiso = 8π2u2
iso

sin2 θ

λ2
= 8π2s2u2

iso = 14.127u2
iso

fθ,T = fθ e−Tiso .

For the atom vibrating at 298 K,

fθ,T = fθ e−1.045 = 0.991

∆f = 1.828. loss =
1.828
2.820

= 65%.

For the atom vibrating at 100 K,

fθ,T = fθ e−0.537 = 1.649

∆f = 1.171. loss =
1.171
2.820

= 42%.

8. The mercaptopyridine unit cell contains four C5H4NSH molecules. The table
on the following page summarizes the intensity data for the crystal structure,
collected with Mo Kα radiation and divided into regions of approximately
constant values of the diffraction angle, 2θ. The average intensity is listed for
each region, along with the value of the atomic scattering factor, f(〈2θ〉), for
each type of atom in the unit cell for each region. Create a Wilson plot of the
data and determine the scale factor and the average atomic displacement.
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〈2θ〉 〈Irel〉 fH fC fN fS

7.71 1247.8 0.83 5.19 6.26 14.34
10.04 921.59 0.73 4.74 5.83 13.45
12.52 982.03 0.63 4.26 5.33 12.48
14.97 345.16 0.53 3.8 4.83 11.57
17.31 247.5 0.45 3.4 4.37 10.8
19.8 247.41 0.37 3.04 3.93 10.1
22.23 273.53 0.3 2.74 3.55 9.52
24.67 202.97 0.25 2.49 3.21 9.03
27.18 116.46 0.21 2.28 2.92 8.61
29.62 104.61 0.17 2.12 2.68 8.27
32.12 79.41 0.14 1.99 2.47 7.96
34.59 93.92 0.12 1.88 2.29 7.69
37.09 52.02 0.1 1.8 2.15 7.44
39.67 42.16 0.08 1.73 2.02 7.2
42.11 35.15 0.07 1.68 1.92 6.98
44.58 30.18 0.06 1.63 1.84 6.76
47.15 19.9 0.05 1.59 1.77 6.54
49.51 22.17 0.04 1.55 1.71 6.33

Solution:

Let Si = 〈Irel〉i/
∑48

j=1 f2
i ≡ 〈Irel〉i/

∑2
i and xi = 〈h〉2i , where 〈h〉i = 2 sin〈θ〉i/λ.∑2

i = 20f2
H,i + 20f2

C,i + 4f2
N,i + 4f2

S,i, resulting in

〈h〉2 S 〈h〉2 S

0.04 −0.21 0.52 −1.32
0.06 −0.36 0.61 −1.50
0.09 −0.12 0.70 −1.25
0.13 −0.98 0.80 −1.77
0.18 −1.15 0.91 −1.91
0.23 −0.98 1.02 −2.02
0.29 −0.72 1.14 −2.11
0.36 −0.89 1.27 −2.46
0.44 −1.32 1.39 −2.30

and a Wilson Plot:
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The slope and intercept of the least squares line provides the overall tempera-
ture factor and the scale factor, respectively. Treating So,i as the “observed”
parameter, and Sc,i as the “calculated” parameter, the method of linear least
squares minimizes

∑
i(Sc,i − So,i)2, where Sc,i = mxi + b. Referring to Ap-

pendix G, by analogy, for n = 18,[
m

b

]
=

[ ∑
i x2

i

∑
i xi∑

i xi n

][ ∑
i xiSo,i∑
i So,i

]
=

[
−1.515
−0.4412

]
.

lnK = −0.4412

K ′ =
1
K

= 1.555

−2B′ = −1.515

〈u〉2 =
B′

2π2
= 0.038 Å

2

〈u〉 = 0.19 Å.
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9. Derive the reflection conditions for (a) an I-centered crystal, (b) a crystal
with a triad screw axis parallel to the c axis.

Solution:

(a) Symmetry-equivalent atoms at (xf , yf , zf ) and ((xf + 1
2 ), (yf + 1

2 ), (zf +
1
2 )). The structure factor for a general reflection is

Fc,hkl =
n/2∑
j=1

fje
−2π i(hxj+kyj+lzj)

+
n/2∑
m=1

fme−2π i(h(xm+1/2)+k(ym+1/2)+l(zm+1/2)

=
n/2∑
j=1

fje
−2π i(hxj+kyj+lzj)

+
n/2∑
m=1

fme−2π i(hxm+kym+lzm) e−(h+k+l)πi.

When h + k + l is odd, e−(h+k+l)πi = −1, Fc,hkl = 0 and Ihkl = 0. The
reflection conditions for a general reflection if the lattice is I centered
require that h + k + l = 2n.

(b) The triad screw axis has symmetry equivalent positions at (xf , yf , zf ),
(ȳf , xf − yf , zf + 1

3 ), and (yf −xf , x̄f , zf + 2
3 ). For reflections with (00l)

indices,

Fc,00l =
n/3∑
j=1

fje
−2π i lyj +

n/3∑
j′=1

fj′e
−2π il(yj′+1/3) +

n/3∑
j′′=1

fj′′e
−2π il(yj′′+2/3).

To simplify, set Q =
∑n/3

j=1 fje
−2π i lyj :

Fc,00l = Q + e(−2π i l)/3Q + e(−4π i l)/3Q

= Q
(
1 + e(−2π i l)/3 + e(−4π i l)/3

)
All l indices can take on values of 3n + m, m = 1, 2, or 3 (divisible by
3), and n is an integer:

Fc,00l = Q
(
1 + e(−2π i)(3n/3)e(−2π i)(m/3) + +e(−4π i)(3n/3)e(−4π i)(m/3)

)
=
(
1 + e(−2π i)(m/3) + e(−4π i)(m/3)

)
= Q(1 + cos(−2πm/3) + i sin(−2πm/3)

+ cos(−4πm/3) + i sin(−4πm/3).
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Fc,00(3n+1) = Q

(
1− 1

2
− i

√
3

2
− 1

2
+ i

√
3

2

)
= 0

Fc,00(3n+2) = Q

(
1− 1

2
+ i

√
3

2
− 1

2
− i

√
3

2

)
= 0

Fc,00(3n+3) = Q(1 + 1 + 0 + 1 + 0) = 3Q.

Intensities are observed for 00l reflections only where l = 3n + 3, with
systematic absences for l = 3n + 1 and l = 3n + 2.

10. The relatively small difference between the expected values of 〈Eh〉 for the cen-
tric and acentric E distributions has prompted the use of other “E -statistics”
to assist in ascertaining the presence or absence of a center of symmetry in the
unit cell. In particular, expected values of 〈|E2

h− 1|〉 are commonly employed
for this purpose. The absolute value is taken, since E2

h − 1 can be negative.
(a) Determine the expected value of 〈|E2

h − 1|〉1 for the acentric distribution.
(Note: Because E2

h − 1 is negative for 0 ≤ Eh < 1, the probability integral
must be evaluated separately from 0 to 1, then added to the integral from 1
to ∞.) (b) Determine the expected value of 〈|E2

h − 1|〉1̄ for the centric dis-
tribution by evaluating the probability integral numerically, or estimating it
graphically using trapezoidal integration.

Solution:

(a)

〈|E2
h − 1|〉1 =

∫ ∞

0

|E2
h − 1|

(
2Ehe−E2

h

)
dEh.

Substituting u = E2
h ⇒ dEh = du/(2Eh),

〈|E2
h − 1|〉1 =

∫ ∞

0

|u− 1|e−udu

=
∫ 1

0

−(u− 1)e−udu +
∫ ∞

1

(u− 1)e−udu

=
∫ 1

0

e−udu−
∫ 1

0

ue−udu +
∫ ∞

1

ue−udu−
∫ ∞

1

e−udu.

Using the two indefinite integrals,

∫
eaudu =

1
a

eau + C and
∫

ueaudu =
(

u

a
− 1

a2

)
eau + C,

and noting that limu→∞(ue−u) = 0 (since the exponential converges to
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zero rapidly as u becomes large),∫ 1

0

e−udu = −e−u
∣∣∣1
0

= 1− 1
e

−
∫ 1

0

ue−udu = (u + 1)e−u
∣∣∣1
0

=
2
e
− 1∫ ∞

1

ue−udu = −(u + 1)e−u
∣∣∣∞
1

=
2
e

−
∫ ∞

1

e−udu = −e−u
∣∣∣∞
1

= −1
e

〈|E2
h − 1|〉1 = 1− 1

e
+

2
e
− 1 +

2
e
− 1

e
=

2
e

= 0.736.
(b)

〈|E2
h − 1|〉1̄ =

∫ ∞

0

|E2
h − 1|

(
2√
2π

e−E2
h/2

)
dEh

=
2√
2π

∫ ∞

0

|E2
h − 1|e−E2

h/2dEh.

As in part (a), an analytical solution requires integration of the function
from 0 to 1 and from 1 to ∞. This results in indefinite integrals of the
form

∫
x2 exp(−x2)dx, which, like the Gaussian function, cannnot be

evaluated analytically. However, a numerical evaluation of the integral
is straightforward, using a programmable calculator or computer. The
following simple program, written in BASIC, is readily adaptable to any
programming language:

pi = 3.1415927
dE = 0.001
integral = 0
E = −dE
Do While E <= 5

E = E + dE
integral = integral + Abs(E ∧ 2 − 1) * Exp(−E ∧ 2 / 2) * dE

Loop
integral = (2 / Sqr(2 * pi)) * integral

The result: integral = 〈|E2
h − 1|〉1̄ = 0.968.
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Chapter 6

Crystal Structure Solution:
Experimental

1. Representing each peak in a Fourier map as a single point, determine the
“peak density” (the average number of peaks per unit volume) for an electron
density map (De) and a Patterson map (DP ) for each of the following (ignore
the hydrogen atoms): (a) C5H4NSH, Vcell = 542.3 Å3, Z = 4, (b) Re2Os2
((C6H5)3P)2(CO)11(µ-SNC5H4), Vcell = 4920.7 Å3, Z = 4, and (c) Rat Short
Chain Acyl-CoA Dehydrogenase (RSCAD)∗, asymmetric unit consisting of
6330 non-hydrogen atoms, Vcell = 1383 302 Å3, Z = 6.

Solution:

(a) C5H4NSH: 7 atoms per asymmetric unit × 4 asymmetric units per unit
cell = 28 atoms/cell.

De =
28 peaks

542.3 Å
3 = 0.05 peaks/ Å

3
.

Every atom in the unit cell has a Patterson vector to every other atom,
resulting in n× (n− 1) peaks, plus an additional peak for the origin:

DP =
(28× 27) + 1 peaks

542.3 Å
3 = 1.4 peaks/ Å

3
.

(b) Re2Os2 ((C6H5)3P)2(CO)11(µ-SNC5H4): 71 atoms per asymmetric unit
× 4 asymmetric units per unit cell = 284 atoms/cell.

De =
284 peaks

4920.7 Å
3 = 0.06 peaks/ Å

3

DP =
(284× 283) + 1 peaks

4920.7 Å
3 = 16.3 peaks/ Å

3
.

∗Battaile, K.P., Molin-Case, J., Paschke, R., Wang, M. , Bennett, D.W., Vockley, J., and Kim,
J.J.P., J. Biol. Chem., 277(14), 12200 (2002).
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(c) RSCAD: 6330 atoms per asymmetric unit × 6 asymmetric units per unit
cell = 37 980 atoms/cell.

De =
37 980 peaks

1 383 302 Å
3 = 0.03 peaks/ Å

3

DP =
(37 980× 37 979) + 1 peaks

1 383 302 Å
3 = 1043 peaks/ Å

3
.

2. A two dimensional unit cell for the very hypothetical ion pair, H+ C5H−5 is
shown below (ignoring the hydrogen atoms and ion):

The unit cell parameters are a = 3.5 Å, b = 3.8 Å, and γ = 100o. The
fractional coordinates of the carbon atoms: C1(0.1951, 0.3110), C2(0.2586,
0.6847), C3(0.6595, 0.8065), C4(0.8438, 0.5079) and C5(0.5568, 0.2017). Cal-
culate the Cartesian components of the Patterson vectors and the four origins
that encompass the unit cell. Plot the predicted locations of the Patterson
maxima.

Solution:

The fractional coordinates of the Patterson vectors are determined as uf (
−−−−→
CACB) =

xf (CB)−xf (CA) and vf (
−−−−→
CACB) = yf (CB)−yf (CA). In order to place each

vector in the same unit cell, 1 is added to any component less than zero, and
−1 is added to any component greater than 1, resulting in
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vector uf vf vector uf vf

−−−→
C1C2 0.0635 0.3737

−−−→
C2C1 0.9365 0.6263

−−−→
C1C3 0.4644 0.4955

−−−→
C3C1 0.5356 0.5045

−−−→
C1C4 0.6487 0.1969

−−−→
C4C1 0.3513 0.8031

−−−→
C1C5 0.3617 0.8907

−−−→
C5C1 0.6383 0.1093

−−−→
C2C3 0.4009 0.1218

−−−→
C3C2 0.5991 0.8782

−−−→
C2C4 0.5852 0.8232

−−−→
C4C2 0.4148 0.1768

−−−→
C2C5 0.2982 0.5170

−−−→
C5C2 0.7018 0.4830

−−−→
C3C4 0.1843 0.7014

−−−→
C4C3 0.8157 0.2986

−−−→
C3C5 0.8973 0.3952

−−−→
C5C3 0.1027 0.6048

−−−→
C4C5 0.7130 0.6938

−−−→
C5C4 0.2870 0.3062

The matrix to convert these vectors to Cartesian coordinates is

B =

[
a b cos γ

0 b sin γ

]
=

[
3.5 −0.6599
0 3.7423

]
; B

[
uf

vf

]
=

[
uc

vc

]
.

Cartesian coordinates of predicted Patterson maxima and origins in Å:

vector uc vc vector uc vc

−−−→
C1C2 −0.0243 1.3985

−−−→
C2C1 2.8645 2.3438

−−−→
C1C3 1.2984 1.8543

−−−→
C3C1 1.5417 1.8880

−−−→
C1C4 2.1405 0.7369

−−−→
C4C1 0.6996 3.0054

−−−→
C1C5 0.6782 3.3332

−−−→
C5C1 2.1619 0.4090

−−−→
C2C3 1.3228 0.4558

−−−→
C3C2 1.5174 3.2865

−−−→
C2C4 1.5050 3.0806

−−−→
C4C2 1.3351 0.6616

−−−→
C2C5 0.7026 1.9348

−−−→
C5C2 2.1376 1.8075

−−−→
C3C4 0.1822 2.6248

−−−→
C4C3 2.6579 1.1174

−−−→
C3C5 2.8798 1.4789

−−−→
C5C3 −0.0396 2.2633

−−−→
C4C5 2.0377 2.5964

−−−→
C5C4 0.8024 1.1459

Or1 0.0000 0.0000 Or2 3.5000 0.0000
Or3 −0.6599 3.7423 Or4 2.8401 3.7423
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The resulting plot should look something like this:

3. Extend the Patterson map created in Exercise 2 so that there are four unit
cells arranged about a common origin (e.g., Fig. 6.8). Overlay the plot with
a sheet of paper that is transparent enough to provide a view of the points
underneath and carefully mark an “x” at the center of each point on the plot.
Use this template to demonstrate by Patterson superposition that there are
numerous images of the H+ C5H−5 structure in the Patterson map.

Solution:

The figure on the following page illustrates one of many superpositions.

4. Predict the lines and/or planes in the Patterson unit cell upon which Patter-
son maxima tend to accumulate (in Harker lines and sections) for the following
space groups: (a) P2/c, (b) P21/c, (c) P21212, (d) P212121, (e) P31, and (f)
P41.

Solution:

(a) P2/c: Symmetry-equivalent positions at (1) (x, y, z), (2) (x̄, y, 1/2− z),
(3) (x̄, ȳ, z̄), and (4) (x, ȳ, 1/2 + z).

u12 = x− x̄ = 2x

v12 = y − y = 0
w12 = z − 1

2 + z = 2z − 1
2

 Harker section at
(

u, 0, w
)
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u14 = x− x = 0
v14 = y − ȳ = 2y
w14 = z − 1

2 − z = − 1
2 ≡

1
2

 Harker line at
(

0, v, 1
2

)

(b) P21/c: Symmetry-equivalent positions at (1) (x, y, z), (2) (x̄, 1/2+y, 1/2−
z), (3) (x̄, ȳ, z̄), and (4) (x, 1/2− y, 1/2 + z).

u12 = x− x̄ = 2x

v12 = y − 1
2 − y = − 1

2 ≡
1
2

w12 = z − 1
2 + z = 2z − 1

2

 Harker section at
(

u, 1
2 , w

)

u14 = x− x = 0
v14 = y − 1

2 + y = 2y − 1
2

w14 = z − 1
2 − z = − 1

2 ≡
1
2

 Harker line at
(

0, v, 1
2

)
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(c) P21212: Symmetry-equivalent positions at (1) (x, y, z), (2) (x̄, ȳ, z), (3)
(1/2− x, 1/2 + y, z̄), and (4) (1/2 + x, 1/2− y, z̄).

u12 = x− x̄ = 2x

v12 = y − ȳ = 2y

w12 = z − z = 0

 Harker section at
(

u, v, 0
)

u13 = x− 1
2 + x = 2x− 1

2

v13 = y − 1
2 − y = − 1

2 ≡
1
2

w13 = z − z̄ = 2z

 Harker section at
(

u, 1
2 , w

)
u14 = x− 1

2 − x = − 1
2 ≡

1
2

v14 = y − 1
2 + y = 2y − 1

2

w14 = z − z̄ = 2z

 Harker section at
(

1
2 , v, w

)
(d) P212121: Symmetry-equivalent positions at (1) (x, y, z), (2) (1/2−x, ȳ, 1/2+

z), (3) (1/2 + x, 1/2− y, z̄), and (4) (x̄, 1/2 + y, 1/2− z).

u12 = x− 1
2 + x = 2x− 1

2

v12 = y − ȳ = 2y

w12 = z − 1
2 − z = − 1

2 ≡
1
2

 Harker section at
(

u, v, 1
2

)

u13 = x− 1
2 − x = − 1

2 ≡
1
2

v13 = y − 1
2 + y = 2y − 1

2

w13 = z − z̄ = 2z

 Harker section at
(

1
2 , v, w

)
u14 = x− x̄ = 2x

v14 = y − 1
2 − y = − 1

2 ≡
1
2

w14 = z − 1
2 + z = 2z − 1

2

 Harker section at
(

u, 1
2 , w

)
(e) P31: Symmetry-equivalent positions at (1) (x, y, z), (2) ȳ, x−y, 1/3+z),

and (3) (x̄ + y, x̄, 2/3 + z).

u12 = x− ȳ = x + y

v12 = y − x + y = 2y − x

w12 = z − 1
3 − z = − 1

3 ≡
1
3

 Harker section at
(

u, v, 1
3

)

(f) P41: Symmetry-equivalent positions at (1) (x, y, z), (2) (x̄, ȳ, 1/2 + z),
(3) (ȳ, x, 1/4 + z), (4) (y, x̄, 3/4 + z)

u12 = x− x̄ = 2x

v12 = y − ȳ = 2y

w12 = z − 1
2 − z = − 1

2 ≡
1
2

 Harker section at
(

u, v, 1
2

)

u13 = x− ȳ = x + y

v13 = y − x

w13 = z − 1
4 − z = − 1

4 ≡
1
4

 Harker section at
(

u, v, 1
4

)
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5. A sharpened Patterson map for the mercaptopyridine structure, space group
P21/n, revealed the following peak locations, heights, and vector lengths:

peak uf vf wf height length

1 0.0000 0.0000 0.0000 999 0.00
2 0.5000 0.3730 0.5000 339 7.58
3 0.9764 0.5000 0.3130 282 5.51
4 0.0666 0.5000 0.1778 184 4.03
5 0.5189 0.1243 0.1880 144 4.44
6 0.7005 0.5000 0.2653 143 5.53
7 0.3194 0.0000 0.4201 141 5.94
8 0.8408 0.0000 0.0399 132 1.22
9 0.5136 0.5000 0.0481 123 4.49

10 0.5000 0.0000 0.5000 119 7.20

Determine the location of the sulfur atom in the unit cell and verify that its
location is consistent with that listed in Sec. 1.5.3, found by direct methods.

Solution:

The sulfur-sulfur vectors will have the largest intensities, since sulfur is the
only heavy atom in the structure. Intense peaks should be found on the
Harker line and plane determined from the symmetry-equivalent positions:
(1) (x, y, z), (2) 1/2−x, 1/2+y, 1/2− z), (3) (x̄, ȳ, z̄), and (4) (1/2+x, 1/2−
y, 1/2 + z).

u12 = x− 1
2 + x = 2x− 1

2

v12 = y − 1
2 − y = − 1

2 ≡
1
2

w12 = z − 1
2 + z = 2z − 1

2

 Harker section at
(

u, 1
2 , w

)

u14 = x− 1
2 − x = − 1

2 ≡
1
2

v14 = y − 1
2 + y = 2y − 1

2

w14 = z − 1
2 − z = − 1

2 ≡
1
2

 Harker line at
(

1
2 , v, 1

2

)
Peak 1 is the origin peak. Peak 2 represents the S − S vector on the Harker
line at (1/2, (2y − 1/2), 1/2) ⇒

2y − 1
2 = 0.3730 y = 0.4365.

Peak 3 represents the S−S vector on the Harker plane at ((2x−1/2), 1/2, (2z−
1/2)) ⇒

2x− 1
2 = 0.9764 x = 0.7382

2z − 1
2 = 0.3130 z = 0.4065.
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When solved by direct methods, the sulfur atom position refines to
(0.7403, 0.0629, 0.4073). The y positions are shown to be consistent by noting
that there is an equivalent S− S vector at (−1/2,−0.3730,−1/2) ⇒

2y − 1
2 = −0.3730 y = 0.0635.

The structure is solved by difference Fourier synthesis from the initial sulfur
atom position, which refines to (0.7402, 0.4370 ≡ 0.0630, 0.4074).

6. The unit cell parameters for the hypothetical two-dimensional C5H4OH struc-
ture illustrated in Fig. 6.8(a) are a = 7 Å, b = 6 Å, and γ = 110o. The fol-
lowing table lists the 6× 5 = 30 Patterson vectors, centered about the origin,
due to the six non-hydrogen atoms:

vector uf vf vector uf vf

−−−→
O1C1 0.2130 0.1136

−−−→
C1O1 −0.2130 −0.1136

−−−→
O1C2 0.3164 0.3589

−−−→
C2O1 −0.3164 −0.3589

−−−→
O1C3 0.5253 0.3976

−−−→
C3O1 −0.5253 −0.3976

−−−→
O1C4 0.5511 0.1763

−−−→
C4O1 −0.5511 −0.1763

−−−→
O1C5 0.3581 0.0008

−−−→
C5O1 −0.3581 −0.0008

−−−→
C1C2 0.1034 0.2453

−−−→
C2C1 −0.1034 −0.2453

−−−→
C1C3 0.3123 0.2840

−−−→
C3C1 −0.3123 −0.2840

−−−→
C1C4 0.3381 0.0627

−−−→
C4C1 −0.3381 −0.0627

−−−→
C1C5 0.1451 −0.1128

−−−→
C5C1 −0.1451 0.1128

−−−→
C2C3 0.2089 0.0387

−−−→
C3C2 −0.2089 −0.0387

−−−→
C2C4 0.2347 −0.1826

−−−→
C4C2 −0.2347 0.1826

−−−→
C2C5 0.0417 −0.3581

−−−→
C5C2 −0.0417 0.3581

−−−→
C3C4 0.0258 −0.2213

−−−→
C4C3 −0.0258 0.2213

−−−→
C3C5 −0.1672 −0.3968

−−−→
C5C3 0.1672 0.3968

−−−→
C4C5 −0.1930 −0.1755

−−−→
C5C4 0.1930 0.1755

A model Patterson map can be created by orienting a model of the molecule in
a convenient location in the unit cell. The orientation of the “actual” molecule
in the structure can then be determined by superimposing the origin of the
two maps and rotating the model map until the maxima in both maps are
superimposed — emulating a rotation search. Using a C−C bond length of
1.400 Å, and a C−O bond length of 1.411 Å, create a model Patterson map
by placing the center of the five carbon pentagon at the origin and the oxygen
atom coincident with the a (x) axis. Plot the Patterson maxima for both maps
on semi-transparent paper and determine the angle at which the molecule is
rotated in the unit cell with respect to the orientation of the model.

Solution:

The carbon atom (C1) on the x axis is located at x = 0.7/ sin 36o = 1.191 Å.
The oxygen atom (O1) is located at 1.191 + 1.411 = 2.602 Å. The Cartesian
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coordinates of the remaining carbon atoms are determined by rotating the
C1 vector by η = n× (360o/5), n = 1, 2, 3, and 4:[

xc

yc

]
=

[
cos η sin η

− sin η cos η

][
1.191

0

]
.

The fractional coordinates of the model are determined by transforming the
Cartesian vectors with the inverse of the B matrix:

B =

[
a b cos γ

0 b sin γ

]
=

[
7.000 −2.052

0 5.638

]

B−1 =
1
|B|

[
5.638 2.052

0 7.000

]
=

[
0.143 0.052

0 0.177

]
[

xf

yf

]
= B−1

[
xc

yc

]
.

Patterson vectors are generated for the model by calculating the 30 difference
vectors: uf (AB) = xf (B) − xf (A), vf (AB) = yf (B) − yf (A). The Patter-
son vectors and origin locations for both maps are converted to Cartesian
coordinates and plotted:[

uc

vc

]
= B

[
uf

vf

]
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The plot on the upper left illustrates the Patterson maxima from the table,
the plot on the upper right the Patterson map of the model molecule. The
inversion center in the Patterson maps invokes two-fold symmetry in two
dimensions, giving two possible rotational angles for the molecule, 27o and
207o. The “actual” rotational angle is 207o. The addition of a third dimension
removes this ambiguity.

7. Intensities for the (1 2 2) reflection are collected from two isomorphous crystals
containing cobalt amine transition metal complex ions, one with ammonium
ions, Crystal A, the other with rubidium ions, Crystal B, located in the same
site (site 1). The intensity from a third isomorphous crystal, Crystal B ′, con-
taining an ammonium ion in site 1, is formed from an iridium amine complex,
in which an iridium atom has replaced the cobalt atom inside the complex
(at site 2 in the crystal). After scaling, the structure factor amplitudes of
the reflection from each crystal are: FA = 43.23, FB = 76.16, FB′ = 103.81.
From a Patterson map generated from data collected from Crystal B, the
rubidium ion is located at rR; a Patterson map generated from data collected
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from Crystal B′ provides the location of the iridium atom at rI . Based on
these locations and their three symmetry-equivalents, the structure factor
contributions for each of these heavy atoms can be calculated:

FR,122 = fRb

4∑
i=1

e−2π i(h122· rR,i), FR = 46.25, ϕR = 188o

FI,122 = fIr

4∑
i=1

e−2π i(h122· rI,i), FR = 97.88, ϕR = 185o

Determine the phase of the (1 2 2) reflection for Crystal A.

Solution:

The first isomorphous replacement generates a pair of possible phases for the
reflection. The second isomorphous replacement removes the ambiguity. Pre-
suming that the nitrogen atom of the ammonium ion is at the same location
as the rubidium ion, scattering with the same phase, we can calculate its
contribution to the structure factor:

FN,122 = fN

4∑
i=1

e−2π i(h122· rR,i), FN = 8.25, ϕN = 188o

FD = FR − FN = 38.00 eiϕR = 38.00(cos 188o + i sin 188o)
= (−37.63) + i(−5.29) = xD + iyD.

D = 2xD = −75.26 E = 2yD = −10.58
G = x2

D + y2
D = FD = 1444.00 H = F 2

B − F 2
A = 3991.52

I = H −G = 2487.51
E2

D2
+ 1 = 1.01

2IE

D2
= −9.29

I2

D2
− F 2

A = −776.38

1.01y2
A + 9.29yA − 776.38 = 0

yA(1) = 23.49
yA(2) = −32.67

xA =
(
− 1

75.26

)
(2487.51 + 10.58yA)

xA(1) = −36.35
xA(2) = −28.46

ϕ(1) = arctan
(

23.49
−36.35

)
= 147o

ϕ(2) = arctan
(
−32.67
−28.46

)
= 229o.

For the third isomorphous replacement, the Co atom in Crystal A is in the
same location as the Rb atom in Crystal B′, scattering with the same phase.
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Thus its contribution to the structure factor is

FC,122 = fCo

4∑
i=1

e−2π i(h122· rI,i), FC = 31.53, ϕC = 185o

F′D = FI − FC = 66.35 eiϕI = 66.35(cos 185o + i sin 185o)
= (−66.10) + i(−5.78) = x′D + iy′D.

D′ = 2x′D = −132.20 E′ = 2y′D = −11.56

G′ = xD
′2 + yD

′2 = F ′
D = 4402.32 H ′ = F 2

B′ − F 2
A = 8907.68

I ′ = H ′ −G′ = 4505.36
E′2

D′2
+ 1 = 1.01

2I ′E′

D′2
= −5.96

I ′
2

D′2
− F 2

A = −707.39

1.01y′
2
A + 5.96y′A − 707.39 = 0

y′A(1) = 23.70
y′A(2) = −29.62

x′A =
(
− 1

132.20

)
(4505.36 + 11.56y′A)

x′A(1) = −36.15
x′A(2) = −31.53

ϕ′(1) = arctan
(

23.70
−36.15

)
= 147o

ϕ′(2) = arctan
(
−29.62
−31.53

)
= 223o.

ϕ122 = 147o.

8. Given the following scattering factor parameters for Eqn. 3.100,

a1 b1 a2 b2 a3 b3 a4 b4 c

H 0.4899 20.6593 0.2620 7.7404 0.1968 49.5519 0.0499 2.2016 0.0013

C 2.3100 20.8439 1.0200 10.2075 1.5886 0.5687 0.8650 51.6512 0.2156

N 12.2126 0.0057 3.1322 9.8933 2.0125 28.9975 1.1663 0.5826 −11.5290

O 3.0485 13.2771 2.2868 5.7011 1.5463 0.3239 0.8670 32.9089 0.2508

S 6.9053 1.4679 5.2034 22.2151 1.4379 0.2536 1.5863 56.1720 0.8669

Determine the Fourier weighting factors, w(h), following location of the sulfur
atom from a Patterson map for: (a) The (1 2 1) reflection for 2-dimethyl-
sulfuranylidene–indan 1,3 dione, C11H10O2S, which packs in the P212121

space group. The observed structure factor magnitude for the (1 2 1) re-
flection, collected at 2θ = 25.21o with CuKα radiation (λ = 1.5418Å), is
Fo = 76.19. The sulfur atom alone produces a calculated structure factor
magnitude of Fc = 19.92 for the reflection. (The modified Bessel functions
needed are discussed in Appendix F); (b) the (1 1 2) reflection for the 2-
mercaptopyridine structure, collected at 2θ = 11.76o with MoKα radiation
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(λ = 0.71073Å). The observed structure factor is Fo = 120.30, and the
calculated structure factor, based on the sulfur atom alone is Fc = 40.73.

Solution:

(a) The structure is non-centrosymmetric, with Z = 4 ⇒ 44 C, 40 H, 8 O,
and 4 S atoms in the unit cell. θ = 12.61o and s = sin θ/λ = 0.14159
Å−1. From Eqn. 3.100,

fH = 0.670
fC = 4.446
fO = 6.622
fS = 12.850∑
f2 = 40× 0.6702 + 44× 4.4462 + 8× 6.6222 + 4× 12.8502 = 1897.71

X =
FoFc

1897.71
= 0.799.

The modified Bessel functions are determined from the summation over
5 terms:

In(0.799) =
4∑

m=0

1
m!(m + n)!

(
0.799

2

)2m+n

(6.1)

I0(0.799) = 1.166 (6.2)
I1(0.799) = 0.432. (6.3)

The Fourier weighting factor is therefore

w(h) =
I1(0.799)
I0(0.799)

= 0.37.

(b) The structure is centrosymmetric, with Z = 4 ⇒ 20 C, 20 H, 4 N, and
4 S atoms in the unit cell. θ = 5.88o and s = sin θ/λ = 0.14414 Å−1.
From Eqn. 3.100,

fH = 0.661
fC = 4.404
fN = 5.486
fS = 12.768∑
f2 = 20× 0.6612 + 20× 4.4042 + 4× 5.4862 + 4× 12.7682 = 1169.29

X =
FoFc

1169.29
= 4.190

w(h) = tanh
(

4.190
2

)
= 0.97.
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Chapter 7

Crystal Structure Solution:
Statistical

1. The triplet phase relationship (TPR) for strong reflections, ϕh ≈ ϕk + ϕh−k,
is seen in the literature in various forms. (a) Show that ϕ−h +ϕk +ϕh−k ≈ 0
is equivalent. (b) Show that ϕh + ϕk − ϕh+k ≈ 0 is equivalent.

Solution:

(a) ϕh ≈ ϕk + ϕh−k ⇒ ϕh − ϕk − ϕh−k ≈ 0. From Fig. 4.21, ϕh = −ϕ−h,
and

−ϕ−h − ϕk − ϕh−k ≈ 0
ϕ−h + ϕk + ϕh−k ≈ 0.

(b) Let h′ = −h, k, and −h′ − k be the indices of three reflections in a
triplet relationship. Then

ϕh′ − ϕk − ϕh′−k ≈ 0
ϕ−h − ϕk − ϕ−h−k ≈ 0

−ϕh − ϕk − ϕ−(h+k) ≈ 0
ϕh + ϕk + ϕ−(h+k) ≈ 0

ϕh + ϕk − ϕh+k ≈ 0.

2. Triplet relationships are analyzed with conditional probabilities since the
phase of a given reflection is not independent of the phases of the other reflec-
tions in the relationship. To gain an idea of the difference between a simple
probability and a conditional probability, solve the following two problems:
(a) You are told that your new neighbor has two children. What is the prob-
ability that the older child’s sibling is a brother? (b) You discover that the
older child’s name is John. What is the probability that the older child’s
sibling is a brother?
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Solution:

(a) Denoting P (m2) as the probability that child number 2 (the sibling) is
a male, consider randomly selecting a large number of families with two
children. Assuming that male and female children are evenly distributed
throughout the population, the probability that a random child selected
from a random family will be a male is P (m2) = 1/2.

(b) It may at first appear that a family with one male child will still have a
1/2 probability of having a second male child. However, distinguishing
the children by older/younger, there are four equally probable family ar-
rangements: male/male, male/female, female/male and female/female.
Only one of these arrangements has two male children. The probability
that the sibling is a male, subject to the condition that the older child
is also a male is P (m2|m1) = 1/4.

3. Show that the tangent formula provides the expected value for a single triplet
relationship.

Solution:

The predicted value of ϕh ≈ βh gives

tanϕh ≈ tanβh =
Xhk sinα

Xhk cos α
=

Xhk sin(ϕk + ϕh−k)
Xhk cos(ϕk + ϕh−k)

= tan(ϕk + ϕh−k)
=⇒ ϕh ≈ ϕk + ϕh−k,

which is the phase predicted by the triplet relationship.

4. The E values for the strong reflections for the bikitaite structure, Li[AlSi2O6]·H2O,
are given in Table 7.3. The (7 1 0) reflection is found in a number of triplet
relationships. During the structural solution process the (4 0 7) and (3̄ 1 7)
are assigned phases of 0o and 30o, respectively. (a) Determine the phase of
the (7 1 0) reflection predicted by the triplet relationship among these reflec-
tions. (b) Based on this single relationship, determine the probability that
ϕ710 lies within ±10o of the predicted phase.

Solution:

(a) For ϕh ≈ ϕk + ϕh−k, The h− k reflection must have indices (3 1 7̄),
which, according to Eqn. 7.169, has an assigned phase of π+30o = 210o.
Thus,

ϕ710 ≈ 0o + 210o = 210o.

(b) The conditional probability integral for a single triplet relationship, eval-
uated between ϕ1 and ϕ2, is

Pr(ϕh|Eh,Ek,Eh−k) =
1

2πI0(Xhk)

∫ ϕ2

ϕ1

eXhk cos(ϕh−ϕk−ϕh−k)dϕh.
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σ2 =
∑

j

Z2
j = 4× 12 + 14× 82 + 2× 32 + 2× 132 + 4× 142 = 2040

σ3 =
∑

j

Z3
j = 4× 13 + 14× 83 + 2× 33 + 2× 133 + 4× 143 = 22 596

2σ3

(σ2)3/2
= 0.4905

Xhk = 0.4905× EhEkEh−k = 3.569

Pr(ϕ710|Eh,Ek,Eh−k)220200 =
1

2πI0(3.569)

∫ 220o

200o
e3.569 cos(ϕh−210o)dϕh.

The modified Bessel function value is determined from the summation
over six terms (Appendix F):

I0(3.569) =
6∑

m=0

1
m!(m + 0)!

(
3.569

2

)2m+0

= 7.82

Pr(ϕ710|Eh,Ek,Eh−k)220200 = 0.020
∫ 220o

200o
e3.569 cos(ϕh−210o)dϕh.

The integral cannot be evaluated analytically, but it can be evaluated
graphically by trapezoidal integration — or numerically, using a pro-
grammable calculator or computer. The following simple program, writ-
ten in BASIC, is readily adaptable to any programming language:

pi = 3.1415927
dr = pi / 180
dphase = 0.001
integral = 0
phase = (200 * dr)
alpha = 210 * dr
Xhk = 3.569
N = 0.02
Do While phase <= (220* dr)

phase = phase + dphase
integral = integral + (Exp(Xhk* Cos((phase − alpha)))) * dphase

Loop
integral = N * integral

The result: integral = Pr(ϕ710|Eh,Ek,Eh−k)220200 = 0.24.

5. As the solution of the bikitaite structure described in Exercise 4 continues,
the phases of a number of reflections involved in triplet relationships with the
(7 1 0) reflection emerge (listed in (h, h− k) pairs, one for each triplet):
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h k l E ϕ h k l E ϕ h k l E ϕ h k l E ϕ

4 0 7 1.96 0 4 4 1 1.92 24 3̄ 3 2 1.94 120 3 3 0 1.90 288
3̄ 1 7 1.56 30 3̄ 3 1 1.91 144 4 2 2 1.73 74 4 2 0 1.63 69
5̄ 2 5 2.02 226 8̄ 1 10 2.12 24 9̄ 0 8 1.92 0 3̄ 3 2 1.94 120
2 1 5 1.62 188 1̄ 0 10 2.09 0 2̄ 1 8 1.73 202 1̄0 2 2 1.81 254

(a) Determine the expected value of ϕ710 based upon the assigned phases of
these reflections. (b) Determine the probability that ϕ710 lies within ±10o of
the predicted phase (Note: The modified Bessel function that determines the
normalization constant tends to require a large number of terms in the series
expansion when the argument becomes large. Since the probability integral
itself must be evaluated numerically, in such cases it is much easier to evaluate
the normalization integral numerically as well.)

Solution:

(a) The expected value of ϕ710 is β710, determined from the tangent formula:

tanβ710 =
∑8

i=1 Xhki
sinαi∑8

i=1 Xhki cos αi

, αi = ϕki
+ ϕh−ki

.

The triplet pairs, (h, h− k), related to the indices of the reflection pairs
above by symmetry — along with their phases, are:

h k l E ϕ h k l E ϕ h k l E ϕ h k l E ϕ

4 0 7 1.96 0 4 4 1 1.92 24 3 3 2̄ 1.94 300 3 3 0 1.90 288
3 1 7̄ 1.56 210 3 3̄ 1̄ 1.91 216 4 2̄ 2 1.73 286 4 2̄ 0 1.63 291
5 2 5̄ 2.02 226 8 1 1̄0 2.12 204 9 0 8̄ 1.92 0 3̄ 3 2 1.94 120
2 1̄ 5 1.62 352 1̄ 0 10 2.09 0 2̄ 1 8 1.73 202 10 2 2̄ 1.81 106

From the solution to Exercise 4, Xhki
= 0.4905× EhEki

Eh−ki
, giving

β710 = 225o.

(b) The conditional probability integral for the eight triplet relationships,
evaluated between ϕ1 and ϕ2, is

Pr(ϕh) =
1

2πI0(Yh)

∫ ϕ2

ϕ1

eYh cos(ϕh−βh)dϕh,

Yh =


 8∑

j=1

Xhkj
cos(αj)

2

+

 8∑
j=1

Xhkj
sin(αj)

2


1/2

= 26.56.
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Forty terms in the series expansion to generate I0(Yh) provides a value
of 26 652 716 750, and a normalization constant of N = 1/2πI0(Yh) =
5.97× 10−12. Numerical evaluation (see the program below) results in

N =
1∫ 2π

0

e26.56 cos(ϕh)dϕh

= 5.96× 10−12 and

Pr(ϕh)235215 = 5.96× 10−12

∫ 235o

215o
e26.56 cos(ϕh−225o)dϕh.

The following simple program, written in BASIC, is readily adaptable
to any programming language:

pi = 3.1415927
dr = pi / 180
dphase = 0.001
Yhk = 26.56
phase = 0
normintegral = 0
Do While phase <= 2 * pi

phase = phase + dphase
normintegral = normintegral + (Exp(Yhk * Cos((phase)))) * dphase

Loop
N = 1 / normintegral
integral = 0
phase = (215 * dr)
beta = (225 * dr)
Do While phase <= (235 * dr)

phase = phase + dphase
integral = integral + (Exp(Yhk * Cos((phase - beta)))) * dphase

Loop
integral = N * integral

The result: integral = Pr(ϕ710)235215 = 0.63.

6. Referring to Table 7.3 in order of descending values of E: (a) show that the
first three reflections in the table do not constitute a potential set of origin-
defining reflections; (b) proceeding down the table, determine the first set of
three reflections that would be suitable for origin-definition.

Solution:

(a) The (6̄ 0 2) reflection has eee parity, and cannnot be used to define the
origin. The (5̄ 2 10) planes cross the b axis in two locations – the origin
will not be uniquely defined since k 6= 1.

(b) The (5̄ 0 5) reflection has oeo parity, and is the first candidate in the
list for origin-definition. (7 1 0) reflection has k = 1 and is a second
candidate. The third reflection must now be an h0l reflection. The
(1̄1 0 7), (7̄ 0 7), and (9̄ 0 3) reflections all have oeo parity, and are not
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linearly independent of the (5̄ 0 5) reflection. The (1̄ 0 10) reflection
has oee parity — linearly independent of (5̄ 0 5). Thus the (5̄ 0 5),
(1̄1 0 7), and (7 1 0) reflections constitute a potential set of origin-
defining reflections.

7. Assigning phases of 0 to the (5̄ 0 5), (1̄1 0 7), and (7 1 0) reflections in Table
5.3 (defining the origin) , and symbolic phases, s1, s2, and s3 to the (2̄ 0 2),
(5̄ 2 5), and (3̄ 3 2) reflections, respectively, assign the symbolic phases of the
(a) (6̄ 0 2), (b) (7̄ 0 7), (c) (8̄ 3 5), and (d) (6̄ 2 2) reflections.

Solution:

To assign the phase of each reflection a triplet relationship must be found
involving reflections with previously assigned symbolic phases:

(a)

h = (6̄ 0 2)
k = (5 0 5̄)

h− k = (1̄1 0 7)
ϕ6̄02 ≈ ϕ505̄ + ϕ1̄1 07

ϕ505̄ = −ϕ5̄05 = 0
ϕ6̄02 ≈ 0 + 0 = 0.

(b)

h = (5̄ 0 5)
k = (7̄ 0 7)

h− k = (2 0 2̄)
ϕ5̄05 ≈ ϕ7̄07 + ϕ202̄

ϕ202̄ = −ϕ2̄02 = −s1

0 ≈ −s1 + ϕ7̄07

ϕ7̄07 ≈ s1.

(c)

h = (1̄1 0 7)
k = (3̄ 3 2)

h− k = (8̄ 3̄ 5)
ϕ1̄1 07 ≈ ϕ3̄32 + ϕ8̄3̄5

ϕ8̄3̄5 = π − ϕ8̄35

0 ≈ s3 + π − ϕ8̄35

ϕ8̄35 ≈ s3 + π.
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(d)

h = (1̄1 0 7)
k = (5̄ 2 5)

h− k = (6̄ 2̄ 2)
ϕ1̄1 07 ≈ ϕ5̄25 + ϕ6̄2̄2

ϕ6̄2̄2 = −ϕ6̄22

0 ≈ s2 − ϕ6̄22

ϕ6̄22 ≈ s2.

8. Using the origin-defining and symbolic phases assigned in the previous exer-
cise, show that triplet relationships involving the (5̄ 0 5), (5̄ 2 5), (7 1 0), and
(0 2 0) reflections predict that s2 is approximately π.

Solution:

The (5̄ 0 5) and (5̄ 2 5) phases predict that the (0 2 0) reflection has a symbolic
phase of ϕ020 ≈ s2:

h = (5̄ 0 5)
k = (5̄ 2 5)

h− k = (0 2̄ 0)
ϕ5̄ 05 ≈ ϕ5̄25 + ϕ02̄0

ϕ020 = −ϕ02̄0

0 ≈ s2 − ϕ020

ϕ020 ≈ s2.

The (7 1 0) reflection, combined with its symmetry relative, the (7 1̄ 0)
reflection, predicts that the (0 2 0) reflection has a phase of ϕ020 ≈ π:

h = (7 1 0)
k = (7 1̄ 0)

h− k = (0 2 0)
ϕ710 ≈ ϕ71̄0 + ϕ020

ϕ71̄0 = π − ϕ710

0 ≈ π − 0 + ϕ020

ϕ020 ≈ −π ≡ π.

Thus, based on these two triplets, s2 ≈ π.
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Chapter 8

Crystal Structure
Refinement

1. Consider a spring suspended from a horizontal support beam with a weight
with mass m attached to the end of the spring. The weight is pulled downward
and released, setting it into oscillatory (harmonic) motion, oscillating at fre-
quency ν. If the mass of the spring is negligible, the frequency is determined
by the force constant of the spring, k, and the mass of the weight:

ν =
1
2π

√
k

m
.

The period — the time that it takes for a single oscillation to occur — is the
reciprocal of the frequency:

T = 2π

√
m

k
.

Since the spring has mass, in order to be rigorous, the formula must also
contain the “effective mass” of the spring, ms:

T = 2π

√
m + ms

k
.

In a series of experiments, various weights are attached to the spring and the
oscillation frequency is measured in each case:

m (g) 10 20 30 40 50 60 70 80 90 100
ν (s−1) 1.778 1.463 1.263 1.137 1.036 0.950 0.899 0.838 0.795 0.759

(a) Derive a relationship that is linear in m (the equation of a line with m
as the independent variable). (b) Use the relationship and the method of
least squares to determine the effective mass and force constant of the spring
(assume that the masses are exact and that the values of the dependent
variable are equally weighted).

89



Solution:

(a) The equation for the period can be made linear in m by squaring both
sides:

T 2(m) = y(m) =
4π2

k
m +

4π2ms

k
= sm + y0.

(b) The slope, s, and the intercept, y0, of the least squares line will provide
the values of ms and k. From Eqn. G.3,[

s

y0

]
=

[ ∑10
i=1 m2

i

∑10
i=1 mi∑10

i=1 mi 10

]−1 [ ∑10
i=1 miyi∑10

i=1 yi

]

=

[
1.212× 10−4 −6.667× 10−3

−6.667× 10−3 4.667× 10−1

][
692.050
10.204

]

=

[
1.584× 10−2

0.1485

]
4π2

k
= 1.584× 10−2 s2/g ⇒

k = 2490 g/s2 ≡ 2490 dyne/cm.

4π2

k
ms = 0.1485 s2

ms = 9.37 g.

2. The unweighted linear least-squares solution of Exercise 1 can be refined by
including appropriate weights for each of the residuals. If the error in the
measurement of each frequency is entirely random, then these weights are the
reciprocals of the variances of the dependent variables, yi = T 2

i . The weighted
sum of the squares of the residuals,

∑n
1 wi(smi + y0 − yi)2, is minimized,

where wi = 1/σ2(yi). (a) Derive a matrix solution for the slope and intercept
of a weighted least-squares line for the data in Exercise 1. (b) Assuming
that the variance of the frequency (and therefore the period) is the same for
each data point (independent of ν and T ), show that the weights in part (a)
are not independent of T . (c) Determine the weighted least-squares values
for the force constant and effective mass of the spring in Exercise 1. (d)
Given the following repeated measurements of the frequency of the oscillating
50 g weight (in s−1): 1.038, 1.033, 1.029, 1.029, 1.034, 1.027, 1.028, 1.037,
1.028, 1.034, 1.032, 1.030, 1.037, 1.031, 1.033, 1.035, 1.031, 1.031, 1.035, and
1.035, determine the estimated standard deviations of the force constant and
effective mass of the spring in Exercise 1.
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Solution:

(a) Referring to Appendix G,

∂
∑n

i wi(smi + y0 − yi)2

∂s
= 0 and

∂
∑n

i wi(smi + y0 − yi)2

∂y0
= 0 =⇒(

n∑
i=1

wim
2
i

)
s +

(
n∑

i=1

wimi

)
y0 =

n∑
i=1

wimiyi(
n∑

i=1

wimi

)
s +

(
n∑

i=1

wi

)
y0 =

n∑
i=1

wiyi

[
s

y0

]
=

[ ∑n
i wim

2
i

∑n
i wimi∑n

i wimi

∑n
i wi

]−1 [ ∑n
i wimiyi∑n

i wiyi

]
.

(b) Assuming that σ2(Ti) is the same for all data points,

yi = T 2
i

σ2(yi) =
(

∂yi

∂Ti

)2

σ2(Ti)

= (2T 2
i )σ2(Ti) = 4T 2

i σ2(Ti) = 4yiσ
2(Ti) =⇒

wi =
1

(4σ2(Ti))yi
=

C

yi
; C =

1
4σ2(Ti)

.

(c) The weights from part (b) are inserted into the solution from part (a):

[
s

y0

]
=


10∑

i=1

C

yi
m2

i

10∑
i=1

C

yi
mi

10∑
i=1

C

yi
mi

10∑
i=1

C

yi


−1 

10∑
i=1

C

yi
miyi

10∑
i=1

C

yi
yi



= C−1C


10∑

i=1

m2
i

yi

10∑
i=1

mi

yi

10∑
i=1

mi

yi

10∑
i=1

1
yi


−1 

10∑
i=1

mi

10



=

[
1.017× 10−4 −4.019× 10−3

−4.019× 10−3 2.364× 10−1

][
550
10

]

=

[
1.577× 10−2

0.1532

]
4π2

k
= 1.577× 10−2 s2/g ⇒

k = 2504 dyne/cm.

4π2

k
ms = 0.1532 s2

ms = 9.72 g.
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(d) After conversion of the frequencies to periods, the mean of the measured
periods is 〈T 〉 = 0.969 s. The estimated variance of the period is given
by

σ2(T ) =
1

(20− 1)

20∑
i=1

(Ti − 〈T 〉)2 = 9.40× 10−6s2.

The estimated standard deviations of the slope, intercept, force constant
and effective mass are determined by error propagation.

yi = smi + y0 =⇒ s =
yi

mi
− y0

mi
and y0 = yi − smi.

σ2(s) =
10∑

i=1

(
∂s

∂yi

)2

σ2(yi) =
10∑

i=1

σ2(yi)
m2

i

=
10∑

i=1

4yiσ
2(T )

m2
i

= 3.76× 10−5
10∑

i=1

yi

m2
i

= 5.44× 10−7s2/g.

σ2(y0) =
10∑

i=1

(
∂y0

∂yi

)2

σ2(yi) =
10∑

i=1

σ2(yi)

=
10∑

i=1

4yiσ
2(T ) = 3.76× 10−5

10∑
i=1

yi

= 3.532× 10−4 s2.

k =
4π2

s

σ2(k) =
(

∂k

∂s

)2

σ2(s) =
(

16π4

s4

)
× 5.44× 10−7 s2/g

= 13708 dyne2/cm2.

σ(k) = 117 dyne/cm.

ms =
y0k

4π2

σ2(ms) =
(

∂ms

∂y0

)2

σ2(y0) +
(

∂ms

∂k

)2

σ2(k)

=
(

k

4π2

)2

σ2(y0) +
( y0

4π2

)2

σ2(k)

= 1.63 g2.

σ(ms) = 1.27 g.

3. In a chemical kinetics experiment a compound, compound X, is known to
form slowly along a zero-order pathway, and decompose more rapidly along
an independent first-order pathway. The concentration of X can be modeled
as a function of time as

[X](t) = p1t + p2e
−p3t.

92



In the experiment, [X] is measured in intervals of 0.1 h, and we seek the values
of the parameters, p1, p2, and p3 that will provide a “best fit” (a least-squares
fit) to the data:

t (h) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

[X](mM) 190.6 109.1 65.7 40.7 35.7 7.9 18.8 12.1 1.7 9.9 5.3

(a) Determine initial guesses for p1, p2, and p3 by selecting data points with
appropriate values of t. (b) Using a Taylor series approximation to the func-
tion, determine optimal least squares values for p1, p2, and p3. (c) Plot the
least squares model function and the data in the table.

Solution:

(a) At t = 0.0 h, the experimental value of [X] approximates p2:

[X]i = p1ti + p2e
−p3ti =⇒ 190.6 ' p1 × 0.0 + p2e

0 ' po
2.

At t = 1.0 h, the concentration approaches zero, indicating that e−p3t

is close to zero, and that p1t is also close to zero. This implies that p1

must be very small, and we will approximate it as po
1 ' 0. Using these

values, and selecting the data point at t = 0.5 h = 1/2 h gives

[X] = 7.9 ' 190.6 e−p3/2

po
3 ' −2 ln

(
7.9

190.6

)
= 6.37

(b) Using the method described in Sec. 8.3 as a model, the ith observed
concentration is given by [X]o,i. The parameter vector is p = [p1 p2 p3],
and the ith concentration predicted from the model is [X(p)]c,i. A least
squares fit of the model to the observed data will minimize

R(p) =
11∑

i=1

([X]o,i − [X(p)]c,i)2.

Expanding the model function as a Taylor series about the initial ap-
proximations, po = [po

1 po
2 po

3], and discarding the the higher terms, gives

[X(p)]c,i = ([X(p)]c,i)po
+

3∑
j=1

(
∂[X(p)]c,i

∂pj

)
po

∆pj .

Setting ∆Xi = [X]o,i− ([X(p)]c,i)po
, and ∆p = [∆p1 ∆p2 ∆p3] = [(p1−

po
1) (p2 − po

2) (p3 − po
3)], results in

tkj =
11∑

i=1

(
∂[X(p)]c,i

∂pj

∂[X(p)]c,i

∂pk

)
po

and

dj =
11∑

i=1

∆Xj

(
∂[X(p)]c,i

∂pj

)
po

, j = 1, 2, 3; k = 1, 2, 3.
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The derivatives with respect to each of the parameters, evaluated at po

are: (
∂[X(p)]c,i

∂p1

)
po

= ti(
∂[X(p)]c,i

∂p2

)
po

= e−po
3ti

(
∂[X(p)]c,i

∂p3

)
po

= −po
2tie

−po
3ti .

The matrix elements for T are therefore

t11 =
11∑

i=1

t2i

t12 = t12 =
11∑

i=1

tie
−po

3ti

t13 = t31 =
11∑

i=1

−t2i p
o
2e
−po

3ti

t22 =
11∑

i=1

e−2po
3ti

t33 =
11∑

i=1

t2i p
o
2e
−2po

3ti .

The d vector is given by

d1 =
11∑

i=1

∆Xiti

d2 =
11∑

i=1

∆Xie
−po

3ti

d3 =
11∑

i=1

−∆Xip
o
2tie

−po
3ti ,

allowing for the determination of the parameter change vector:

∆p = T−1d.

New values for the parameters are generated by adding ∆p1, ∆p2, and
∆p2 to po

1, po
2, and po

3, and the process is repeated iteratively until only
negligible changes in the parameters are observed. The algorithm out-
lined here converges in 15 iterations, and is essentially complete after 10
iterations. The following table lists the parameters computed after each
iteration:
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iteration p1 p2 p3 iteration p1 p2 p3

0 0.00 190.60 6.37 10 6.46 188.87 5.26
1 6.90 197.94 5.20 11 6.41 188.98 5.25
2 8.46 187.92 5.54 12 6.44 188.90 5.26
3 6.07 191.77 5.21 13 6.42 188.94 5.25
4 7.10 188.29 5.35 14 6.43 188.92 5.26
5 6.21 189.92 5.23 15 6.42 188.93 5.25
6 6.67 188.62 5.29 16 6.43 188.92 5.26
7 6.33 189.29 5.24 17 6.43 188.93 5.25
8 6.52 188.79 5.27 18 6.43 188.92 5.25
9 6.39 189.06 5.25 19 6.43 188.93 5.25

(c) Non-linear least-squares fit of model function (black) to concentration
data (red):
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4. The pyridine ring in Fig. 1.32 can be approximated by a hexagon with an
edge length of 1.36 Å. Given the fractional coordinates of S(1), C(1), and
N(1), calculate the fractional coordinates of the remaining atoms based on
this approximation, retaining the original locations of C(1) and S(1).

Solution:

The calculated positions are determined in the following sequence:

(a) Create the B matrix and convert the positions of S(1), C(1), and N(1)
to crystal Cartesian coordinates. The results are given on page 59:

Atom xc yc zc

S(1) 3.359 0.398 5.712

N(1) 1.036 1.655 6.022

C(1) 2.258 1.650 5.414

(b) Translate the origin to C(1) by subtracting its coordinates from those of
S(1), C(1), and N(1):

Atom x′c y′c z′c

S(1) 1.101 −1.252 0.298

N(1) −1.222 0.005 0.608

C(1) 0.000 0.000 0.000

(c) Create a unit vector in the local x direction — in the direction oppo-
site to the

−−−−−−→
C(1)(S(1) vector (see the figure on the following page): vxa =

[−1.101, 1.252,−0.298]; vxa = 1.694 Å. ig = vxa/vxa = [−0.650, 0.739,−0.176].

(d) Create a unit vector in the local z direction: vxy = [−1.222, 0.005, 0.608].
vz = ig × vxy = [0.450, 0.610, 0.900]; kg = vz/vz =
[0.382, 0.518, 0.765].

(e) Create a unit vector in the local y direction:jg = kg × ig =
[−0.657,−0.430, 0.619].

(f) Determine coordinates of the atoms in the local system. Referring to
the figure on the following page,

S(1) : [−1.694, 0.000, 0.000]
C(1) : [0.000, 0.000, 0.000]
C(2) : [1.36 cos 60o,−1.36 sin 60o, 0.000] = [0.680,−1.178, 0.000]
C(3) : [1.36 cos 60o + 1.36,−1.36 sin 60o, 0.000] = [2.040,−1.178, 0.000]
C(4) : [2.72, 0.000, 0.000]
C(5) : [1.36 cos 60o + 1.36, 1.36 sin 60o, 0.000] = [2.040, 1.178, 0.000]
N(1) : [1.36 cos 60o, 1.36 sin 60o, 0.000] = [0.680, 1.178, 0.000].

96



(g) Transform each of these vectors back into the translated crystal Carte-
sian system: [ig jg kg]v′′ = v′:

Atom x′c y′c z′c

S(1) 1.101 −1.252 0.298
N(1) −1.216 −0.004 0.610
C(1) 0.000 0.000 0.000
C(2) 0.332 1.009 −0.849
C(3) −0.552 2.014 −1.008
C(4) −1.768 2.010 −0.479
C(5) −2.099 1.001 0.370

(h) Transform the Cartesian vectors back to the unit cell origin by adding
the crystal Cartesian coordinates of C(1) to each vector. Then transform
them back to fractional coordinates with B−1:

Atom xf yf zf

S(1) 0.7403 0.0629 0.4073
N(1) 0.3715 0.2602 0.4295
C(1) 0.5501 0.2608 0.3860
C(2) 0.5761 0.4203 0.3255
C(3) 0.4262 0.5792 0.3142
C(4) 0.2449 0.5786 0.3519
C(5) 0.2191 0.4191 0.4124
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5. Given the following multiple isomorphous replacement data for the (0 6 0)
reflection from a protein crystal,∗ estimate ϕP for the native protein:

native protein: FP = 858,
Pt derivative: FHP = 756, FH = 141, ϕH = 78o,
U derivative: FHP = 856, FH = 154, ϕH = 63o,
I derivative: FHP = 940, FH = 100, ϕH = 146o.

Solution:

(a) For the Pt derivative,

ϕP ' 78o − arccos
(

7562 − 8582 − 1412

2× 141× 858

)
= 78o ± 140o

ϕ(1) ' 218o

ϕ(2) ' 298o.

(b) For the U derivative,

ϕP ' 63o − arccos
(

8562 − 8582 − 1542

2× 154× 858

)
= 63o ± 90o

ϕ(1) ' 159o

ϕ(2) ' 327o.

(c) For the I derivative,

ϕP ' 146o − arccos
(

9402 − 8582 − 1002

2× 100× 858

)
= 146o ± 37o

ϕ(1) ' 183o

ϕ(2) ' 109o.

The phases that agree most closely are the ϕ(1) values for each derivative.
An average value gives ϕP ' 187o.

∗Ladd, M. and Palmer, R., Structure Determination by X-ray Crystallography, 4th ed., Plenum
Press, New York, (2003).
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