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Figure S1. Corrdation of some point groups discussed in the text. The five solutions of an
icosahedron with sx colored edges have Th, Dsg, D3, D2, and Cp-symmetry. The solution with
four colored triangles has T-symmetry.
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Figure S2. FAB® mass-spectrum of [Ba(tbci)4]Br.. The inlet shows the caculated (black
columns) and measured (white columns) isotope pattern of the pegk at m/z = 2006.8.
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Figure S3. ORTEP-representation of [Mg(tbci)2]Cl, with numbering scheme and vibrationd
ellipsoids at the 30% probakility level. Hydrogen atoms are omitted for clarity.
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Figure 4. Structure of [Sr(tbci)s(OH,)]?*: @) the entire complex cation; b) the complex core.
The S center and the O- and N-atoms are shown as dlipsoids a the 30% probability levd;
the backbone of the ligands is represented by a stick modd; hydrogen atoms are omitted for

clarity.
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Table S5 Survey of Hexanitrato-complexes

CCDC-R€f. code Symmetry Metal-Center
BAGFEU Th Nd
BEQVAU Th Th
CILKOX Th Ce
COCYOI D3 Th
COKVAZ01 Th La
DEYDUG Th Nd
FIBNAF Th Nd
FIVCIW D3 La
GEZHIC Th Nd
GEZHOI Th Eu
GIGPOB D3 Np
GOBTAS Th Th
HIRMEA Th Ce
JZSOA Ds, Th La Lad
LAPKOC D3 La
MALMAN D3 La
NMPOTH Th Th
PILPIJ S PhiP!
PILPIJ10 D3 Ba
PILPOP D3 Pb
SERWER Th Eu
TINTUF D3 La
TUMWUT D3 La
VIJSAI Th Th
VUYWOB Th Gd
VUZDOJ Th el
WIDXAI Th La
YAGFIV Th La
YUWWAO D3 Th
ZEWBOS Th Th
ZOBNOT D3 Ce

(& Two different isomersin the same crysta structure
M Distorted cuboctahedron
] Some of the nitrato ligands are severely disordered
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Crystal data of [Mg(tbci)2]Cl»:10M eOH

Crygsds of compostion [Mg(tbci),]Cl-:10MeOH disntegrate rapidly upon exposure to air. A
cysd of dimensons 052 © 0.32 © 0.13 mm was therefore embedded in perfluorpolyether
and data collection was performed at 100(2) K on a SSEMENS SMART-CCD diffractometer
(Moka-radiation, | = 71.073 pm, graphite monochromator, p = 0.168 mm): space group
P1, a = 1097.95(9), b = 1223.9(1), ¢ = 1409.3(1) pm, a = 87.41(2)°, b = 73.92(2)°, g =
75.08(2), Z = 1, V = 17577(3) ~ 10° pn?, rcgc = 1.238 Mg m>. Numerica absorption
correction (Trmin = 0.457, Tmax = 0.962). 20max: 50.0°. Of 7451 measured reflections 5502
independent reflections were used for the refinement of 439 parameters, the structure was
solved by direct methods (SHELXS-97). All non hydrogen aoms were refined with
anisotropic  digplacement parameters (SHELXL-93, full-matrix leest-squares calculations on
F2). H(-C)-aoms were placed a caculated postions (riding modd). R [Fo? > 2s(Fo2)]:
7.23%, WR, (all data): 19.28%. Residual electron density: +1.012 / -0.444 eo/A3,

Crystal data of [Sr(tbci)s(OH2)]Bro-4M eOH

Crystds of composition [Sr(thci)3(OH,)]Bro-4MeOH disintegrate rapidly upon exposure to
ar. A cysd of dimensons 030 © 013 °~ 009 mm was therefore embedded in
perfluorpolyether and data collection was performed at 100(2) K on a SIEMENS SMART-
CCD diffractometer (Moka-radiation, | = 71.073 pm, graphite monochromator, p = 1.645 mm
1Y: space group P1, a = 1505.20(9), b = 1581.42(9), ¢ = 1941.1(1) pm, a = 101.36(1)°, b =
97.24(1)°, g = 107.24(1), Z =2, V = 4241.7(5) ~ 10° pn?, r cac = 1.359 Mg m°, semi-
empirical  absorption correction (MulScanAbs, Platon99 program suite, A.L. Spek, Univ.
Utrecht, Netherlands. Tmin = 0.633, Tmax = 0.719), 20max: 60.0°. Of 42664 measured
reflections 24651 independent reflections were used for the refinement of 1068 parameters,
the sructure was solved by direct methods (SHELXS-97). All nonhydrogen aoms were
refined with anisotropic  displacement parameters (SHELXL-93, full-matrix lesst-squares
cdculaions on F?). H(-C)-atoms were placed a caculated postions (riding modd). H(-O)
and H(-N) atoms were located from the difference map, distances of chemicdly equivaent H
atoms were restrained to be equal within errors (73 restraints). R [Fo? > 25 (Fo2)]: 5.40%, WR,
(al data): 14.28%. Residua dectron density: +1.549 / -1.048 /A3,

Synthesis and Char acterization of [Sr(tbci)s]Br2-4M eOH

SrBr2:6H,0 (25 mg) and tbci (100 mg) were dissolved in dry MeOH (5 mL) and alowed to
day for saverad days @ 4°C. The resulting crystds (30 mg, 25%) disntegrated in ar. And.
Calc. for GesH107N9O11BRSr: C, 60.26; H,6.52; N, 7.62. Found: C, 60.27; H, 6.42; N, 7.73.
FAB*-MS: m/z = 1511.0 (28.2%, [Sr(tbci)sBr]™).
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Synthesisand Char acterization of [M g(tbci),]Br2:10M eOH

MgCl-6H,0 (25 mg) and tbci (100 mg) were dissolved dry MeOH (4 mL). The solution was
kept at 4°C for severd days. The resulting crystals (0.03g, 22%) decomposed very rapidly on
ar. And. Cac. for Gs65Hg1NsO11ClbMg: C, 60.83; H, 7.32; N, 7.53. Found: C, 60.61, H, 7.31,
N, 7.50. FAB*-MS: m/z = 917.4 (43.4%, [Mg(tbci),-H] ).

1,3,5-Trig(benzylamino)-1,3,5-trideoxy-cis-inositol (tbci)

Taci (1g, 5.6 mmol) was dissolved in dry MeOH (50 mL) and benzaldehyde (2.3 mL, 23.6
mmol) was added. The solution was stirred for 2 hours a 50°C. NaBH4 (1.8 g, 47.6 mmol)
was then added in portions. The mixture was dirred for 12 h and an additional portion of
NaBH4 (0.2g, 5.3 mmol) was added. Stirring was continued for 1 h. The pH was then adjusted
to 1 (conc. HCI). A white precipitate formed which was filtered off, extracted with MeOH and
discarded. The combined MeOH fractions were sorbed on Dowex 50 W X 2 (100-200 mesh)
and the column was successively euted with HO (400 mL), 1 M HCI (400 mL) and 8M HCI
(1 L). The lagt fraction was evaporated to dryness, and the resulting white solid was dissolved
in H2O. The solution was adkaized with IM KOH. The free thc (white solid, 77 %) was
isolated by filtration, washed with H,O, and recrysdlized from EtOH. And. Cdc. for
C27H33N303: C, 72.46; H, 7.43; N, 9.39. Found: C,72.66; H, 7.79; N,9.20. *H NMR (CDCh):
d= 7.32-7.21 (m,15 H), 4.03 (t, 3H), 3.86 (5,6 H), 2.37 (1,3 H). 1*C NMR (CDCl): d= 140.0,
128.5,128.2, 127.1, 70.2, 58.2, 50.7. FAB*-MS: m/z = 448.1 (100%, Htbci®).

1,3,5-Tris(benzyl-methyl-amino)-1,3,5-trideoxy-cis-inositol (tbmci)

tbc (0.5 g, 1.1 mmoal) was dissolved in diluted formic acid (80 mL of conc. HCOOH, 20 mL
of H>0). Formadehyde (12 mL of a 37 % agueous solution) was then added and the mixture
was refluxed for 14 h. After cooling to room temperature, conc. HCI (50 mL) was added and
the solution was evaporated to dryness in vacuo. The resdue was dissolved in H,O and
akdized with IM agueous KOH. The suspenson was extracted with chloroform (4 x 100
mL), and the combined CHCk-fractions were evaporated to dryness. The resdue was
dissolved MeOH (5 mL) and dlowed to stay at 4°C. Free tbmci crystalized as white needles
(60 %). Anal. Calc. For C3oH39N303: C, 73.59; H, 8.03; N, 8.58. Found: C, 73.82; H, 7.95; N,
8.54. 'H NMR (CDClk): d= 7.35-7.25 (m, 15 H), 4.62 (t, 3H), 3.89 (s, 6H), 2.47 (s, 9H), 2.20
(t, 3H). *C NMR (CDCl): d= 139.0, 128.9, 128.3, 127.0, 67.7, 65.5, 58.5, 39.3. FAB*-MS:
m/z = 490.3 (100%, Htbmci®).
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On Speci al Col ourings of an | cosahedron

An icosahedron is a polyhedron of type (3; 5), that neans the
faces are triangles and five faces neet in each corner.
By an adm ssible col ouring we nean: there are as nuch col oured

edges as possible, but two col oured edges do not have a common
corner. Two colourings C and C are inequivalent, if we cannot
transform Cto C by rotations or reflections and rotations.

1. The icosahedron and its stabilizer

Definition. Fix an icosahedron Jin IR® with barycenter O, the
origin of IR3

(i) Over IR® we have the group of isometries, that is, of

i near maps which fix the point O In general one

di stingui shes the two groups

O(3) := {isonetries of IR®}
= {conbi nations of rotations and reflections with
fixed point G
SQ(3) := {combinations of rotations with fixed point GI Q3).

One says that O(3) and SO(3) act on IR®.

(ii) Considering a subset Mi IR® and a subgroup GIi O(3) we
can decide for an element s I G whether s(M* Mor s(M = M
In the second case we call s an elenment of the stabilizer
Stabg(M of Mwith respect to G For each s I G the set

s(M is said to be equivalent to Mwith respect to G or Mand
s(M lie in the sanme orbit.

(iii) For the icosahedron ywth barycenter O we define

lI:= Stabsgs) (J) and ll*:= Stabgs) (J):

For general definitions of action, stabilizer and so on, see
[ S1, section 1.6].

1.1. Nunmber of col oured edges.

It is clear that a colouring is adm ssble if each corner has
exactly one col oured edge. Each edge has exactly two corners
and the whol e i cosahedron has twel ve corners. Therefore we
decompose the set of twelve corners in pairw se distinct

subsets with two corners. In this way we get 6 :-%-subsets

with two el ements and so every adm ssi ble col ouring has at
nost six coul oured edges. Below we will see that such
adm ssi bl e col ourings exist.

1.2. Description of II.

First we characterize the elenents of Il . Let
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Rs := {rotation around |lines through two opposite corners with
angl e %kp and 1 £ k £ 4 },
Rs := {rotation around |lines through m dpoints of two opposite

faces with angle %kp and 1 £ k £ 2},

R, := {rotation around |lines through m dpoints of two opposite
edges with angle p},

then we have Il =REERs ER; E{id}. Here an elenment r I Rs has
order! 5, any s | R3 has order 3 and any t | R, has order 2. By
a suitable choice of s I Rz andt 1 R we get a conplete

description of Il wth generators and rel ations (see [S1,
section2.2]):

Il =<s,t1s® = t2 = (st)® = id>

This means, each elenent of Il may be witten as the conposite
of a certain number of s's and t's (a "word in s and t") and

the conditions s® = t2 = (st)® = id: are fulfilled.
For exanple s3s?? is a word ins and t , which is the sane
as s’t. Therefore Il is isonorphic? to As, the subgroup of all

even pernutations of Ss, the group of all pernutations of
{1, 2, 3, 4, 5}. It is well known that this group has 60=%!

el ements (see [S2, page 2] and [S1l, section 1.2]).
If we consider reflections as symmetries too, then it is
enough to choose the point symetry po as a suppl enentary
gener at or, because each reflection is a product of powith a
suitable rotation. Therefore the stabilizer of ywth respect
to O(3) has the form

Il "= E poll = As X Z/2 Z (see [S3, section 12.5]).

Let now C be the set of all adm ssible colourings Cof 4 Then
we find that Il and Il *respectively, act on C. If an el enment of
SO(3) or 3), fixes a colouring, it lies already in

Ilor I *, respectively. Therefore we restrict our

consi derations to Il or 1l *.

Two colourings C and C are equivalent with respect to Il
( or II*)if there exists as 1 Il (or s 1 I *) with s(C= C.
To determ ne the number of orbits with respect to Il (and
consequent|ly the number of inequivalent colourings), we use a

connecti on between the cardinalities of orbits, stabilizers
and C:

lLet Gbe finite group. The order of an elenent g | Gis the |east integer
k >0 wth g¢=id.

2The group Il has the sane structure, therefore it is alnost the same as Ae.
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o #(I1)
1 #(C)=Q
D 78 %5, ©

where C runs over a set of representations of adn ssible
col ourings® (see [S1, section 1.6]).

2. SKETCH FOR THE STRATEGY FOR SOLUTI ON

Now we | abel the corners of the icosahedron 4 Then we describe
all axes of the elenents of Il unanbi gnously by the corners,
edges and triangles, respectively, which neet the axis.
Moreover we can |list all colourings of 4 In the next step we
sel ect eight colourings and show that these are inequival ent.
At |ast we use (1) to show that these are all inequival ent
col ouri ngs.

3. LABELLI NG

We mark two opposite corners -like a North and a South Pol e-
and call themz and -z

Then we | abel all corners which are adjacent to z (this neans
there is an edge between this corner and 2 with the even
nunbers 0, 2, 4, 6, 8 and the nei ghbours of -zwith the

odd numbers 1, 3, 5, 7, 9. Thereby we pay attention that the
corners of each triangle "of the m ddle" are successive
nunbers.

3 #G = cardinality of G
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Now we can descri be each edge by a pair of labels (nanely the
| abel s of its corners). We get that the pair (x, y) of |abels
descri be an edge if

(i) (x,y) =(z i) withiis even and 0 £1 £ 8

or

(it) (x,y) = (i,-2with iis odd and 1 £1i £ 9

or

(iii) (x,y) = (i,j))with i§=1,2, 8 or 9 (nod 10)* and 0 £i<j £ 9

An anal ogous description with triples yields for the

triangl es.

Now for rotation axes we have the follow ng description (the
synmbol <« neans that these are the two opposite corners, edges

or triangles which neet the axis):

{i i +5 0L i £4}u {z e -2} SR

{(Ci, i #1, 1 +2) — (i 45,1 +6, 1 +7) | O £ i £ 4} i
i

o . : : y ~Rs
{(2i,2i +2, 20 «— (2i +5, 2i +7, -2 | 0 £1 £ 4} b
{(i,1 +1) — (i +5,1 +6) | O £ i £ 4} i
{(i,1 +2) «— (i +5, i +7) | 0 £ i £ 4} Yy ~R
{(2i,2) — (21 +5,-2) | 0 £i £ 4} b
For example: if r I Rsis a rotation with angle %p and axis
Z — -z then ro(i) =i+ 2.
Finally the point symretry has now the formrg(i)=i + 5 ( nod
10) for all i and ro(2 = -z

4. COLOURI NGS

To describe all adm ssible colourings we use a decision tree.
Each vertex of the tree nmeans a col oured edge, only adm ssible
colourings are nentioned. We follow a | exicographical
ordering in two ways: each pair is ordered and from each
vertex to the next we take the next corner of the icosahedron
whi ch has no col oured edge. Since each corner has exactly one
col oured edge we can start in zw thout | oss of generality.
Then we can col our the five edges

4"(nmod 10)" is a special way of calculation. Here it is enough to "forget
the ten's places", e.g.: 14= 4(nod 10) or 5+7 =12 and 5+7 =2 (nod 10).
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(z 0, (z 2), (z 4 , (z 6), (z 8).

Each choice gives us the sane tree structure. Therefore we
only consider (z0) and nultiply our result with 5. Now for the
next vertex we have four possibilities:

(1, 2); (1, 3): (1, 9); (1, -2):

In the figures S7 to S9 we show the different subtrees.
Al t oget her we have 25 colourings if (z 0) is coloured and
therefore we get #¢ = 125.

5. | NEQUI VALENT COLOURI NGS

Now we | ook at the set of colourings 2= {Th,Ds4,Dz D,,Ds D,,C2,
C, }with coloured edges

Th: {2,0), (1,9),{(2,3), (4,6),(5,—=2), (7,8),
D3d : (z: 0): (1: 3) 1(21 4]! (51 —Z), (61 ) ’ (7 9)
Dy (2,0),(1,-2),(2,4), (3,5), (6,8), (7.9) ,

(2) D2 (z: 6)1 (0: 8) 1(113)1 (2‘ 4) 1(5 Z) (7 )
Dy: (2,0), (1,2),(3,5), (4,6}, (7,8) ,(9,—2),
Dy (z,4), (0,8),(1,9), (2,3),(5,—z), (6 7,
Q (Z,O), (119) 1(214)1 (315) 1 ( 18) (7 )
Ca: {2,2), (0,8),(1,3), (4,6),(5,-2), (7.9),

In figure S10 we illustrate these colourings. First we

calculate the cardinality of the stabilizer of each el enent of
Zwth respect to Il .

5.1. Rotation of order 5. In general an isonetry r | Ilis a
symmetry of a colouring Cif and only if each coloured edge is
mapped by r to a coloured edge. Fromthis point of view we see
i medi ately that Rs N Stab;(C) = @ because exactly two opposite
corners are fixed by an el ement of Rs.

5.2. Rotation of order 3. What are the conditions on a s | R

and a colouring Cl ¢ to neet s I Stab(C? If s is a
symmetry, then it has to fix two triangles with uncol oured
edges. Moreover the col oured edges which emanate from each
corner of the triangle nust be in the sanme relative position.
So we find out:

Let s be a rotation about the barycenter of the triangles

(i, i +1, i +2) < (i +5, i +6, i +7). Then s I Stab;y(C) if and
only if C has one of the follow ng col ouri ngs:
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o (i,i+8), (i+1,F2), i+2,i+4), (+3,¢+5), (1+6,%2), ¢+7,£+9) or
o (3,i+9), t+1,7+3), (i+2,%2), (+4,i+5), ({+6,i+8), (i+7,Fz) or
o (i,i4+9), ({ +1,i+3), (1 +2,%2), ({+4,i4+6), (i +5,Fz), +7,1+8) or
o i+9,i+1), ({+2,i+3), ((,F2), ({+4,i+5), 1 +6,i+8), (i+7,Fz)or
e (i+9i+1), ({+2,{+3), (i, $z) [z+4 i+6), 2+5,F2), (1+7,i+8),
Table 52
axes through the midpoint of
triangles edges po € Staby-(.)?
Ty | (2,2,4) + (7,9,~2) | (2,0) & (5, —2) yes
(#,6,8) +>(1,3,—=z) | (1,9) < (4,6}
0,1,2) & {5,6,7) | (2,3) & (7,8)
(0,8,9) & {3,4,5)
D3y | (0,1,9) + (4,5,6) |(2,2) & (7,—2) yes
(2,8) & (3,—2)
(2,3) & (7,8)
D, (2,8) & (3,—-2) no
(0,1) & {5,6)
(2,4) & (7,9
Dy (2,8) + (3, —2) o
(0,1) > (5,6)
(2,4) & (7,9)
Ds | (2,6,8) «+(1,3,—2) | (0,2) ++ (5,7) no
{0,9) & (4,5)
(2,4) & (7,9)
D3 | (2,6,8) & (1,3,~-2} | (0,2) & (5,7) no
(0,9) & (4,5)
(2,4) & (7,9
Ca (3,4) «+ (8,9) no
Cy (3,4) & (8,9) o
where we cal culate (nod 10) and consider zif 2 | i and -z

otherwise. It is easy to check this.

If zis one of the corners of a triangle we get an anal ogous
resul t.

Moreover we get for a s |I Rs: whenever s | Stab;y(C for a
colouring C, then s? | Stab,(C) too.

Consequently: to count the elenents of Stab,(C) N Ry, it is
enough to count the symmetry axes, thus the corresponding
pairs of opposite triangles, and to nmultiply this nunmber with
2.

5.3. Rotation of order 2. We use the sanme way to decide
whether t I R, N Stab;(C).

Here we have nore possibilities for colourings if we start
with at |l R.

In figure S9 we give an exanple for (i,i + 1)—(i+ 5; i+ 6)~t
and one col ouring C.
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In the sane way all other combinations (t, C) witht I RN
St ab;(C) can be determ ned.

Now we use these insights for our colourings in (2). The
results are resuned in table S2.
Wth the formulas for each row in table S2:

#Stab;(.) = #( Stab(C)N R)+ #( Stab(C)N Ry)+ #{id.}
2. #{triangl es}+ #{edges} +1

1if po!l Staby«(.)
2 . #Staby(.)where k= 1|

|
#St ab<(.) :
% 0 ot herw se,

we get the cardinalities of all stabilizers we are interested
in. For exanple: T, has four symetry axes through barycenters
of triangles. This gives us 8 = 2.4 elenents of Stab;(Ty).
Furthernore there are three symmetry axes through m dpoi nt of
edges. Thus we get three further elenents of Stab;(T,. Now we
need still the identity id., then the group Stab,(Ty) is
conpl ete and we get Stab;(Tp)=2-4+3+1 = 12. Since pois a
symmetry of T, we get #Stab;«Ty) =2-Stab,(Tn)= 24. The results
are collected in table S3.

Table S3

#Stabp(T) =2-4+3+1=12 #Stabp(T3)=2-12=24
#St&b](D;jd) =2-14+3+1=6 #Stabp(Dgg)=2-6=12
#Stabp(Dy) =2-0+3+1=4 #Staby- (Do) =4
#&mmﬁgy_20+3+1=4 #SmmqﬁQ_4

#Stabp(D3)=2-14+3+1=86 #Stabp (D3) =

#Staby(D3) = 2 1+3+1=6 #Staby- (D3) = 6
#Stabp(Ca) =2-04+14+1=2 #S3tabp« (D) = 2
#Stabp(Cy) =2-0+1+1=2 #Stabr. (Dg) = 2

Si nce equi val ent col ourings have the sane stabilizer there are
obviously only three pairs which can be equivalent, nanely (D,
D,), (Ds, D;) and (Cp C,). It is easy to see that po(D)=D,,
po(D3)= D;, and po(Cz)= C,(see (2) and figure S10). Therefore
they are equivalent with respect to Il", but not with respect to
.
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Because of

o #Il _60 _60_ 60 60 60 60 60 60 _, __
a =S =+t —+—+—+—+— =15 =#¢
GoH#SEbC) 12 6 4 4 6 6 2 2

we know that 2 consists exactly of all inequivalent

colourings, if only rotations are allowed. If we consider the
colourings with respect to Il we get that all col ourings are
equi valent to T, , Dsq, Do, Ds or GC.

6. SUMMARY OF THE RESULTS

An adm ssi bl e colouring of an icosahedron has precisley six
col oured edges. There are eight inequivalent colourings, if we
only allowed rotations of the icosahedron, and five col our-
ings, if we can use reflections and rotations.
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