
S1 
 

Copyright WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001. 

Supporting Information for Angew. Chem. Int. Ed. Z17289 

 

 

T-symmetrical icosahedra: A new type of chirality in metal complexes 

 

Jürgen Sander, Kaspar Hegetschweiler,* Bernd Morgenstern, Alice Keller, Walter Amrein, 

Thomas Weyhermüller, Iris Müller 

 

 

Supporting Information 
 

Figure S1: Correlation of point groups 

Figure S2: FAB+-Mass spectrum of [Ba(tbci)4]2+  

Figure S3: Structure of [Mg(tbci)2]2+ 

Figure S4: Structure of [Sr(tbci)3(OH2)]2+ 

Table S1: Survey of Hexanitrato-complexes 

Crystal Data of [Mg(tbci)2]Cl2.10MeOH 

Crystal data of [Sr(tbci)3(OH2)]Br2.4MeOH 

Preparation of [Sr(tbci)3(OH2)]Br2 and [Mg(tbci)2]Cl2 

Synthesis and characterization of tbci and tbmci 

Mathematical consideration on special colorings of icosahedra 



S2 
 

I

O

D3

Ih

D2

C2

Td

2

6

12

24

48

60

120
G

ro
up

 O
rd

er

C3

T

Th

D3d

Oh

 
 
Figure S1. Correlation of some point groups discussed in the text. The five solutions of an 
icosahedron with six colored edges have Th, D3d, D3, D2, and C2-symmetry. The solution with 
four colored triangles has T-symmetry. 



S3 
 

 
 
Figure S2. FAB+ mass-spectrum of [Ba(tbci)4]Br2. The inlet shows the calculated (black 
columns) and measured (white columns) isotope pattern of the peak at m/z = 2006.8. 
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Figure S3. ORTEP-representation of [Mg(tbci)2]Cl2 with numbering scheme and vibrational 
ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity. 

Cl

O1

Mg
O5

Cl

O3



S5 
 

O106

O202

O2

O204

O102

O104

Sr

O206

O4

O6

O1

a) 

b) 

 
Figure S4. Structure of [Sr(tbci)3(OH2)]2+: a) the entire complex cation; b) the complex core. 
The Sr center and the O- and N-atoms are shown as ellipsoids at the 30% probability level; 
the backbone of the ligands is represented by a stick model; hydrogen atoms are omitted for 
clarity. 
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Table S5 Survey of Hexanitrato-complexes 

CCDC-Ref. code Symmetry Metal-Center 

BAGFEU Th Nd 
BEQVAU Th Th 
CILKOX Th Ce 
COCYOI D3 Th 
COKVAZ01 Th La 
DEYDUG Th Nd 
FIBNAF Th Nd 
FIVCIW D3 La 
GEZHIC Th Nd 
GEZHOI Th Eu 
GIGPOB D3 Np 
GOBTAS Th Th 
HIRMEA Th Ce 
JIZSOA D3, Th La, La[a] 
LAPKOC D3 La 
MALMAN D3 La 
NMPOTH Th Th 
PILPIJ S6 Pb[b] 
PILPIJ10 D3 Ba 
PILPOP D3 Pb 
SERWER Th Eu 
TINTUF D3 La 
TUMWUT D3 La 
VIJSAI Th Th 
VUYWOB Th Gd 
VUZDOJ Th U[c] 
WIDXAI Th La 
YAGFIV Th La 
YUWWAO D3 Th 
ZEWBOS Th Th 
ZOBNOT D3 Ce 
 
[a] Two different isomers in the same crystal structure 
[b] Distorted cuboctahedron 
[c] Some of the nitrato ligands are severely disordered 
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Crystal data of [Mg(tbci)2]Cl2.10MeOH 
Crystals of composition [Mg(tbci)2]Cl2.10MeOH disintegrate rapidly upon exposure to air. A 
crystal of dimensions 0.52 × 0.32 × 0.13 mm was therefore embedded in perfluorpolyether 
and data collection was performed at 100(2) K on a SIEMENS SMART-CCD diffractometer 
(MoKα-radiation, λ = 71.073 pm, graphite monochromator, µ = 0.168 mm-1): space group 

P1 , a = 1097.95(9), b = 1223.9(1), c = 1409.3(1) pm, α = 87.41(2)°, β  = 73.92(2)°, γ = 
75.08(2), Z = 1, V = 17577(3) × 106 pm3, ρcalc = 1.238 Mg m-3. Numerical absorption 
correction (Tmin = 0.457, Tmax = 0.962). 2θmax: 50.0°. Of 7451 measured reflections 5502 
independent reflections were used for the refinement of 439 parameters, the structure was 
solved by direct methods (SHELXS-97). All non hydrogen atoms were refined with 
anisotropic displacement parameters (SHELXL-93, full-matrix least-squares calculations on 
F2). H(-C)-atoms were placed at calculated positions (riding model). R [Fo

2 > 2σ(Fo
2)]: 

7.23%, wR2 (all data): 19.28%. Residual electron density: +1.012 / -0.444 eo/Å3. 
 
Crystal data of [Sr(tbci)3(OH2)]Br2.4MeOH 
Crystals of composition [Sr(tbci)3(OH2)]Br2.4MeOH disintegrate rapidly upon exposure to 
air. A crystal of dimensions 0.30 × 0.13 × 0.09 mm was therefore embedded in 
perfluorpolyether and data collection was performed at 100(2) K on a SIEMENS SMART-
CCD diffractometer (MoKα-radiation, λ= 71.073 pm, graphite monochromator, µ = 1.645 mm-

1): space group P1 , a = 1505.20(9), b = 1581.42(9), c = 1941.1(1) pm, α = 101.36(1)°, β  = 
97.24(1)°, γ = 107.24(1), Z = 2, V = 4241.7(5) × 106 pm3, ρcalc = 1.359 Mg m-3, semi-
empirical absorption correction (MulScanAbs, Platon99 program suite, A.L. Spek, Univ. 
Utrecht, Netherlands: Tmin = 0.633, Tmax = 0.719), 2θmax: 60.0°. Of 42664 measured 
reflections 24651 independent reflections were used for the refinement of 1068 parameters, 
the structure was solved by direct methods (SHELXS-97). All nonhydrogen atoms were 
refined with anisotropic displacement parameters (SHELXL-93, full-matrix least-squares 
calculations on F2). H(-C)-atoms were placed at calculated positions (riding model). H(-O) 
and H(-N) atoms were located from the difference map, distances of chemically equivalent H-
atoms were restrained to be equal within errors (73 restraints). R [Fo

2 > 2σ (Fo
2)]: 5.40%, wR2 

(all data): 14.28%. Residual electron density: +1.549 / -1.048 eo/Å3. 
 
Synthesis and Characterization of [Sr(tbci)3]Br2.4MeOH 
SrBr2.6H2O (25 mg) and tbci (100 mg) were dissolved in dry MeOH (5 mL) and allowed to 
stay for several days at 4°C. The resulting crystals (30 mg, 25%) disintegrated in air. Anal. 
Calc. for C83H107N9O11Br2Sr: C, 60.26; H,6.52; N, 7.62. Found: C, 60.27; H, 6.42; N, 7.73.  
FAB+-MS: m/z = 1511.0 (28.2%, [Sr(tbci)3Br]+). 
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Synthesis and Characterization of [Mg(tbci)2]Br2.10MeOH 
MgCl2.6H2O (25 mg) and tbci (100 mg) were dissolved dry MeOH (4 mL). The solution was 
kept at 4°C for several days. The resulting crystals (0.03g, 22%) decomposed very rapidly on 
air. Anal. Calc. for C56.5H81N6O11Cl2Mg: C, 60.83; H, 7.32; N, 7.53. Found: C, 60.61, H, 7.31, 
N, 7.50. FAB+-MS: m/z = 917.4 (43.4%, [Mg(tbci)2-H]+). 
 
1,3,5-Tris(benzylamino)-1,3,5-trideoxy-cis-inositol (tbci) 
Taci (1g, 5.6 mmol) was dissolved in dry MeOH (50 mL) and benzaldehyde (2.3 mL, 23.6 
mmol) was added. The solution was stirred for 2 hours at 50°C. NaBH4 (1.8 g, 47.6 mmol) 
was then added in portions. The mixture was stirred for 12 h and an additional portion of 
NaBH4 (0.2g, 5.3 mmol) was added. Stirring was continued for 1 h. The pH was then adjusted 
to 1 (conc. HCl). A white precipitate formed which was filtered off, extracted with MeOH and 
discarded. The combined MeOH fractions were sorbed on Dowex 50 W X 2 (100-200 mesh) 
and the column was successively eluted with H2O (400 mL), 1 M HCl (400 mL) and 8M HCl 
(1 L). The last fraction was evaporated to dryness, and the resulting white solid was dissolved 
in H2O. The solution was alkalized with 1M KOH. The free tbci (white solid, 77 %) was 
isolated by filtration, washed with H2O, and recrystallized from EtOH. Anal. Calc. for 
C27H33N3O3: C, 72.46; H, 7.43; N, 9.39. Found: C,72.66; H, 7.79; N,9.20. 1H NMR (CDCl3): 
δ= 7.32-7.21 (m,15 H), 4.03 (t, 3H), 3.86 (s,6 H), 2.37 (t,3 H). 13C NMR (CDCl3): δ= 140.0, 
128.5, 128.2, 127.1, 70.2, 58.2, 50.7. FAB+-MS: m/z = 448.1 (100%, Htbci+). 
 
1,3,5-Tris(benzyl-methyl-amino)-1,3,5-trideoxy-cis-inositol (tbmci) 
tbci (0.5 g, 1.1 mmol) was dissolved in diluted formic acid (80 mL of conc. HCOOH, 20 mL 
of H2O). Formaldehyde (12 mL of a 37 % aqueous solution) was then added and the mixture 
was refluxed for 14 h. After cooling to room temperature, conc. HCl (50 mL) was added and 
the solution was evaporated to dryness in vacuo. The residue was dissolved in H2O and 
alkalized with 1M aqueous KOH. The suspension was extracted with chloroform (4 x 100 
mL), and the combined CHCl3-fractions were evaporated to dryness. The residue was 
dissolved MeOH (5 mL) and allowed to stay at 4°C. Free tbmci crystallized as white needles 
(60 %). Anal. Calc. For C30H39N3O3: C, 73.59; H, 8.03; N, 8.58. Found: C, 73.82; H, 7.95; N, 
8.54. 1H NMR (CDCl3): δ= 7.35-7.25 (m, 15 H), 4.62 (t, 3H), 3.89 (s, 6H), 2.47 (s, 9H), 2.20 
(t, 3H). 13C NMR (CDCl3):  δ= 139.0, 128.9, 128.3, 127.0, 67.7, 65.5, 58.5, 39.3. FAB+-MS: 
m/z = 490.3 (100%, Htbmci+). 
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On Special Colourings of an Icosahedron 
 

An icosahedron is a polyhedron of type (3; 5), that means the 
faces are triangles and five faces meet in each corner. 
By an admissible colouring we mean: there are as much coloured 
edges as possible, but two coloured edges do not have a common 
corner. Two colourings C and C' are inequivalent, if we cannot 
transform C to C' by rotations or reflections and rotations. 
 
 

1. The icosahedron and its stabilizer 
 
Definition. Fix an icosahedron I  in IR 3 with barycenter O, the 
origin of IR 3. 
(i) Over IR 3 we have the group of isometries, that is, of 
linear maps which fix the point O. In general one 
distinguishes the two groups 
 
O(3) := {isometries of IR 3 } 

 = {combinations of rotations and reflections with  
  fixed point O}  

SO(3) := {combinations of rotations with fixed point O}⊂ O(3). 
 
One says that O(3) and SO(3) act on IR 3. 
(ii) Considering a subset M ⊂ IR 3 and a subgroup G ⊂ O(3) we 
can decide for an element σ ∈ G whether σ(M) ≠  M or σ(M) = M. 
In the second case we call σ an element of the stabilizer 
StabG(M) of M with respect to G. For each σ ∈ G the set 
σ(M) is said to be equivalent to M with respect to G or M and 
σ(M) lie in the same orbit. 
(iii) For the icosahedron I   with barycenter O we define 
II := StabSO(3) (I  ) and II *:= StabO(3) (I): 
For general definitions of action, stabilizer and so on, see 
[S1, section 1.6]. 
 
1.1. Number of coloured edges.  
It is clear that a colouring is admissble if each corner has 
exactly one coloured edge. Each edge has exactly two corners 
and the whole icosahedron has twelve corners. Therefore we 
decompose the set of twelve corners in pairwise distinct 

subsets with two corners. In this way we get 6 = 
2

12  subsets 

with two elements and so every admissible colouring has at 
most six couloured edges. Below we will see that such 
admissible colourings exist. 
 
 
1.2. Description of II . 
 
First we characterize the elements of II . Let 
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R5 := {rotation around lines through two opposite corners with 

angle π
5
2k  and 1 ≤ k ≤ 4 }, 

R3 := {rotation around lines through midpoints of two opposite 

faces with angle π
3
2k  and 1 ≤ k ≤ 2}, 

R2 := {rotation around lines through midpoints of two opposite 
edges with angle π }, 
 
then we have II =R5∪R3 ∪R2 ∪{id}. Here an element ρ ∈ R5 has 
order1 5, any σ ∈ R3 has order 3 and any τ ∈ R2 has order 2. By 
a suitable choice of σ ∈ R3 and τ ∈ R2 we get a complete 
description of II with generators and relations (see [S1, 
section2.2]): 
 

II  =   <  σ, τ I σ3 = τ2 = (στ)5 = id.> 
 

This means, each element of II may be written as the composite 
of a certain number of σ's and τ's (a "word in σ and τ") and 
the conditions σ3 = τ2 = (στ)5 = id: are fulfilled. 
For example σ3τσ2τ2 is a word in σ and τ , which is the same 
as σ2τ. Therefore II is isomorphic2 to A5, the subgroup of all 
even permutations of S5, the group of all permutations of  

{1, 2, 3, 4, 5}. It is well known that this group has 60=
2
!5  

elements (see [S2, page 2] and [S1, section 1.2]). 
If we consider reflections as symmetries too, then it is 
enough to choose the point symmetry pO as a supplementary 
generator, because each reflection is a product of pO with a 
suitable rotation. Therefore the stabilizer of I with respect   
to O(3) has the form: 

II  * = II    ∪ pO II   = A5 X Z/2 Z (see [S3, section 12.5]). 
 
Let now C be the set of all admissible colourings C of I. Then 
we find that II and II  *  respectively, act on C. If an element of 
SO(3) or O(3), fixes a colouring, it lies already in 
II  or II  *, respectively. Therefore we restrict our 
considerations to II  or II  *. 
. 
Two colourings C and C' are equivalent with respect to II    
( or II*)if there exists a σ ∈ II  (or  σ ∈ II *) with σ(C)= C'. 
To determine the number of orbits with respect to II (and 
consequently the number of inequivalent colourings), we use a 
connection between the cardinalities of orbits, stabilizers 
and C: 
                                                 
1 Let G be finite group. The order of an element g ∈ G is the least integer 
k > 0 with gk =id. 
 
2 The group II   has the same structure, therefore it is almost the same as A5. 
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where C runs over a set of representations of admissible 
colourings3 (see [S1, section 1.6]). 
 
 

2. SKETCH FOR THE STRATEGY FOR SOLUTION 
 
 
Now we label the corners of the icosahedron I. Then we describe 
all axes of the elements of II  unambignously by the corners, 
edges and triangles, respectively, which meet the axis. 
Moreover we can list all colourings of I. In the next step we 
select eight colourings and show that these are inequivalent. 
At last we use (1) to show that these are all inequivalent 
colourings. 
 

 
3. LABELLING 

 
We mark two opposite corners -like a North and a South Pole- 
and call them z and -z. 
Then we label all corners which are adjacent to z (this means 
there is an edge between this corner and z) with the even 
numbers 0, 2, 4, 6, 8 and the neighbours of -z with the 
odd numbers 1, 3, 5, 7, 9. Thereby we pay attention that the 
corners of each triangle "of the middle" are successive 
numbers. 

 

                                                 
3 #G:= cardinality of G 
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|R5 

 
 
Now we can describe each edge by a pair of labels (namely the 
labels of its corners). We get that the pair (x, y) of labels 
describe an edge if 
 
(i) (x,  y) = (z,  i) with i is even and 0 ≤ i ≤ 8  
or 
(ii) (x,  y) = (i,  -z)with i is odd and 1 ≤ i ≤ 9 
or 
(iii) (x,  y) = (i,  j)with i-j h1,2, 8 or 9 (mod 10)4 and 0 ≤ i < j ≤ 9 
 

An analogous description with triples yields for the 
triangles. 
Now for rotation axes we have the following description (the 
symbol v means that these are the two opposite corners, edges 
or triangles which meet the axis): 
 

{ i v i +5  0≤ i ≤4}u { z v - z }   
 
{( i, i +1, i +2) v (i +5, i +6, i +7) x 0 ≤ i ≤ 4}  
                                              
{(2 i,2 i +2, z) v (2 i +5, 2 i +7, - z) x 0 ≤ i ≤ 4}  
 
 
{( i, i +1) v (i +5, i +6) x 0 ≤ i ≤ 4} 
{( i, i +2) v (i +5, i +7) x 0 ≤ i ≤ 4} 
{(2 i, z) v (2 i +5,- z) x 0 ≤ i ≤ 4} 
 
For example: if ρ ∈ R5 is a rotation with angle π

5
2  and axis  

z v -z,then ρO(i) = i + 2. 
Finally the point symmetry has now the form ρO(i) h i + 5 ( mod 
10) for all i and ρO(z) = -z. 
 
 

4. COLOURINGS 
 
To describe all admissible colourings we use a decision tree. 
Each vertex of the tree means a coloured edge, only admissible 
colourings are mentioned. We follow a lexicographical 
ordering in two ways: each pair is ordered and from each 
vertex to the next we take the next corner of the icosahedron 
which has no coloured edge. Since each corner has exactly one 
coloured edge we can start in z  without loss of generality. 
Then we can colour the five edges 
 

                                                 
4 "(mod 10)" is a special way of calculation. Here it is enough to "forget 
the ten's places", e.g.: 14h 4(mod 10) or 5+7 =12 and 5+7 h2 (mod 10). 



















S13 
 

(z, 0), (z, 2) , (z, 4) , (z, 6) , (z, 8). 
 
Each choice gives us the same tree structure. Therefore we 
only consider (z,0) and multiply our result with 5. Now for the 
next vertex we have four possibilities: 
 

(1 , 2); (1, 3); (1, 9); (1, -z): 
 
In the figures S7 to S9 we show the different subtrees. 
Altogether we have 25 colourings if (z, 0) is coloured and 
therefore we get #C = 125. 
 

5. INEQUIVALENT COLOURINGS 
 
Now we look at the set of colourings R = {Th , D3d , D2, 2D , D3, 3D , C2 , 

2C  }with  coloured edges 
 

 
 

 
In figure S10 we illustrate these colourings. First we 
calculate the cardinality of the stabilizer of each element of 
R with respect to II . 
 
5.1. Rotation of order 5. In general an isometry  ρ ∈ II is a 
symmetry of a colouring C if and only if each coloured edge is 
mapped by ρ to a coloured edge. From this point of view we see 
immediately that R5 3 StabII(C) = Ø because exactly two opposite 
corners are fixed by an element of R5. 
 
5.2. Rotation of order 3. What are the conditions on a σ ∈ R3 
and a colouring C ∈ C to meet σ ∈ StabII(C)? If σ is a 
symmetry, then it has to fix two triangles with uncoloured 
edges. Moreover the coloured edges which emanate from each 
corner of the triangle must be in the same relative position. 
So we find out: 
Let σ be a rotation about the barycenter of the triangles  
(i, i +1, i +2) v ( i +5, i +6, i +7). Then σ ∈ StabII(C) if and 
only if C has one of the following colourings: 
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where we calculate (mod 10) and consider z if 2 x i and -z 
otherwise. It is easy to check this. 
If z is one of the corners of a triangle we get an analogous 
result. 
Moreover we get for a σ ∈ R3: whenever σ ∈ StabII(C) for a 
colouring C, then σ2 ∈ StabII(C) too. 
Consequently: to count the elements of StabII(C) 3 R3 , it is 
enough to count the symmetry axes, thus the corresponding 
pairs of opposite triangles, and to multiply this number with 
2. 
 
5.3. Rotation of order 2. We use the same way to decide 
whether τ ∈ R2 3 StabII(C). 
Here we have more possibilities for colourings if we start 
with a τ ∈ R2.  
In figure S9 we give an example for (i,i + 1)v(i+ 5; i+ 6)|τ 
and one colouring C. 
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 In the same way all other combinations (τ, C) with τ ∈ R23 
StabII(C) can be determined. 
Now we use these insights for our colourings in (2). The 
results are resumed in table S2. 
With the formulas for each row in table S2: 
 
#StabII(.) = #( StabII(C)3 R3)+ #( StabII(C)3 R1)+ #{id.} 
  = 2$ #{triangles}+ #{edges} +1 
 
         1 if pO ∈ StabII*(.) 
#StabII*(.) = 2k $ #StabII(.)where k= 
                   0 otherwise, 
 
 

 
 

 
we get the cardinalities of all stabilizers we are interested 
in. For example: Th has four symmetry axes through barycenters 
of triangles. This gives us 8 = 2$4 elements of StabII(Th). 
Furthermore there are three symmetry axes through midpoint of 
edges. Thus we get three further elements of StabII(Th). Now we 
need still the identity id., then the group StabII(Th) is 
complete and we get StabII(Th)=2$4+3+1 = 12. Since pO is a 
symmetry of Th, we get #StabII*(Th)=2$StabII(Th)= 24. The results 
are collected in table S3. 

 
 
Since equivalent colourings have the same stabilizer there are 
obviously only three pairs which can be equivalent, namely (D2 , 

2D ), (D3  , 3D ) and (C2, 2C ). It is easy to see that pO (D2) = 2D , 
pO(D3 ) = 3D , and pO(C2)= 2C (see (2) and figure S10). Therefore 
they are equivalent with respect to II *, but not with respect to 
II . 
 
 
 
 
 
 
 








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we know that R consists exactly of all inequivalent 
colourings, if only rotations are allowed. If we consider the 
colourings with respect to II * we get that all colourings are 
equivalent to Th , D3d, D2, D3 or C2. 
 
 
 

6. SUMMARY OF THE RESULTS 
 
An admissible colouring of an icosahedron has precisley six 
coloured edges. There are eight inequivalent colourings, if we 
only allowed rotations of the icosahedron, and five colour-
ings, if we can use reflections and rotations. 
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