Experimental Section

General Procedures. All manipulations of air and/or water sensitive compounds were performed under pre-purified nitrogen (Praxair, 99.998%) using standard high vacuum or Schlenk techniques or in an Innovative Technology Inc. glovebox. 1H, 31P, 13C, 29Si NMR spectra were recorded on Bruker Avance 300 MHz or Bruker Avance 400 MHz spectrometers. Chemical shifts are reported relative to: CHCl$_3$ or HC$_6$D$_5$ (δ=7.24 and 7.15 for 1H); 85% H$_3$PO$_4$ as an external standard (δ=0.0 for 31P); CDCl$_3$ or C$_6$D$_6$ (δ=77.0 and 128.0 for 13C). 29Si NMR spectra were recorded utilizing a DEPT pulse sequence (proton decoupled) with a 2J$_{Si-H}$ coupling constant of 7.0 Hz and referenced externally to SiMe$_4$ in CDCl$_3$ (δ 0.0 for 29Si). Infrared spectra were obtained as thin films between NaCl plates using a Bomen MB-series instrument. UV/Vis spectra were recorded on a Unicam UV2 spectrophotometer. Mass Spectra were acquired using Kratos MS 50 instrument. Thermogravimetric analyses of 3 were carried out on a TA Instruments 2000 instrument, heating under dry helium at 10 °C/min from 20 °C to 800 °C. Elemental analyses were performed by Mr. P. Borda in the Department Microanalysis Facility.

Materials. Diethyl ether, hexanes, and dichloromethane were dried by passing through activated alumina columns.$^{[1]}$ Tetrahydrofuran was distilled from sodium/benzophenone immediately prior
to use; C₆D₆ (CIL) was degassed and dried over activated 3 Å molecular sieves; and CDCl₃ (CIL) distilled from P₂O₅ and degassed. 1,4-dibromobenzene, durene, 2-bromomesitylene, bromine, PCl₃, Me₃SiCl, Mg, SOCl₂, LiAlH₄, MeLi (1.6 M in ethyl ether), and 'BuLi (1.7 M in pentane) were purchased from Aldrich and used as received. Et₂NH, PhPCl₂ were purchased from Aldrich and distilled prior to use. Mesitylene-2-carboxylic acid chloride,[2] dibromodurene,[3] 1,4-diphosphinobenzene,[4] bis(trimethylsilyl)phenylphosphine,[5] were prepared following the literature procedures.

NMR Assignments. All assignments of ¹³C and ¹H NMR spectra reported for 1, 2, and 3 were made with the aid of COSY, APT, HMQC and HMBC experiments. For a discussion of NMR spectra of phosphaalkenes see, E. Fluck In *Topics in Phosphorus Chemistry*, Wiley: New York; 1980, Vol. 10, p. 193, and references therein. See also, refs. 11 and 12 of the present work.

Preparation of 1,4-dicarboxylic acid-2,3,5,6-tetramethylbenzene: To a stirred solution of 1,4-dibromo-2,3,5,6-tetramethylbenzene (17.62 g, 60.3 mmol) in Et₂O (250 mL) was added 'BuLi (149 mL, 1.7 M, 253 mmol) at –78 °C. After 1.5 h at –78 °C, dry CO₂ was bubbled through the reaction mixture for 30 min. The resulting mixture was extracted with aqueous hydrochloric acid (0.5 M), and the aqueous layer extracted with Et₂O (3 x 175 mL), dried with MgSO₄, and the solvent removed in vacuo yielding a colorless powder (11.9 g, 89%).

¹H NMR (CD₃C(O)CD₃, 300.1 MHz): δ=11.48 (s, 1H; COOH), 2.16 ppm (s, 6H; CH₃)

Preparation of 4. 1,4-dicarboxylic acid-2,3,5,6-tetramethylbenzene (11.89 g, 53.5 mmol) was suspended in thionyl chloride (100 mL) and heated to reflux overnight over which time all the
solid dissolved forming a brown solution. SOCl₂ was removed in vacuo, leaving a pale brown solid. Colorless crystals (12.0 g, 90%) were isolated after vacuum sublimation (50 °C; 0.1 mmHg).

¹H NMR (CDCl₃, 300.1 MHz): δ=2.28 ppm (s, CH₃); Elem. Anal.: C₁₂H₁₂Cl₂O₂: calcd. C 55.62, H 4.67, found C 55.44, H 4.75.

Preparation of 5. To a stirred solution of 1,4-diphosphinobenzene (1.00 g, 7.04 mmol) in Et₂O (50 mL) was added MeLi in Et₂O (18.5 mL, 1.6 M, 29.6 mmol) at -78° C. The reaction mixture was stirred at -78 °C for ca. 30 min, and the yellow suspension allowed to warm to room temperature and stirred for ca. 1 h. After cooling to -78° C, Me₃SiCl (3.21 g, 29.6 mmol) was added resulting in the immediate formation of a white precipitate (presumably LiCl). After warming to room temperature and removing the solvent in vacuo, the residue was extracted with hexanes (2 x 50 mL) and filtered. The solvent was removed in vacuo leaving a pale yellow crystalline solid. 5 (1.74 g, 60%) was isolated as colorless crystals after vacuum sublimation (100 °C, 0.1 mmHg).

³¹P NMR (C₆D₆, 121.5 MHz): δ=-138.0 (s); ¹H NMR (C₆D₆, 400.1 MHz): δ=7.27 (dd, 4H, ³J(P,H)=5.0 Hz, ⁴J(P,H)=3.5 Hz; C₆H₄), 0.22 (d, 36H, ³J(P,H)=5.0 Hz; Si(CH₃)₃); ¹³C NMR (CDCl₃, 75.5 MHz): δ=136.1 (dd, ³J(P,C)=14.8 Hz, ³J(P,C)=7.2 Hz; o-C₆H₄), 131.3 (d, ¹J(P,C)=16.1 Hz; i-C₆H₄), 1.1 (d, ³J(P,C)=12.7 Hz, Si(CH₃)₃); ²⁹Si NMR (C₆D₆, 79.5 MHz): δ=1.9 (d, ¹J(P,Si)=24 Hz); MS (EI, 70 eV): m/z (%) 434, 433, 432, 431, 430 (1, 2, 3, 11) [M⁺]; 208, 207 (1, 2, 3, 11) [M⁺-PSi₂(CH₃)₃H]; 75, 74, 73 (3, 8, 100) [SiCH₃]; Elem. Anal.: C₁₈H₄₀P₂Si₄: calcd. C 50.18, H 9.36, found C 49.87, H 9.32.
References

