

Supporting Information

for

Angew. Chem. Int. Ed. Z19929

© Wiley-VCH 2002

69451 Weinheim, Germany

Cobalt-Catalyzed Coupling Reaction of Alkyl Halides with Allylic Grignard Reagents

Takashi Tsuji, Hideki Yorimitsu, and Koichiro Oshima*

*Department of Material Chemistry, Graduate School of Engineering, Kyoto University,
Yoshida, Sakyo-ku, Kyoto 606-8501, Japan*

¹H NMR (300 MHz) and ¹³C NMR (75.3 MHz) spectra were taken on a Varian GEMINI 300 spectrometer in CDCl₃ as a solvent, and chemical shifts were given in δ value with tetramethylsilane as an internal standard. IR spectra were determined on a JASCO IR-810 spectrometer. TLC analyses were performed on commercial glass plates bearing a 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakogel 200 mesh) was used for column chromatography. The elemental analyses were carried out at the Elemental Analysis Center of Kyoto University.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Anhydrous CoCl₂ was purchased from Wako Pure Chemicals and was used after removal of water (vide infra). The ligand dppp was purchased from Tokyo Kasei Kogyo.

Experimental Section

The reaction was quite sensitive to water. Commercially available anhydrous CoCl₂ may contain some water. Completely anhydrous salt is clear blue, whereas purchased CoCl₂ is somewhat reddish-blue. Handling CoCl₂ under air as usual also caused a low yield. Hence, in each experiment, CoCl₂ was dried in a reaction flask carefully under reduced pressure (0.5 torr) by heating with a hair dryer for 2 min immediately before use.

Tertiary bromides **1a–1d** were prepared from the corresponding alcohols by the action of PBr₃ in ether at –10 °C. Secondary bromides **1e** and **1f** were prepared in a similar fashion at –14 °C. Chloride **1a-Cl** was obtained from the corresponding alcohol by treatment with concd. HCl at room temperature. Halo acetals **1h**, **1h-I**, and **7** were prepared according to the literature.¹ Iodide **1i-I** was prepared according to the literature.²

¹ a) R. Inoue, J. Nakao, H. Shinokubo, K. Oshima, *Bull. Chem. Soc. Jpn.* **1997**, 70, 2039–2049; b) J. Nakao, R. Inoue, H. Shinokubo, K. Oshima, *J. Org. Chem.* **1997**, 62, 1910–1911.

² A. Inoue, K. Maeda, H. Shinokubo, K. Oshima, *Tetrahedron* **1999**, 53, 665–674.

A Typical Procedure for Cobalt-catalyzed Allylation of Alkyl Halide.

Anhydrous cobalt(II) chloride (7.0 mg, 0.050 mmol) was placed in a 25-mL flask and was heated with a hair dryer in *vacuo* for 2 min. After the color of cobalt salt became blue, dppp (25 mg, 0.060 mmol) and anhydrous THF (1.0 mL) were sequentially added under argon. The mixture was stirred for about 10 min at room temperature. 2-Bromo-2-methyldecane (**1a**, 0.12 g, 0.50 mmol) and allylmagnesium chloride (1.0 M THF solution, 1.5 mL, 1.5 mmol) were successively added dropwise to the reaction mixture at -20°C . While the Grignard reagent was being added, the mixture turned reddish-brown. After being stirred for 2 h at -20°C , the reaction mixture was poured into saturated ammonium chloride solution. The products were extracted with ethyl acetate (20 mL \times 2). The combined organic layer was dried over Na_2SO_4 and concentrated. Silica gel column purification (hexane) of the crude product provided 4,4-dimethyl-1-dodecene (**2a**) and 2-methyl-1-decene (**3a**) (94 mg, 90% and 8% yields, respectively, judged by ^1H NMR.).

Characterization Data

Spectral data for **1c** was found in the literature³

2-Bromo-2-methyldecane (1a): IR (neat) 1101, 1138, 1369, 1387, 1466, 2341, 2361, 2856, 2928 cm^{-1} ; ^1H NMR (CDCl_3) δ 0.89 (t, $J = 6.6$ Hz, 3H), 1.24–1.36 (m, 12H), 1.44–1.56 (m, 2H), 1.75 (s, 6H); ^{13}C NMR (CDCl_3) δ 13.99, 22.55, 26.19, 29.17, 29.40, 29.52, 31.78, 34.15, 47.56, 68.75. Found: C, 56.35; H, 10.09%. Calcd for $\text{C}_{11}\text{H}_{23}\text{Br}$: C, 56.17; H, 9.86%.

2-Chloro-2-methyldecane (1a-Cl): IR (neat) 1107, 1138, 1369, 1386, 1468, 2341, 2856, 2928 cm^{-1} ; ^1H NMR (CDCl_3) δ 0.89 (t, $J = 9.6$ Hz, 3H), 1.22–1.39 (m, 10H), 1.40–1.54 (m, 2H), 1.57 (s, 6H), 1.68–1.78 (m, 2H); ^{13}C NMR (CDCl_3) δ 13.97, 22.55, 25.04, 29.17, 29.43, 29.66, 31.79, 32.33, 46.08, 71.29. Found: C, 69.40; H, 12.37%. Calcd for $\text{C}_{11}\text{H}_{23}\text{Cl}$: C, 69.26; H, 12.15%.

2-Bromo-2-cyclohexyl-4-phenylbutane (1b): IR (neat) 698, 746, 895, 1049, 1379, 1450, 1497,

³ W. Damm, B. Giese, J. Hartung, T. Hasskerl, K. N. Houk, O. Hüter, H. Zipse, *J. Am. Chem. Soc.* **1992**, *114*, 4067–4079.

1603, 2853, 2928, 3026 cm^{-1} ; ^1H NMR (CDCl_3) δ 1.10–1.32 (m, 6H), 1.60–1.74 (m, 4H), 1.76 (s, 3H), 2.04–2.26 (m, 3H), 2.78–2.90 (m, 2H), 7.17–7.23 (m, 3H), 7.26–7.33 (m, 2H); ^{13}C NMR (CDCl_3) δ 26.27, 26.52, 26.80, 28.53, 28.59, 29.08, 30.09, 32.09, 45.53, 79.05, 126.02, 128.51, 128.54, 141.99.

2-Bromo-3,3-dimethyl-2-(4-methoxyphenyl)butane (1d): IR (nujol) 696, 741, 831, 1040, 1051, 1186, 1256, 1298, 1512, 1611, 2343, 2360 cm^{-1} ; ^1H NMR (CDCl_3) δ 1.07 (s, 9H), 2.77 (s, 3H), 3.81 (s, 3H), 6.80 (d, J = 9.0 Hz, 2H), 7.51 (d, J = 9.0 Hz, 2H); ^{13}C NMR (CDCl_3) δ 27.08, 29.52, 41.17, 55.23, 82.99, 112.01, 130.67, 135.99, 158.34. Found: C, 57.29; H, 6.88%. Calcd for $\text{C}_{13}\text{H}_{19}\text{BrO}$: C, 57.57; H, 7.06%.

2-Bromo-1-(4-methoxyphenyl)octane (1f): IR (neat) 818, 1038, 1178, 1250, 1302, 1441, 1466, 1512, 1012, 2856, 2930 cm^{-1} ; ^1H NMR (CDCl_3) δ 1.88 (t, J = 6.9 Hz, 3H), 1.18–1.40 (bs, 8H), 1.70–1.85 (m, 2H), 3.11 (dd, J = 7.2, 3.6 Hz, 2H), 3.71 (s, 3H), 4.12–4.21 (m, 1H), 6.85 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H); ^{13}C NMR (CDCl_3) δ 13.92, 22.45, 27.44, 28.53, 31.56, 37.97, 44.77, 55.16, 58.40, 113.81, 130.28, 130.84, 158.53. HRMS Found 298.0932. Calcd for $\text{C}_{15}\text{H}_{23}\text{BrO}$ (M^+) 298.0938.

4,4-Dimethyl-1-dodecene (2a): IR (neat) 912, 995, 1366, 1468, 1639, 2855, 2928, 3076 cm^{-1} ; ^1H NMR (CDCl_3) δ 0.84 (s, 6H), 0.88 (t, J = 6.6 Hz, 3H), 1.10–1.40 (bs, 14H), 1.94 (d, J = 7.2 Hz, 2H), 4.94–5.04 (m, 2H), 5.81 (ddt, J = 16.8, 10.5, 7.2 Hz, 1H); ^{13}C NMR (CDCl_3) δ 13.98, 22.59, 23.87, 26.91, 29.28, 29.60, 30.52, 31.51, 31.85, 41.95, 46.44, 116.45, 136.12. Found: C, 85.61; H, 14.63%. Calcd for $\text{C}_{14}\text{H}_{28}$: C, 85.63; H, 14.37%.

4-Cyclohexyl-4-methyl-6-phenyl-1-hexene (2b): IR (neat) 698, 741, 910, 995, 1377, 1450, 1497, 1600, 1638, 2341, 2361, 2853, 2928, 3026, 3063 cm^{-1} ; ^1H NMR (CDCl_3) δ 0.86 (s, 3H), 0.90–1.32 (m, 5H), 1.47–1.58 (m, 2H), 1.58–1.84 (m, 6H), 2.03–2.18 (m, 2H), 2.15 (t, J = 9.0 Hz, 2H), 5.03–5.10 (m, 2H), 5.85 (ddt, J = 16.5, 11.1, 7.2 Hz, 1H), 7.12–7.21 (m, 3H), 7.21–7.30 (m, 2H); ^{13}C NMR (CDCl_3) δ 21.78, 26.76, 26.92, 27.20, 29.92, 37.74, 39.48, 41.45, 44.59, 116.71, 125.61,

128.39, 128.40, 135.90, 143.80. Found: C, 88.98; H, 11.10%. Calcd for C₁₉H₂₈: C, 88.99; H, 11.01%.

cis-4-tert-Butyl-1-methyl-1-(2-propenyl)cyclohexane (2c): IR (neat) 910, 997, 1366, 1452, 1639, 2844, 2868, 2941, 3074 cm⁻¹; ¹H NMR (CDCl₃) δ 0.82 (s, 3H), 0.85 (s, 9H), 1.03–1.22 (m, 5H), 1.49–1.57 (m, 4H), 2.02 (s, 1H), 2.04 (s, 1H), 4.95 (m, 2H), 5.79 (ddt, *J* = 15.9, 10.8, 7.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 22.48, 27.25, 27.60, 29.46, 32.48, 38.30, 40.03, 47.99, 116.39, 135.78. Found: C, 86.46; H, 13.51%. Calcd for C₁₄H₂₆: C, 86.52; H, 13.48%. The stereochemistry of **1c** and **2c** was determined by ¹³C NMR experiments according to the literature.⁴

4-(4-Methoxyphenyl)-4,5,5-trimethyl-1-hexene (2d): IR (neat) 831, 910, 1038, 1188, 1252, 1294, 1375, 1464, 1514, 1611, 2361, 2955 cm⁻¹; ¹H NMR (CDCl₃) δ 0.83 (s, 9H), 1.27 (s, 3H), 2.24 (dd, *J* = 14.1, 8.4 Hz, 1H), 3.00 (dd, *J* = 14.1, 3.6 Hz, 1H), 3.80 (s, 3H), 4.88 (d, *J* = 10.2 Hz, 1H), 5.01 (d, *J* = 17.1 Hz, 1H), 5.42–5.55 (m, 1H), 6.81 (d, *J* = 9.0 Hz, 2H), 7.20 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 21.26, 26.26, 36.51, 39.47, 45.22, 55.08, 112.15, 116.43, 130.12, 136.33, 136.85, 157.11. HRMS Found 232.1828. Calcd for C₁₆H₂₄O (M⁺) 232.1831.

4-(4-Methoxybenzyl)-1-decene (2f): IR (neat) 804, 910, 1040, 1177, 1246, 1300, 1466, 1512, 1612, 2854, 2926 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (t, *J* = 6.6 Hz, 3H), 1.16–1.38 (bs, 10H), 1.60–1.70 (m, 1H), 2.01 (dd, *J* = 7.8, 7.2 Hz, 2H), 2.48 (d, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 4.97–5.03 (m, 2H), 5.72–5.85 (m, 1H), 6.82 (d, *J* = 9.0 Hz, 2H), 7.06 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.96, 22.55, 26.54, 29.49, 31.78, 32.81, 37.39, 39.14, 39.68, 55.18, 113.62, 116.03, 129.31, 130.16, 137.35, 147.81. Found: C, 83.02; H, 11.03%. Calcd for C₁₈H₂₈O: C, 83.02; H, 10.84%.

4-Pentenal Dibutyl Acetal (2h): IR (neat) 912, 1049, 1074, 1128, 1261, 1350, 1379, 1458, 1641, 2933, 2959 cm⁻¹; ¹H NMR (CDCl₃) δ 0.92 (t, *J* = 7.2 Hz, 6H), 1.38 (m, 4H), 1.56 (m, 4H), 1.70 (m, 2H), 2.11 (m, 2H), 3.41 (dt, *J* = 6.6, 9.3 Hz, 2H), 3.58 (dt, *J* = 6.6, 9.6 Hz, 2H), 4.48 (t, *J* = 5.7

⁴ P. Crews, S. Naylor, F. J. Hanke, E. R. Hogue, E. Kho, R. Braslau, *J. Org. Chem.* **1984**, *49*, 1371. Also see ref. 3.

Hz, 1H), 4.94–5.06 (m, 2H), 5.82 (ddt, J = 17.1, 10.5, 6.6 Hz, 1H); ^{13}C NMR (CDCl₃) δ 13.77, 19.34, 28.94, 31.93, 32.59, 65.32, 102.62, 114.69, 138.27. Found: C, 72.72; H, 12.11%. Calcd for C₁₃H₂₆O₂: C, 72.84; H, 12.23%.

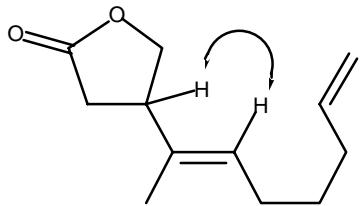
cis-2-(1-Octynyl)-3-(2-propenyl)-1-oxacyclohexane (cis-2i): IR (neat) 1078, 1350, 1439, 1641, 2239, 2341, 2858, 2932, 3076 cm⁻¹; ^1H NMR (CDCl₃) δ 0.90 (t, J = 6.9 Hz, 3H), 1.22–1.36 (m, 4H), 1.36–1.48 (m, 2H), 1.48–1.66 (m, 6H), 1.72–1.86 (m, 1H), 1.93–2.03 (m, 1H), 2.07–2.16 (m, 1H), 2.26 (dt, J = 1.8, 7.2 Hz, 2H), 3.59–3.70 (m, 1H), 3.85–3.95 (m, 1H), 4.54 (bs, 1H), 4.99–5.09 (m, 2H), 5.75 (ddt, J = 16.8, 10.2, 7.2 Hz, 1H); ^{13}C NMR (CDCl₃) δ 13.90, 18.64, 22.47, 25.28, 25.37, 28.46, 28.70, 31.23, 36.71, 39.19, 62.71, 69.60, 75.84, 89.00, 116.30, 136.28. HRMS Found 234.1984. Calcd for C₁₆H₂₆O (M⁺) 234.1979.

trans-2-(1-Octynyl)-3-(2-propenyl)-1-oxacyclohexane (trans-2i): IR (neat) 1084, 1333, 1439, 1641, 2858, 2932, 3076 cm⁻¹; ^1H NMR (CDCl₃) δ 0.88 (t, J = 6.9 Hz, 3H), 1.08–1.45 (m, 7H), 1.45–1.70 (m, 5H), 1.84–1.98 (m, 2H), 2.24 (m, 2H), 2.40–2.49 (m, 1H), 3.39 (m, 1H), 3.80 (dt, J = 9.0, 2.7 Hz, 1H), 3.98 (dt, J = 11.1, 2.7 Hz, 1H), 5.03 (d, J = 8.7 Hz, 1H), 5.05 (d, J = 17.4 Hz, 1H), 5.79 (ddt, J = 17.4, 8.7, 1.8 Hz, 1H); ^{13}C NMR (CDCl₃) δ 13.89, 18.62, 22.41, 25.29, 27.93, 28.46, 28.49, 31.21, 36.71, 41.07, 67.64, 72.65, 78.42, 86.61, 116.57, 135.97. HRMS Found 234.1984. Calcd for C₁₆H₂₆O (M⁺) 234.1976.

2-Methyl-6-phenyl-1-hexene (4): IR (neat) 698, 746, 885, 1030, 1373, 1454, 1497, 1605, 1649, 2345, 2858, 2934, 3026, 3072 cm⁻¹; ^1H NMR (CDCl₃) δ 1.44–1.55 (m, 2H), 1.58–1.69 (m, 2H), 1.71 (s, 3H), 2.05 (t, J = 7.2 Hz, 2H), 2.64 (t, J = 7.2 Hz, 2H), 4.68 (s, 1H), 4.71 (s, 1H), 7.16–7.21 (m, 3H), 7.26–7.32 (m, 2H); ^{13}C NMR (CDCl₃) δ 22.22, 27.13, 30.98, 35.75, 37.55, 109.87, 125.69, 128.32, 128.48, 142.84, 146.03. Found: C, 89.30; H, 10.27%. Calcd for C₁₃H₁₈: C, 89.59; H, 10.41%.

3-Methyl-6-phenyl-1-hexene (5b): IR (neat) 698, 746, 910, 995, 1373, 1419, 1454, 1497, 1605, 1639, 2858, 2932, 3028, 3065 cm⁻¹; ^1H NMR (CDCl₃) δ 0.98 (d, J = 6.6 Hz, 3H), 1.30–1.37 (m,

2H), 1.55–1.67 (m, 2H), 2.09–2.19 (m, 1H), 2.59 (t, J = 7.8 Hz, 2H), 4.88–4.98 (m, 2H), 5.68 (ddd, J = 17.6, 9.9, 7.5 Hz, 1H), 7.15–7.22 (m, 3H), 7.24–7.32 (m, 2H); ^{13}C NMR (CDCl₃) δ 20.09, 29.06, 35.97, 36.20, 37.62, 112.54, 125.68, 128.32, 128.48, 142.88, 144.81. Found: C, 89.66; H, 10.57%. Calcd for C₁₃H₁₈: C, 89.59; H, 10.41%.


4-(3-Butenyl)-4,5-dihydro-2(3H)-furanone (9a): IR (neat) 839, 814, 1001, 1173, 1379, 1420, 1641, 1778, 2856, 2924, 3078 cm⁻¹; ^1H NMR (CDCl₃) δ 1.56–1.63 (m, 2H), 2.06–2.25 (m, 3H), 2.53–2.68 (m, 2H), 3.94 (dd, J = 9.0, 7.5 Hz, 1H), 4.43 (dd, J = 9.0, 7.8 Hz, 1H), 5.00–5.09 (m, 2H), 5.78 (ddt, J = 19.8, 7.2, 6.6 Hz, 1H); ^{13}C NMR (CDCl₃) δ 31.31, 32.02, 34.24, 34.96, 73.12, 115.65, 137.18, 177.14. Found: C, 68.45; H, 8.45%. Calcd for C₈H₁₂O₂: C, 68.54; H, 8.63%.

4-(3-Butenyl)-4,5-dihydro-5,5-dimethyl-2(3H)-furanone (9b): IR (neat) 918, 959, 1096, 1128, 1217, 1258, 1375, 1389, 1641, 1771, 2934, 2978 cm⁻¹; ^1H NMR (CDCl₃) δ 1.25 (s, 3H), 1.43 (s, 3H), 1.38–1.46 (m, 1H), 1.51–1.65 (m, 1H), 1.95–2.32 (m, 4H), 2.59–2.69 (m, 1H), 4.98–5.10 (m, 2H), 5.77 (ddt, J = 16.8, 10.5, 6.9 Hz, 1H); ^{13}C NMR (CDCl₃) δ 21.79, 27.35, 28.77, 32.26, 34.49, 45.08, 86.64, 115.70, 137.39, 175.67. Found: C, 71.36; H, 9.78%. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.59%.

4,5-Dihydro-4-(1,1-dimethyl-3-butenyl)-2(3H)-furanone (9c): IR (neat) 918, 1003, 1026, 1175, 1470, 1639, 1780, 2964, 3076 cm⁻¹; ^1H NMR (CDCl₃) δ 0.90 (s, 3H), 0.91 (s, 3H), 1.98 (d, J = 7.5 Hz, 2H), 2.31–2.58 (m, 3H), 4.11 (dd, J = 9.0, 8.1 Hz, 1H), 4.32 (dd, J = 9.6, 8.1 Hz, 1H), 5.03–5.12 (m, 1H), 5.72–5.86 (m, 2H); ^{13}C NMR (CDCl₃) δ 23.38, 23.67, 29.63, 34.22, 44.00, 45.29, 69.37, 118.32, 133.87, 177.37. Found: C, 71.11; H, 9.74%. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.59%.

4,5-Dihydro-4-(1-methyl-1,6-heptadienyl)-2(3H)-furanone (9e, (E)-isomer): IR (neat) 847, 910, 1013, 1171, 1439, 1639, 1782, 2341, 2361, 2858, 2926 cm⁻¹; ^1H NMR (CDCl₃) δ 1.45 (tt, J = 7.2, 7.2 Hz, 2H), 1.63 (s, 3H), 2.00–2.09 (m, 4H), 2.46 (dd, J = 17.7, 8.7 Hz, 1H), 2.60 (dd, J = 17.7, 8.7 Hz, 1H), 3.18 (tt, J = 8.1, 8.1 Hz, 1H), 4.08 (dd, J = 8.7, 7.5 Hz, 1H), 4.41 (dd, J = 8.7, 7.5

Hz, 1H), 4.94–5.05 (m, 2H), 5.28 (t, J = 7.2 Hz, 1H), 5.80 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H); ^{13}C NMR (CDCl_3) δ 13.50, 27.09, 28.52, 32.80, 33.19, 43.81, 71.77, 114.74, 127.20, 132.02, 138.61, 177.04. Found: C, 73.93; H, 9.57%. Calcd for $\text{C}_{12}\text{H}_{18}\text{O}_2$: C, 74.19; H, 9.34%. The stereochemistry was assigned on the basis of NOE difference.

4-(4-Methoxyphenyl)-4,5,5-trimethyl-1-hexanol (12): IR (neat) 829, 1040, 1188, 1252, 1292, 1375, 1466, 1514, 1611, 2876, 2955, 3342 cm^{-1} ; ^1H NMR (CDCl_3) δ 0.83 (s, 9H), 1.10–1.50 (m, 3H), 1.29 (s, 3H), 1.59 (dt, J = 5.1, 12.6 Hz, 1H), 2.17 (dt, J = 3.0, 12.6 Hz, 1H), 3.61 (t, J = 6.6 Hz, 2H), 3.80 (s, 3H), 6.81 (d, J = 9.0 Hz, 2H), 7.18 (d, J = 9.0 Hz, 2H); ^{13}C NMR (CDCl_3) δ 21.00, 26.12, 28.37, 30.51, 36.67, 45.29, 55.06, 63.89, 112.35, 129.93, 136.66, 157.32. HRMS Found 250.1934. Calcd for $\text{C}_{16}\text{H}_{26}\text{O}_2$ (M^+) 250.1939. The enantiomeric excess was determined by HPLC (Daicel Chiralcel-OD (0.46 cm \times 25 cm), hexane/*i*-PrOH = 90/10, 1.0 mL/min, oven temp. = 20 °C). The retention time of the faster moving compound was 6.2 min, and that of the slower one was 8.6 min. The later peak represented the major enantiomer.