

Supporting Information

for

Angew. Chem. Int. Ed. Z50515

© Wiley-VCH 2003

69451 Weinheim, Germany

Total Synthesis of (-)-Spirotryprostatin B

Christiane Meyers, Erick. M. Carreira

General methods

All non-aqueous reactions were carried out using oven-dried or flame-dried glassware under a positive pressure of dry nitrogen unless otherwise noted. Tetrahydrofuran and methylene chloride were purified by distillation and dried by passage over activated alumina under an argon atmosphere (H₂O content < 30 ppm, Karl-Fischer titration). Benzene was distilled from sodium/benzophenone ketyl under an atmosphere of dry nitrogen. Triethylamine and pyridine were distilled from KOH. 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and quinoline were distilled prior to use. Butyl lithium (*n*BuLi) was titrated with *s*BuOH/phenanthroline. All other commercially available reagents were used without further purification. Diazomethane (CH₂N₂) and dimethyldioxirane (DMDO) were prepared according to literature procedures.¹

Except as indicated otherwise, reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using Merck Silica Gel 60 F^{254} plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained using ceric ammonium molybdate or potassium permanganate stain.

Chromatographic purification of products (flash chromatography) was performed on E. Merck Silica Gel 60 (230-400 mesh) using a forced flow of eluant at 0.3-0.5 bar.² Concentration under reduced pressure was performed by rotary evaporation at 40 °C at the appropriate pressure. Purified compounds were further dried for 12-72 h under high

^{[&}lt;sup>1</sup>] a) H. M. Fales, T. M. Jaouni, J. F. Babashak, *Analytical Chemistry* **1973**, *45*, 2302-2303; b) W. Adam, J. Bialas, L. Hadjiarapoglou, *Chemische Berichte* **1991**, *124*, 2377. Preparation of useful reagents and buffers, see last page.

^[2] Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923.

vacuum (0.01 Torr). Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated.

NMR spectra were recorded either on a Varian Mercury 300 spectrometer operating at 300 MHz and 75 MHz for ¹H and ¹³C acquisitions respectively or on a Bruker DRX500 spectrometer operating at 500 MHz and 125 MHz for ¹H and ¹³C acquisitions respectively. Chemical shifts (δ) are reported in ppm with the solvent resonance as the internal standard relative to chloroform (δ 7.26) and benzene (δ 7.15) for ¹H, and chloroform (δ 77.0) and benzene (δ 128.0) for ¹³C. Data are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz. IR spectra were recorded on a Perkin Elmer Spectrum RXI FT-IR spectrophotometer. Optical rotations were measured on a Jasco DIP-1000 polarimeter operating at the sodium D line with a 100 mm path length cell, and are reported as follows: [α]_D^T, concentration (g/100 ml), and solvent.

Crystallographic structure determinations were performed on a Nonius CAD4 diffractometer, $Cu_{K\alpha}$ radiation ($\lambda = 1.5418$ Å). The structure was solved by direct methods^[3] and refined by full-matrix least-squares analysis^[4] including an isotropic extinction correction. All heavy atoms were refined anisotropically, H-atoms of the ordered part isotropically, whereby H-positions are based on stereochemical considerations.

^{[&}lt;sup>3</sup>] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr., **1994**, *27*, 435.

^{[&}lt;sup>4</sup>] G.M. Sheldrick, 1997, SHELXL-97 Program for the Refinement of Crystal Structures. University of Goettingen, Germany.

Triisopropylsilanyl-propynal

TIPS

A solution of triisopropylsilanyl-acetylene (15.0 mL, 67.5 mmol, 1.00 equiv) in 100 mL THF was cooled to -78 °C. *n*BuLi (1.60 M in hexanes, 42.2 mL, 67.5 mmol, 1.00 equiv) was added dropwise and the mixture was stirred at -78 °C for 0.5 h. A solution of ethyl formate (10.9 mL, 135 mmol, 2.00 equiv) in 100 mL THF was added dropwise. The reaction mixture was stirred for 45 min at -78 °C and then poured on 100 ml ice-water containing a trace of hydroquinone and 1 ml of acetic acid. The product was extracted with Et₂O (2 x 200 ml), the combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude aldehyde was used for subsequent imine formation without further purification. Rf = 0.89 (1:3 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 9.21 (s, 1H), 1.12-1.10 (m, 21H).

Ally-(3-triisopropylsilanyl-prop-2-ynylidene)-amine (10)

A solution of the crude triisopropylsilanyl-propynal (67.5 mmol, 1.00 equiv) in CH₂Cl₂ (100 mL) was treated with allyl amine (5.05 mL, 67.5 mmol, 1.00 equiv) and MgSO₄ (6 g) at rt for 9 h. The reaction mixture turns slightly orange. The MgSO₄ was filtered off and the filter cake was washed with CH₂Cl₂ (3 x 20 mL). The solvent was evaporated in vacuo and the crude product was purified by distillation under reduced pressure (0.5 mbar, 90-95 °C) to afford the pure imine **10** as a colourless liquid: 13.42 g (80 % over two steps, *Z* and *E* isomer). R*f* = 0.50, 0.38 (1:50 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.57 (m, 2H), 6.07-5.94 (m, 2H), 5.25-5.11 (m, 4H), 5.25-5.11 (m, 4H), 4.33 (dddd, 1H, *J* = 5.6, 1.87, 1.87, 1.87 Hz), 4.16 (dddd, 1H, *J* = 5.6, 1.9, 1.9, 1.3 Hz) 1.10-1.09 (m, 42H); ¹³C NMR (75 MHz, CDCl₃) δ 145.7, 143.7, 134.9, 134.6, 116.9, 116.0, 103.4, 101.8, 98.3, 95.1, 64.2, 58.8, 18.6, 18.6, 11.2, 11.2; IR (thin film) v 2945, 2867, 1644, 1612, 1593, 1464, 1384, 1366, 1072, 1027, 995, 919, 883, 678; EI-MS calcd for C₁₅H₂₇NSi [M]⁺ 250.2; found, 249.2. Anal. Calcd for C₁₅H₂₇NSi: C, 72.22; H, 10.91; N, 5.61. Found: C, 72.25; H, 10.84; N, 5.57.

4-methyl-N'-[(3Z)-2-oxo-1,2-dihydro-3*H***-indol-3-ylidene]benzenesulfonohydrazide** Isatin (9.44 g, 64.2 mmol, 1.00 equiv) was suspended in MeOH (300 mL). The suspension was heated to reflux whereupon a deep red solution was obtained. To this hot solution was added tosylhydrazine (12.1 g, 64.8 mmol, 1.02 equiv) in one portion. A yellow product starts precipitating from the hot mixture. The reaction mixture was allowed to cool to rt and the pure tosylhydrazone was filtered off: 18.2 g (90 %). R*f* = 0.12 (EtOAc); MP = 207 °C; ¹H NMR (300 MHz, CD₃OD) δ 7.97 (d, 2H, *J* = 8.09 Hz), 7.86 (d, 1H, *J* = 7.47 Hz), 7.41-7.35 (m, 3H), 7.11-7.06 (m, 1H), 6.91 (d, 1H, *J* = 7.47 Hz), 2.43 (s, 3H).

3-Diazo-1,3-dihydro-indol-2-one (8)

3-Tosylhydrazone-1,3-dihydro-indol-2-one (12.0 g, 38.1 mmol, 1.00 equiv) was treated with a solution of NaOH (3.04 g, 76.1 mmol, 2.00 equiv) in H₂O (375 mL). The reaction mixture was stirred for 15 h in a water-bath at 50 °C, then allowed to cool to rt. The reaction mixture was neutralized by addition of dry ice, whereupon the diazoketone precipitated: 5.36 g (88 %). The product was directly used in the subsequent reaction. R*f* = 0.54 (3:1 EtOAc/hexanes); MP = 168 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ 8.69 (br, 1H,), 7.21-7.06 (m, 3H), 7.01-6.98 (m, 1H).

Cyclopropanation of piperylene with 8 (9)

2-[prop-1-en-1-yl]spiro[cyclopropane-1,3'-indol]-2'(1'H)-one (9)

In a 3-neck flask equipped with a reflux condenser and an addition funnel was placed [Rh(OAc)₂]₂ (214 mg, 0.485 mmol, 1 mol%). Benzene (280 mL) and piperylene (mixture

of isomers, 19.5 mL, 194 mmol, 4.00 equiv) were added and the suspension was heated to reflux. A solution of **8** (7.72 g, 48.5 mmol, 1.00 equiv) in CH_2Cl_2 (340 mL) was added over 3 h. The reaction mixture was allowed to cool to RT and the solvent was partially removed (reduced to 1/10 of its volume). The remaining suspension was filtered over Celite and the filter cake was washed with acetone. The filtrate was concentrated in vacuo and the crude material was purified by column chromatography (1:3 EtOAc/hexanes) to afford the pure product as a mixture of isomeric products **9** 69.1 g (71 %). The mixture was used without further purification in the upcoming ring-expansion step.

Ring expansion of 9 with 10 and allyl-deprotection (13)

A sealable tube with side inlet was charged with MgI₂ (5.69 g, 20.5 mmol, 1.00 equiv). A solution of cyclopropane **9** (4.08 g, 20.5 mmol, 1.00 equiv) in THF (35 mL) was added via cannula, followed by imine **10** (6.12 g, 24.4 mmol, 1.20 equiv). The tube was sealed, placed into an oil-bath at 75 °C and heated for 15 h. The reaction mixture was allowed to reach rt. EtOAc (250 mL) and H₂O (150 mL) were added to the reaction mixture, followed by Na₂S₂O₃ (1.5 g). This biphasic mixture was stirred for 3 h, then the phases were separated and the organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The following products were obtained by careful column chromatography purification (4:21 EtOAc/hexanes):

(±)-(2'R,3S,5'S)-1'-allyl-5'-[(1E)-prop-1-en-1-yl]-2'-

[(triisopropylsilyl)ethynyl]spiro[indole-3,3'-pyrrolidin]-2(1*H*)-one (5'S-11)

pale yellow solid, 2.93 g (32 %) Rf = 0.59 (1:3 EtOAc/hexanes); MP = 121 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.84 (br, 1H), 7.50 (d, 1H, J = 7.5 Hz), 7.14 (ddd, 1H, J = 1.3, 7.5,

7.5 Hz), 7,00 (ddd, 1H, J = 1.3, 7.5, 7.5 Hz), 6.85 (d, 1H, J = 7.5 Hz), 6.04-5.91 (m, 1H), 5.74-5.60 (m, 1H), 5.46-5.37 (m, 1H), 5.24-5.20 (m, 2H), 3.83 (s, 1H), 3.59-3.37 (m, 3H), 2.50 (dd, 1H, J = 8.1, 13.1 Hz), 1.82 (dd, 1H, J = 8.1, 13.7 Hz), 1.58 (ddd, 3H, J = 1.3, 6.2, 8.8 Hz), 0.83-0.82 (m, 21H); ¹³C NMR (75 MHz, CDCl₃) δ 181.1, 140.4, 134.7, 132.5, 132.1, 129.1, 127.9, 125.6, 122.9, 119.6, 109.3, 103.1, 87.5, 63.1, 62.6, 56.0, 50.9, 42.2, 18.4, 17.8, 10.9; IR (thin film) v 3207, 2942, 2864, 1712, 1618, 1471, 1337, 1234, 1171, 990, 912, 881, 749, 673; HiResMALDI-MS calcd for C₂₈H₄₀N₂SiO [M+H]⁺ 449.2988; found, 449.2989. Anal. Calcd for C₂₈H₄₀N₂SiO: C, 74.95; H, 8.98; N, 6.24. Found: C, 74.95; H, 8.89; N, 6.01.

N-allyl-spiro-pyrrolidine-oxindole **11**, mixture of isomers 2.90 g (32 %) Rf = 0.45 (1:3 EtOAc/hexanes).

Allyl-deprotection of 11 (13)

To a solution of **11** (3.07 g, 6.85 mmol, 1.00 equiv) and NDMBA (3.42 g, 21.9 mmol, 3.20 equiv) in CH₂Cl₂ (150 mL) was added a solution of freshly prepared Pd(PPh₃)₄ (from 212 mg Pd₂dba₃·CHCl₃ (0.205 mmol, 6 mol% Pd) and 323 mg PPh₃ (1.232 mmol, 18 mol %) in 20 mL CH₂Cl₂). The reaction mixture was stirred at 30 °C for 12 h. CH₂Cl₂ (350 mL) was added and the organic solution was washed with sat. aq. Na₂CO₃ (2 x 175 mL), then dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (1.5:8.5 \rightarrow 1:4 EtOAc/hexanes) afforded:

(±)-(2'*R*,3*S*,5'*R*)-5'-[(1*E*)-prop-1-en-1-yl]-2'-[(triisopropylsilyl)ethynyl]spiro[indole-3,3'-pyrrolidin]-2(1*H*)-one (13)

pale yellow oil 1.68 g (60 %). R*f* = 0.71 (1:3 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.89 (br, 1H), 7.38 (d, 1H, *J* = 7.47 Hz), 7.23-7.18 (m, 1H), 7.06-7.01 (m, 1H), 6.87 (d, 1H, *J* = 7.5 Hz), 5.69-5.63 (m, 2H), 4.35 (s, 1H), 4.22 (ddd, 1H, *J* = 7.5, 7.5, 7.47 Hz), 2.25-2.21 (m, 2H), 1.71 (d, 3H, *J* = 5.0 Hz), 0.86-0.85 (m, 21H); ¹³C NMR (75 MHz, CDCl₃) δ 179.9, 140.4, 133.0, 131.5, 128.1, 126.9, 124.5, 122.5, 109.7, 103.7, 86.6, 60.4, 59.7, 58.7, 43.2, 18.4, 17.7, 10.9; IR (thin film) v 3209, 2942, 2864, 1715, 1684, 1621, 1472, 883, 750, 679; HiResMALDI-MS calcd for C₂₅H₃₆N₂SiO [M+H]⁺ 409.2675; found, 409.2674; Anal. Calcd for C₂₅H₃₆N₂SiO: C, 73.48; H, 8.88; N, 6.85. Found: C, 73.29; H, 8.97; N, 6.66.

(±)-(2'*R*,3*S*,5'*R*)-5'-[(1*Z*)-prop-1-en-1-yl]-2'-[(triisopropylsilyl)ethynyl]spiro[indole-3,3'-pyrrolidin]-2(1*H*)-one (iso-13)

pale yellow oil 350 mg (13 %). R*f* = 0.53 (1:3 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 8.08 (br, 1H), 7.45 (d, 1H, *J* = 7.5 Hz), 7.24-7.19 (m, 1H), 7.07-7.02 (m, 1H), 6.88 (d, 1H, *J* = 7.5 Hz), 5.68-5.55 (m, 2H), 4.62 (ddd, 1H *J* = 8.1, 8.1, 8.1 Hz), 4.37 (s, 1H), 2.34-2.12 (m, 2H), 1.71 (d, 3H, *J* = 5.0 Hz), 1.58 (br, 1H), 0.88-0.86 (m, 21H); ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 132.7, 131.3, 128.2, 185.8, 124.7, 122.5, 109.5, 103.8, 86.7, 59.5, 58.9, 54.4, 43.4, 18.4, 13.4, 10.9; IR (thin film) v 3199, 2943, 2865, 2170, 1714, 1621, 1471, 1337, 1236, 1110, 996, 919, 883, 750, 679; HiResMALDI-MS calcd for C₂₅H₃₆N₂SiO [M+H]⁺ 409.2675; found, 409.2676.

Coupling of 13 with Boc-L-ProCl⁵ (14)

To a solution of **13** (141 mg, 0.345 mmol, 1.00 equiv) and NEt₃ (48.0 μ L, 0.345 mmol, 1.00 equiv) in CH₂Cl₂ (15 mL) at 0 °C was added *N*-Boc-L-proline chloride (0.14 M in CH₂Cl₂, 10.0 mL, 1.38 mmol, 4.00 equiv). The reaction mixture was allowed to warm slowly to RT and stirred at RT for 8 h. The reaction was quenched by addition of 10 % aq. NaHCO₃ (10 mL). The phases were separated; the organic layer was washed with sat. aq. NaHCO₃ (10 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (1:3 EtOAc/hexanes) afforded:

tert-butyl (2S)-2-({(2'R,3S,5'R)-2-oxo-5'-[(1E)-prop-1-en-1-yl]-2'-[(triisopropylsilyl)ethynyl]-1,2-dihydro-1'*H*-spiro[indole-3,3'-pyrrolidin]-1'yl}carbonyl)pyrrolidine-1-carboxylate (14)

white crystals 94 mg (45 %). R*f* = 0.63 (1:1 EtOAc/hexanes), $[\alpha]_D^{23}$ (c 0.250 CHCl₃) = +15.6; MP = 191 °C; ¹H NMR (300 MHz, CDCl₃ [#] denotes major-, * minor rotamer signals) δ 7.94-7.78 (m, 2H), 7.25-7.15 (m, 4H), 7.06-7.01 (m, 2H), 6.90-6.83 (m, 2H), 5.76-5.50 (m, 4H), 5.35* (s, 1H), 5.20-5.18* (m, 1H), 2.26[#] (s, 1H), 4.98-4.74 (m, 3H), 3.67-3.63[#] (m, 1H), 3.59-3.54* (m, 1H), 3.52-3.38 (m, 2H), 2.88-2.00 (m, 10H), 1.88-1.71 (m, 5 H), 1.66-1.64* (m, 3H), 1.53* (s, 9H), 1.49-1.47[#] (m, 9H), 0.85-0.81 (m, 42H); ¹³C NMR (75 MHz, CDCl₃, * denotes minor rotamer signals) δ 179.3, 176.9*, 171.2, 170.5*, 154.5, 154.4*, 141.0, 140.6*, 133.6, 130.7*, 130.5, 128.8, 128.5*, 127.6, 127.4*, 125.6, 124.0*, 122.9*, 122.1, 110.3*, 109.9, 102.3*, 99.0, 92.0*, 87.3, 79.6, 79.2*, 60.4*, 59.6, 59.2*, 58.7*, 58.4, 58.1, 57.1, 56.6*, 46.5, 46.3*, 43.6, 39.8*, 30.1*,

29.1, 28.6*, 28.5, 23.1*, 22.8, 18.5*, 18.3, 17.8, 17.6*, 11.1, 10.9*; IR (thin film) v 3212, 2942, 2865, 1729, 1689, 1472, 1397, 1366, 1299, 1254, 1164, 1126, 970, 919.3, 883, 750, 677; HiResMALDI-MS calcd for $C_{35}H_{51}N_3SiO_4$ [M+Na]⁺ 628.3546; found, 628.3491; Anal. Calcd for $C_{35}H_{51}N_3SiO_4$: C, 69.38; H, 8.48; N, 6.94. Found: C, 69.40; H, 8.36; N, 6.92.

Crystal data for **14** at 223 K, $M_r = 605.88$, monoclinic space group P2(I), $\rho_{calc} = 1.116$ g cm³, Z = 2, a = 12.642(2), b = 11.274(2), c = 13.052(4) Å, $\alpha = 90.00$, $\beta = 104.26(2)$, $\gamma = 90.00^{\circ}$, V = 1802.9(7) Å³. Final R(F) = 0.0564, $wR(F^2) = 0.1601$ for 464 parameters and 3015 reflections with $I > 2\sigma(I)$ and $\theta < 64.99^{\circ}$. The *i*Pr₃Si groups in **14** are diordered. The disorder could be resolved for the atoms C(20), C(21), C(22), C(23), and C(25), i.e., two peaks were refined with population parameters of 0.6 and 0.4, respectively. (Only one population is displayed for clarity.) CCDC 196803 (**14**) contains the supplementary crystallographic data for this structure. This data can be obtained free of charge via www.ccdc.cam.ac.uk/retrieving.html (or from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk/.

tert-butyl (2S)-2-({(2'S,3R,5'S)-2-oxo-5'-[(1E)-prop-1-en-1-yl]-2'-[(triisopropylsilyl)ethynyl]-1,2-dihydro-1'*H*-spiro[indole-3,3'-pyrrolidin]-1'yl}carbonyl)pyrrolidine-1-carboxylate (iso-14)

white solid 94 mg (45 %). R*f* = 0.50 (1:1 EtOAc/hexanes), $[\alpha]_D^{26}$ (c 0.745 CHCl₃) = -31.6; MP = 99 °C; ¹H NMR (300 MHz, CDCl₃ [#] denotes major-, * minor rotamer signals) δ 7.69* (br, 1H), 7.58[#] (br, 1H), 7.47[#] (d, 1H, *J* = 7.5 Hz), 7.26-7.14 (m, 3H), 7.0-6.93 (m, 2H), 6.90-6.84 (m, 2H), 6.09* (ddd, 1H, *J* = 1.9, 8.7, 15.6 Hz), 5.76-5.59 (m, 2H), 5.52[#] (dd, 1H, *J* = 3.7, 8.7 Hz), 5.41* (ddd, 1H, *J* = 1.9, 7.5, 15.6 Hz), 5.17* (s, 1H),

⁵] Preparation of useful reagents and buffers, see last page.

4.97-4.86 (m, 2H), 4.86[#] (s, 1H), 4.55-4.48^{*} (m, 1H), 3.65-3.36 (m, 4H), 2.69^{*}(dd, 1H, J = 8.7, 13.7 Hz), 2.28-2.09 (m, 5H), 1.92-1.72 (m, 6 H), 1.76[#] (dd, 3H, J = 1.3, 6.2 Hz), 1.68^{*} (dd, 3H, J = 1.3, 6.2 Hz), 1.47[#] (s, 9H), 1.42^{*} (s, 9H), 0.96-0.95^{*} (m, 21H), 0.83-0.82[#] (m, 21 H); ¹³C NMR (75 MHz, CDCl₃, * denotes minor rotamer signals) δ 179.0, 176.6^{*}, 171.0, 154.3^{*}, 154.2, 140.9, 140.4^{*}, 133.5, 130.6, 130.4^{*}, 128.7, 128.4^{*}, 127.5, 127.3^{*}, 125.5, 123.9^{*}, 122.8^{*}, 122.1, 110.2^{*}, 109.8, 102.3, 99.0^{*}, 92.0^{*}, 87.3, 79.6, 79.2^{*}, 59.7, 59.2, 58.7^{*}, 58.5, 58.1^{*}, 57.2^{*}, 56.7, 46.6, 46.4^{*}, 43.8, 39.9^{*}, 30.3^{*}, 29.2, 28.7^{*}, 28.6, 23.2^{*}, 22.9, 18.7^{*}, 18.4, 17.9, 17.8^{*}, 11.2, 11.0^{*}; IR (thin film) v 3214, 2943, 2866, 2175, 1728, 1702, 1676, 1622, 1472, 1401, 1366, 1241, 1164, 1126, 883, 750, 678; HiResMALDI-MS calcd for C₃₅H₅₁N₃SiO₄ [M+Na]⁺ 628.3546; found, 628.3535.

Dihydroxylation and diol cleavage of 14 (15)

tert-butyl (2*S*)-2-({(2'*R*,3*S*,5'*R*)-5'-formyl-2-oxo-2'-[(triisopropylsilyl)ethynyl]-1,2dihydro-1'*H*-spiro[indole-3,3'-pyrrolidin]-1'-yl}carbonyl)pyrrolidine-1-carboxylate (15)

A solution of **14** (405 mg, 0.668 mmol, 1.00 equiv) and NMO·H₂O (108 mg, 0.802 mmol, 1.20 equiv) in THF:*t*BuOH:H₂O 4:4:1 (20 mL) was stirred at RT for 30 min before OsO₄ (4 wt% in H₂O, 170 μ L, 270 μ mol, 4 mol%) was added. The reaction mixture was stirred at RT for 16 h, then quenched by addition of 2 M aq. Na₂S₂O₃ (25 mL) and EtOAc (25 mL). The biphasic mixture was stirred for 3h, the phases separated; the organic layer was washed with brine (25 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was used without further purification. R*f* = 0.67, 0.51 (3:1 EtOAc/hexanes).

To a solution of diols in EtOAc (20 mL) was added $Pb(OAc)_4$ (344 mg, 1.00 mmol, 1.50 equiv). A yellow suspension was obtained and after stirring for 10 min, the mixture was

filtered through a plug of silica gel, eluting with EtOAc. Purification by column chromatography (1:1 EtOAc/hexanes) afforded **15** as a white solid: 385 mg, (97%) R*f* = 0.83 (3:1 EtOAc/hexanes), MP = 90 °C; $[\alpha]_D^{26}$ (c 0.290 CHCl₃) = +50.8; ¹H NMR (300 MHz, CDCl₃[#] denotes major-, * minor rotamer signals) δ 9.64* (d, 1H, *J* = 2.8 Hz), 9.52[#] (d, 1H, *J* = 3.1 Hz), 8.91 (m, 2H), 7.36-7.32 (m, 2H), 7.27-7.22 (m, 2H), 7.06-6.99 (m, 2H), 6.93-6.89 (m, 2H), 5.57[#] (s, 1H), 5.16* (s, 1H), 4.85-4.65 (m, 4H), 3.57-3.41 (m, 4H), 2.42-2.03 (m, 10H), 1.86-1.80 (m, 2H), 1.51* (s, 9H), 1.45[#] (s, 9H), 0.91-0.90 (m, 42H); ¹³C NMR (75 MHz, CDCl₃, * denotes minor rotamer signals) δ 198.7, 197.2*, 177.4*, 177.3, 174.1, 173.6*, 154.4, 153.4*, 140.6, 140.6*, 129.4*, 129.1, 128.1, 127.7*, 125.0*, 124.9, 122.5, 110.4, 101.6, 101.1*, 91.8*, 90.7, 80.49*, 79.8, 65.1, 64.8*, 60.4, 57.4, 56.5*, 47.2, 34.8*, 34.5, 31.9, 30.2, 29.7*, 28.5, 24.7, 23.2*, 18.5, 11.0; IR (thin film) v 3243, 2944, 2866, 1730, 1687, 1655, 1623, 1472, 1403, 1367, 1299, 1257, 1164, 883, 752, 669; HiResMALDI-MS calcd for C₃₃H₄₇N₃SiO₅ [M+Na]⁺ 616.3183; found, 616.3158; Anal. Calcd for C₃₃H₄₇N₃SiO₅: C, 66.75; H, 7.98; N, 7.08. Found: C, 66.91; H, 7.82; N, 6.87.

Oxidation and esterification of 15 (16)

methyl (2'*R*,3*S*,5'*R*)-1'-{[(2*S*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]carbonyl}-2oxo-2'-[(triisopropylsilyl)ethynyl]-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'carboxylate (16)

A solution of NaClO₂ (73 mg, 0.808 mmol, 10.0 equiv) in pH 3.6-buffer⁶ (1.5 ml) was added to a solution of aldehyde **15** (48 mg, 810 μ mol, 1.00 equiv) and 2-methyl-2-butene (1 mL) in *t*BuOH (3 mL). The reaction mixture was stirred at RT for 30 min, 2 M aq. HCl was added (10 mL), and the product was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo; R*f*

⁶] Preparation of useful reagents and buffers, see last page.

= 0.08 (3:1 EtOAc/hexanes). The crude product was dissolved in Et₂O (5 mL) and a solution of CH₂N₂ in Et₂O (≈ 0.4 M in Et₂O)⁷ was added till the yellow color of CH₂N₂ persisted. The solvent was evaporated in vacuo and the crude product was purified by column chromatography (4:6 EtOAc/hexanes) to afford 16 as a white solid, 45 mg, (89 %); Rf = 0.81 (3:1 EtOAc/hexanes), MP = 95 °C; $[\alpha]_{D}^{26}$ (c 1.525 CHCl₃) = +47.7; ¹H NMR (300 MHz, CDCl₃[#] denotes major-, * minor rotamer signals) δ 8.59-8.42 (m, 2H), 7.28-7.23 (m, 2H), 7.21-7.10 (m, 2H), 7.06-6.98 (m, 2H), 6.94-6.87 (m, 2H), 5.46* (s, 1H), 5.24[#] (s, 1H), 5.19-5.16[#] (m, 1H), 5.08-5.05* (m, 1H), 4.90-4.74 (m, 2H), 3.78[#] (s, 3H), 3.72* (s, 3H) 3.67-3.35 (m, 4H), 2.6-2.48 (m, 2H), 2.34-2.26 (m, 2H), 2.22-2.02 (m, 4H), 1.98-1.91 (m, 2H), 1.84-1.77 (m, 2H), 1.58[#] (s, 9H), 1.47* (s, 9H), 0.83-0.82 (m, 42H); ¹³C NMR (75 MHz, CDCl₃, * denotes minor rotamer signals) δ 176.1*, 175.9, 174.6*, 174.2, 171.2, 153.9, 141.1, 130.6*, 130.4, 129.3, 123.9, 123.0, 110.9, 101.0*, 100.4, 91.9, 91.2*, 80.5, 79.4*, 61.2*, 60.6*, 60.4, 59.4, 57.5, 57.3*, 52.6, 52.4*, 47.2*, 47.1, 37.1, 36.8*, 32.4, 31.5*, 28.6*, 28.4, 24.3*, 23.4, 18.4, 11.0; IR (thin film) v 3242, 3945, 2866, 2173, 1732, 1700, 1622, 1472, 1367, 1366, 1299, 1202, 1174, 1114, 884, 752, 679; HiResMALDI-MS calcd for $C_{34}H_{49}N_3SiO_6$ [M+Na]⁺ 646.3288; found, 646.3277; Anal. Calcd for C₃₄H₄₉N₃SiO₆: C, 65.46; H, 7.92; N, 6.74. Found: C, 65.72; H, 7.98; N, 6.57.

TIPS deprotection of 16 (17)

methyl (2'*S*,3*S*,5'*R*)-1'-{[(2*S*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]carbonyl}-2'ethynyl-2-oxo-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylate (17)

To a solution of **16** (134 mg, 0.215 mmol, 1.00 equiv) in THF (5 mL), was added TBAF (1 M in THF, 260 μ L, 0.258 mmol, 1.20 equiv). The reaction mixture was stirred at RT for 8 h, diluted with CH₂Cl₂, washed with sat. aq. NaHCO₃, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography

⁷] Preparation of useful reagents and buffers, see last page.

(13:7 EtOAc/hexanes) to afford **17** as a white solid, 99 mg, (99 %); Rf = 0.43 (3:1 EtOAc/hexanes), MP = 97 °C; $[\alpha]_D^{24}$ (c 1.340 CHCl₃) = +24.4; ¹H NMR (300 MHz, CDCl₃[#] denotes major-, * minor rotamer signals) δ 8.91-8.50 (m, 2H), 7.73-7.52 (m, 1H), 7.32-7.23 (m, 2H), 7.16-6.88 (m, 5H), 5.57* (dd, 1H, J = 5.0, 9.3 Hz), 5.36-5.36* (m, 1H), 5.15-5.14[#] (m, 1H), 4.99-4.91 (m, 2H), 4.84-4.74[#] (m, 1H), 4.36-4.27* (m, 1H), 3.77[#] (s, 3H), 3.73* (s, 3H) 3.70-3.36 (m, 3H), 2.93-2.70 (m, 2H), 2.60-2.51 (m, 2H), 2.39-1.78 (m, 10H), 1.58[#] (s, 9H), 1.46* (s, 9H); ¹³C NMR (75 MHz, CDCl₃, * denotes minor rotamer signals) δ 178.1*, 175.3, 173.6, 173.4*, 171.5*, 170.4, 154.4*, 153.5, 140.6*, 140.3, 129.7, 129.1, 129.0*, 128.9*, 126.2*, 123.9, 122.8, 122.4*. 110.3, 109.5*, 80.3, 79.9*, 79.4, 79.3*, 61.0*, 60.4, 58.8, 58.4*, 57.7*, 57.5, 56.1, 54.1*, 52.7*, 52.6, 47.2, 47.0*, 38.1*, 37.3, 32.5, 29.6*, 28.5*, 28.3, 24.8, 24.0*; IR (thin film) v 3243, 2978, 1729, 1686, 1621, 1473, 1400, 1366, 1301, 1174, 752; HiResMALDI-MS calcd for C₂₅H₂₉N₃O₆ [M+Na]⁺ 490.1954; found, 490.1944; Anal. Calcd for C₂₅H₂₉N₃O₆: C, 64.23; H, 6.25; N, 8.99. Found: C, 64.18; H, 6.36; N, 8.90.

Hydrogenation of 17 (18)

methyl (2'*S*,3*S*,5'*R*)-1'-{[(2*S*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]carbonyl}-2oxo-2'-vinyl-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylate (18)

To a solution of **17** (20 mg, 430 µmol, 1.00 equiv) and quinoline (2.6 µL, 220 µmol, 0.50 equiv) in EtOH (2 mL), was added Pd/BaSO₄ (6.6 mg, 33 wt%). The reaction mixture was stirred at RT under H₂ atmosphere for 10 h. The solution was filtered over Celite and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (7:3 EtOAc/hexanes) to afford **18** as a white solid, 18 mg, (90 %); R*f* = 0.45 (3:1 EtOAc/hexanes), MP = 112 °C; $[\alpha]_D^{24}$ (c 1.590 CHCl₃) = -3.4; ¹H NMR (300 MHz, CDCl₃[#] denotes major-, * minor rotamer signals) δ 8.56-8.40 (m, 2H), 7.70[#] (d, 1H, *J* = 7.5 Hz), 7.30-7.19 (m, 2H), 7.15-6.99 (m, 3H), 6.94-6.85 (m, 2H), 5.57-5.24 (m, 4H), 5.14-4.99 (m, 2H), 4.92-4.78 (m, 3H), 4.72-4.61 (m, 2H), 4.33-4.29[#] (m, 1H), 3.79[#]

(s, 3H), 3.78* (s, 3H) 3.67-3.35 (m, 4H), 2.64-2.52 (m, 3H), 2.42-2.09 (m, 3H), 2.02-1.70 (m, 6H), 1.57* (s, 9H), $1.49^{\#}$ (s, 9H); ¹³C NMR (75 MHz, CDCl₃, * denotes minor rotamer signals) δ 178.7, 176.5*, 174.6*, 173.9, 172.5, 171.5*, 154.9*, 153.8, 141.0, 140.9*, 135.1, 134.7*, 129.2, 128.8*, 125.9, 123.7*, 122.9*, 122.7, 119.6*, 119.4, 114.6, 111.0*, 110.1, 80.4*, 79.8, 68.9*, 68.1, 61.1*, 59.8, 59.1*, 57.8, 57.1*, 56.4, 52.9, 52.6*, 47.3, 47.0*, 38.1, 37.0*, 32.2*, 29.6, 28.6, 28.5*, 24.9, 23.4*; IR (thin film) v 3241, 2978, 1727, 1683, 1619, 1473, 1400, 1366, 1300, 1269, 1203, 1174, 1123, 753; HiResMALDI-MS calcd for C₂₅H₃₁N₃O₆ [M+Na]⁺ 492.2110; found, 492.2100; Anal. Calcd for C₂₅H₃₁N₃O₆: C, 63.95; H, 6.65; N, 8.95. Found: C, 63.74; H, 6.69; N, 8.87.

Dihydroxylation of 18 and diol cleavage (19)

methyl (2'*R*,3*S*,5'*R*)-1'-{[(2*S*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]carbonyl}-2'formyl-2-oxo-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxylate (19)

A solution of **18** (17 mg, 360 µmol, 1.00 equiv) and NMO·H₂O (6 mg, 430 µmol, 1.20 equiv) in THF:*t*BuOH:H₂O 4:4:1) (1 mL) was stirred at RT for 30 min before OsO₄ was added (4 wt%in H₂O, 230 µL, 360 µmol, 1 equiv). The reaction mixture was stirred at RT for 3 d. The reaction was quenched by addition of a 2 M aq. Na₂S₂O₃ (2 mL) and EtOAc (2 mL). The biphasic mixture was stirred for 6 h. The phases were separated; the organic layer was washed with brine (5 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (3:1 EtOAc/hexanes) afforded the diol as colourless oil: 16 mg (88 %). R*f* = 0.18 (3:1 EtOAc/hexanes), $[\alpha]_D^{26}$ (c 1.545 CHCl₃) = -1.4; ¹H NMR (300 MHz, CDCl₃) δ 8.33 (br, 1H), 7.67 (d, 1H, *J* = 7.5 Hz), 7.20 (ddd, 1H, *J* = 1.3, 7.5, 7.5 Hz), 7.03 (ddd, 1H, *J* = 1.3, 7.5, 7.5 Hz), 6.81 (d, 1H, *J* = 7.5 Hz), 5.39 (d, 1H, *J* = 9.3 Hz), 5.27 (d, 1H, *J* = 10.6 Hz), 4.52 (s, 1H), 4.34 (dd, 1H, *J* = 4.4, 8.1 Hz), 4.07 (ddd, 1H, *J* = 10.0, 13.7 Hz), 2.68 (d, 1H, *J* = 14.9 Hz), 2.44-2.10 (m, 3H), 1.91-1.81

(m, 1H), 1.48 (s, 9H); ¹³C NMR (75 MHz, CDCl₃,) δ 181.5, 175.7, 171.3, 155.7, 141.1, 128.8, 128.0, 127.7, 122.5, 109.8, 80.7, 71.7, 69.9, 62.1, 59.7, 58.6, 54.8, 52.8, 47.8, 38.1, 30.0, 28.5, 24.9; IR (thin film) v 3449, 2977, 1722, 1660, 1474, 1412, 1368, 1328, 1206, 1165, 1131, 1030, 755; HiResMALDI-MS calcd for C₂₅H₃₃N₃O₈ [M+Na]⁺ 526.2165; found, 526.2155.

To a solution of the diol (88 mg, 0.175 mmol, 1.00 equiv) in EtOAc (5 mL) was added Pb(OAc)₄ (90 mg, 0.262 mmol, 1.50 equiv). A yellow suspension was obtained and after stirring for 10 min, the mixture was filtered through a plug of silica gel, eluting with EtOAc. Evaporation of the solvent and purification by column chromatography (3:1 EtOAc/hexanes) afforded **19** as a colourless oil: 72 mg, (87 %); Rf = 0.51 (3:1 EtOAc/hexanes), $[\alpha]_D^{24}$ (c 0.760 CHCl₃) = +16.02; ¹H NMR (300 MHz, CDCl₃) δ 9.05 (d, 1H, *J*=4.7 Hz), 8.15 (br, 1H), 7.84 (d, 1H, *J*=7.5 Hz), 7.23 (ddd, 1H, *J*=0.9, 7.5, 7.5 Hz), 7.02 (ddd, 1H, *J*= 0.9, 7.5, 7.5 Hz), 6.87 (d, 1H, *J*=7.5 Hz), 5.60 (dd, 1H, *J*= 8.4, 8.4 Hz), 4.53 (d, 1H, *J*=4.7 Hz), 4.25 (dd, 1H, *J*=4.1, 8.1 Hz), 3.82 (s, 3H), 3.55-3.38 (m, 2H), 2.78-2.61 (m, 2H), 2.34-1.96 (m, 3H), 1.92-1.80 (m, 1H), 1.49 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 195.0, 176.1, 173.9, 171.4, 154.5, 139.8, 129.3, 126.4, 125.4, 122.8, 110.4, 79.9, 70.3, 59.0, 56.9, 53.8, 52.9, 47.0, 40.4, 29.3, 28.4, 24.8; IR (thin film) v 3250, 2979, 2251, 1732, 1681, 1652, 1651, 1474, 1404, 1367, 1272, 1210, 1165, 1131, 912, 732; HiResMALDI-MS calcd for C₂₄H₂₉N₃O₇ [M+Na]⁺ 494.1903; found, 494.1907.

5-(isopropylthio)-1-phenyl-1*H*-tetrazole

To a mixture of *i*PrOH (79 μ l, 1.03 mmol, 1.00 equiv), triphenylphosphine (296 mg, 1.13 mmol, 1.10 equiv) and 2-phenyl-2*H*-tetrazole-5-thiol (201 mg, 1.13 mmol, 1.10 equiv) in THF (12 ml) was added DEAD (178 μ l, 1.128 mmol, 1.10 equiv) dropwise over 10 min. The yellow solution was stirred at RT for 8 h and then concentrated under reduced pressure. A mixture of pentane and EtOAc (9:1, 20 ml) was added, the suspension was filtered over Celite and the filtrate concentrated under reduced pressure. Purification by flash chromatography (1:9 EtOAc/hexanes) provided 5-(iso-

propylsulfanyl)-1-phenyl-1*H*-tetrazole (183 mg, 81 % yield) as colourless oil. Rf = 0.77 (1:3 EtOAc/hexanes); ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.52 (m, 5H), 4.16 (quintuplet, 1H, J = 6.5 Hz), 1.52 (d, 6H, J = 6.5 Hz).

$$\overset{Ph}{\overset{N}{\underset{N=N}{\overset{N}{\xrightarrow{}}}}} \overset{O}{\underset{Me}{\overset{Me}{\xrightarrow{}}}} \overset{O}{\underset{Me}{\overset{N}{\xrightarrow{}}}} \overset{Me}{\underset{Me}{\overset{N}{\xrightarrow{}}}}$$

5-(isopropylsulfonyl)-1-phenyl-1*H*-tetrazole (20)

To a solution of 5-(iso-propylsulfanyl)-1-phenyl-1*H*-tetrazole (183 mg, 0.831 mmol, 1.00 equiv) in methanol (8 mL) was added an aq. solution (8 mL) of Oxone (1.53 g, 2.49 mmol, 3.00 equiv) at rt. After stirring at rt for 2 d, the mixture was diluted with Et₂O (20 mL), washed with H₂O (25 mL). The layers were separated and the aq. phase was extracted with Et₂O (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by flash chromatography (1:4 EtOAc/hexanes) provided sulfone **20** (177 mg, 85 % yield) as a white solid. R*f* = 0.38 (1:3 EtOAc/hexanes); MP = 67 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.69-7.56 (m, 5H), 4.03 (quintuplet, 1H, *J* = 6.9 Hz), 1.52 (d, 6H, *J* = 6.9 Hz).

Julia Kociensky olefination of 19 (21)

methyl (2'*S*,3*S*,5'*R*)-1'-{[(2*S*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]carbonyl}-2'-(2methylprop-1-en-1-yl)-2-oxo-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'carboxylate (21)

To a solution of sulfone **20** (28.3 mg, 0.112 mmol, 2.30 equiv) in THF (0.7 mL) at -78°C was added dropwise LHMDS⁸ (0.33M in THF, 340 μ L, 0.112 mmol, 2.30 equiv). The yellow solution was stirred at -78°C for 30 min. This solution was added in one portion

⁸] Preparation of useful reagents and buffers, see last page.

with a precooled syringe to a solution of aldehyde **19** (23 mg, 0.049 mmol, 1.00 equiv) in THF (0.7 mL) at -78 °C. The reaction mixture was stirred at -78°C for 3 h then the mixture was slowly warmed to RT and stirred for 8 h. The reaction mixture was diluted with Et₂O (10 mL) and washed with H₂O (10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography (3:2 EtOAc/hexanes) to afford **21** as white crystals, 19 mg (78 %) Rf =0.28 (3:1 EtOAc/hexanes), $[\alpha]_{D}^{24}$ (c 0.985 CHCl₃) = +30.7; MP = 231 °C; ¹H NMR (300 MHz, CDCl₃, [#] denotes major-, * minor rotamer signals) δ 7.92 (br, 2H), 7.51-7.45* (m, 1H), $7.38-7.17^{\#}$ (m, 1H), 7.12-6.96 (m, 4H), $6.89^{\#}$ (d, 1H, J = 7.5 Hz), 6.81^{*} (d, 1H, J =7.5 Hz), 5.50^{*} (t, 1H, J = 7.8 Hz), 5.50^{*} (d, 1H, J = 9.7 Hz), 5.22^{*} (d, 1H, J = 9.7 Hz), 4.98* (t, 1H, J = 9.0 Hz), $4.84-4.70^{\#}$ (m, 2H), $4.46^{\#}$ (dd, 1H, J = 2.2, 8.7 Hz), 4.29* (dd, 1H, J = 3.4, 8.1 Hz), $3.78^{\#}$ (s, 3H), 3.73^{*} (s, 3H), 3.70-3.50 (m, 2H), 3.45-3.34 (m, 2H), 2.70-2.53 (m, 2H), 2.35-1.72 (m, 10H), 1.72[#] (s, 3H), 1.59[#] (s, 9H), 1.57* (s, 9H), 1.53[#] (s, 3H), 1.53* (s, 3H), 1.51* (s, 3H); ¹³C NMR (75 MHz, CDCl₃,) δ 176.0, 174.0, 171.2, 153.5, 139.9, 137.9, 129.5, 128.7, 123.7, 122.8, 121.4, 110.1, 80.2, 63.0, 60.7, 58.8, 57.2, 52.4, 46.8, 37.3, 32.2, 28.4, 25.9, 23.2, 18.3; IR (thin film) v 3246, 2977, 2931, 1727, 1698, 1619, 1472, 1434, 1401, 1366, 1298, 1270, 1202, 1173, 1167, 752; HiResMALDI-MS calcd for $C_{27}H_{35}N_{3}O_{6}[M+Na]^{+}$ 520.2423; found, 520.2409.

Crystal data for **21** at 193 K, $M_r = 616.95$, orthorhombic space group P2(I)2(I)2(I), $\rho_{calc} = 1.311$ g cm³, Z = 4, a = 8.9350(10), b = 13.870(2), c = 25.228(7) Å, $\alpha = 90.00$, $\beta = 90.00$, $\gamma = 90.00^\circ$, V = 3126.5(10) Å³. Final R(F) = 0.0608, $wR(F^2) = 0.1778$ for 395 parameters and 2945 reflections with $I > 2\sigma(I)$ and $\theta < 69.98^\circ$.

CCDC 196804 (**21**) contains the supplementary crystallographic data for this structure. This data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/retrieving.html</u> (or from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

C8-C9 Olefination of 21 (22)

methyl (2'*S*,3*S*)-1'-{[(2*S*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]carbonyl}-2'-(2-methylprop-1-en-1-yl)-2-oxo-1,1',2,2'-tetrahydrospiro[indole-3,3'-pyrrole]-5'-carboxylate (22)

To a solution of **21** (9.0 mg, 180 µmol, 1.00 equiv) in THF (1 mL) at 0 °C was added LHMDS (0.33 M in THF, 121 µL, 400 µmol, 2.20 equiv). The solution was kept at 0 °C for 30 min and a solution of phenylselenyl chloride (7.6 mg, 400 µmol, 2.20 equiv) in THF (1 mL) was added. The reaction mixture was stirred at 0 °C for 90 min, then quenched by addition of sat. aq. NaHCO₃ (10 mL). The product was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude mixture was used without further purification. R*f* = 0.59, 0.51 (3:1 EtOAc/hexanes).

To a solution of the crude selenide in THF (0.5 mL) at 0 °C was added DMDO (\approx 0.09M in acetone, 80 µL, 0.072 mmol, 4.00 equiv)⁹. Stirring was continued for 3 h, the solvent was evaporated in vacuo. Column chromatography (11:9 EtOAc/hexanes) afforded **22** as a colourless oil, 6.9 mg (74 % over two steps) R*f* = 0.50 (3:1 EtOAc/hexanes), $[\alpha]_D^{25}$ (c 0.220 CHCl₃) = +42.0; ¹H NMR (300 MHz, CDCl₃, [#] denotes major-, * minor rotamer signals) δ 7.97-7.60 (br, 2H), 7.26-7.19 (m, 2H), 7.14-7.10 (m, 2H), 7.07-6.97 (m, 2H), 6.85 (d, 2H, *J* = 7.5 Hz), 5.71-5.67* (m, 2H), 5.49-5.44[#] (m, 2H), 5.31-5.23 (m, 2H), 4.52-4.48* (m, 1H), 4.37-4.35[#] (m, 1H), 3.85[#] (s, 3H), 3.84* (s, 3H), 3.68-3.55 (m, 2H), 3.47-3.29 (m, 2H), 2.18-1.65 (m, 8H), 1.58 (s, 6H), 1.50[#] (s, 9H), 1.45* (s, 9H), 1.42* (s, 3H), 1.25[#] (s, 3H); ¹³C NMR (75 MHz, CDCl₃,) δ 177.2, 171.7, 162.1, 153.6, 140.3, 140.0, 137.6, 129.1, 128.9, 127.5, 126.8, 122.3, 122.0, 109.8, 80.2, 65.5, 58.2, 52.6, 46.8, 31.5, 28.6, 25.4, 23.4, 18.3, 17.8; IR (thin film) v 3248, 2977, 2932, 1732, 1694, 1619,

^{[&}lt;sup>9</sup>]Preparation of useful reagents and buffers, see last page.

1472, 1400, 1366, 1260, 1228, 1164, 1126, 753; HiResMALDI-MS calcd for C₂₇H₃₃N₃O₆ [M+Na]⁺ 518.2267; found, 518.2276.

Preparation of spirotryprostatin B (2)

A solution of 22 (4.7mg, 0.010 mmol, 1.00 equiv) in 5:1 CH₂Cl₂/TFA (0.6 mL) was stirred at RT for 30 min. The solvent was evaporated in vacuo and the crude product was dissolved in CH₂Cl₂ (0.5 mL) and NEt₃ (5.2 µL, 0.038 mmol, 4.00 equiv) was added. The reaction mixture was stirred at RT for 4 h, then guenched by addition of sat. aq. NaHCO₃ (10 mL). The product was extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Column chromatography (75:20:8 CH₂Cl₂/EtOAc/*i*PrOH) afforded spirotryprostatin B as a white solid, 2.6 mg (74 % over two steps) Rf = 0.23 (75:20:8 CH₂Cl₂/EtOAc/*i*-PrOH), MP = 136 °C; $[\alpha]_{D}^{26}$ (c 0.045 CHCl₃) = -148.8; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (br, 1H), 7.24 (ddd, 1H, J = 1.1, 7.6, 7.6 Hz), 7.07 (d, 1H, J = 7.6 Hz), 7.00 (ddd, 1H, J = 1.1, 7.6, 7.6 Hz), 6.85 (d, 1H, J = 7.6 Hz), 5.78 (s, 1H), 5.43 (d, 1H, J = 8.9 Hz), 5.21 (ddd, 1H, J= 1.4, 8.9, 8.9 Hz, 4.34 (dd, 1H. J = 6.1, 10.7 Hz), 3.80 (ddd, 1H, J = 8.2, 12.2, 12.2 Hz), 3.57 (m, 1H), 2.51-2.47 (m, 1H), 2.13-2.09 (m, 1H), 2.04-1.93 (m, 2H), 1.57 (s, 3H), 1.28 (d, 3H, J = 1.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 177.8, 162.6, 155.1, 140.3, 138.4, 138.3, 129.1, 127.9, 127.3, 122.3, 120.5, 116.3, 109.8, 64.2, 61.8, 61.6, 44.9, 29.3, 25.5, 22.1, 18.3; IR (thin film) v 3212, 2926, 1855, 1725, 1682, 1644, 1471, 1434, 1326, 1293, 1215, 1157, 1105, 753; HiResMALDI-MS calcd for $C_{21}H_{21}N_3O_3$ [M+Na]⁺ 386.1481; found, 386.1478.

NMO = N-methylmorpholine-N-oxide, TBAF = tetrabutylammonium fluoride, LHMDS = lithium hexamethyldisilazide, DMDO = dimethyl-dioxirane, TFA = trifluoroacetic acid, NDMBA = N,N-dimethyl-barbituric acid.

Preparation of useful reagents and buffers:

LHMDS, 0.33M in THF

To a solution of HMDS (1 mL, 4.73 mmol, 1.00 equiv) in THF (10 mL) at -78° C was added *n*BuLi (1.42 M in hexanes, 3.33 mL, 4.73 mmol, 1.00 equiv). The solution was allowed to stir at 0°C for 30 min.

CH_2N_2 , $\approx 0.4M$ in Et_2O

A solution of KOH (500 mg, 8.77 mmol, 3.90 equiv) in H₂O (500 μ L) was cooled to 0 °C and Et₂O (5.6 mL) was added. To the biphasic mixture at 0 °C was added 329 mg *N*-methyl-*N*'-nitro-*N*-nitrosoguanidine (\approx 50 % in H₂O, 2.24 mmol, 1.00 equiv) in small portions. The yellow organic solution was decanted and used immediately.

Boc-L-ProCl, 0.14 M in CH₂Cl₂

To a solution of DMF (103 μ L, 1.38 mmol, 1.00 equiv) in CH₂Cl₂ (10 mL) at 0 °C was added oxalyl chloride (121 μ L, 1.38 mmol, 1.00 equiv). A white precipitate formed. Pyridine (111 μ L, 1.38 mmol, 1.00 equiv) was added dropwise to the reaction mixture; the precipitate dissolved and the solution turned yellow. *N*-Boc-L-proline (297 mg, 1.38 mmol, 1.00 equiv) was then added to the solution. The reaction mixture was stirred for 30 min; R*f* = 0.73 (EtOAc).

pH 3.6-buffer

Solution of citric acid monohydrate (1.43 g) and Na₂HPO₄·12 H₂O (2.31 g) in H₂O (98.5 mL).

Dimethyl-dioxirane, ≈ 0.09 M in acetone

In a 2 L 2-neck flask (1 exit connected to 100 mL 2-neck receiving flask with dry ice condenser) a solution of NaHCO₃ (29 g) in acetone (96 mL) and H₂O (127 mL) was cooled to 5-10 °C (ice-bath). Oxone (60 g) was added in 5 portions; in-between, the reaction mixture was stirred for 3 min. 3 min after the last addition, the condenser was

filled with dry ice/acetone and the receiving flask was cooled with a -78 °C cooling bath. The ice-bath was removed and the DMDO/acetone solution was distilled at reduced pressure (80-100 Torr). About 60 mL of solution were obtained. The solution is dried (K₂CO₃) and stored over activated molecular sieves (3 Å) at -4 °C.