

Supporting Information

for

Angew. Chem. Int. Ed. 2004 **60** 176

© Wiley-VCH 2004

69451 Weinheim, Germany

Iterative One-Pot Oligosaccharide Synthesis

Xuefei Huang,^{a*} Lijun Huang^a, Haishen Wang^b, and Xin-Shan Ye^{b*}

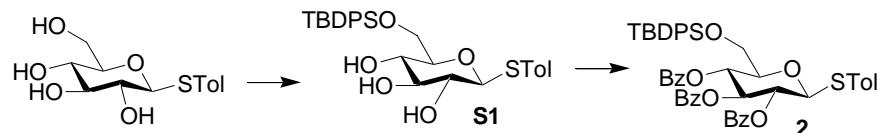
^aDepartment of Chemistry, University of Toledo, 2801 West Bancroft Street, MS 602, Toledo, Ohio 43606, USA

^bThe State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road #38, Beijing, China 100083

General Procedures. All reactions were carried out under argon or nitrogen with anhydrous solvents in flame-dried glassware, unless otherwise noted. All glycosylation reactions were performed in the presence of molecular sieves, which were flame-dried right before the reaction under high vacuum. Glycosylation solvents were freshly distilled before usage over drying agents (Et_2O with $\text{Na}/\text{benzophenone}$, CH_2Cl_2 with CaH_2). Chemicals used were reagent grade as supplied except where noted. Analytical thin-layer chromatography was performed using silica gel 60 F254 glass plates (EM Science); compound spots were visualized by UV light (254 nm) and/or by staining with a yellow solution containing $\text{Ce}(\text{NH}_4)_2(\text{NO}_3)_6$ (0.5 g) and $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}4\text{H}_2\text{O}$ (24.0 g) in 6% H_2SO_4 (500 mL). Flash column chromatography was performed on silica gel 60 (230-400 Mesh, EM Science). $^1\text{H-NMR}$ and $^{13}\text{C-NMR}$ spectra were recorded on a Varian VXRS-400 or Inova-600 instrument and were referenced using TMS (0 ppm), residual CHCl_3 (δ $^1\text{H-NMR}$ 7.26 ppm, $^{13}\text{C-NMR}$ 77.0 ppm) or residual CD_2HOD (δ $^1\text{H-NMR}$ 3.30 ppm, $^{13}\text{C-NMR}$ 49.0 ppm). ESI mass spectra were recorded on ESQUIRE LC-MS operated in positive ion mode. High-resolution mass spectra were recorded on a Micromass electrospray TofTM II (Micromass, Wythenshawe, UK) mass spectrometer equipped with an orthogonal electrospray source (Z-spray) operated in positive ion mode.

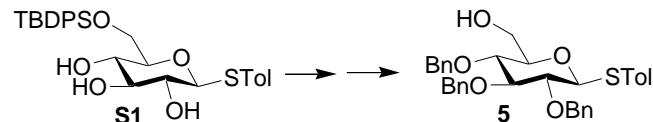
General Procedure for Chemoselective Glycosylation. After a mixture of donor (60 μmol), AgOTf (120 μmol) and MS-AW-300 (300 mg) in Et_2O (2 mL) was stirred at -60°C for 1h, *p*-toluene sulfenyl chloride (*p*-TolSCI) (60 μmol , 8.6 μL) was added via a micro-syringe. After five minutes when TLC indicated that donor was completely activated, a solution of the acceptor (54 μmol) in Et_2O or CH_2Cl_2 (0.5 mL) was added. The reaction mixture was stirred further for 15 minutes and warmed up to room temperature, followed by addition of triethylamine and filtration to remove all insoluble material. The filtrate was concentrated and the desired compound was purified by silica gel chromatography. Typical conditions for chromatography are silica gel / product ~ 2000 by weight with a flow rate of approximate 5 mL/min and a solvent gradient of R_f ~ 0.1 - 0.3.

General Procedure for One-pot Synthesis. After a mixture of donor (60 μmol), AgOTf (240 μmol) and MS-AW-300 (300 mg) was stirred at -60°C for 1h, *p*-TolSCI (60 μmol , 8.6 μL) was added via a micro-syringe. After five minutes when TLC indicated that donor was completely activated, a solution of acceptor 1 (54 μmol) in Et_2O or CH_2Cl_2 (0.5 mL) was added. After 15 minutes, the reaction mixture was warmed to room temperature and stirred for 15 minutes before cooling back to -60°C. *p*-TolSCI (54 μmol , 7.5 μL) was added to the reaction mixture followed by a solution of acceptor 2 (49 μmol). The whole process was repeated until the addition of last acceptor. Et_2O was used as the glycosylation solvent unless otherwise specified. The reaction was quenched with triethylamine and all insoluble material was removed by filtration. The desired compound was purified by silica gel flash

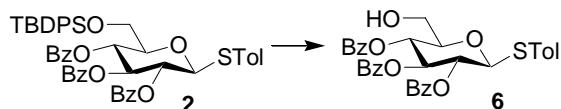

chromatography. Typical conditions for chromatography are silica gel / product ~ 2000 by weight with a flow rate of approximate 5 mL/min and a solvent gradient of R_f ~ 0.1 - 0.3.

In oligosaccharides containing glucose or galactose, stereochemistry of the glycosidic linkages are determined by the coupling constant $^3J(^1H, ^1H)$ between H1 and H2 protons. In mannose linkages, the stereochemistry is determined by $^1J(^{13}C, ^1H)$ between anomeric carbon and anomeric proton.^[1]

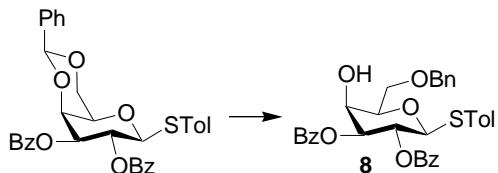
Building blocks **1**, **3**, **4**, **7**, **15**, **21** and **22** were synthesized according to literature procedures.^[2, 3]



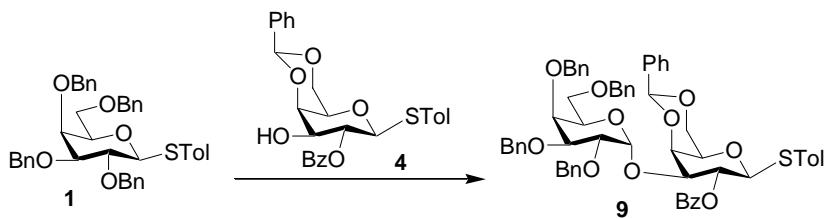
p-Toluenyl chloride.^[4] To a solution of 4-methylbenzenethiol (6.20g, 50 mmol) in anhydrous hexanes (25 mL) at 0°C was added sulfonyl chloride (4.8 mL, 60 mmol) over 10 minutes. The reaction was warmed to room temperature after one hour, and stirred at room temperature for one more hour. After removal of hexanes and excess sulfonyl chloride under vacuum, *p*-TolSCl (5.6 g, d=1.1, 70%) was obtained by vacuum distillation (50 °C, 1 mmHg) using a short-path distillation apparatus as a red liquid. ¹H-NMR (399.95 MHz, CDCl₃) δ 2.40 (s, 3H), 7.20-7.25 (m, 2H), 7.60-7.65 (m, 2H).


p-Tolyl-2,3,4-tri-O-benzoyl-6-O-^tbutyldiphenylsilyl-1-thio- β -D-glucopyranoside (2). A solution of *p*-tolyl-1-thio- β -D-glucopyranoside (4.0 g, 14.0 mmol),^[3] imidazole (1.4 g, 20.6 mmol) and *tert*-butyldiphenylsilyl chloride (4.0 g, 14.5 mmol) in DMF (10 mL) was stirred at room temperature for 12 hours. Diethyl ether (30 mL) and sat. aqueous NH₄Cl solution (30 mL) were added. The organic layer was collected and purified by flash column chromatography to give the corresponding 6-O-*tert*-butyldiphenylsilyl ether **S1** (6.6 g, 90%) as a syrup.

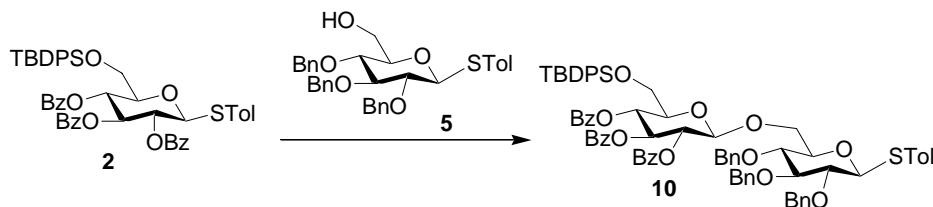
To a solution of **S1** (1.5 g, 2.9 mmol) and *N,N*-dimethylamino pyridine (0.35 g, 2.9 mmol) in pyridine (5 mL) and CH₂Cl₂ (20 mL) was added benzoyl chloride (1.45 g, 10.3 mmol) at 0°C. The mixture was stirred overnight and was washed with 1N HCl (10 mL) three times. The organic layer was collected and the desired product **2** (1.72 g, 72%) was obtained as a white foam after flash chromatography. ¹H-NMR (399.95 MHz, CDCl₃) δ 1.04 (s, 9H), 2.32 (s, 3H), 3.80 – 3.93 (m, 3H), 4.96 (d, 1H, *J* = 9.6 Hz), 5.44 (t, 1H, *J* = 9.6 Hz), 5.61 (t, 1H, *J* = 9.6 Hz), 5.82 (t, 1H, *J* = 9.6 Hz), 7.02 – 7.08 (m, 2H), 7.13 – 7.95 (m, 27H); ¹³C-NMR (100.5 MHz, CDCl₃) δ 19.38, 21.43, 26.87, 62.98, 69.06, 70.95, 74.98, 79.66, 86.61, 127.84, 127.91, 128.41, 128.45, 128.87, 129.95, 129.99, 130.01, 130.10, 133.11, 133.14, 133.30, 133.42, 133.86, 135.75, 135.88, 138.65, 165.17, 165.28, 166.14; HRMS C₅₀H₄₈NaO₈SSi [M + Na⁺] calc. 859.2737 found 859.2740.



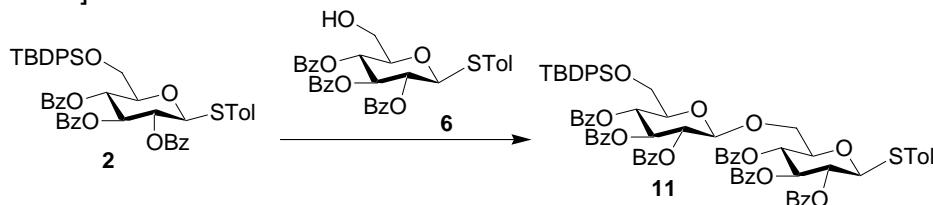
p-Tolyl-2,3,4-tri-O-benzyl-1-thio- β -D-glucopyranoside (5). To a solution of the 6-O-^tbutyldiphenylsilyl ether **S1** (3 g, 5.7 mmol) in DMF (10 mL), 60% NaH (0.9 g, 22.5 mmol) was added at 0°C. The solution became very viscous and additional DMF (30 mL) was added followed by benzyl bromide (3.9 g, 22.8 mmol). The reaction mixture was stirred at room temperature overnight. Diethyl ether (60 mL) and sat. aqueous NH₄Cl solution (30 mL) were added. The organic layer was collected


and purified by flash column chromatography to give the corresponding 2,3,4-tri-O-benzyl-6-O-*tert*-butyldiphenylsilyl ether (3.2 g, 70%) as a syrup. The 2,3,4-tri-O-benzyl-6-O-*tert*-butyldiphenylsilyl ether (2.2 g, 2.8 mmol) was dissolved in 1 M solution of tetrabutylammonium fluoride in THF (8 mL) and the mixture was stirred for four hours. Diethyl ether (30 mL) and sat. aqueous NH₄Cl solution (30 mL) were added. The organic layer was collected and purified by flash column chromatography to give the desired product **5** (1.36 g, 88%) as a white solid. ¹H-NMR (399.95 MHz, CDCl₃) δ 1.88 (t, 1H, *J* = 6.8 Hz), 3.34 – 3.43 (m, 1H), 3.48 (t, 1H, *J* = 9.2 Hz), 3.58 (t, 1H, *J* = 9.2 Hz), 3.68 – 3.78 (m, 2H), 3.84 – 3.91 (m, 1H), 4.63 – 4.70 (m, 2H), 4.78 (d, 1H, *J* = 10.4 Hz), 4.85 – 4.97 (m, 4H), 7.10 – 7.17 (m, 2H), 7.22 – 7.48 (m, 17H); ¹³C-NMR (100.5 MHz, CDCl₃) δ 21.38, 62.38, 75.36, 75.75, 76.06, 77.87, 79.51, 81.33, 86.81, 88.07, 128.00, 128.05, 128.22, 128.29, 128.47, 128.69, 128.72, 128.77, 129.71, 130.06, 132.89, 138.10, 138.21, 138.29, 138.58; HRMS C₃₄H₃₆NaO₅S [M + Na⁺] calc. 579.2181 found 579.2205.

p-Tolyl-2,3,4-tri-O-benzoyl-1-thio- β -D-glucopyranoside (6). To a solution of **2** (1.45 g, 1.73 mmol) in 1 M solution of tetrabutylammonium fluoride in THF (7 mL) was added acetic acid until the pH of the solution was around 6. The reaction mixture was stirred at room temperature for 4 hours. Diethyl ether (10 mL) and sat. aqueous NH₄Cl solution (30 mL) were added. The organic layer was collected and purified by flash column chromatography to give the desired product **6** (1.1 g, 100%) as a white solid. ¹H-NMR (599.87 MHz, CDCl₃) δ 2.33 (s, 3H), 2.62 (dd, 1H, *J* = 5.4, 8.4 Hz), 3.76 (dt, 1H, *J* = 5.4, 12.6 Hz), 3.80-3.88 (m, 2H), 4.99 (d, 1H, *J* = 10.2 Hz), 5.45 (t, 1H, *J* = 9.6 Hz), 5.46 (t, 1H, *J* = 9.6 Hz), 5.92 (t, 1H, *J* = 9.6 Hz), 7.10 – 7.14 (m, 2H), 7.22 – 7.26 (m, 2H); 7.33 – 7.42 (m, 7H), 7.47 – 7.52 (m, 2H), 7.78 – 7.82 (m, 2H), 7.91 – 7.93 (m, 2H), 7.95 – 7.98 (m, 2H); ¹³C-NMR (100.5 MHz, CDCl₃) δ 21.44, 61.88, 69.56, 70.94, 74.44, 79.10, 86.49, 128.54, 128.66, 128.74, 129.96, 130.10, 130.15, 133.49, 133.57, 133.89, 134.01, 139.03, 165.30, 166.10; HRMS C₃₄H₃₀NaO₈S [M + Na⁺] calc. 621.1559 found 621.1600.

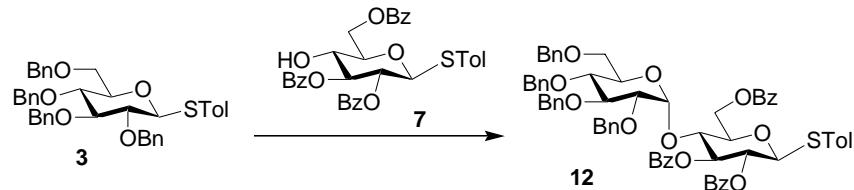


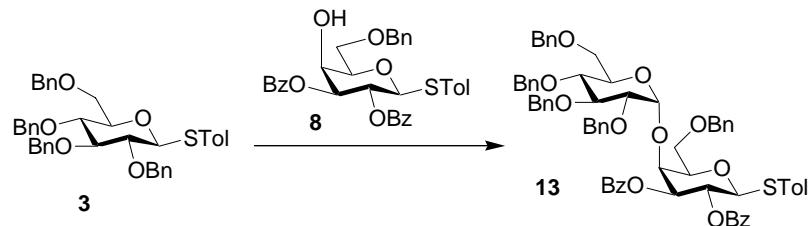
p-Tolyl-2,3-di-O-benzoyl-6-O-benzyl-1-thio- β -D-galactopyranoside (8). A solution of *p*-tolyl-2,3-O-dibenzoyl-4,6-O-benzylidene-1-thio- β -D-galactopyranoside (0.1 g, 172 μ mol)^[3] and sodium cyanoborohydride (0.11 g, 1.7 mmol) in THF (2 mL) was stirred for one hour in the presence of MS-AW-300 (400 mg) at 0°C. A solution of 2 M hydrogen chloride in ether (1 mL) was added slowly until no more gas was evolved. The reaction mixture was further stirred for one hour and the solid was filtered off. CH₂Cl₂ (10 mL) was added to the filtrate followed by sat. aqueous NaHCO₃ (10 mL) solution. The organic layer was collected and **8** (0.09 g, 90%) was obtained after flash chromatography. ¹H-NMR (399.95 MHz, CDCl₃) δ 2.04(s 3H), 2.87 (d, 1H, *J* = 4.4 Hz), 3.57-3.59 (m, 3H), 4.38-4.43 (m, 1H), 4.57-4.64 (m, 2H), 4.88 (d, 1H, *J* = 10.0 Hz), 5.31 (dd, 1H, *J* = 3.2, 10.0 Hz), 5.77 (t, 1H, *J* = 10.0 Hz); ¹³C-NMR (100.5 MHz, CDCl₃) δ 21.43, 60.65, 68.28, 68.56, 69.89, 74.06, 75.88, 77.49, 87.07, 128.02, 128.10, 128.59, 128.64, 128.72, 129.37, 129.82, 129.89, 130.03, 130.10, 133.39, 133.59, 133.64, 137.89, 138.54, 165.51, 166.09; HRMS C₃₄H₃₂NaO₇S [M + Na⁺] calc. 607.1766 found 607.1732.


p-Tolyl-3-O-(2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl)-2-O-benzoyl-4,6-O-benzylidene-1-thio-β-D-galactopyranoside (9).

Compound **9** (38.0 mg, 36 μ mol, 87 % yield) was prepared according to the general procedure for chemoselective glycosylation from donor **1** (30.0 mg, 46 μ mol) and acceptor **4** (21 mg, 42 μ mol). ^1H NMR (500 MHz, CDCl_3) : 7.96 (d, J = 8.0 Hz, 2H), 7.41-7.45 (m, 3H), 7.34 (d, J = 7.5 Hz, 2H), 7.02-7.27 (m, 23H), 6.89 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 5.49 (t, J = 9.5 Hz, 1H), 5.32 (s, 1H), 4.98 (d, J = 3.0 Hz, 1H), 4.70 (d, J = 11.8 Hz, 1H), 4.65 (d, J = 9.5 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.35 (d, J = 12.0 Hz, 1H), 4.24-4.31 (m, 4H), 4.18 (d, J = 12.0 Hz, 1H), 3.84-3.94 (m, 3H), 3.74 (t, J = 6.0 Hz, 1H), 3.55 (d, J = 10.0 Hz, 1H), 3.34 (d, J = 13.0 Hz, 2H), 3.16 (m, 2H), 2.26 (s, 3H); ^{13}C NMR (125 MHz, CDCl_3) : 164.62, 138.80, 138.66, 138.54, 138.28, 138.08, 137.66, 134.16, 132.92, 130.07, 129.81, 129.46, 128.89, 128.29, 128.22, 128.14, 128.10, 128.06, 127.80, 127.66, 127.55, 127.46, 127.38, 127.30, 127.25, 126.55, 101.04, 94.64, 85.44, 78.59, 75.80, 75.53, 74.94, 74.57, 74.23, 73.12, 72.17, 71.80, 69.91, 69.84, 69.34, 68.98, 68.66, 21.25. TOF-MS [M + NH₄⁺] calc. for $\text{C}_{61}\text{H}_{64}\text{O}_{11}\text{SN}$ 1018, found 1018.

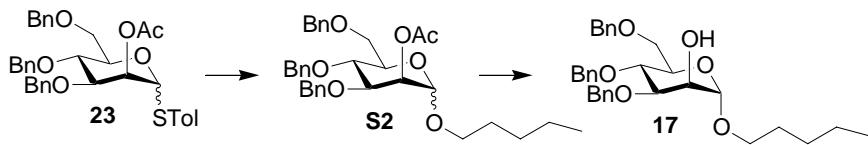
p-Tolyl-2,3,4-tri-O-benzyl-6-O-(2,3,4-tri-O-benzoyl-6-O-4butyldiphenylsilyl-β-D-glucopyranosyl)-1-thio-β-D-glucopyranoside (10).


Compound **10** (42 mg, 34.7 μ mol, 69 % yield) was prepared according to the general procedure for chemoselective glycosylation from donor **2** (42 mg, 50 μ mol) and acceptor **5** (28 mg, 50 μ mol). ^1H -NMR (399.95 MHz, CDCl_3) δ 1.04 (s, 9H), 2.34 (s, 3H), 3.37 (d, 1H, J = 9.2 Hz), 3.41 (d, 1H, J = 8.4 Hz), 3.45 (dd, 1H, J = 3.6, 10.0 Hz), 3.61 (t, 1H, J = 8.8 Hz), 3.76 – 3.88 (m, 4H), 4.18 (d, 1H, J = 11.2 Hz), 4.41 (d, 1H, J = 11.2 Hz), 4.52 (d, 1H, J = 10.0 Hz), 4.54 (d, 1H, J = 10.0 Hz), 4.65 (d, 1H, J = 10.0 Hz), 4.72 (d, 1H, J = 10.8 Hz), 4.82 (d, 1H, J = 7.6 Hz), 4.85 (d, 1H, J = 10.4 Hz), 4.89 (d, 1H, J = 7.6 Hz), 5.56 (dd, 1H, J = 8.0, 10.0 Hz), 5.65 (t, 1H, J = 9.6 Hz), 5.80 (t, 1H, J = 9.6 Hz), 7.08 – 7.90 (m, 44 H); ^{13}C -NMR (100.5 MHz, CDCl_3) δ 19.41, 21.83, 26.91, 63.07, 67.88, 69.58, 72.41, 73.73, 75.00, 75.42, 75.52, 75.84, 77.64, 79.19, 80.67, 86.87, 87.88, 101.21, 127.88, 127.96, 128.04, 128.09, 128.43, 128.49, 128.53, 128.59, 128.64, 129.31, 129.53, 129.66, 129.82, 129.87, 129.90, 129.99, 130.01, 130.03, 130.13, 133.04, 133.22, 133.30, 133.38, 133.41, 135.74, 135.92, 138.15, 138.18, 138.40, 138.63, 165.24, 165.26, 166.15; HRMS $\text{C}_{77}\text{H}_{76}\text{NaO}_{13}\text{SSi}$ [M + Na⁺] calc. 1291.4674 found 1291.4651.

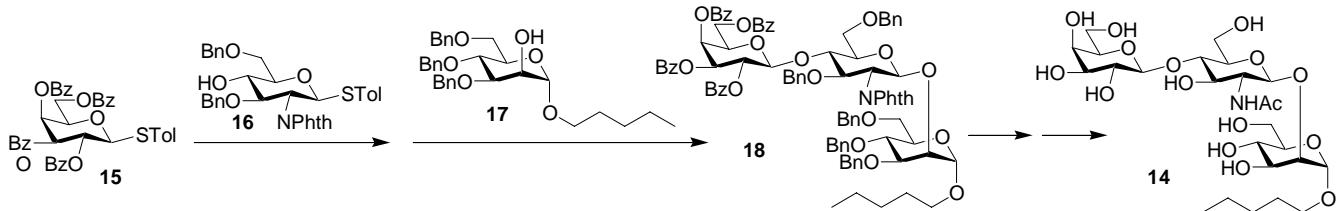

p-Tolyl-2,3,4-tri-O-benzoyl-6-O-(2,3,4-tri-O-benzoyl-6-O-4butyldiphenylsilyl-β-D-glucopyranosyl)-1-thio-β-D-glucopyranoside (11).

Compound **11** (37 mg, 28 μ mol) was prepared according to the general procedure for chemoselective glycosylation from donor **2** (42 mg, 50 μ mol) and acceptor **6** (25

mg, 42 μ mol) in 67 % yield. 1 H-NMR (599.87 MHz, CDCl_3) δ 1.00(s, 9H), 2.34 (s, 3H), 3.76 – 3.84 (m, 4H), 3.89 (dd, 1H, J = 7.8, 12.0 Hz), 3.96 – 4.02 (m, 2H), 4.77 (d, 1H, J = 10.2 Hz), 4.97 (d, 1H, J = 8.4 Hz), 5.23 (t, 1H, J = 9.6 Hz), 5.32 (t, 1H, J = 9.6 Hz), 5.46 (dd, 1H, J = 7.8, 9.6 Hz), 5.59 (t, 1H, J = 9.6 Hz), 5.75 (t, 1H, J = 9.6 Hz), 5.80 (t, 1H, J = 9.6 Hz), 7.14 – 7.98 (m, 44 H); 13 C-NMR (100.5 MHz, CDCl_3) δ 19.35, 21.46, 26.87, 62.85, 68.44, 69.43, 69.83, 70.77, 72.32, 73.60, 74.41, 75.42, 78.85, 86.23, 101.12, 127.74, 127.86, 127.89, 128.44, 128.48, 128.52, 158.57, 128.60, 128.63, 128.92, 129.09, 129.48, 128.56, 129.69, 129.83, 129.93, 130.01, 130.02, 130.08, 130.11, 130.18, 130.23, 133.10, 133.29, 133.34, 133.41, 133.45, 133.55, 133.67, 135.71, 135.85, 139.14, 165.18, 165.20, 165.47, 165.89, 166.08; HRMS $\text{C}_{77}\text{H}_{70}\text{NaO}_{16}\text{SSi}$ [M + Na $^+$] calc. 1333.4052 found 1333.4049.

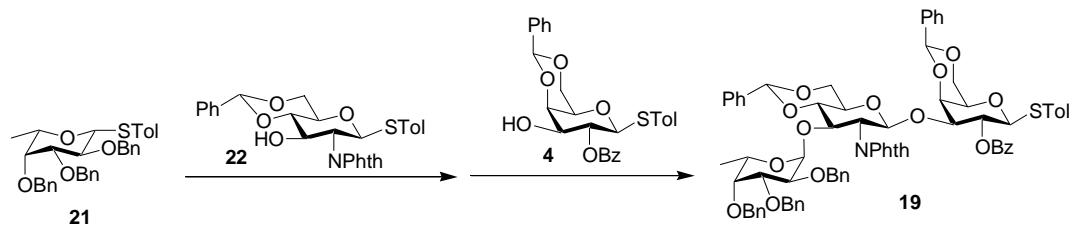


p-Tolyl-2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-1-thio- β -D-glucopyranoside (12). Compound **12** (37 mg, 34 μ mol) was prepared according to the general procedure for chemoselective glycosylation from donor **3** (36 mg, 56 μ mol) and acceptor **7** (30 mg, 50 μ mol) in 67 % yield. 1 H-NMR (599.87 MHz, CDCl_3) δ 2.23 (s, 3H), 3.21 (dd, 1H, J = 3.6, 10.2 Hz), 3.45 – 3.53 (m, 2H), 3.57 (dd, 1H, J = 3.6, 10.8 Hz), 3.77 (d, 1H, J = 12.6 Hz), 3.79 – 3.83 (m, 1H), 3.88 (t, 1H, J = 9.6 Hz), 3.88 – 3.93 (m, 1H), 4.06 (t, 1H, J = 9.6 Hz), 4.11 (d, 1H, J = 12.6 Hz), 4.30 (d, 1H, J = 12.0 Hz), 4.36 (d, 1H, J = 10.8 Hz), 4.47 (d, 1H, J = 12.0 Hz), 4.54 (dd, 1H, J = 4.8, 12.0 Hz), 4.66 – 4.71 (m, 2H), 4.72 (d, 1H, J = 10.8 Hz), 4.79 (d, 1H, J = 3.0 Hz), 4.86 (d, 1H, J = 10.2 Hz), 4.96 (dd, 1H, J = 1.8, 12.0 Hz), 5.39 (t, 1H, J = 9.6 Hz), 5.82 (t, 1H, J = 9.0 Hz), 6.84 – 6.88 (m, 2H), 7.04 – 7.52 (m, 30 H), 7.61 – 7.65 (m, 1H), 7.92 – 7.97 (m, 4H), 8.01 – 8.04 (m, 2H); 13 C-NMR (100.5 MHz, CDCl_3) δ 21.40, 63.68, 68.42, 70.83, 72.02, 73.00, 73.69, 75.08, 75.57, 75.73, 77.01, 77.48, 77.80, 79.17, 81.61, 86.05, 100.13, 127.77, 127.85, 127.90, 127.94, 128.13, 128.17, 128.22, 128.43, 128.50, 128.54, 128.57, 128.64, 129.57, 129.77, 130.03, 130.09, 130.26, 133.17, 133.30, 133.44, 134.09, 138.04, 138.33, 138.54, 138.62, 138.91, 165.51, 165.76, 166.07; HRMS $\text{C}_{68}\text{H}_{64}\text{NaO}_{13}\text{S}$ [M + Na $^+$] calc. 1143.3965 found 1143.4037.

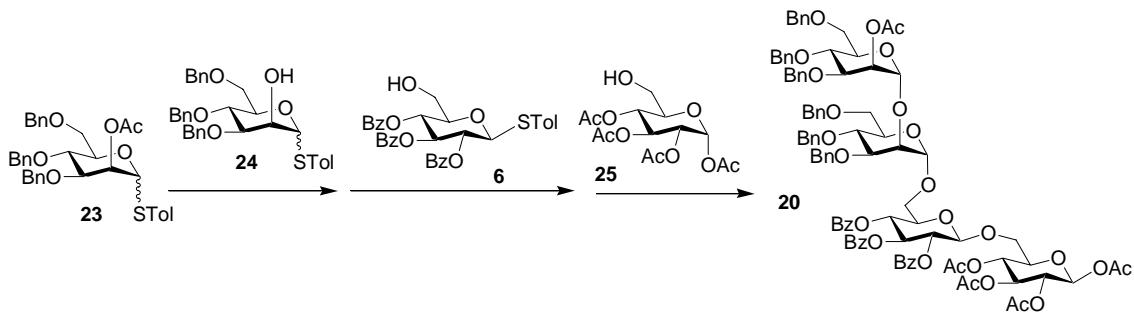


p-Tolyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)-2,3-di-O-benzoyl-1-thio- β -D-galactopyranoside (13). Compound **13** (40 mg, 36 μ mol, 65% yield) was prepared according to the general procedure for chemoselective glycosylation from donor **3** (40 mg, 62 μ mol) and acceptor **8** (32 mg, 55 μ mol). 1 H-NMR (599.87 MHz, CDCl_3) δ 2.11 (s, 3H), 2.85 (dd, 1H, J = 1.8, 11.4 Hz), 3.14 (dd, 1H, J = 1.8, 10.8 Hz), 3.51 (dd, 1H, J = 3.0, 9.6 Hz), 3.66 (t, 1H, J = 9.6 Hz), 3.75 (dd, 1H, J = 5.4, 9.0 Hz), 3.89 – 3.96 (m, 4H), 4.05 (d, 1H, J = 12.0 Hz), 4.33 (bs, 2H), 4.36 (d, 1H, J = 11.4 Hz), 4.38 (d, 1H, J = 11.4 Hz), 4.40 (d, 1H, J = 3.0 Hz), 4.61 (d, 1H, J = 11.4 Hz), 4.75 (d, 1H, J = 11.4 Hz), 4.79 (d, 1H, J = 11.4 Hz), 4.83 (d, 1H, J = 9.6 Hz), 4.85 (d, 1H, J = 10.8 Hz), 4.92 (d, 1H, J = 3.6 Hz), 5.30 (dd, 1H, J = 3.0, 10.2 Hz), 5.64 (d, 1H, J = 10.2 Hz), 6.98 – 7.02 (m, 2H), 7.08 – 7.95 (m, 37 H); 13 C-NMR (100.5 MHz, CDCl_3) δ 21.32, 67.86, 68.19, 68.51, 71.30, 73.46, 73.61, 74.12, 75.04, 75.29, 75.45, 75.79, 77.93, 78.44, 80.45, 82.03, 86.31, 127.66, 127.91, 127.93, 127.95, 128.04, 128.10, 128.14, 128.25, 128.30, 128.39, 128.45, 128.56, 128.64, 128.78, 129.46, 129.80, 129.91, 129.94, 130.03,

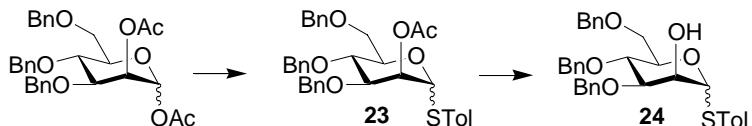
130.25, 133.29, 133.44, 133.49, 134.13, 135.04, 137.68, 138.17, 138.18, 138.23, 138.63, 138.85, 139.08, 165.25, 166.21; HRMS $C_{68}H_{66}NaO_{12}S$ [M + Na⁺] calc. 1129.4173 found 1129.4216.



Pentyl-3,4,6-tri-O-benzyl- α -D-mannopyranoside (17). To a mixture of **23** (260 mg, 440 μ mol), 1-pentanol (90 mg, 1.2 mmol), AgOTf (20 mg, 80 μ mol) and MS-AW-300 in CH_2Cl_2 (10 mL) under nitrogen at 0 °C was added N-iodosuccinimide (137 mg, 600 μ mol). After 1 hour, the reaction was quenched by addition of sat. aqueous $NaHCO_3$ solution (20 mL). The organic layer was collected and **S2** was obtained after flash chromatography as an α : β mixture. To a solution of **S2** in anhydrous methanol (5 mL) was added a solution of 30 % $NaOMe$ in methanol (0.1 mL). The reaction mixture was stirred at room temperature for 2 hours. Amberlite IR120 was added until the solution became acidic. The resin was filtered off and **17** (160 mg, 71%) was obtained after flash chromatography separation of anomers (α : β ~ 4 : 1). ¹H-NMR (399.95 MHz, $CDCl_3$) δ 0.92 (t, J = 10.2 Hz, 3H), 1.25 – 1.40 (m, 4H), 1.58 (quin, J = 10.2 Hz, 2H), 2.53 (bs, 1H), 3.39-3.45 (m, 1H), 3.66-3.95 (m, 6H), 4.02-4.08 (m, 1H), 4.52 (d, 1H, J = 10.4 Hz), 4.56 (d, 1H, J = 12.4 Hz), 4.64-4.78 (m, 3H), 4.84 (d, J = 10.8 Hz, 1H), 4.92 (bs, 1H), 7.12-7.42 (m, 14H); ¹³C-NMR (100.5 MHz, $CDCl_3$) δ 14.31, 22.74, 28.57, 29.38, 68.02, 68.72, 69.23, 71.27, 72.22, 73.70, 74.67, 75.45, 80.60, 99.41, 127.79, 127.95, 128.09, 128.15, 128.26, 128.57, 128.62, 128.77, 138.27, 138.56; ESI-MS $C_{32}H_{40}NaO_6$ [M + Na⁺] calc. 543.3 found 543.3.


Pentyl-2-O-(2-deoxy-3,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-2-N-phthalimido- β -D-glucopyranosyl)-3,4,6-tri-O-benzyl- α -D-mannopyranoside (18). Compound **18** (40 mg, 25.5 μ mol, 54% yield) was synthesized according to the general procedure for one-pot synthesis from donor **15** (35 mg, 50 μ mol), building block **16** (28 mg, 47 μ mol), and **17** (28 mg, 54 μ mol) using CH_2Cl_2 as a solvent. ¹H-NMR (599.87 MHz, $CDCl_3$) δ 0.80 (t, 3H, J = 7.2 Hz), 1.10 – 1.26 (m, 4H), 1.36 (quin, 2H, J = 7.2 Hz), 2.94 (dd, 1H, J = 6.6, 10.8 Hz), 3.11 (dt, 1H, J = 7.2, 9.0 Hz), 3.38 – 3.52 (m, 5H), 3.55 (d, 1H, J = 10.2 Hz), 3.70 – 3.76 (m, 2H), 3.94 – 4.08 (m, 4H), 4.22 – 4.43 (m, 8H), 4.65 (d, 1H, J = 12.0 Hz), 4.72 (d, 1H, J = 12.0 Hz), 4.73 (d, 1H, J = 12.0 Hz), 4.74 (d, 1H, J = 10.8 Hz), 4.98 – 5.02 (m, 2H), 5.17 (d, 1H, J = 7.8 Hz), 5.43 (dd, 1H, J = 3.6, 10.8 Hz), 5.79 (dd, 1H, J = 7.8, 10.8 Hz), 5.85 (d, 1H, J = 3.6 Hz), 6.78 – 6.82 (m, 2H), 7.06 – 7.68 (m, 39H), 7.74 – 7.78 (m, 2H), 7.89 – 7.94 (m, 4H), 8.06 – 8.42 (m, 2H); ¹³C-NMR (100.5 MHz, $CDCl_3$) δ 14.20, 22.62, 28.41, 29.21, 55.77, 60.64, 61.97, 67.89, 68.32, 68.43, 70.24, 70.62, 70.83, 71.40, 71.92, 71.97, 73.08, 73.75, 73.87, 74.49, 74.94, 75.07, 76.80, 77.25, 78.03, 78.37, 97.16, 100.82, 123.32, 127.28, 127.49, 127.56, 127.64, 127.74, 127.98, 128.06, 128.12, 128.38, 128.45, 128.48, 128.52, 128.55, 128.61, 128.68, 129.17, 129.32, 129.71, 129.98, 130.06, 132.02, 133.47, 133.51, 133.68, 138.25, 138.69, 138.76, 138.81, 165.22, 165.53, 165.69, 166.26; HRMS $C_{94}H_{91}NNaO_{21}$ [M + Na⁺] calc. 1952.5981 found 1952.5961.

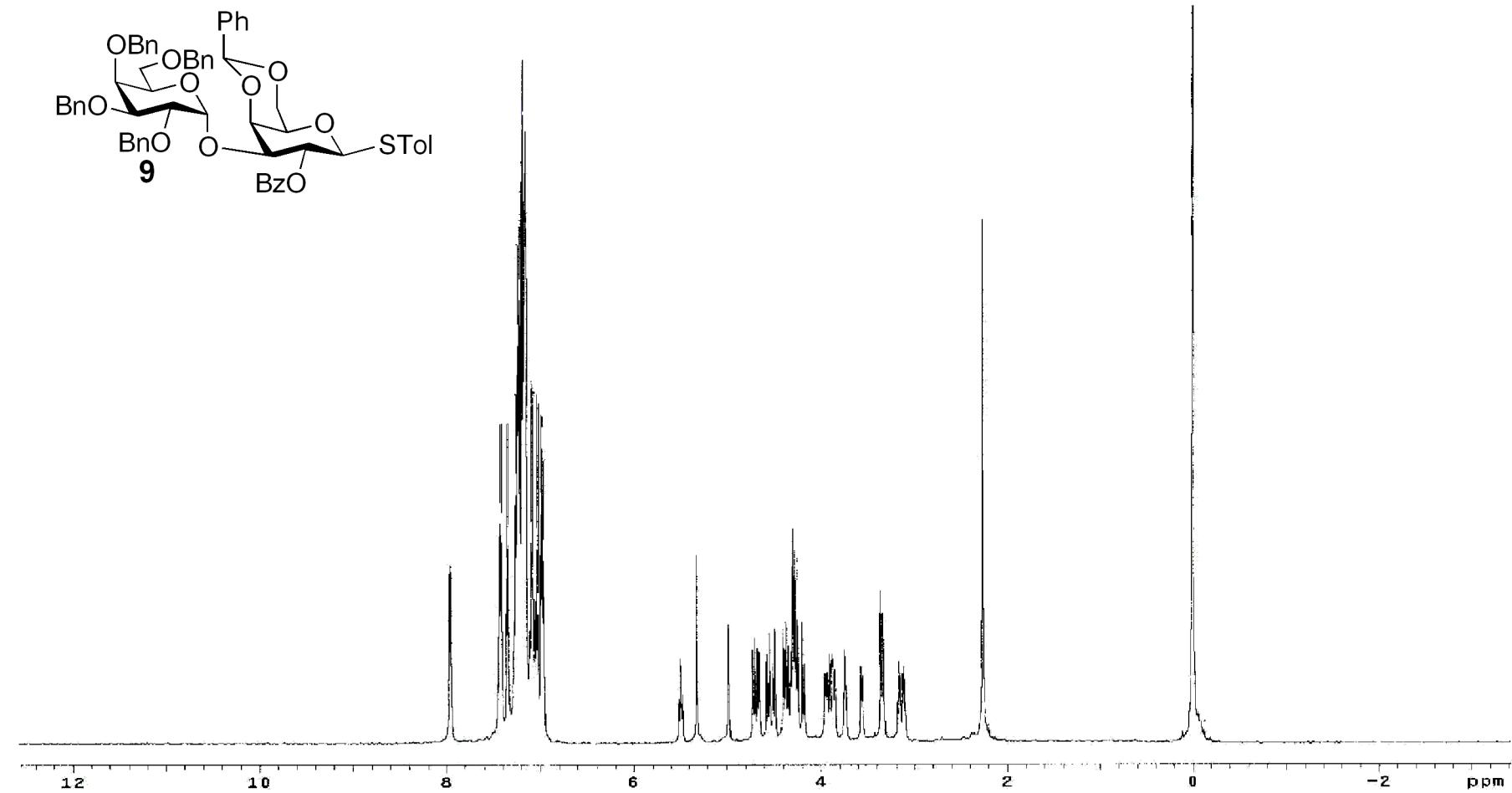
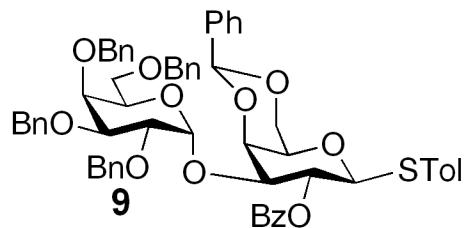
Pentyl-2-O-(2-N-acetamido-2-deoxy-4-O- β -D-galactopyranosyl- β -D-glucopyranosyl)- α -D-mannopyranoside (14). The mixture of trisaccharide **18** (16 mg, 8.27 μ mol) and ethylenediamine (300 μ L, 4.45 mmol) in EtOH (2 mL) was refluxing for 16 h at 105-110°C. The reaction mixture was concentrated in vaccum, and the residue was coevaporated with toluene (2x10 mL) and ethanol (2x5 mL). The crude product was redissolved in MeOH (1.5 mL) and acetic anhydride (300 μ L) was added. After stirred for 6 h at rt, the resulting mixture was concentrated under reduced pressure and purified by flash column chromatography. The resulting partially deprotected trisaccharide was dissolved in 50% EtOH aqueous solution (2 mL), 10% Pd/C (40 mg) was added and the mixture was stirred for 40 h under hydrogen atmosphere at rt. After removal of the solvent, the crude product was purified by RP C-18 column with elution system 100% H_2O to 10% Methanol in H_2O to afford the trisaccharide **14** (3.6 mg, 70%). 1H -NMR (599.87 MHz, CD_3OD) δ 0.90 (t, 3H, J = 7.2 Hz), 1.31 – 1.38 (m, 4H), 1.54 – 1.62 (m, 2H), 1.98 (s, 3H), 3.25 – 3.88 (m, 20H), 4.34 (d, 1H, J = 7.8 Hz), 4.44 (d, 1H, J = 8.4 Hz), 4.75 (d, 1H, J = 1.2 Hz); δ (399.95 MHz, D_2O) 0.69 (t, 3H, J = 6.8 Hz), 1.05 – 1.12 (m, 4H), 1.38 – 1.46 (m, 2H), 1.86 (s, 3H), 3.25 – 3.88 (m, 20H), 4.27 (d, 1H, J = 8.0 Hz), 4.38 (d, 1H, J = 7.6 Hz); ^{13}C -NMR (150.8 MHz, CD_3OD) δ 13.18, 22.03, 22.37, 22.96, 28.41, 29.16, 55.35, 60.41, 61.33, 62.13, 67.53, 67.85, 69.11, 70.52, 71.38, 72.37, 73.61, 73.70, 75.42, 75.95, 77.74, 79.36, 97.38, 100.33, 103.90, 172.99; ESI-MS $C_{25}H_{45}NNaO_{16}$ [M + Na $^+$] calc. 638.3 found 638.2. All spectroscopic data are consistent with the structure assigned.^[5]

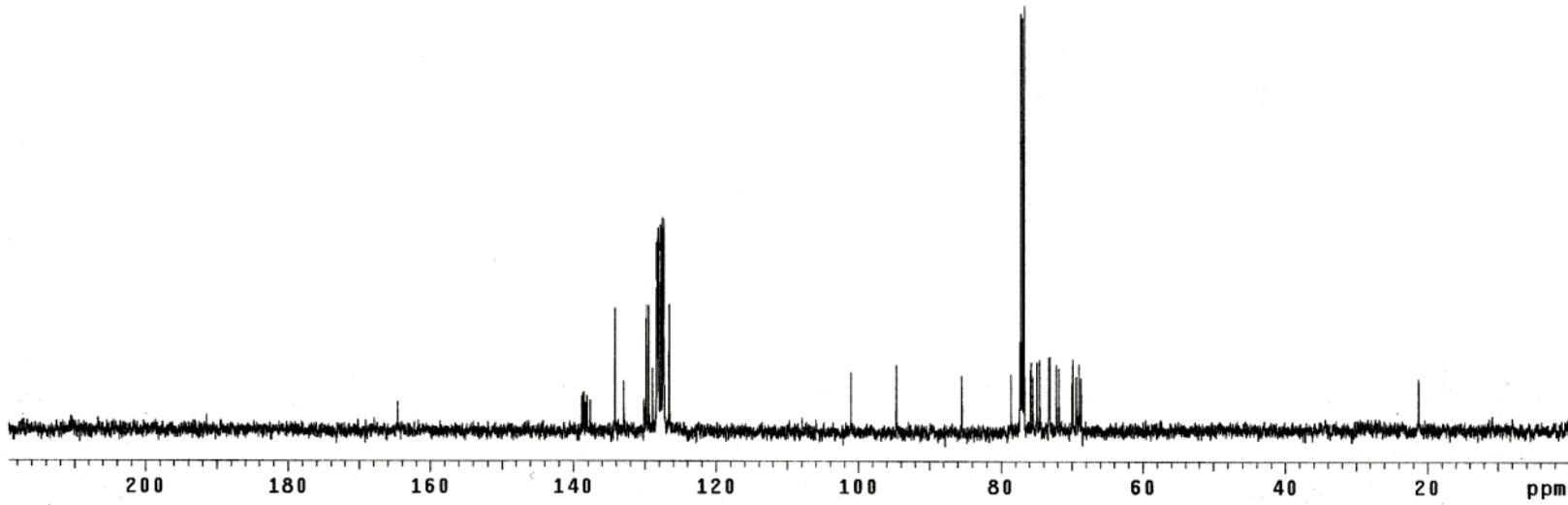
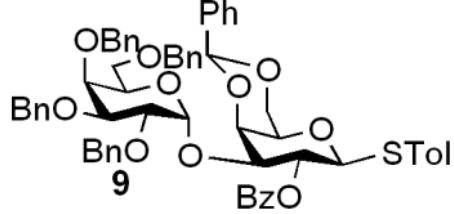

p-Tolyl-2-O-benzoyl-4,6-O-benzylidene-3-O-(4,6-O-benzylidene-3-O-(2,3,4-tri-O-benzyl- α -L-fucopyranosyl)-2-deoxy-2-N-phthalimido- β -D-glucopyranosyl)-1-thio- β -D-galactopyranoside (19).

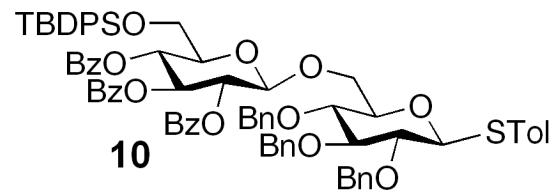
Compound **19** (45 mg, 35.3 μ mol, 59% yield) was synthesized according to the general procedure for one-pot synthesis from donor **21** (40 mg, 74 μ mol), building block **22** (32 mg, 64 μ mol), and **4** (29 mg, 60 μ mol). 1H -NMR (599.87 MHz, $CDCl_3$) δ 0.81 (d, 3H, J = 6.6 Hz), 2.27 (s, 3H), 3.38 (d, 1H, J = 1.8 Hz), 3.52 – 3.65 (m, 6H), 3.79 (d, 1H, J = 9.6 Hz), 3.93 (q, 1H, J = 6.6 Hz), 4.01 – 4.08 (m, 3H), 4.23 (d, 1H, J = 11.4 Hz), 4.28 – 4.38 (m, 4H), 4.42 – 4.47 (m, 2H), 4.66 (d, 1H, J = 3.0 Hz), 4.68 (d, 1H, J = 9.6 Hz), 4.73 (d, 1H, J = 11.4 Hz), 5.31 (t, 1H, J = 9.6 Hz), 5.48 (s, 1H), 5.51 (s, 1H), 5.55 (d, 1H, J = 9.6 Hz), 6.88 – 6.92 (m, 2H), 6.93 – 6.96 (m, 2H), 7.08 – 7.50 (m, 32H), 7.62 – 7.66 (m, 2H); ^{13}C -NMR (100.5 MHz, $CDCl_3$) δ 16.67, 21.46, 55.50, 66.27, 67.45, 68.77, 68.99, 69.37, 70.25, 72.62, 73.32, 74.88, 75.61, 76.28, 76.33, 78.13, 79.68, 80.06, 82.08, 86.02, 99.77, 100.16, 101.19, 101.33, 122.92, 126.19, 126.80, 127.49, 127.58, 127.66, 127.67, 127.71, 127.89, 128.01, 128.27, 128.38, 128.43, 128.49, 128.72, 129.68, 129.84, 129.86, 132.81, 133.45, 134.19, 137.21, 137.94, 138.26, 138.54, 138.71, 139.10, 164.55; HRMS $C_{75}H_{71}NNaO_{16}S$ [M + Na $^+$] calc. 1296.4391 found 1296.4384.

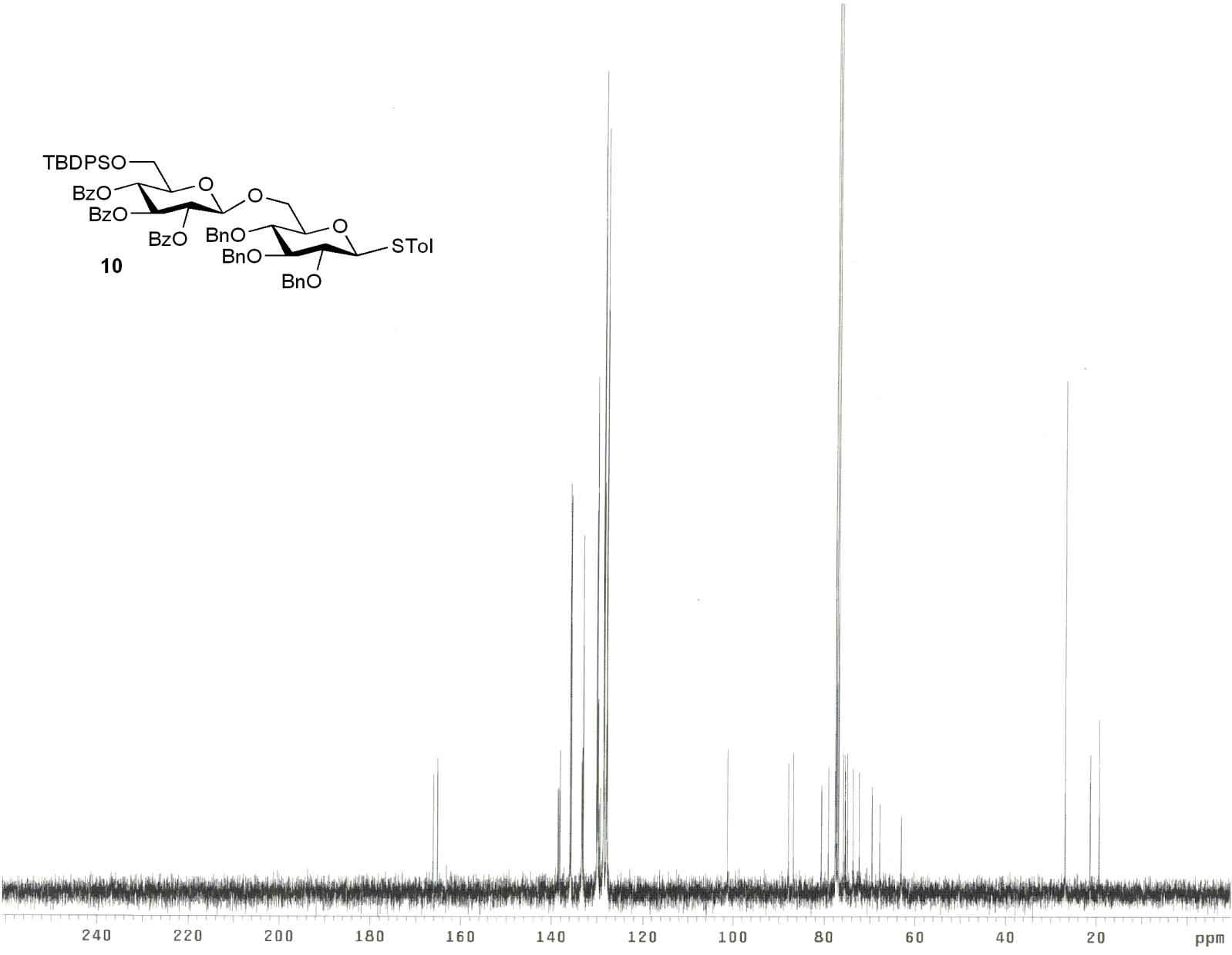
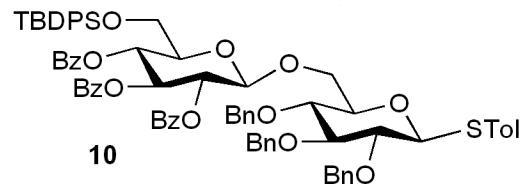
1,2,3,4-Tetra-O-acetyl-6-O-(3,4,6-tri-O-benzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl)-alpha-D-mannopyranosyl)-2,3,4-tri-O-benzoyl-beta-D-glucopyranoside (20).

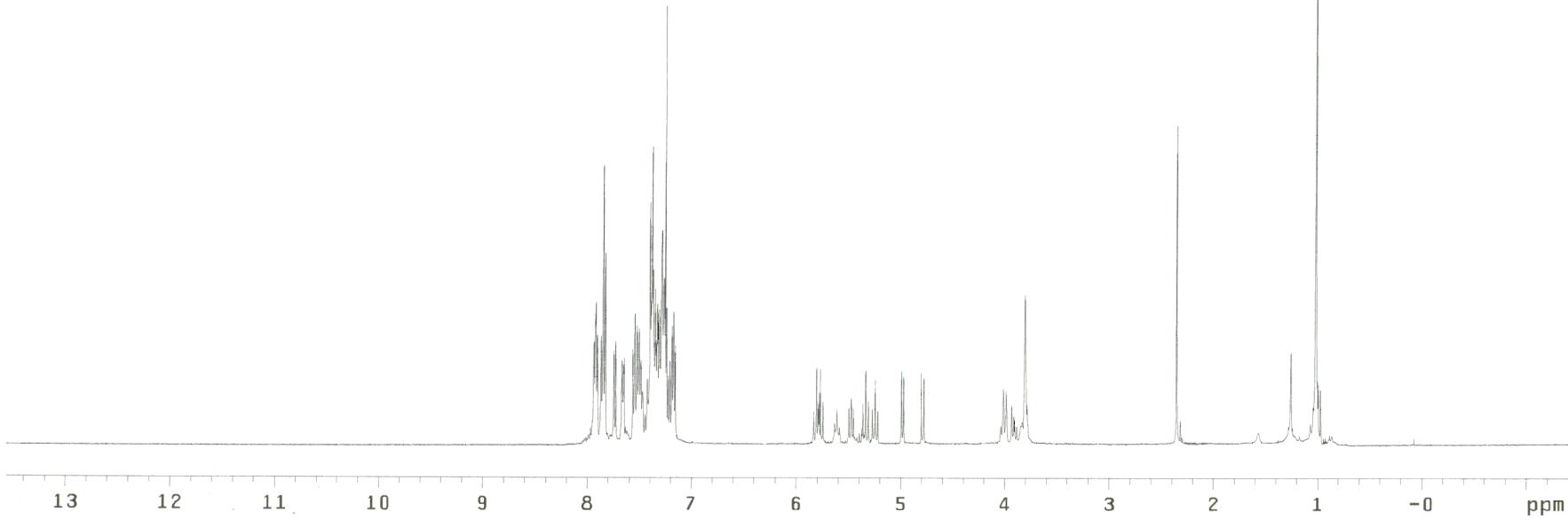
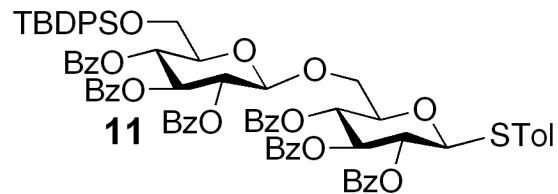
Compound **20** (40 mg, 23 μ mol, 55% yield) was synthesized according to the general procedure for one-pot synthesis from donor **23** (32 mg, 52 μ mol), building block **24** (26 mg, 47 μ mol), **6** (25 mg, 42 μ mol) and **25** (15 mg, 43 μ mol). 1 H-NMR (599.87 MHz, CDCl_3) δ 1.91 (s, 3H), 1.92 (s, 3H), 1.97 (s, 3H), 1.98 (s, 3H), 2.10 (s, 3H), 3.46 – 3.92 (m, 17H), 4.32 – 4.53 (m, 8H), 4.60 (d, 1H, J = 10.8 Hz), 4.68 (d, 1H, J = 12.0 Hz), 4.78 – 4.85 (m, 4H), 4.87 (t, 1H, J = 9.0 Hz), 4.93 (dd, 1H, J = 8.4, 9.6 Hz), 4.99 (d, 1H, J = 1.8 Hz), 5.10 (t, 1H, J = 9.6 Hz), 5.44 (dd, 1H, J = 7.8, 9.6 Hz), 5.46 – 5.49 (m, 1H), 5.50 (d, 1H, J = 9.6 Hz), 5.57 (d, 1H, J = 8.4 Hz), 5.80 (t, 1H, J = 9.6 Hz), 7.08 – 7.42 (m, 42 H), 7.48 – 7.52 (m, 1H), 7.78 – 7.82 (m, 2H), 7.87 – 7.90 (m, 2H), 7.96 – 8.02 (m, 2H); 13 C-NMR (100.5 MHz, CDCl_3) δ 20.76, 20.91, 21.38, 66.93, 67.46, 68.80, 68.92, 69.05, 69.27, 70.40, 70.59, 71.83, 72.05, 72.08, 72.88, 73.16, 73.35, 73.57, 74.27, 74.47, 74.50, 74.89, 75.18, 75.24, 77.44, 78.33, 79.69, 91.80, 99.22, 99.76, 101.06, 127.56, 127.63, 127.70, 127.74, 127.77, 127.83, 127.99, 128.09, 128.30, 128.38, 128.45, 128.48, 128.52, 128.55, 128.64, 129.17, 129.26, 129.59, 129.98, 130.17, 133.33, 133.35, 133.49, 138.25, 138.55, 138.64, 138.71, 138.77, 138.87, 165.22, 165.36, 166.01, 168.94, 169.38, 169.61, 170.22, 170.32; 1 J(13 C- 1 H): 166.4 Hz (δ 91.80 ppm, β linkage), 171.8 Hz (δ 99.22 ppm, α linkage), 172.3 Hz (δ 99.76 ppm, α linkage), 163.9 Hz (δ 101.06 ppm, β linkage);^[11] HRMS $\text{C}_{97}\text{H}_{100}\text{NaO}_{29}$ [M + Na $^+$] calc. 1751.6248 found 1751.6301.



p-Tolyl-2-O-acetyl-3,4,6-tri-O-benzyl-1-thio-alpha/beta-D-mannopyranoside (23). To a solution of 1,2-O-diacetyl-3,4,6-tri-O-benzyl-alpha/beta-D-mannopyranoside (0.7 g, 1.3 mmol)^[6] and *p*-methylbenzenethiol (0.24 g, 1.9 mmol) in CH_2Cl_2 (10 mL) was added $\text{BF}_3\text{-Et}_2\text{O}$ (0.25 mL, 1.9 mmol). After 1 hour, the reaction was quenched by addition of sat. aqueous NaHCO_3 solution (20 mL). The organic layer was collected and **23** (0.62 g, 80%) was obtained after flash chromatography as an α : β mixture (3 : 1). 1 H-NMR (399.95 MHz, CDCl_3) δ α anomer 2.16 (s, 3H), 2.32 (s, 3H), 3.74 (dd, 1H, J = 1.6, 10.8 Hz), 3.88 (dd, 1H, J = 4.4, 10.8 Hz), 3.94-4.02 (m, 2H), 4.33-4.42 (m, 1H), 4.48 (d, 1H, J = 12.0 Hz), 4.53 (d, 1H, J = 10.4 Hz), 4.58 (d, 1H, J = 11.2 Hz), 4.68 (d, 1H, J = 12.0 Hz), 4.75 (d, 1H, J = 11.2 Hz), 4.90 (d, 1H, J = 11.2 Hz), 5.49 (d, 1H, J = 1.6 Hz), 5.63 (bs, 1H), 7.05 – 7.08 (m, 2H), 7.18 – 7.40 (m, 17H); β anomer 2.03 (s, 3H), 2.21 (s, 3H), 3.52 (ddd, 1H, J = 1.2, 6.0, 9.0 Hz), 3.65 (dd, 1H, J = 3.0, 9.0 Hz), 3.72 (dd, 1H, J = 1.2, 9.0 Hz), 5.78 (d, 1H, J = 3.6 Hz), 7.07 – 7.11 (m, 2H), 7.24 – 7.54 (m, 17H) 13 C-NMR (100.5 MHz, CDCl_3) δ α anomer 21.38, 69.18, 70.59, 72.16, 72.69, 73.62, 74.86, 75.52, 78.75, 86.90, 127.80, 127.94, 128.01, 128.14, 128.44, 128.54, 128.61, 128.73, 130.07, 132.56, 137.69, 138.13, 138.48, 138.55, 170.57; HRMS $\text{C}_{36}\text{H}_{38}\text{NaO}_6\text{S}$ [M + Na $^+$] calc. 621.2287 found 621.2245.


p-Tolyl-3,4,6-tri-O-benzyl-1-thio- α / β -D-mannopyranoside (24). To a solution of **23** (0.30 g, 0.5 mmol) in anhydrous methanol (5 mL) was added a solution of 30 % NaOMe in methanol (0.1 mL). The reaction mixture was stirred at room temperature for 2 hours. Amberlite IR120 was added until the solution became acidic. The resin was filtered off and analytically pure **24** (0.28 g, 100%) was obtained. ¹H-NMR (399.95 MHz, CDCl₃) δ α anomer 2.31 (s, 3H), 2.69 (bs, 1H), 3.70 (dd, 1H, *J* = 1.6, 10.8 Hz), 3.81 (dd, 1H, *J* = 4.8, 10.8 Hz), 3.88-3.98 (m, 2H), 4.24-4.28 (m, 1H), 4.30-4.38 (m, 1H), 4.46 (d, 1H, *J* = 12.0 Hz), 4.54 (d, 1H, *J* = 10.8 Hz), 4.63 (d, 1H, *J* = 12.0 Hz), 4.69-4.76 (m, 2H), 4.85 (d, 1H, *J* = 11.2 Hz), 5.55 (bs, 1H), 7.04 – 7.08 (m, 2H), 7.18 – 7.40 (m, 17H); β anomer 2.31 (s, 3H), 2.66-2.70 (m, 1H), 3.48 (ddd, 1H, *J* = 1.2, 6.4, 9.6 Hz), 3.62 (dd, 1H, *J* = 3.2, 8.8 Hz), 3.72 (dd, 1H, *J* = 2.0, 10.8 Hz), 3.80-3.86 (m, 2H), 4.27-4.32 (m, 1H), 4.52-4.62 (m, 3H), 4.88 (d, 1H, *J* = 11.2 Hz), 4.72-4.78 (m, 2H), 4.88 (d, 1H, *J* = 11.2 Hz), 7.03 – 7.08 (m, 2H), 7.22 – 7.48 (m, 17H); ¹³C-NMR (100.5 MHz, CDCl₃) δ α anomer 21.37, 69.15, 70.07, 72.37, 72.46, 73.63, 74.80, 75.43, 80.53, 87.88, 127.76, 127.96, 128.09, 128.17, 128.22, 128.31, 128.53, 128.62, 128.85, 130.04, 132.46, 137.88, 137.90, 138.48; β anomer 21.36, 69.73, 70.13, 72.14, 73.75, 74.51, 75.49, 79.97, 83.01, 87.31, 127.75, 128.04, 128.23, 128.28, 128.36, 128.54, 128.65, 128.87, 129.96, 131.21, 131.93, 137.73, 138.32, 138.63. HRMS C₃₄H₃₆NaO₅S [M + Na⁺] calc. 579.2181 found 579.2159.



References:



- [1] (a) K. Bock, C. Pedersen, *J. Chem. Soc. Perkin Trans. 2* **1974**, 293; (b) D. Crich, S. Sun, *Tetrahedron* **1998**, 54, 8321.
- [2] O. Kanie, Y. Ito, T. Ogawa, *J. Am. Chem. Soc.* **1994**, 116, 12073.
- [3] Z. Zhang, I. R. Ollman, X.-S. Ye, R. Wischnat, T. Baasov, C.-H. Wong, *J. Am. Chem. Soc.* **1999**, 121, 734.
- [4] A. G. M. Barrett, D. Dhanak, G. G. Graboski, S. J. Taylor, *Org. Syn. Coll. Vol.*, 8, 550.
- [5] O. J. Plante, E. R. Palmacci, P. H. Seeberger, *Science* **2001**, 291, 1523.
- [6] C. S. Callam, T. L. Lowary, *J. Org. Chem.* **2001**, 66, 8961.

