

Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition Reactions of Aldehydes to Nitrostyrenes

Wei Wang, * Jian Wang, and Hao Li

Department of Chemistry, University of New Mexico, Albuquerque, NM 87131-0001, USA

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence F_{254} indicator were used for thin-layer chromatography (TLC) analysis. ¹H and ¹³C NMR spectra were recorded on Broker Advance 500, and tetramethylsilane (TMS) was used as a reference. Data for ¹H are reported as follows: chemical shift (ppm), and multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Data for ¹³C NMR are reported as ppm. Mass Spectra were obtained from the Ohio State University Mass Spectral facility.

Procedures for preparation of pyrrolidine trifluoromethanesulfonamide organocatalyst I.

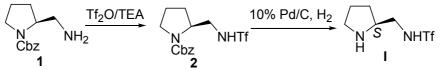
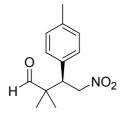


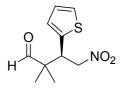
Figure. Synthesis of organocatalyst pyrrolidine trifluoromethanesulfonamide I.

(*S*)-2-Aminomethyl-1-*N*-Cbz-pyrrolidine (1). Compound 1 is prepared according to the known procedures in 4 steps from *N*-Cbz-Proline.^[1]

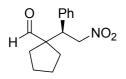
(S)-2-(Trifluoromethanesulfonylaminomethyl)-1-N-Cbz-pyrrolidine (2). To a solution of (S)-2-aminomethyl-1-N-Cbz-pyrrolidine (2.0 g, 8.55 mmol) and TEA


(1.43 mL, 10.3 mmol) in 40 mL of CaH₂ dried CH₂Cl₂ was added trifluoromethanesulfonic anhydride (1.6 mL, 9.4 mmol) dropwisely by a syringe pump over 1 h at 0 °C under N₂. The resulting solution was stirred for 4.5 h at room temperature, then diluted with 80 mL of CH₂Cl₂ and washed with 50 mL of 1*N* HCl aqueous solution. The organic layer was dried over MgSO₄, and concentrated *in vacuo*. Flash chromatography (Ethyl Acetate/Hexane = 1/7) afforded a colorless oil in 76% yield (2.38 g, 6.50 mmol). $[\alpha]_D^{25}$ -27.7 (*c* = 1.0 in CHCl₃); ¹H NMR (500 MHz, CDCl₃, TMS): δ = 7.68 (s, 1H; Ph), 7.10-7.39 (m, 5H; Ph), 5.15 (m, 2H; CH₂), 3.98-4.09 (m, 1H; CH), 3.24-3.57 (m, 4H; CH and CH₂), 2.12 (m, 1H; CH), 1.88 (m, 2H; CH₂), 1.67 (m, 1H; CH); ¹³C NMR (125 MHz, CDCl₃, TMS): δ = 157.7, 136.2, 128.8, 128.6, 128.5, 128.3, 68.0, 58.1, 49.9, 47.5, 30.0, 24.1; HRMS (FAB) calcd for C₁₄H₁₈F₃N₂O₄S (M + 1) m/z 367.0939, found 367.0928.

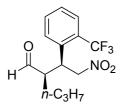
$$\begin{smallmatrix} \mathsf{O} \\ \mathsf{H} \\ \mathsf{H} \\ \mathsf{H} \\ \mathsf{H} \\ \mathsf{O} \\ \mathsf{O} \\ \mathsf{CF}_3 \\ \mathsf{CF}_3 \\ \mathsf{CF}_3 \\ \mathsf{O} \\ \mathsf{O} \\ \mathsf{H} \\ \mathsf{O} \\ \mathsf{$$


(*S*)-2-(Trifluoromethanesulfonylaminomethyl)pyrrolidine (I). A solution of (*S*)-2-(trifluoromethanesulfonylaminomethyl)-1-*N*-Cbz-pyrrolidine (0.794 g, 2.17 mmol) in 15 mL of MeOH was hydrogenated in the presence of 10% Pd/C (0.16 g) with a H₂ balloon at room temperature for 5 h. The catalyst was filtered through a pad of celite and washed with 2 × 20 mL of MeOH. The filtrate was concentrated *in vacuo* to give a white solid (>95% purity) in 93% yield (0.469 g, 2.02 mmol). The product was crystallized in MeOH to give a crystal, which was used for catalyzing reactions. $[\alpha]_D^{25} + 10.5$ (*c* = 1.0 in CH₃OH); ¹H NMR (500MHz, CD₃OD, TMS): δ = 3.47 (m, 1H; CH), 3.08-3.28 (m, 4H; CH and CH₂), 1.86-2.02 (m, 3H; CH and CH₂), 1.61-1.68 (m, 1H; CH); ¹³C NMR (125 MHz, CD₃OD, TMS): δ = 123.5 (q, ²*J*(*C*, *F*) = 325 Hz), 122.2, 63.7, 46.4, 28.5, 24.7; HRMS (FAB) calcd for C₆H₁₂F₃N₂O₂S (M + 1) *m*/*z* 233.0572, found 233.0580.

Typical Procedure for Michael Addition Reaction: To a vial containing *iso*-butyraldehyde (0.20 mL, 2.19 mmol), and 1.0 mL of dry isopropyl alcohol was added catalyst pyrrolidine sulfonamide **I** (10 mg, 0.044 mmol) at 0°C. The mixture was vigorously stirred for 15 min, and then *trans-β*–nitrostyrene (33 mg, 0.219 mmol) was added. After 4.5 d stirring, TLC analysis indicated completion of the reaction. After reaction mixture was concentrated under reduced pressure, the resulting residue was then purified by silica gel chromatography (ethyl acetate/hexane = 1/30 to 1/5) and fractions were collected and concentrated *in vacuo* to provide a clear oil (41 mg, 0.186 mmol, 85%). Relative and absolute configurations of the products were determined by comparison with the known ¹H NMR, ¹³C NMR, chiral HPLC analysis, and optical rotation values. Compounds reported in Table 2, entries 1^[2], 4^[3], 5^[3], 8^[4], and 11^[5] are known.


(*R*)-2,2-Dimethyl-4-nitro-3-phenylbutanal^[2] (Table 2, entry 1): The title compound was prepared according the typical procedure, as described above in 85% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.53$ (s, 1H; CHO), 7.35-7.19 (m, 5H; Ph), 4.85 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 11.5 Hz, 1H; CH), 4.69 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 3.78 (dd, ³*J*(H,H) = 11.5 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 1.14 (s, 3H; CH₃), 1.01 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 204.4$, 135.6, 129.3, 128.9, 128.4, 76.5, 48.7, 48.4, 21.9, 19.1; HPLC (Chiralpak AS-H, *i*-Propanol/Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_{minor} = 22.2 min, t_{major} = 23.0 min, ee = 90%.

(*R*)-2,2-Dimethyl-4-nitro-3-p-tolylbutanal (Table 2, entry 2): The title compound was prepared according the typical procedure, as described above in 67% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.53$ (s, 1H; CHO), 7.13 (d, ³*J*(H,H) = 8.0 Hz, 2H; Ph), 7.07 (d, ³*J*(H,H) = 8.0 Hz, 2H; Ph), 4.82 (dd, ²*J*(H,H) = 12.5 Hz, ³*J*(H,H) = 11.5 Hz, 1H; CH), 4.67 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 3.74 (dd, ³*J*(H,H) = 11.5 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 2.32 (s, 3H; CH₃), 1.13 (s, 3H; CH₃), 1.00 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 204.6$, 138.1, 132.4, 129.6, 129.1, 76.6, 48.4, 21.8, 21.2, 19.1; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 15.1 min, t_{major} = 10.4 min; [α]_D = +25.4 (*c*=0.5 in CHCl₃), ee = 90%.


(*R*)-2,2-Dimethyl-4-nitro-3-(thiophen-2-yl)butanal (Table 2, entry 3): The title compound was prepared according the typical procedure, as described above in 75% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.54$ (s, 1H; CHO), 7.26-6.92 (m, 3H; Ph), 4.73-4.67 (m, 2 H; CH₂), 4.14 (dd, ²*J*(H,H) = 10.8 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 1.21 (s, 3H; CH₃), 1.09 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 192.8$, 138.1, 129.6, 129.2, 125.2, 59.9, 30.9, 25.7, 24.2; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 19.8 min, t_{major} = 11.4 min; [α]_D = +54.1 (*c*= 1.0 in CHCl₃), ee = 89%.

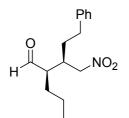
1-((*R***)-2-Nitro-1-phenylethyl)cyclopentanecarbaldehyde^[3]** (Table 2, entry 4): The title compound was prepared according the typical procedure, as described above in 89% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.49$ (s, 1H; CHO), 7.33-7.19 (m, 5H; Ph), 4.96 (dd, ²*J*(H,H) = 13.5 Hz, ³*J*(H,H) = 11.5 Hz, 1H; CH), 4.70 (dd, ²*J*(H,H) = 13.5 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 3.70 (dd, ³*J*(H,H) = 11.5 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 2.07-2.02 (m, 1H; CH), 1.90-1.86 (m, 1H; CH), 1.68-1.51 (m, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 204.6$, 136.6, 129.019, 129.002, 128.3, 77.6, 60.5, 49.5, 32.8, 31.7, 25.0, 24.9; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 14.6 min, t_{major} = 10.5 min; [α]_D = -7.2 (*c*=3.8 in CHCl₃), ee = 93%.

$$H \xrightarrow{O} Ph$$

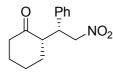
 $h \xrightarrow{NO_2} NO_2$

(*R*)-2-[(*S*)-2-Nitro-1-phenylethyl]pentanal^[3] (Table 2, entry 5): The title compound was prepared according the typical procedure, as described above in 99% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.71$ (d, ³*J*(H,H) = 3.0 Hz, 1H; CHO), 7.35-7.17 (m, 5H; Ph), 4.72-4.63 (m, 2H), 3.80-3.75 (m, 1H; CH), 2.73-2.68 (m, 1H; CH), 1.49-1.11 (m, 4H), 0.80 (t, ³*J*(H,H) = 7.5 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 203.4$, 137.0, 129.3, 128.4, 128.2, 78.6, 54.0, 43.4, 29.7, 20.0, 14.1; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 10.9 min, t_{major} = 12.9 min; [α]_D = +51.2 (*c*=0.5 in CHCl₃), ee = 97%.

(*R*)-2-[(*S*)-1-(2-(Trifluoromethyl)phenyl)-2-nitroethyl]pentanal (Table 2, entry 6): The title compound was prepared according the typical procedure, as described above in 63% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.76$ (d, ³*J*(H,H) = 3.0 Hz, 1H; CHO), 7.73 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ph), 7.59 (t, ³*J*(H,H) = 7.5 Hz, 1H; Ph), 7.45 (t, ³*J*(H,H) = 8.0 Hz, 1H; Ph), 7.37 (d, ³*J*(H,H) = 7.5 Hz, 1H; CH), 4.80 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 7.5 Hz, 1H; CH), 4.66 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 5.0 Hz, 1H; CH), 4.17-4.14 (m, 1H; CH), 2.95-2.93 (m, 1H; CH), 1.60-1.20 (m, 4H), 0.81 (t, ³*J*(H,H) = 7.5 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 203.0$, 136.3, 132.6, 129.4 (q), 128.0, 126.9, 125.1, 123.0, 77.8, 54.0, 38.6, 30.3, 20.1, 13.9; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 8.6 min, t_{major} = 10.1 min; [α]_D = +31.4 (*c*=1.0 in CHCl₃), ee = 94%.


(*R*)-2-[(*S*)-1-(4-Methoxyphenyl)-2-nitroethyl]pentanal (Table 2, entry 7): The title compound was prepared according the typical procedure, as described above in 86% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.69$ (d, ³*J*(H,H) = 3.0 Hz, 1H; CHO), 7.08 (d, ³*J*(H,H) = 8.5 Hz, 2H; Ph), 6.86 (d, ³*J*(H,H) = 8.5 Hz, 2H; Ph), 4.66 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 5.0 Hz, 1H; CH), 4.60 (dd, ²*J*(H,H) = 13.0 Hz, ³*J*(H,H) = 10.0 Hz, 1H; CH), 3.78 (s, 3H; CH₃), 3.75-3.71 (m, 1H; CH), 2.66-2.65 (m, 1H; CH), 1.49-1.29 (m, 4H), 0.80 (t, ³*J*(H,H) = 7.5 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 203.6$, 159.4, 129.2, 128.7, 114.7, 78.8, 55.4, 54.1, 42.6, 29.6, 20.0, 14.1; HPLC (Chiralcelk OD-H, *i*-Propanol/Hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 18.4 min, t_{major} = 21.5 min; [α]_D = +41.7 (*c*=2.0 in CHCl₃), ee = 99%.

$$H \xrightarrow{O} Ph NO_2$$


(*R*)-2-[(*S*)-2-Nitro-1-phenylethyl]hexanal^[4] (Table 2, entry 8): The title compound was prepared according the typical procedure, as described above in 94% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.71$ (d, ³*J*(H,H) = 3.0 Hz, 1H; CHO), 7.36-7.17 (m, 5H; Ph), 4.73-4.62 (m, 2H), 3.80-3.75 (m, 1H; CH), 2.72-2.67 (m, 1H; CH), 1.53-1.11 (m, 6H), 0.78 (t, ³*J*(H,H) = 7.0 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 203.5$, 137.0, 129.3, 128.4, 128.2, 78.6, 54.1, 43.4, 28.7, 27.2, 26.7, 13.8; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 10.4 min, t_{major} = 11.8 min; [α]_D = +52.4 (*c*=0.5 in CHCl₃), ee = 99%.

$$H \xrightarrow{O} Ph NO_2$$

 $n - C_5 H_{11}$

(*R*)-2-((*S*)-2-Nitro-1-phenylethyl)heptanal (Table 2, entry 9): The title compound was prepared according the typical procedure, as described above in 91% yield. ¹H NMR (500 MHz, CDCl₃): $\delta = 9.70$ (d, ³*J*(H,H) = 3.0 Hz, 1H; CHO), 7.36-7.17 (m, 5H; Ph), 4.73-4.62 (m, 2H; CH₂), 3.80-3.75 (m, 1H; CH), 2.72-2.67 (m, 1H; CH), 1.53-1.08 (m, 8H), 0.80 (t, ³*J*(H, H) = 7.5 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 203.4$, 137.0, 129.3, 128.4, 128.2, 78.7, 54.1, 43.4, 31.8, 27.5, 26.3, 22.4, 14.0; HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 9.7 min, t_{major} = 11.0 min; [α]_D = +59.0 (c = 2.0, CHCl₃), ee = 97%.

(*R*)-2-((*S*)-1-nitro-4-phenylbutan-2-yl)pentanal (Table 2, entry 10): The title compound was prepared according the typical procedure, as described above in 76% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 9.67$ (s, 1H; CHO), 7.31-7.14 (m, 5H; Ph), 4.53 (dd, ²*J*(H,H) = 12.5 Hz, ³*J*(H,H) = 7.0 Hz, 1H; CH); 4.46 (dd, ²*J*(H,H) = 12.5 Hz, ³*J*(H,H) = 6.5 Hz, 1H; CH), 2.69-2.61 (m, 3H), 2.55-2.50 (m, 1H; CH), 1.80-1.65 (m, 3H), 1.45-1.30 (m, 3H), 0.94 (t, ³*J*(H,H) = 6.5 Hz, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 202.9$, 140.4, 128.6, 128.1, 126.3, 52.0, 36.5, 33.0, 30.9, 27.5, 20.7, 14.0. HPLC (Chiralcel OD-H, *i*-Propanol/Hexane = 8/92, flow rate 0.5 mL/min, $\lambda = 254$ nm), t_{major} = 40.5 min, t_{minor} = 44.2 min; ee = 22%.

(*S*)-2-[(*R*)-2-Nitro-1-phenylethyl]cyclohexanone^[5] (Table 2, entry 11): The title compound was prepared according the typical procedure, as described above in 96% yield. ¹H NMR (500 MHz, CDCl₃, TMS): δ = 7.34-7.16 (m, 5H; Ph), 4.94 (dd, ²*J*(H,H) = 12.5 Hz, ³*J*(H,H) = 4.5 Hz, 1H; CH), 4.63 (dd, ²*J*(H,H) = 12.5 Hz, ³*J*(H,H) = 10.0 Hz, 2H; CH₂), 3.78-3.74 (m, 1H; CH), 2.75-2.64 (m, 1H; CH), 2.47-2.30 (m, 2H; CH₂), 2.10-2.00 (m, 1H; CH), 1.77-1.55 (m, 3H), 1.26-1.22 (m, 1H; CH); ¹³C NMR (125 MHz, CDCl₃, TMS): δ = 212.1, 138.0, 129.1, 128.4, 128.0, 79.1, 52.7, 44.1, 42.9, 33.4, 28.7, 25.2; HPLC (Chiralpak AS-H, *i*-Propanol/Hexane = 25/75, flow rate 1.0 mL/min, λ = 254 nm): t_{minor} = 7.9 min, t_{major} = 12.2 min; [α]_D = -17.3 (*c*=2.0 in CHCl₃), ee = 97%.

Reference:

- [1] R. M. Burch, R. J. Patch, B. G. Shearer, J. J. Perumattam, K. J., Natalie, Jr., (Nova Pharmaceutical Corp., USA), WO 9203415, 1992.
- [2] N. Mase, R. Thayumanavan, F. Tanaka, C. F. Barbas, III, Org. Lett. 2004, 6, 2527-2530.
- [3] A. Alexakis, O. Andrey, Org. Lett. 2002, 4, 3611-3614.
- [4] J. M. Betancort, C. F. Barbas, III Org. Lett. 2001, 3, 3737-3740.
- [5] B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3, 2423-2425.