

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

Highly Enantioselective Catalytic Conjugate Addition of N-Heterocycles to α,β -Unsaturated Ketones and Imides

Mark Gandelman and Eric N. Jacobsen*

Department of Chemistry and Chemical Biology

Harvard University, Cambridge MA 02138

General Methods. Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar and used as received. Solvents were purified and dried using standard methods: toluene were distilled from sodium; THF was distilled from sodium/ benzophenone ketyl. Reactions were performed without using inert atmosphere techniques. Flash chromatography was performed using silica gel 60 (230-400 mesh) from EM Science. ^1H NMR and ^{13}C NMR spectra were recorded on Bruker AM 500 spectrometer at 23°C. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual proton in the NMR solvent (CDCl_3 : δ 7.24). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent (CDCl_3 : δ 77.0). Abbreviations used in NMR data: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad. Infrared (IR) spectra were obtained using a Mattson Galaxy Series FTIR 3000 spectrometer referenced to polystyrene standard. Optical rotations were measured using 2 mL cell with a 1dm path length on a Jasco DIP 370 digital polarimeter. The mass spectroscopic data were obtained at the Harvard University mass spectrometry facility. Chiral HPLC analysis was performed on either a Hewlett-Packard 1050 or a Shimadzu VP-series instrument.

General procedure for the conjugate addition of purine to enones.

3a: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), purine (72 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension the ketone **2a** (64.6 mg, 0.5 mmol, 65% purity) was added. The reaction mixture was stirred at room temperature for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **3a** was obtained in 78% yield (80 mg) and 90% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -27$ ($c = 1.65$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.0$ (s, 1H; ArH), 8.8 (s, 1H; ArH), 8.1 (s, 1H; ArH), 5.1 (m, 1H, CH), 3.4 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.0 (s, 3H; CH_3), 1.6 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 204.8, 151.9, 150.9, 148.5, 134.7, 48.3, 47.9, 30.1, 19.8$. IR: $\nu = 2968, 1714, 1590, 1408, 1205, 646$ cm^{-1} . MS (CI): m/z (%): 205 (100) $[M+H]^+$.

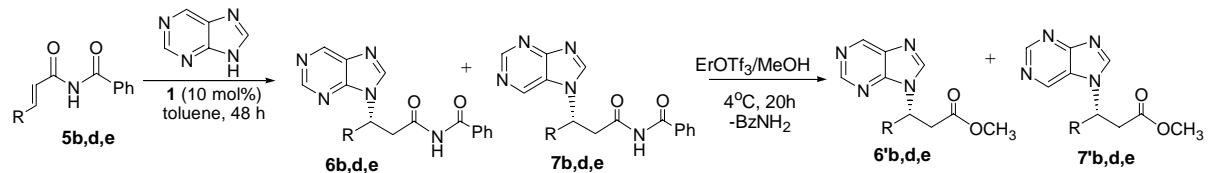
Analytical data, products **3b-3e**:

3b: 3-hepten-2-one (56 mg, 0.5 mmol) was used. The product **3b** was isolated in 80% yield (93 mg) and 95% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -5$ ($c = 0.04$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.1$ (s, 1H; ArH), 8.9 (s, 1H; ArH), 8.1 (s, 1H; ArH), 4.9 (m, 1H, CH), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.1 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (m, 1H, CH_2), 2.0 (s, 3H; CH_3), 1.8 (m, 1H, CH_2), 1.2 (m, 1H, CH_2), 1.0 (m, 1H, CH_2), 0.8 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 207.5, 154.5, 153.5, 151.1, 148.5, 137.2, 55.4, 49.3, 37.8, 32.7, 21.9, 15.8$. IR: $\nu = 2977, 1716, 1594, 1409$ cm^{-1} . MS (CI): m/z (%): 233 (40) $[M+H]^+$.

3c: 3-octen-2-one (63 mg, 0.5 mmol) was used. The product **3c** was isolated in 76% yield (93 mg) and 93% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 5 % ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -3$ ($c = 0.85$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.0$ (s, 1H; ArH), 8.9 (s, 1H; ArH), 8.1 (s, 1H; ArH), 4.9 (m, 1H, CH), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (m, 1H, CH_2), 2.0 (s, 3H; CH_3), 1.8 (m, 1H, CH_2), 1.2 (m, 2H, CH_2), 1.1 (m, 1H,

CH₂), 0.8 (m, 1H, CH₂), 0.7 (t, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.5, 154.5, 153.5, 151.1, 148.5, 137.2, 55.6, 49.3, 35.4, 32.6, 30.8, 24.4, 16.2. IR: ν = 2958, 2931, 1717, 1594, 1407, 1199, 648 cm⁻¹. MS (CI): *m/z* (%): 247 (80) [M+H]⁺.

3d: 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The product **3d** was isolated in 86% yield (100 mg) and 91% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 9% ethanol/hexanes, 1.2 ml/min, 254 nm), [α]²⁰_D = -3 (c = 0.65 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=9.1 (s, 1H; ArH), 8.9 (s, 1H; ArH), 8.1 (s, 1H; ArH), 4.6 (m, 1H, CH), 3.6 (dd, ³J = 10 Hz, ²J = 18 Hz, 1H; CH₂), 3.1 (dd, ³J = 4 Hz, ²J = 18 Hz, 1H; CH₂), 2.5 (m, 1H, CH), 2.0 (s, 3H; CH₃), 1.0 (d, ³J = 7 Hz, 3H, CH₂), 0.7 (d, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.7, 154.5, 153.6, 151.2, 148.8, 137.1, 61.6, 46.7, 33.7, 32.7, 22.4, 21.9. IR: ν = 2967, 1719, 1593, 1406, 1201 cm⁻¹. MS (CI): *m/z* (%): 233 (50) [M+H]⁺.


3e: 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The product **3b** was isolated in 74% yield (120 mg) and 93% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), [α]²⁰_D = 44 (c = 1.00 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=9.0 (s, 1H; ArH), 8.8 (s, 1H; ArH), 8.0 (s, 1H; ArH), 7.2 (m, 5H; ArH), 5.1 (m, 1H, CH), 4.3 (d, ²J = 12 Hz, 1H; O-CH₂), 4.2 (d, ²J = 12 Hz, 1H; O-CH₂), 3.6 (dd, ³J = 9 Hz, ²J = 18 Hz, 1H; CH₂), 3.3 (dd, ³J = 4 Hz, ²J = 9 Hz, 1H; CH₂), 2.9 (m, 2H; CH₂), 2.5 (m, 1H, CH₂), 2.1 (m, 1H, CH₂), 2.0 (s, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=204.8, 151.7, 151.0, 148.4, 146.8, 137.5, 134.8, 128.4, 127.8, 127.7, 73.1, 65.7, 50.4, 46.1, 32.8, 30.1. IR: ν = 2980, 1716, 1595, 1408, 1274, 1098, 715 cm⁻¹. MS (CI): *m/z* (%): 325 (100) [M+H]⁺.

Reaction of purine with imides **6a-e**.

6a: Aluminum complex **1** (58 mg, 0.05 mmol, 10 mol%), purine (72 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension the imide **5a** (95 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **6a** was obtained in 74% yield (115

mg) and 95% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 17$ ($c = 1.00$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.1$ (s, 1H; ArH), 9.0 (s, 1H; ArH), 8.3 (s, 1H; ArH), 7.8 (m, 2H; ArH), 7.5 (m, 1H; ArH), 7.4 (m, 2H; ArH), 5.1 (m, 1H, CH), 3.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.9 (dd, $^3J = 6$ Hz, $^2J = 17$ Hz, 1H; CH_2), 1.7 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 172.3$, 171.8, 163.5, 155.8, 149.1, 142.8, 135.8, 134.4, 131.1, 129.8, 126.8, 57.7, 52.9, 43.3, 23.2. IR: $\nu = 2908$, 1715, 1690, 1500, 1248, 1204, 712 cm^{-1} . MS (CI): m/z (%): 310 (100) $[M]^+$.

General procedure for **6b**, **6d**, **6e** (these compounds were converted, in the mixture with their regioisomers **7**, to the corresponding methyl esters **6'** and **7'** for a facile separation (Scheme 1)).

Scheme 1

6'b. a) Preparation of mixture of **6b** and **7b**: Aluminum complex **1** (58 mg, 0.05 mmol, 10 mol%), purine (72 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension the imide **5b** (109 mg, 0.5 mmol) was added. The reaction mixture was stirred for 48 h at 65°C and then filtered through a silica plug, resulting in a crude mixture of products **6b** and **7b** in ratio 3:1.

b) Methanolysis: The crude mixture of **6b** and **7b** was dissolved in methanol (2 ml, excess) and cooled to 4°C. Erbium trifluoromethanesulfonate (15 mg, 0.025 mmol) was added and the solution stirred at 4°C for 20 hours. After removal of the solvent *in vacuo*, the major product (**6b**) was isolated by chromatography on silica (eluent: 5% methanol in ethyl acetate) in 69% yield (86 mg) and 95% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -18$ ($c = 1.00$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.1$ (s, 1H; ArH), 9.0 (s, 1H; ArH), 8.1 (s, 1H; ArH), 4.9 (m, 1H, CH), 3.6 (s, 3H, CH_3), 3.3 (dd, $^3J = 9$ Hz, $^2J = 17$ Hz, 1H; CH_2), 2.9 (dd, $^3J = 5$ Hz, $^2J = 17$ Hz, 1H; CH_2), 2.3 (m, 1H, CH_2), 1.9 (m, 1H, CH_2),

1.2 (m, 1H, CH₂), 1.1 (m, 1H, CH₂), 0.9 (t, ³*J* = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ =170.6, 152.2, 151.1, 148.6, 145.2, 134.6, 105.4, 53.6, 51.9, 38.3, 35.3, 19.3, 13.3. IR: ν = 2960, 1737, 1595, 1409, 1303, 1202, 648 cm⁻¹. MS (CI): *m/z* (%): 249 (100) [M]⁺.

6c. Aluminum complex **1** (58 mg, 0.05 mmol, 10 mol%), purine (72 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension the imide **5c** (109 mg, 0.5 mmol) was added. The reaction mixture was stirred at 65°C for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **6c** was obtained in 64% yield (108 mg) and 98% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]$ ²⁰_D = 27 (c = 1.00 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ =9.4 (s, 1H; N-H), 8.9 (s, 1H; ArH), 8.8 (s, 1H; ArH), 8.1 (s, 1H; ArH), 7.7 (m, 2H; ArH), 7.5 (m, 1H; ArH), 7.4 (m, 2H; ArH), 4.8 (m, 1H, CH), 4.0 (dd, ³*J* = 9 Hz, ²*J* = 18 Hz, 1H; CH₂), 3.6 (dd, ³*J* = 4 Hz, ²*J* = 18 Hz, 1H; CH₂), 2.6 (m, 1H, CH); 1.1 (d, ³*J* = 7 Hz, 3H; CH₃), 0.7 (d, ³*J* = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ =175.7, 168.6, 154.7, 153.9, 150.8, 148.5, 136.6, 135.9, 134.8, 131.4, 130.3, 61.3, 41.9, 34.1, 22.3, 21.9. IR: ν = 2967, 1714, 1688, 1598, 1251, 718 cm⁻¹. MS (CI): *m/z* (%): 338 (100) [M]⁺.

6'd. Imide **5d** (133 mg, 0.5 mmol) was used. Product **6'd** was isolated, after methanolysis and chromatography on silica (eluent: 5% methanol in ethyl acetate) in 63% yield (94 mg) and 96% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 7% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]$ ²⁰_D = 94 (c = 1.00 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ =9.1 (s, 1H; ArH), 8.9 (s, 1H; ArH), 7.8 (s, 1H; ArH), 7.1 (m, 3H; ArH), 6.9 (m, 2H; ArH), 5.1 (m, 1H, CH), 3.5 (s, 3H; CH₃), 3.5 (dd, ³*J* = 9 Hz, ²*J* = 14 Hz, 1H; CH₂), 3.4 (dd, ³*J* = 10 Hz, ²*J* = 14 Hz, 1H; CH₂), 3.3 (dd, ³*J* = 6 Hz, ²*J* = 14 Hz, 1H; CH₂), 3.0 (dd, ³*J* = 4 Hz, ²*J* = 14 Hz, 1H; CH₂). ¹³C NMR (125 MHz, CDCl₃): δ =168.3, 149.8, 148.9, 146.3, 143.3, 134.0, 132.4, 126.5, 126.4, 125.0, 53.7, 49.7, 37.2, 35.0. IR: ν = 3390, 1734, 1594, 1409, 1203, 703 cm⁻¹. MS (CI): *m/z* (%): 297 (100) [M]⁺.

6'e. Imide **5e** (159 mg, 0.5 mmol) was used. Product **6'e** was isolated, after methanolysis and chromatography on silica (eluent: 5% methanol in ethyl acetate) in 65% yield (113 mg) and 96% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -10$ (c = 1.00 in chloroform). 1H NMR (500 MHz, $CDCl_3$): δ =9.0 (s, 1H; ArH), 8.9 (s, 1H; ArH), 8.1 (s, 1H; ArH), 5.1 (m, 1H, CH), 4.0 (dd, $^3J = 6$ Hz, $^2J = 11$ Hz, 1H; CH_2), 3.9 (dd, $^3J = 4$ Hz, $^2J = 11$ Hz, 1H; CH_2), 3.5 (s, 3H; CH_3), 3.2 (dd, $^3J = 8$ Hz, $^2J = 15$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 4$ Hz, $^2J = 15$ Hz, 1H; CH_2), 0.71 (s, 9H; $C(CH_3)_3$), -0.1 (s, 3H; CH_3), -0.2 (s, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): δ =167.7, 150.9, 145.2, 138.1, 62.2, 53.4, 50.0, 33.15, 23.3, 15.8. IR: ν = 3390, 3191, 1645, 1578, 1406, 1203, 1117, 838 cm^{-1} . MS (CI): m/z (%): 351 (100) $[M+H]^+$.

General procedure for the conjugate addition of Boc-adenine to enones.

8a: Aluminum complex **1** (58 mg, 0.05 mmol, 10 mol%), Boc-adenine (141 mg, 0.6 mmol, 1.2 equiv), *tert*-butanol (22 mg, 0.3 mmol, 0.6 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension 3-hepten-2-one (56 mg, 0.5 mmol) was added. The reaction mixture was stirred 4°C for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **8a** was obtained in 67% yield (116 mg) and 95% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -9$ (c = 1.00 in chloroform). 1H NMR (500 MHz, $CDCl_3$): δ =8.7 (s, 1H; ArH), 8.1 (s, 1H; N-H), 7.9 (s, 1H; ArH), 4.9 (m, 1H, CH), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.1 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (m, 1H, CH_2), 2.0 (s, 3H; CH_3), 1.8 (m, 1H, CH_2), 1.5 (s, 9H; $C(CH_3)_3$), 0.9 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): δ =203.0, 150.0, 148.4, 147.6, 147.4, 140.9, 120.0, 50.9, 44.5, 33.1, 28.0, 25.8, 17.1, 11.0. IR: ν = 2964, 1748, 1718, 1610, 1464, 1233, 1147 cm^{-1} . MS (CI): m/z (%): 348 (40) $[M+H]^+$.

8b. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The product **8b** was isolated in 60% yield (104 mg) and 98% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -26$ (c = 1.00 in

chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.6 (s, 1H; ArH), 8.1 (s, 1H; N-H), 8.0 (s, 1H; ArH), 4.5 (m, 1H, CH), 3.6 (dd, 3J =10 Hz, 2J =18 Hz, 1H; CH_2), 3.0 (dd, 3J =3 Hz, 2J =18 Hz, 1H; CH_2), 2.5 (m, 1H, CH), 2.0 (s, 3H; CH_3), 1.5 (s, 9H; $\text{C}(\text{CH}_3)_3$), 1.0 (d, 3J =7 Hz, 3H, CH_2), 0.7 (d, 3J =7 Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =203.1, 150.0, 148.5, 147.6, 147.4, 141.3, 119.8, 79.8, 58.0, 57.2, 42.0, 28.9, 27.9, 25.8, 17.6, 17.2, 11.9. IR: ν =2975, 1749, 1718, 1610, 1465, 1233, 1148 cm^{-1} . MS (CI): m/z (%): 348 (20) $[M+\text{H}]^+$.

8c. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The product **8c** was isolated in 61% yield (134 mg) and 99% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D$ =42 (c=0.90 in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.7 (s, 1H; ArH), 8.0 (s, 1H; N-H), 7.9 (s, 1H; ArH), 7.3 (m, 3H; ArH), 7.2 (m, 2H; ArH), 5.1 (m, 1H, CH), 4.4 (d, 2J =12 Hz, 1H; O- CH_2), 4.2 (d, 2J =12 Hz, 1H; O- CH_2), 3.6 (dd, 3J =9 Hz, 2J =18 Hz, 1H; CH_2), 3.4 (dd, 3J =5 Hz, 2J =10 Hz, 1H; CH_2), 3.0 (dd, 3J =5 Hz, 2J =10 Hz, 1H; CH_2), 2.9 (dd, 3J =4 Hz, 2J =18 Hz, 1H; CH_2), 2.5 (m, 1H, CH_2), 2.1 (m, 1H, CH_2), 2.0 (s, 3H; CH_3), 1.5 (s, 9H; $\text{C}(\text{CH}_3)_3$). ^{13}C NMR (125 MHz, CDCl_3): δ =202.8, 153.0, 149.9, 147.8, 147.5, 146.5, 146.4, 141.6, 135.5, 126.2, 125.5, 119.9, 79.9, 70.9, 63.5, 48.4, 43.9, 30.7, 27.9, 25.8. IR: ν =2976, 2929, 1750, 1717, 1610, 1502, 1232, 1147 cm^{-1} . MS (CI): m/z (%): 440 (10) $[M+\text{H}]^+$, 340 (100) $[M-\text{Boc}]^+$.

General procedure for the conjugate addition of 6-benzyloxy-purine to enones.

9a: Aluminum complex **1** (58 mg, 0.05 mmol, 10 mol%), 6-benzyloxy-purine (135 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension 3-hepten-2-one (56 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **9a** was obtained in 93% yield (157 mg) and 97% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 6% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D$ =-12 (c=0.90 in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.5 (s, 1H; ArH), 7.9 (s, 1H; ArH), 7.5 (m, 2H; ArH), 7.3 (m, 3H; ArH), 5.6 (s, 1H, CH_2), 4.9 (m, 1H, CH), 3.4 (dd, 3J =8 Hz, 2J =

= 18 Hz, 1H; CH₂), 3.0 (dd, ³J = 5 Hz, ²J = 18 Hz, 1H; CH₂), 2.2 (m, 1H, CH₂), 2.1 (s, 3H; CH₃), 1.8 (m, 1H, CH₂), 1.1 (m, 1H, CH₂), 1.0 (m, 1H, CH₂), 0.8 (t, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.5, 163.0, 154.4, 153.9, 145.2, 138.7, 130.8, 124.6, 70.7, 55.4, 49.6, 38.1, 32.7, 21.8, 15.8. IR: ν = 2960, 1717, 1598, 1572, 1341, 1315, 1220 cm⁻¹. MS (CI): *m/z* (%): 339 (100) [M]⁺.

9b. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The product **9b** was isolated in 89% yield (150 mg) and 96% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), [α]²⁰_D = -23 (c = 1.00 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=8.5 (s, 1H; ArH), 7.9 (s, 1H; ArH), 7.5 (m, 2H; ArH), 7.3 (m, 3H; ArH), 5.6 (s, 1H, CH₂), 4.6 (m, 1H, CH), 3.6 (dd, ³J = 10 Hz, ²J = 18 Hz, 1H; CH₂), 3.0 (dd, ³J = 3 Hz, ²J = 18 Hz, 1H; CH₂), 2.5 (m, 1H, CH), 2.0 (s, 3H; CH₃), 1.0 (d, ³J = 7 Hz, 3H, CH₂), 0.7 (d, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=202.9, 158.3, 149.7, 149.2, 140.9, 133.9, 126.1, 126.0, 125.8, 119.7, 66.0, 56.8, 42.2, 29.2, 27.3, 17.6, 17.1. IR: ν = 2965, 1717, 1598, 1571, 1469, 1341, 1316, 1215 cm⁻¹. MS (CI): *m/z* (%): 339 (100) [M+H]⁺.

9c. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The product **9c** was isolated in 75% yield (161 mg) and 95% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), [α]²⁰_D = 16 (c = 0.45 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=8.4 (s, 1H; ArH), 7.8 (s, 1H; ArH), 7.5 (m, 2H; ArH), 7.2 (m, 8H; ArH), 5.6 (s, 1H, CH₂), 5.1 (m, 1H, CH), 4.3 (d, ²J = 12 Hz, 1H; O-CH₂), 4.2 (d, ²J = 12 Hz, 1H; O-CH₂), 3.6 (dd, ³J = 9 Hz, ²J = 18 Hz, 1H; CH₂), 3.4 (dd, ³J = 5 Hz, ²J = 10 Hz, 1H; CH₂), 2.9 (m, 2H; CH₂), 2.4 (m, 1H, CH₂), 2.1 (m, 1H, CH₂), 2.0 (s, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.4, 163.0, 154.3, 153.8, 146.1, 140.2, 138.7, 130.9, 130.5, 130.2, 124.775.6, 70.8, 68.3, 52.9, 48.9, 35.6, 32.7. IR: ν = 2970, 2929, 1715, 1598, 1572, 1453, 1342, 1315, 1218, 746 cm⁻¹. MS (CI): *m/z* (%): 431 (100) [M+H]⁺.

General procedure for the conjugate addition of 6-chloro-purine and 6-methylmercapto-purine to enones.

10a: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), 6-benzyloxy-purine (135 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension 3-hepten-2-one (56 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **10a** was obtained in 95% yield (127 mg) and 91% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 6% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -8$ ($c = 1.00$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.7$ (s, 1H; ArH), 8.1 (s, 1H; ArH), 4.9 (m, 1H, CH), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.1 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (m, 1H, CH_2), 2.1 (s, 3H; CH_3), 1.8 (m, 1H, CH_2), 1.2 (m, 1H, CH_2), 1.1 (m, 1H, CH_2), 0.8 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 202.5, 149.1, 148.8, 143.7, 129.9, 51.1, 44.4, 33.0, 27.9, 17.1, 11.0$. IR: $\nu = 2961, 1716, 1592, 1557, 1336, 1195, 1144, 936$ cm^{-1} . MS (CI): m/z (%): 267 (50) $[M]^+$.

10b. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The product **10b** was isolated in 85% yield (113 mg) and 93.5% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 6% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -16$ ($c = 0.75$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.7$ (s, 1H; ArH), 8.1 (s, 1H; ArH), 4.6 (m, 1H, CH), 3.6 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 3$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (m, 1H, CH), 2.0 (s, 3H; CH_3), 1.0 (d, $^3J = 7$ Hz, 3H, CH_2), 0.7 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 202.7, 149.1, 148.9, 144.0, 129.8, 57.3, 41.9, 29.0, 27.9, 17.5, 17.1$. IR: $\nu = 2967, 1718, 1592, 1557, 1394, 1336, 1195, 939$ cm^{-1} . MS (CI): m/z (%): 267 (100) $[M]^+$.

10c. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The product **10c** was isolated in 82% yield (147 mg) and 96% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 25$ ($c = 0.50$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.6$ (s, 1H; ArH), 8.1 (s, 1H; ArH), 7.3 (m, 3H; ArH), 7.2 (m, 2H; ArH), 5.2 (m, 1H, CH), 4.4 (d, $^2J = 8$ Hz, 1H; O- CH_2), 4.3 (d, $^2J = 8$ Hz, 1H; O- CH_2), 3.6 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.4 (dd, $^3J = 3$ Hz, $^2J = 10$ Hz, 1H; CH_2), 3.0 (m, 2H, CH_2), 2.5 (m, 1H, CH_2), 2.2 (m, 1H, CH_2), 2.0 (s, 3H;

CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =207.2, 153.9, 153.7, 153.5, 149.2, 140.0, 134.8, 130.9, 130.4, 130.2, 75.7, 68.2, 53.5, 48.6, 35.4, 32.6. IR: ν = 2925, 2862, 1716, 1592, 1558, 1336, 1194, 1142, 938 cm^{-1} . MS (CI): m/z (%): 359 (100) $[M]^+$.

11a. 3-hepten-2-one (56 mg, 0.5 mmol) and 6-methylmercapto-purine (100 mg, 1.2 equiv) were used. The product **11a** was isolated in 91% yield (127 mg) and 97% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 6% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D$ = -14 (c = 1.00 in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.6 (s, 1H; ArH), 7.9 (s, 1H; ArH), 4.8 (m, 1H, CH), 3.4 (dd, 3J = 8 Hz, 2J = 18 Hz, 1H; CH_2), 3.0 (dd, 3J = 5 Hz, 2J = 18 Hz, 1H; CH_2), 2.2 (m, 1H, CH_2), 2.0 (s, 3H; CH_3), 1.7 (m, 1H, CH_2), 1.1 (m, 1H, CH_2), 0.9 (m, 1H, CH_2), 0.8 (t, 3J = 7 Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =202.7, 159.3, 149.1, 145.6, 140.9, 129.8, 50.6, 44.7, 33.2, 28.0, 17.1, 11.0, 9.4. IR: ν = 2960, 2931, 1716, 1568, 1332, 1199, 946 cm^{-1} . MS (CI): m/z (%): 279 (90) $[M+\text{H}]^+$.

11b. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) and 6-methylmercapto-purine (100 mg, 1.2 equiv) were used. The product **11b** was isolated in 88% yield (122 mg) and 98% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 6% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D$ = -27 (c = 1.1 in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.6 (s, 1H; ArH), 8.0 (s, 1H; ArH), 4.6 (m, 1H, CH), 3.6 (dd, 3J = 10 Hz, 2J = 18 Hz, 1H; CH_2), 3.0 (dd, 3J = 3 Hz, 2J = 18 Hz, 1H; CH_2), 2.7 (s, 3H; S- CH_3), 2.5 (m, 1H, CH), 2.0 (s, 3H; CH_3), 1.0 (d, 3J = 7 Hz, 3H, CH_2), 0.7 (d, 3J = 7 Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =202.9, 159.4, 149.1, 145.7, 141.3, 129.6, 56.8, 42.1, 29.1, 27.9, 17.6, 17.1, 9.4. IR: ν = 2966, 1718, 1567, 1332, 1199, 939 cm^{-1} . MS (CI): m/z (%): 279 (100) $[M+\text{H}]^+$.

11c. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) and 6-methylmercapto-purine (100 mg, 1.2 equiv) were used. The product **11c** was isolated in 79% yield (146 mg) and 96% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D$ = 22 (c = 0.50 in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.6 (s, 1H; ArH), 7.9 (s, 1H; ArH), 7.3 (m, 5H; ArH), 5.1 (m, 1H,

CH), 4.4 (d, $^2J = 6$ Hz, 1H; O-CH₂), 4.3 (d, $^2J = 6$ Hz, 1H; O-CH₂), 3.6 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH₂), 3.4 (dd, $^3J = 3$ Hz, $^2J = 10$ Hz, 1H; CH₂), 3.0 (m, 2H, CH₂), 2.7 (s, 3H; S-CH₃), 2.5 (m, 1H, CH₂), 2.2 (m, 1H, CH₂), 2.0 (s, 3H; CH₃). ^{13}C NMR (125 MHz, CDCl₃): δ =202.6, 159.3, 148.9, 145.6, 141.8, 135.5, 129.9, 126.2, 125.5, 125.4, 70.9, 63.5, 48.2, 44.1, 30.8, 27.9, 9.4. IR: ν = 2929, 1714, 1568, 1332, 1273, 939, 715 cm⁻¹. MS (CI): *m/z* (%): 371 (100) [M+H]⁺.

Representative procedure for the conjugate addition of 6-benzyloxy-purine, 6-chloro-purine and 6-methylmercapto-purine to imides.

12a. Aluminum complex **1** (58 mg, 0.05 mmol, 10 mol%), 6-benzyloxy-purine (135 mg, 0.6 mmol, 1.2 equiv) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension (3-methyl-acryloyl)-benzamide (95 mg, 0.5 mmol) was added. The reaction mixture was stirred at 55°C for 48 h, and then purified by flash column chromatography on silica (eluent: 5% methanol in ethyl acetate). The product **12a** was obtained in 81% yield (168 mg) and 91% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}\text{D} = 8$ (c = 0.40 in chloroform). ^1H NMR (500 MHz, CDCl₃): δ =8.8 (bs, 1H; N-H), 8.5 (s, 1H; ArH), 8.0 (s, 1H; ArH), 7.8 (m, 2H; ArH), 7.6 (m, 1H; ArH), 7.5 (m, 4H; ArH), 7.3 (m, 3H, ArH), 5.6 (m, 2H, O-CH₂), 5.2 (m, 1H, CH), 4.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH₂), 3.6 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH₂), 1.8 (d, $^3J = 7$ Hz, 3H; CH₃). ^{13}C NMR (125 MHz, CDCl₃): δ =172.3, 165.5, 160.4, 151.9, 151.5, 141.6, 136.2, 133.4, 132.2, 128.9, 128.3, 128.2, 128.0, 127.6, 122.0, 68.2, 48.4, 43.1, 20.4. IR: ν = 2929, 1714, 1689, 1600, 1471, 1319, 1243, 1218, 1010, 710 cm⁻¹. MS (CI): *m/z* (%): 416 (100) [M]⁺.

12b. [3-(t-butyl-dimethyl-silyloxy-methyl)-acryloyl]-benzamide (159 mg, 0.5 mmol) was used. The product **12b** was isolated in 77% yield (209 mg) and 95% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}\text{D} = 18$ (c = 0.90 in chloroform). ^1H NMR (500 MHz, CDCl₃): δ =8.9 (bs, 1H;

N-H), 8.5 (s, 1H; ArH), 8.1 (s, 1H; ArH), 7.8 (m, 2H; ArH), 7.6 (m, 1H; ArH), 7.5 (m, 4H; ArH), 7.3 (m, 3H, ArH), 5.6 (m, 2H, O-CH₂), 5.2 (m, 1H, CH), 4.2 (dd, ³J = 6 Hz, ²J = 10 Hz, 1H; CH₂), 4.0 (dd, ³J = 4 Hz, ²J = 10 Hz, 1H; CH₂), 3.9 (dd, ³J = 8 Hz, ²J = 18 Hz, 1H; CH₂), 3.7 (dd, ³J = 4 Hz, ²J = 18 Hz, 1H; CH₂), 0.8 (s, 9H; C(CH₃)₃), -0.07 (s, 3H; CH₃), -0.11 (s, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=174.8, 168.0, 162.2, 154.5, 154.0, 145.2, 136.2, 135.9, 135.0, 131.5, 130.9, 130.7, 130.5, 130.1, 70.7, 66.2, 56.2, 40.7, 28.2, 20.5, -3.2, -3.1. IR: ν = 2953, 2930, 1714, 1689, 1600, 1574, 1470, 1251, 836 cm⁻¹. MS (CI): *m/z* (%): 546 (100) [M+H]⁺.

13a. Al-salen catalyst **1** (29 mg, 0.025 mmol, 5mol%), 6-chloro-purine (93 mg, 1.2 equiv) and (3-methyl-acryloyl)-benzamide (95 mg, 0.5 mmol) were used. Reaction time: 18 hours. The product **13a** was isolated in 92% yield (158 mg) and 97% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), [α]²⁰_D = 27 (c = 0.60 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=8.7 (s, 1H; ArH), 8.6 (bs, 1H; N-H), 8.2 (s, 1H; ArH), 7.8 (bd, 2H; ³J = 7 Hz; ArH), 7.6 (t, 1H; ³J = 7 Hz; ArH), 7.5 (t, 2H; ³J = 7 Hz; ArH), 5.3 (m, 1H, CH), 4.0 (dd, ³J = 9 Hz, ²J = 18 Hz, 1H; CH₂), 3.6 (dd, ³J = 5 Hz, ²J = 18 Hz, 1H; CH₂), 1.8 (d, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=174.7, 168.0, 154.0, 153.5, 147.5, 136.1, 134.5, 131.6, 130.1, 51.6, 45.4, 22.7. IR: ν = 3281, 2982, 1715, 1689, 1593, 1487, 1337, 1243, 1213, 710 cm⁻¹. MS (CI): *m/z* (%): 344 (50) [M]⁺.

13b. Al-salen catalyst **1** (29 mg, 0.025 mmol, 5mol%), 6-chloro-purine (93 mg, 1.2 equiv) and [3-(*t*-butyl-dimethyl-silyloxy)methyl]-acryloyl]-benzamide (159 mg, 0.5 mmol) were used. Reaction time: 24 hours. The product **13b** was isolated in 93% yield (220 mg) and 97% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), [α]²⁰_D = 23 (c = 0.80 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=8.7 (bs, 1H; N-H), 8.6 (s, 1H; ArH), 8.3 (s, 1H; ArH), 7.8 (bd, 2H; ³J = 7 Hz; ArH), 7.6 (t, 1H; ³J = 7 Hz; ArH), 7.5 (t, 2H; ³J = 7 Hz; ArH), 5.3 (m, 1H, CH), 4.2 (dd, ³J = 6 Hz, ²J = 10 Hz, 1H; CH₂), 4.0 (m, 2H; CH₂), 3.7 (dd, ³J = 5 Hz, ²J = 10 Hz, 1H; CH₂), 0.8 (s, 9H; C(CH₃)₃), -0.04 (s, 3H; CH₃), -0.05 (s, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=174.7, 168.0, 154.0, 153.4, 148.4, 136.1, 134.6, 134.2, 131.6,

130.1, 66.0, 56.7, 40.5, 28.1, 20.5, -3.2, -3.3. IR: ν = 2954, 2931, 1715, 1689, 1593, 1471, 1254, 836, 710 cm^{-1} . MS (CI): m/z (%): 474 (100) $[M+\text{H}]^+$.

14a. Al-salen catalyst **1** (29 mg, 0.025 mmol, 5 mol%), 6-methylmercapto-purine (100 mg, 1.2 equiv) and (3-methyl-acryloyl)-benzamide (95 mg, 0.5 mmol) were used. Reaction time: 48 hours. The product **14a** was isolated in 90% yield (160 mg) and 95.5% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 12% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 33$ ($c = 1.00$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.7 (bs, 1H; N-H), 8.6 (s, 1H; ArH), 8.0 (s, 1H; ArH), 7.8 (bd, 2H; $^3J = 7$ Hz; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.5 (t, 2H; $^3J = 7$ Hz; ArH), 5.4 (m, 1H, CH), 4.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.6 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.7 (s, 3H; S- CH_3), 1.8 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =174.8, 168.0, 164.0, 154, 150.5, 144.5, 136.0, 134.7, 134.4, 131.5, 130.1, 51.0, 45.6, 22.9, 14.2. IR: ν = 3271, 2963, 1714, 1687, 1567, 1482, 1242, 1208, 710 cm^{-1} . MS (CI): m/z (%): 356 (60) $[M]^+$.

14b. Al-salen catalyst **1** (29 mg, 0.025 mmol, 5 mol%), 6-methylmercapto-purine (100 mg, 1.2 equiv) and [3-(t-butyl-dimethyl-silyloxymethyl)-acryloyl]-benzamide (159 mg, 0.5 mmol) were used. Reaction time: 48 hours. The product **14b** was isolated, after chromatography on silica (eluent: ethyl acetate/methylene chloride 1:1) in 79% yield (191 mg) and 96.5% enantiomeric excess, as determined by chiral HPLC (Chiralpack AD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 10$ ($c = 0.50$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.7 (s, 1H; ArH), 8.6 (bs, 1H; N-H), 8.1 (s, 1H; ArH), 7.8 (m, 2H; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.5 (t, 2H; $^3J = 7$ Hz; ArH), 5.2 (m, 1H, CH), 4.2 (dd, $^3J = 6$ Hz, $^2J = 10$ Hz, 1H; CH_2), 4.0 (dd, $^3J = 4$ Hz, $^2J = 10$ Hz, 1H; CH_2), 3.9 (dd, $^3J = 8$ Hz, $^2J = 19$ Hz, 1H; CH_2), 3.7 (dd, $^3J = 6$ Hz, $^2J = 19$ Hz, 1H; CH_2), 2.7 (s, 3H; S- CH_3), 0.8 (s, 9H; $\text{C}(\text{CH}_3)_3$), -0.06 (s, 3H; CH_3), -0.10 (s, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =174.7, 168.0, 163.9, 154.0, 150.6, 145.6, 136.0, 134.7, 134.0, 131.5, 130.1, 66.2, 56.1, 40.6, 28.2, 20.5, 14.2, -3.2, -3.3. IR: ν = 2952, 2929, 1715, 1688, 1568, 1471, 1253, 836, 710 cm^{-1} . MS (CI): m/z (%): 486 (100) $[M+\text{H}]^+$.

General procedure for the conjugate addition of benzotriazole to enones.

Addition to 3-penten-2-one. Formation of products **15a** and **16a**: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), benzotriazole (60 mg, 0.5 mmol) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension 3-penten-2-one (65 mg, 0.5 mmol, 65% purity) was added. The reaction mixture was stirred at room temperature for 2 h, resulting in a mixture of regioisomers **15a** and **16a**. The products were separated by flash column chromatography on silica (eluent: 33% ethyl acetate in hexanes).

Analytical data for **15a**: Yield: 72% (73 mg); ee: 90.5% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.0 ml/min, 254 nm), $[\alpha]^{20}_D = -15$ ($c = 0.65$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 7.9$ (d, $^3J = 9$ Hz, 1H; ArH), 7.5 (d, $^3J = 8$ Hz, 1H; ArH), 7.4 (t, $^3J = 8$ Hz, 1H; ArH), 7.2 (t, $^3J = 8$ Hz, 1H; ArH), 5.3 (m, 1H, CH), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.0 (s, 3H; CH_3), 1.6 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 202.7, 143.6, 130.3, 124.9, 121.6, 117.5, 107.4, 47.9, 46.8, 28.1, 27.4, 18.9$. IR: $\nu = 2924, 1717, 1454, 1370, 1164, 748\text{ cm}^{-1}$. MS (CI): m/z (%): 204 (100) $[M+H]^+$.

Analytical data for **16a**: Yield: 23% (23 mg); ee: 94% (Chiral HPLC: Chiralpack OD, 3% *iso*-propanol/hexanes, 1.0 ml/min, 254 nm), $[\alpha]^{20}_D = -18$ ($c = 0.9$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 7.8$ (dd, $^4J = 3$ Hz, $^3J = 7$ Hz, 2H; ArH), 7.3 (dd, $^4J = 3$ Hz, $^3J = 6$ Hz, 2H; ArH), 5.5 (m, 1H, CH), 3.5 (dd, $^3J = 7$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (s, 3H; CH_3), 1.7 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 203.7, 141.7, 123.9, 115.8, 56.1, 46.9, 28.0, 19.1$. IR: $\nu = 2924, 1720, 1365, 1322, 1277, 1170, 748\text{ cm}^{-1}$. MS (CI): m/z (%): 204 (20) $[M+H]^+$.

15b, **16b**. 3-hepten-2-one (56 mg, 0.5 mmol) was used. The products **15b** and **16b** were separated by chromatography on silica (eluent: 33% ethyl acetate in hexanes).

Analytical data for **15b**: Yield: 75% (87 mg); ee: 94% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.0 ml/min, 254 nm), $[\alpha]^{20}_D = 4$ ($c = 0.50$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.0$ (d, $^3J = 8$ Hz, 1H; ArH), 7.7 (d, $^3J = 8$ Hz, 1H; ArH), 7.5 (t, $^3J = 8$ Hz, 1H; ArH), 7.4 (t, $^3J = 8$ Hz, 1H; ArH), 5.3 (m, 1H, CH), 3.6 (dd, $^3J = 8$ Hz, $^2J = 18$

Hz, 1H; CH₂), 3.1 (dd, ³J = 6 Hz, ²J = 18 Hz, 1H; CH₂), 2.2 (m, 1H, CH₂), 2.1 (s, 3H; CH₃), 1.9 (m, 1H, CH₂), 1.2 (m, 1H, CH₂), 1.1 (m, 1H, CH₂), 0.9 (t, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.7, 148.1, 136.1, 129.7, 126.4, 122.3, 112.3, 56.8, 50.7, 40.0, 32.9, 21.7, 16.0. IR: ν = 2962, 2933, 1719, 1453, 1369, 1161, 748 cm⁻¹. MS (CI): *m/z* (%): 232 (100) [M]⁺.

Analytical data for **16b**: Yield: 22% (26 mg); ee: 98% (Chiral HPLC: Chiralpack OD, 3% *iso*-propanol/hexanes, 1.0 ml/min, 254 nm), [α]²⁰_D = -9 (c = 0.5 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=7.9 (dd, ⁴J = 3 Hz, ³J = 7 Hz, 2H; ArH), 7.4 (dd, ⁴J = 3 Hz, ³J = 7 Hz, 2H; ArH), 5.4 (m, 1H, CH), 3.5 (dd, ³J = 8 Hz, ²J = 18 Hz, 1H; CH₂), 3.1 (dd, ³J = 6 Hz, ²J = 18 Hz, 1H; CH₂), 2.2 (s, 3H; CH₃), 2.1 (m, 1H, CH₂), 1.9 (m, 1H, CH₂), 1.3 (m, 1H, CH₂), 1.1 (m, 1H, CH₂), 0.9 (t, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.2, 146.5, 128.6, 120.6, 65.1, 50.6, 40.2, 32.8, 21.5, 16.0. IR: ν = 2960, 2930, 1721, 1362, 1323, 1274, 1166, 747 cm⁻¹. MS (CI): *m/z* (%): 232 (100) [M]⁺.

15c, 16c. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The products **15c** and **16c** were separated by chromatography on silica (eluent: 33% ethyl acetate in hexanes).

Analytical data for **15c**: Yield: 67% (78 mg); ee: 98% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.0 ml/min, 254 nm), [α]²⁰_D = 27 (c = 0.90 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=8.0 (d, ³J = 8 Hz, 1H; ArH), 7.7 (d, ³J = 8 Hz, 1H; ArH), 7.4 (t, ³J = 8 Hz, 1H; ArH), 7.3 (t, ³J = 8 Hz, 1H; ArH), 5.0 (m, 1H, CH), 3.7 (dd, ³J = 10 Hz, ²J = 18 Hz, 1H; CH₂), 3.0 (dd, ³J = 4 Hz, ²J = 18 Hz, 1H; CH₂), 2.3 (m, 1H, CH), 2.0 (s, 3H; CH₃), 1.0 (d, ³J = 7 Hz, 3H, CH₂), 0.7 (d, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=207.7, 154.5, 153.6, 151.2, 148.8, 137.1, 61.6, 46.7, 33.7, 32.7, 22.4, 21.9. IR: ν = 2966, 1718, 1493, 1408, 1199, 748 cm⁻¹. MS (CI): *m/z* (%): 232 (100) [M]⁺.

Analytical data for **16c**: Yield: 23% (27 mg); ee: 98% (Chiral HPLC: Chiralpack OD, 3% *iso*-propanol/hexanes, 1.0 ml/min, 254 nm), [α]²⁰_D = -19 (c = 0.5 in chloroform). ¹H NMR (500 MHz, CDCl₃): δ=7.8 (dd, ⁴J = 3 Hz, ³J = 6 Hz, 2H; ArH), 7.3 (dd, ⁴J = 3 Hz, ³J = 7 Hz, 2H; ArH), 5.2 (m, 1H, CH), 3.6 (dd, ³J = 10 Hz, ²J = 18 Hz, 1H; CH₂), 2.9 (dd, ³J = 4 Hz, ²J = 18 Hz, 1H; CH₂), 2.4 (m, 1H, CH), 2.1 (s, 3H; CH₃), 0.9 (d, ³J = 7 Hz, 3H, CH₂), 0.8 (d, ³J = 7 Hz, 3H; CH₃). ¹³C NMR (125 MHz, CDCl₃): δ=202.7, 141.5, 123.8,

115.8, 65.5, 51.1, 42.1, 31.4, 28.0, 16.5. IR: ν = 2967, 1721, 1363, 1276, 1168, 749 cm^{-1} . MS (CI): m/z (%): 232 (50) $[M]^+$.

15d, 16d. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The products **15d** and **16d** were separated by chromatography on silica (eluent: 33% ethyl acetate in hexanes).

Analytical data for **15d**: Yield: 65% (105 mg); ee: 93% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 63$ ($c = 1.00$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =7.9 (d, $^3J = 8$ Hz, 1H; ArH), 7.6 (d, $^3J = 8$ Hz, 1H; ArH), 7.4 (t, $^3J = 8$ Hz, 1H; ArH), 7.3 (t, $^3J = 8$ Hz, 1H; ArH), 7.2 (m, 3H; ArH), 7.1 (m, 2H; ArH), 5.5 (m, 1H; CH), 4.3 (d, $^2J = 8$ Hz, 2H; O-CH₂), 4.2 (d, $^2J = 8$ Hz, 2H; O-CH₂), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH₂), 3.3 (m, 1H, CH₂), 3.0 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH₂), 2.8 (m, 1H, CH₂), 2.3 (m, 1H, CH₂), 2.2 (m, 1H, CH₂), 2.1 (s, 3H; CH₃). ^{13}C NMR (125 MHz, CDCl_3): δ =204.8, 145.1, 137.8, 133.8, 128.3, 127.6, 127.2, 123.9, 119.5, 110.2, 73.0, 65.7, 51.1, 48.1, 35.4, 30.2. IR: ν = 2925, 1718, 1453, 1274, 1109, 747, 715 cm^{-1} . MS (CI): m/z (%): 324 (100) $[M+\text{H}]^+$.

Analytical data for **16d**: Yield: 26% (42 mg); ee: 95% (Chiral HPLC: Chiralpack OD, 3% *iso*-propanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 15$ ($c = 1.00$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =7.8 (dd, $^4J = 2$ Hz, $^3J = 5$ Hz, 2H; ArH), 7.3 (dd, $^4J = 2$ Hz, $^3J = 5$ Hz, 2H; ArH), 7.2 (m, 5H; ArH), 5.6 (m, 1H; CH), 4.4 (d, $^2J = 8$ Hz, 2H; O-CH₂), 4.3 (d, $^2J = 8$ Hz, 2H; O-CH₂), 3.4 (dd, $^3J = 8$ Hz, $^2J = 17$ Hz, 1H; CH₂), 3.3 (m, 1H, CH₂), 3.2 (m, 1H, CH₂), 3.0 (dd, $^3J = 5$ Hz, $^2J = 17$ Hz, 1H; CH₂), 2.3 (m, 1H, CH₂), 2.2 (m, 1H, CH₂), 2.1 (s, 3H; CH₃). ^{13}C NMR (125 MHz, CDCl_3): δ =205.1, 144.9, 138.6, 128.2, 127.6, 127.5, 126.1, 118.1, 74.2, 66.0, 60.9, 47.9, 35.5, 30.2. IR: ν = 2925, 1720, 1363, 1274, 1099, 749, 699 cm^{-1} . MS (CI): m/z (%): 324 (40) $[M+\text{H}]^+$.

15e, 16e. 4-phenyl-3-buten-2-one (73 mg, 0.5 mmol) was used. Reaction time: 48 h. The products **15e** and **16e** were separated by chromatography on silica (eluent: 33% ethyl acetate in hexanes).

Analytical data for **15e**: Yield: 53% (70 mg); ee: 88% (Chiral HPLC: Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 25$ ($c = 1.00$ in chloroform). ^1H NMR

(500 MHz, CDCl_3): δ =8.0 (d, 3J = 8 Hz, 1H; ArH), 7.4 (m, 2H; ArH), 7.3 (m, 6H; ArH), 6.3 (dd, 3J = 5 Hz, 2J = 9 Hz, 1H; CH), 4.3 (dd, 3J = 9 Hz, 2J = 18 Hz, 1H; CH_2), 3.3 (dd, 3J = 5 Hz, 2J = 18 Hz, 1H; CH_2), 2.2 (s, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =206.9, 148.8, 141.3, 135.5, 131.5, 131.0, 129.8, 129.0, 126.5, 122.3, 112.4, 60.8, 51.2, 32.9. IR: ν = 2929, 1718, 1454, 1367, 1160, 747, 700 cm^{-1} . MS (CI): m/z (%): 266 (100) $[M+\text{H}]^+$.

Analytical data for **16e**: Yield: 21% (28 mg); ee: % (Chiral HPLC: Chiralpack OD, 3% *iso*-propanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 38$ ($c = 1.00$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =7.8 (dd, 4J = 2 Hz, 3J = 5 Hz, 2H; ArH), 7.5 (dd, 4J = 2 Hz, 3J = 5 Hz, 2H; ArH), 7.3 (m, 5H; ArH), 6.5 (dd, 3J = 5 Hz, 2J = 9 Hz, 1H; CH), 4.1 (dd, 3J = 8 Hz, 2J = 18 Hz, 1H; CH_2), 3.3 (dd, 3J = 4 Hz, 2J = 18 Hz, 1H; CH_2), 2.2 (s, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =206.9, 148.7, 141.3, 135.5, 131.5, 131.0, 129.8, 129.0, 126.5, 122.3, 112.4, 60.8, 51.2, 32.9. IR: ν = 2923, 1720, 1454, 1363, 1321, 1270, 1162, 747, 699 cm^{-1} . MS (CI): m/z (%): 266 (30) $[M+\text{H}]^+$.

15f. 4-(4-bromophenyl)-3-buten-2-one (112.5 mg, 0.5 mmol) was used. Reaction time: 48 h. The product **15f** was isolated, after column chromatography (eluent: 6:4 of hexanes/ethyl acetate) in 60% yield (103 mg) and 70% enantiomeric excess, as determined by chiral HPLC (Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm). **15f** was re-crystallized from ether/methanol solution to give enantioenriched compound in 46% yield (84 mg) and 98% ee.

Analytical data for **15f**: $[\alpha]^{20}_{\text{D}} = -12$ ($c = 1.00$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.0 (d, 3J = 8 Hz, 1H; ArH), 7.4 (m, 2H; ArH), 7.3 (m, 3H; ArH), 7.1 (m, 2H; ArH), 6.3 (dd, 3J = 5 Hz, 2J = 9 Hz, 1H; CH), 4.2 (dd, 3J = 9 Hz, 2J = 18 Hz, 1H; CH_2), 3.3 (dd, 3J = 5 Hz, 2J = 18 Hz, 1H; CH_2), 2.2 (s, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =204.0, 146.2, 137.8, 132.8, 132.2, 128.2, 127.5, 124.1, 122.5, 119.9, 109.6, 57.6, 48.6, 30.3. IR: ν = 2936, 1718, 1489, 1360, 1162, 1010, 747 cm^{-1} . MS (CI): m/z (%): 344 (40) $[M]^+$.

General procedure for the conjugate addition of benzotriazole to imides.

Addition to (3-propyl-acryloyl)-benzamide. Formation of products **17a** and **18a**: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), benzotriazole (60 mg, 0.5 mmol) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension (3-propyl-acryloyl)-benzamide (109 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, resulting in a mixture of regioisomers **17a** and **18a**. The products were separated by two successive chromatographic columns on silica (eluent: 17% ethyl acetate in methylene chloride).

Analytical data for **17a**: Yield: 69% (116 mg); ee: 99% (Chiral HPLC: Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 31$ (c = 1.10 in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.9$ (s, 1H; N-H), 7.6 (m, 1H; ArH), 7.5 (m, 2H; ArH), 7.4 (m, 4H; ArH), 7.3 (dd, $^4J = 3$ Hz, $^3J = 7$ Hz, 2H; ArH), 5.5 (m, 1H, CH), 4.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.7 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (m, 1H, CH_2), 2.0 (m, 1H, CH_2), 1.2 (m, 1H, CH_2), 1.1 (m, 1H, CH_2), 0.9 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 175.1, 168.1, 146.5, 135.8, 134.9, 131.5, 130.2, 128.6, 120.6, 65.3, 45.3, 40.3, 21.5, 16.0$. IR: $\nu = 3278, 2918, 1706, 1672, 1462, 1247, 746, 714$ cm^{-1} . MS (CI): m/z (%): 337 (30) $[M]^+$.

Analytical data for **18a**: Yield: 27% (45 mg); ee: 98% (Chiral HPLC: Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 28$ (c = 1.00 in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.6$ (s, 1H; N-H), 8.0 (d, $^3J = 8$ Hz, 1H; ArH), 7.8 (m, 2H; CH), 7.6 (m, 1H; CH), 7.5 (m, 1H; CH), 7.4 (m, 3H; CH), 7.3 (t, $^3J = 8$ Hz, 1H; ArH), 5.4 (m, 1H, CH), 4.1 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.7 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.3 (m, 1H, CH_2), 2.2 (m, 1H, CH_2), 1.2 (m, 1H, CH_2), 1.1 (m, 1H, CH_2), 0.9 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 175.1, 168.6, 148.1, 136.0, 134.7, 131.4, 130.2, 129.6, 128.6, 126.3, 122.3, 120.6, 57.4, 45.4, 39.8, 21.7, 16.0$. IR: $\nu = 2961, 2927, 1715, 1689, 1483, 1259, 1091, 1025, 800, 747, 709$ cm^{-1} . MS (CI): m/z (%): 337 (100) $[M]^+$.

17b, 18b. (3-*iso*-propyl-acryloyl)-benzamide (109 mg, 0.5 mmol) was used. The products **17b** and **18b** were separated by two successive chromatographic columns on silica (eluent: 17% ethyl acetate in methylene chloride).

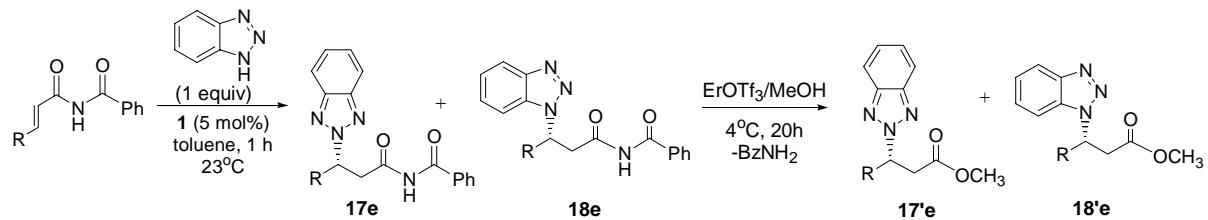
Analytical data for **17b**: Yield: 65% (110 mg); ee: 99.5% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 19$ ($c = 0.65$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.2$ (s, 1H; N-H), 7.8 (m, 4H; ArH), 7.6 (m, 1H; ArH), 7.5 (m, 2H; ArH), 7.3 (dd, $^4J = 2$ Hz, $^3J = 7$ Hz, 2H; ArH), 5.3 (m, 1H, CH), 4.2 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 3$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (m, 1H, CH), 1.0 (d, $^3J = 7$ Hz, 3H, CH_2), 0.8 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 175.8$, 168.3, 146.3, 135.7, 134.8, 131.4, 130.3, 128.5, 120.6, 70.6, 42.1, 36.4, 21.4. IR: $\nu = 3288, 2967, 1708, 1685, 1467, 1373, 1245, 708$ cm^{-1} . MS (CI): m/z (%): 337 (40) $[M]^+$.

Analytical data for **18b**: Yield: 23% (39 mg); ee: 99.5% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 15$ ($c = 0.90$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.3$ (bs, 1H; N-H), 8.0 (d, $^3J = 8$ Hz, 1H; ArH), 7.7 (m, 2H; CH), 7.6 (m, 1H; CH), 7.5 (m, 1H; CH), 7.4 (m, 3H; CH), 7.3 (m, 1H; ArH), 5.1 (m, 1H, CH), 4.2 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.7 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (m, 1H, CH), 1.1 (d, $^3J = 7$ Hz, 3H, CH_2), 0.8 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 175.3$, 168.1, 148.0, 146.3, 136.5, 135.8, 131.4, 130.2, 129.6, 126.2, 122.3, 112.5, 63.0, 42.6, 35.9, 22.1, 21.6. IR: $\nu = 2964, 2926, 1712, 1689, 1482, 1246, 1165, 711$ cm^{-1} . MS (CI): m/z (%): 337 (100) $[M]^+$.

17c, 18c. (3-benzyl-acryloyl)-benzamide (133 mg, 0.5 mmol) was used. The products **17c** and **18c** were separated by two successive chromatographic columns on silica (eluent: 17% ethyl acetate in methylene chloride).

Analytical data for **17c**: Yield: 67% (129 mg); ee: 96% (Chiral HPLC: Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 26$ ($c = 0.80$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.9$ (s, 1H; N-H), 7.8 (m, 4H; ArH), 7.6 (m, 1H; ArH), 7.5 (m, 2H; ArH), 7.3 (dd, $^4J = 4$ Hz, $^3J = 7$ Hz, 2H; ArH), 7.2 (m, 3H; ArH), 7.1 (m, 2H; ArH), 5.7 (m, 1H, CH), 4.1 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.6 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.5 (dd, $^3J = 7$ Hz, $^2J = 14$ Hz, 1H; CH_2), 3.3 (dd, $^3J = 5$ Hz, $^2J = 14$ Hz, 1H; CH_2). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 175.3$, 168.2, 146.5, 138.9, 135.8, 134.9, 131.7, 131.5, 131.2, 130.3, 129.6, 128.7, 120.7, 66.7, 44.5, 44.3. IR: $\nu = 2964, 1713, 1687, 1469, 1243, 749, 707$ cm^{-1} . MS (CI): m/z (%): 385 (50) $[M]^+$.

Analytical data for **18c**: Yield: 28% (54 mg); ee: 96% (Chiral HPLC: Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 19$ ($c = 0.95$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.9$ (s, 1H; N-H), 7.9 (d, $^3J = 7$ Hz, 1H; ArH), 7.5 (m, 1H; CH), 7.4 (m, 2H; CH), 7.3 (m, 3H; CH), 7.1 (m, 3H; CH), 6.9 (m, 2H; ArH), 5.5 (m, 1H, CH), 4.2 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.7 (dd, $^3J = 3$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.4 (m, 2H; CH_2). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 174.3, 166.7, 145.2, 136.6, 133.5, 133.2, 128.9, 128.5, 127.7, 126.9, 123.6, 119.5, 109.5, 56.6, 42.2, 41.7$. IR: $\nu = 2972, 1719, 1689, 1509, 1480, 1247, 745, 703$ cm^{-1} . MS (CI): m/z (%): 385 (100) $[M]^+$.


17d, 18d. (3-benzyloxymethyl-acryloyl)-benzamide (147 mg, 0.5 mmol) was used. The products **17d** and **18d** were separated by two successive chromatographic columns on silica (eluent: 17% ethyl acetate in methylene chloride).

Analytical data for **17d**: Yield: 64% (132 mg); ee: 99% (Chiral HPLC: Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 29$ ($c = 0.75$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.2$ (s, 1H; N-H), 7.8 (m, 4H; ArH), 7.6 (m, 1H; ArH), 7.5 (m, 2H; ArH), 7.3 (dd, $^4J = 4$ Hz, $^3J = 8$ Hz, 2H; ArH), 7.2 (m, 3H; ArH), 7.1 (m, 2H; ArH), 5.7 (m, 1H, CH), 4.5 (d, $^2J = 12$ Hz, 1H; CH_2), 4.4 (d, $^2J = 12$ Hz, 1H; CH_2), 4.2 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH_2), 4.0 (m, 1H; CH_2), 3.9 (m, 1H; CH_2), 3.8 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 175.2, 168.1, 146.6, 139.9, 135.8, 134.8, 131.4, 130.8, 130.3, 130.2, 130.1, 128.7, 120.7, 75.7, 74.1, 64.6, 42.0$. IR: $\nu = 3280, 2974, 1711, 1680, 1467, 1243, 746, 709$ cm^{-1} . MS (CI): m/z (%): 413 (100) $[M]^+$.

Analytical data for **18d**: Yield: 33% (68 mg); ee: 98% (Chiral HPLC: Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 12$ ($c = 0.80$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.7$ (s, 1H; N-H), 7.7 (m, 2H; ArH), 7.6 (m, 1H; CH), 7.5 (m, 1H; CH), 7.4 (m, 3H; CH), 7.3 (m, 1H; CH), 7.2 (m, 3H; ArH), 7.0 (m, 2H; ArH), 5.7 (m, 1H, CH), 4.5 (d, $^2J = 12$ Hz, 1H; CH_2), 4.4 (d, $^2J = 12$ Hz, 1H; CH_2), 4.1 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 4.0 (m, 1H; CH_2), 3.9 (m, 1H; CH_2), 3.8 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 174.6, 167.9, 148.3, 139.9, 136.2, 135.8, 134.8, 131.5, 130.8, 130.3, 130.1, 129.7, 126.4, 122.2, 112.9, 175.2, 168.1, 146.6, 139.9,$

135.8, 134.8, 131.4, 130.8, 130.3, 130.2, 130.1, 128.7, 120.7, 75.9, 74.2, 57.3, 42.0. IR: ν = 3283, 2925, 1715, 1689, 1476, 1243, 1102, 747, 7089 cm^{-1} . MS (CI): m/z (%): 413 (80) $[M]^+$.

17e, 18e. (these compounds were converted to the corresponding methyl esters **17'e** and **18'e** for a facile separation (Scheme 2)).

Scheme 2

a) Preparation of mixture of **17e** and **18e**: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), benzotriazole (60 mg, 0.5 mmol) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension (3-phenyl-acryloyl)-benzamide (127 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 1 h and then filtered through a silica plug, resulting in a mixture of regioisomers **17e** and **18e**.

b) Methanolysis: The crude mixture of **17e** and **18e** was dissolved in methanol (2 ml, excess) and cooled to 4°C. Erbium trifluoromethanesulfonate (15 mg, 0.025 mmol) was added and the solution stirred at 4°C for 20 hours. After removal of the solvent *in vacuo*, the products **17'e** and **18'e** were separated by chromatography on silica (eluent: 30% ethyl acetate in hexanes).

Analytical data for **17'e**: Yield: 55% (78 mg); ee: 99% (Chiral HPLC: Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 22$ ($c = 0.50$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =7.8 (dd, $^4J = 4$ Hz, $^3J = 8$ Hz, 2H; ArH), 7.3 (m, 7H; ArH), 6.5 (dd, $^3J = 5$ Hz, $^2J = 8$ Hz, 1H; CH), 4.0 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.6 (s, 3H; CH_3), 3.3 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2). ^{13}C NMR (125 MHz, CDCl_3): δ =172.6, 146.7, 140.5, 131.4, 131.2, 129.3, 128.8, 120.8, 69.0, 54.5, 42.4. IR: ν = 2953, 1741, 1324, 1264, 1169, 749, 704 cm^{-1} . MS (CI): m/z (%): 285 (100) $[M+\text{H}]^+$.

Analytical data for **18'e**: Yield: 41% (58 mg); ee: 95% (Chiral HPLC: Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 66$ ($c = 0.85$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.0$ (d, $^3J = 8$ Hz, 1H; ArH), 7.4 (m, 2H; ArH), 7.3 (m, 6H; ArH), 6.3 (dd, $^3J = 6$ Hz, $^2J = 9$ Hz, 1H; CH), 4.0 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.6 (s, 3H; CH_3), 3.4 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 173.0, 140.6, 135.2, 131.6, 131.2, 129.8, 129.2, 126.5, 122.4, 112.3, 61.9, 54.6, 42.6$. IR: $\nu = 2952, 1739, 1453, 1266, 1201, 1174, 747, 704$ cm^{-1} . MS (CI): m/z (%): 285 (40) $[M+H]^+$.

General procedure for the conjugate addition of 5-methyl-tetrazole to enones and imides. Addition to 3-hepten-2-one. Formation of products **19a** and **20a**: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), 5-methyl-tetrazole (42 mg, 0.5 mmol) and toluene (2.5 ml) were combined in a round-bottomed flask. The resulting suspension was cooled to 4°C and 3-hepten-2-one (56 mg, 0.5 mmol) was added. The reaction mixture was stirred at 4°C for 24 h, resulting in a mixture of regioisomers **19a** and **20a**. The products were separated by column chromatography on silica (eluent: 1:1 of ethyl acetate/hexanes).

Analytical data for **19a**: Yield: 42% (41 mg); ee: 94.5% (Chiral HPLC: Chiralcel OB, 4% *iso*-propanol/hexanes, 1.2 ml/min, 208 nm), $[\alpha]^{20}_D = -7$ ($c = 0.50$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 5.2$ (m, 1H, CH), 3.3 (dd, $^3J = 8$ Hz, $^2J = 20$ Hz, 1H; CH_2), 2.9 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (s, 3H; CH_3), 2.1 (s, 3H; CH_3), 1.9 (m, 1H, CH_2), 1.8 (m, 1H, CH_2), 1.2 (m, 1H, CH_2), 1.1 (m, 1H, CH_2), 0.8 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 204.0, 162.4, 59.4, 47.0, 36.8, 30.1, 18.7, 13.2, 10.8$. IR: $\nu = 2963, 2938, 1722, 1505, 1365, 1174, 1031$ cm^{-1} . MS (CI): m/z (%): 197 (100) $[M+H]^+$.

Analytical data for **20a**: Yield: 40% (39 mg); ee: 94.5% (Chiral HPLC: Chiralcel AD, 10% ethanol/hexanes, 1.2 ml/min, 208 nm), $[\alpha]^{20}_D = -10$ ($c = 0.50$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 4.7$ (m, 1H, CH), 3.4 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.9 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.6 (s, 3H; CH_3), 2.0 (s, 3H; CH_3), 1.9 (m, 1H, CH_2), 1.7 (m, 1H, CH_2), 1.21 (m, 1H, CH_2), 1.0 (m, 1H, CH_2), 0.8 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 204.6, 152.2, 53.4, 47.9, 37.0, 30.0, 18.9, 13.3$,

8.9. IR: ν = 2962, 2929, 1718, 1525, 1405, 1173 cm^{-1} . MS (CI): m/z (%): 197 (100) $[M+\text{H}]^+$.

19b, 20b. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The products **19b** and **20b** were separated by chromatography on silica (eluent: 5% methylene chloride in ethyl acetate).

Analytical data for **19b**: Yield: 64% (63 mg); ee: 95% (Chiral HPLC: Chiralpack OD, 15% iso-propanol/hexanes, 1.2 ml/min, 208 nm), $[\alpha]^{20}_{\text{D}} = -32$ ($c = 0.75$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =5.1 (m, 1H, CH), 3.5 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (s, 3H; CH_3), 2.2 (m, 1H, CH), 2.1 (s, 3H; CH_3), 0.9 (d, $^3J = 7$ Hz, 3H, CH_2), 0.8 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =207.2, 164.7, 67.1, 45.9, 35.3, 32.7, 21.0, 20.8, 13.3. IR: ν = 2969, 1721, 1504, 1365, 1168 cm^{-1} . MS (CI): m/z (%): 197 (100) $[M+\text{H}]^+$.

Analytical data for **20b**: Yield: 27% (26 mg); ee: 96% (Chiral HPLC: Chiralpack AD, 10% ethanol/hexanes, 1.2 ml/min, 208 nm), $[\alpha]^{20}_{\text{D}} = 15$ ($c = 0.50$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =4.4 (m, 1H, CH), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.9 (dd, $^3J = 2$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.6 (s, 3H; CH_3), 2.1 (m, 1H, CH), 2.0 (s, 3H; CH_3), 0.9 (d, $^3J = 7$ Hz, 3H, CH_2), 0.7 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =204.9, 154.8, 59.0, 45.2, 32.8, 30.1, 19.2, 18.7, 9.0. IR: ν = 2969, 2923, 1720, 1525, 1405, 1385 cm^{-1} . MS (CI): m/z (%): 197 (100) $[M+\text{H}]^+$.

19c, 20c. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The products **19c** and **20c** were separated by chromatography on silica (eluent: 17% ethyl acetate in methylene chloride).

Analytical data for **19c**: Yield: 63% (91 mg); ee: 87.5% (Chiral HPLC: Chiralpack AD, 10% ethanol/hexanes, 1.2 ml/min, 205 nm), $[\alpha]^{20}_{\text{D}} = 9$ ($c = 1.00$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =7.2 (m, 5H; ArH), 5.4 (m, 1H; CH), 4.4 (d, $^2J = 12$ Hz, 2H; O- CH_2), 4.3 (d, $^2J = 12$ Hz, 2H; O- CH_2), 3.5 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.4 (m, 1H, CH_2), 3.2 (m, 2H, CH_2), 3.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.4 (s, 3H; CH_3), 2.1 (m, 2H, CH_2), 2.0 (s, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =203.8, 162.5, 137.8,

128.3, 127.6, 73.0, 65.8, 57.3, 46.9, 34.8, 30.0, 10.8. IR: ν = 2928, 2866, 1721, 1504, 1362, 1101, 741, 700 cm^{-1} . MS (CI): m/z (%): 289 (100) $[M+\text{H}]^+$.

Analytical data for **20c**: Yield: 30% (43 mg); ee: 87% (Chiral HPLC: Chiralpack AD, 10% ethanol/hexanes, 1.2 ml/min, 205 nm), $[\alpha]^{20}_{\text{D}} = 52$ ($c = 0.80$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =7.2 (m, 5H; ArH), 5.0 (m, 1H; CH), 4.3 (s, 2H; O- CH_2), 3.4 (m, 2H; CH_2), 2.8 (m, 2H, CH_2), 2.5 (s, 3H; CH_3), 2.1 (m, 2H, CH_2), 2.0 (s, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =204.3, 152.9, 137.4, 128.4, 127.9, 127.7, 73.1, 65.0, 50.1, 47.9, 34.8, 29.9, 8.6. IR: ν = 2925, 2873, 1719, 1526, 1408, 1094, 701 cm^{-1} . MS (CI): m/z (%): 289 (100) $[M+\text{H}]^+$.

21a, 22a. (3-methyl-acryloyl)-benzamide (95 mg, 0.5 mmol) was used. The products **21a** and **22a** were separated by chromatography on silica (eluent: 1:1 of ethyl acetate/methylene chloride).

Analytical data for **21a**: Yield: 61% (84 mg); ee: 93% (Chiral HPLC: Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 14$ ($c = 0.80$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.9 (bs, 1H; N-H), 7.8 (d, 2H; $^3J = 7$ Hz; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.5 (t, 2H; $^3J = 7$ Hz; ArH), 5.5 (m, 1H, CH), 3.9 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.6 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (s, 3H; CH_3), 1.8 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =167.2, 160.8, 157.9, 128.7, 127.5, 124.3, 122.9, 509, 38.6, 16.1, 6.1. IR: ν = 3296, 1710, 1691, 1504, 1467, 1241, 707 cm^{-1} . MS (CI): m/z (%): 274 (20) $[M]^+$.

Analytical data for **22a**: Yield: 35% (48 mg); ee: 92% (Chiral HPLC: Chiralpack OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_{\text{D}} = 18$ ($c = 0.25$ in chloroform). ^1H NMR (500 MHz, CDCl_3): δ =8.5 (bs, 1H; N-H), 7.8 (d, 2H; $^3J = 7$ Hz; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.5 (t, 2H; $^3J = 7$ Hz; ArH), 5.1 (m, 1H, CH), 4.0 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.5 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.6 (s, 3H; CH_3), 1.6 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, CDCl_3): δ =167.1, 160.5, 157.3, 128.6, 124.3, 122.8, 44.9, 39.1, 16.4, 4.1. IR: ν = 3256, 2925, 1716, 1690, 1507, 1247, 1195, 711 cm^{-1} . MS (CI): m/z (%): 274 (40) $[M]^+$.

21b, 22b. [3-(t-butyl-dimethyl-silyloxymethyl)-acryloyl]-benzamide (159 mg, 0.5 mmol) was used. The products **21b** and **22b** were separated by chromatography on silica (eluent: 17% of ethyl acetate in methylene chloride).

Analytical data for **21b**: Yield: 56% (113 mg); ee: 96% (Chiral HPLC: Chiralpack OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 6$ (c = 0.45 in chloroform). 1H NMR (500 MHz, $CDCl_3$): δ =8.9 (s, 1H; N-H), 7.8 (d, 2H; $^3J = 7$ Hz; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.5 (t, 2H; $^3J = 7$ Hz; ArH), 5.5 (m, 1H, CH), 4.1 (m, 2H; CH_2), 4.0 (dd, $^3J = 9$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.7 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (s, 3H; CH_3), 0.8 (s, 9H; $C(CH_3)_3$), -0.04 (s, 3H; CH_3), -0.07 (s, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): δ =174.7, 168.0, 154.0, 153.4, 148.4, 136.1, 134.6, 134.2, 131.6, 130.1, 66.0, 56.7, 40.5, 28.1, 20.5, -3.2, -3.3. IR: ν = 2930, 2858, 1717, 1684, 1466, 1243, 836, 779, 708 cm^{-1} . MS (CI): m/z (%): 404 (100) $[M+H]^+$.

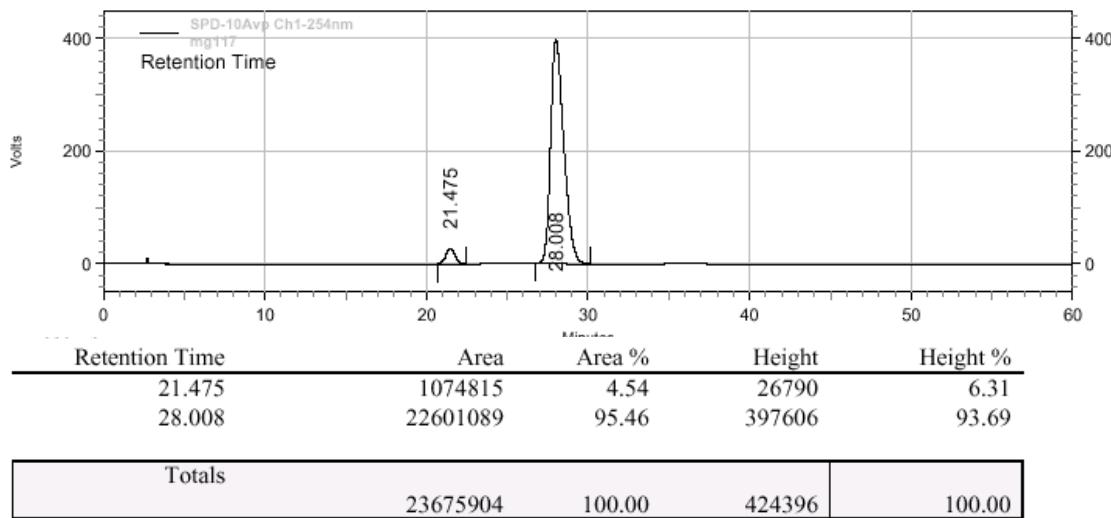
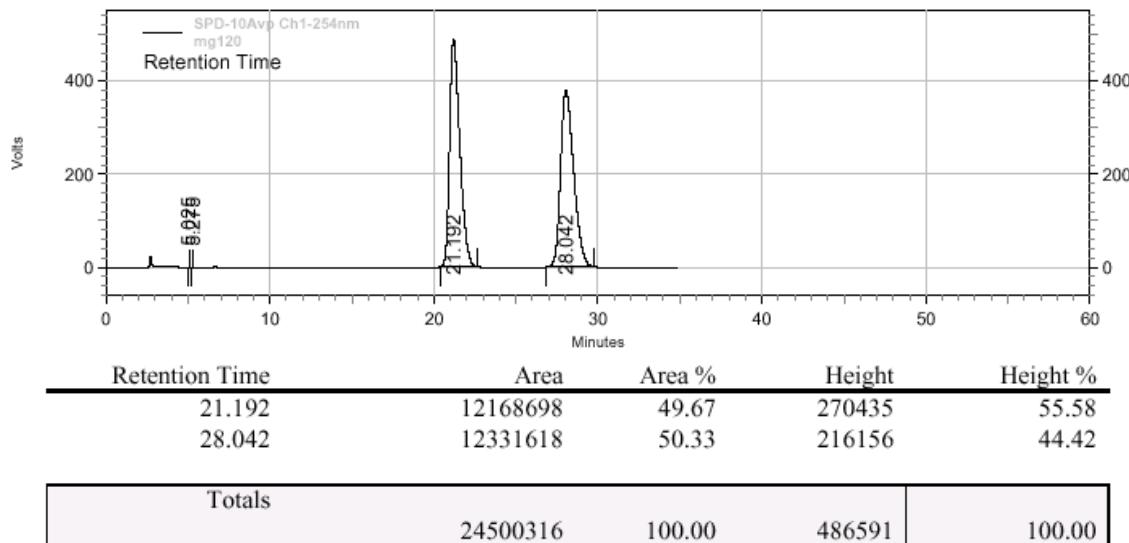
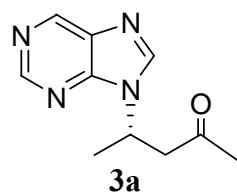
Analytical data for **22b**: Yield: 35% (71 mg); ee: 94.5% (Chiral HPLC: Chiralpack OD, 5% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 39$ (c = 0.60 in chloroform). 1H NMR (500 MHz, $CDCl_3$): δ =8.6 (bs, 1H; N-H), 7.8 (d, 2H; $^3J = 7$ Hz; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.5 (t, 2H; $^3J = 7$ Hz; ArH), 5.0 (m, 1H, CH), 4.0 (m, 3H; CH_2), 3.5 (dd, $^3J = 3$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.6 (s, 3H; CH_3), 0.8 (s, 9H; $C(CH_3)_3$), -0.04 (s, 3H; CH_3), -0.10 (s, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): δ =166.8, 160.7, 147.4, 128.8, 124.3, 122.8, 60.6, 51.1, 33.9, 20.8, 13.2, 4.2, -3.2, -3.3. IR: ν = 2954, 2931, 1716, 1691, 1471, 1254, 1117, 836, 780, 710 cm^{-1} . MS (CI): m/z (%): 404 (80) $[M+H]^+$.

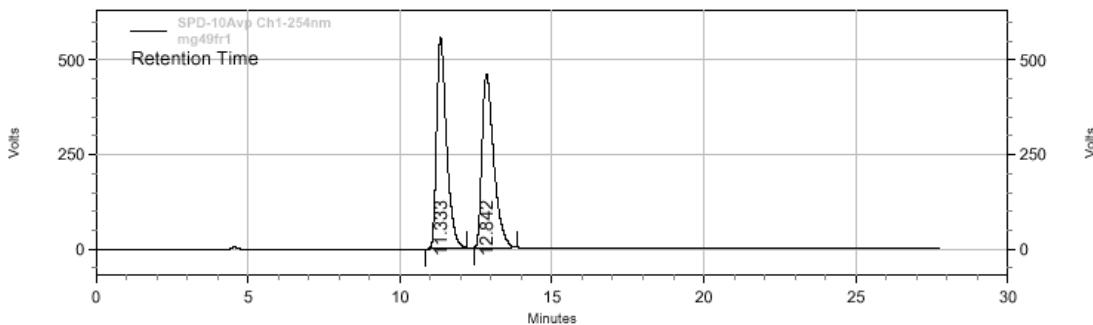
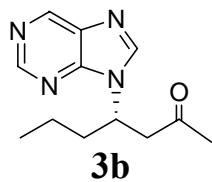
General procedure for the conjugate addition of 5-phenyl-tetrazole to enones and imides.

23a: Aluminum complex **1** (29 mg, 0.025 mmol, 5 mol%), 5-phenyl-tetrazole (73 mg, 0.5 mmol) and toluene (2.5 ml) were combined in a round-bottomed flask. To the resulting suspension 3-hepten-2-one (56 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 2 h, and then purified by flash column chromatography on silica (eluent: 6:4 of hexanes/ethyl acetate). The product **23a** was obtained in 94% yield (121 mg) and 99% enantiomeric excess, as determined by chiral

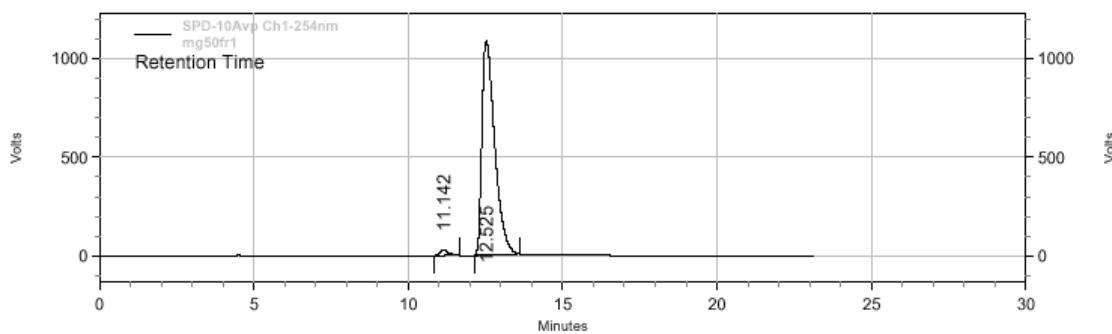
HPLC (Chiralcel OB, 7% *iso*-propanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -24$ ($c = 0.9$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 5.2$ (m, 1H, CH), 3.3 (dd, $^3J = 8$ Hz, $^2J = 20$ Hz, 1H; CH_2), 2.9 (dd, $^3J = 6$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.5 (s, 3H; CH_3), 2.1 (s, 3H; CH_3), 1.9 (m, 1H, CH_2), 1.8 (m, 1H, CH_2), 1.2 (m, 1H, CH_2), 1.1 (m, 1H, CH_2), 0.8 (t, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 204.0, 162.4, 59.4, 47.0, 36.8, 30.1, 18.7, 13.2, 10.8$. IR: $\nu = 2963, 2938, 1722, 1467, 1451, 1366, 734, 695$ cm^{-1} . MS (CI): m/z (%): 259 (20) $[M+H]^+$.

23b. 5-methyl-3-hexen-2-one (56 mg, 0.5 mmol) was used. The product **23b** was obtained in 93% yield (120 mg) and 95.5% enantiomeric excess, as determined by chiral HPLC (Chiralcel AD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = -32$ ($c = 0.9$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 8.1$ (m, 2H; ArH), 7.4 (m, 3H; ArH), 5.2 (m, 1H, CH), 3.6 (dd, $^3J = 10$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.0 (dd, $^3J = 3$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.3 (m, 1H, CH), 2.2 (s, 3H; CH_3), 1.0 (d, $^3J = 7$ Hz, 3H, CH_2), 0.8 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 202.0, 162.2, 127.9, 126.5, 125.3, 124.5, 62.7, 41.2, 30.6, 28.0, 16.3, 16.1$. IR: $\nu = 2969, 1722, 1467, 1450, 1366, 734, 695$ cm^{-1} . MS (CI): m/z (%): 259 (30) $[M+H]^+$.




23c. 6-benzyloxy-3-hexen-2-one (102 mg, 0.5 mmol) was used. The product **23c** was obtained in 90% yield (158 mg) and 94% enantiomeric excess, as determined by chiral HPLC (Chiralcel AD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 9$ ($c = 0.6$ in chloroform).

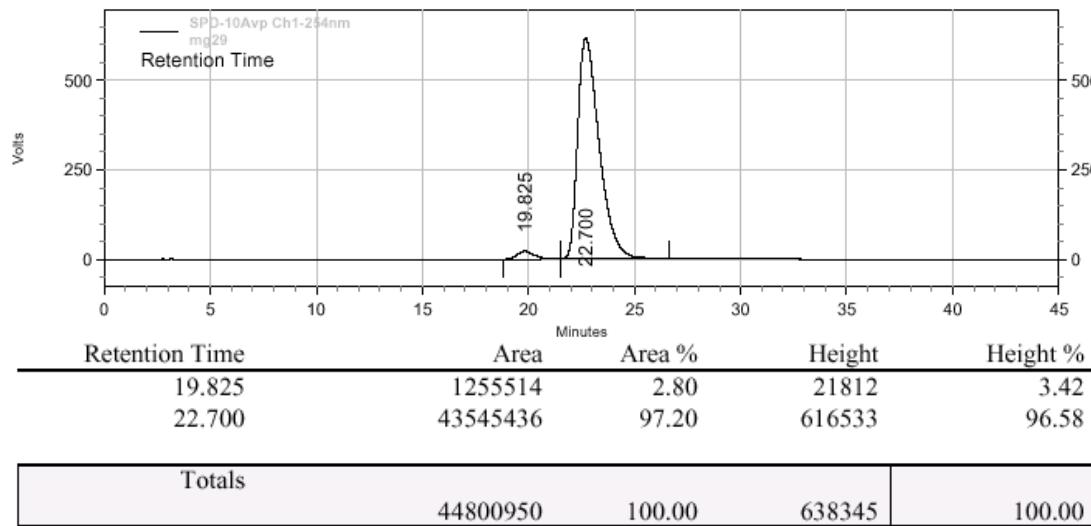
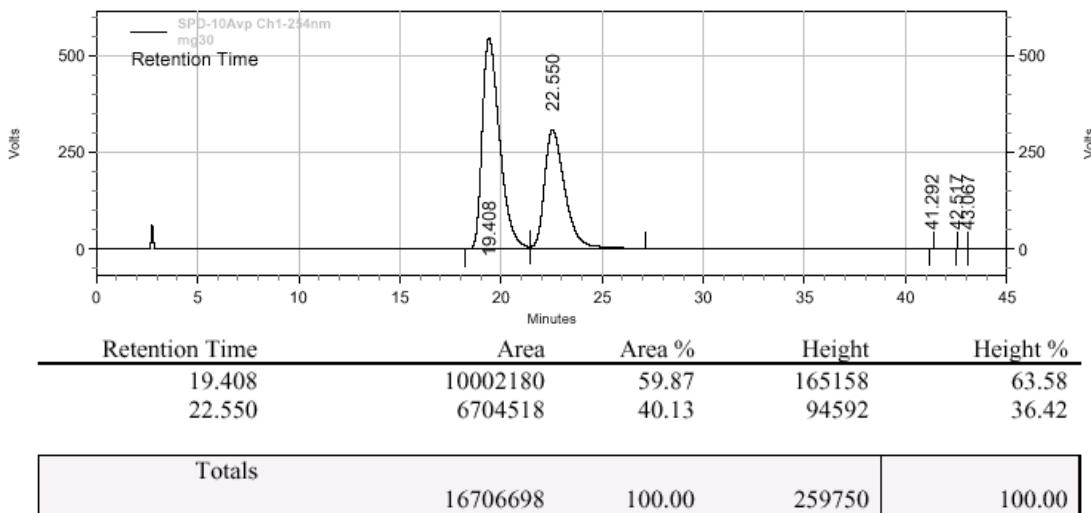
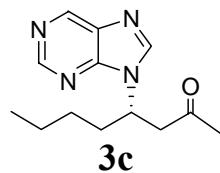


1H NMR (500 MHz, $CDCl_3$): $\delta = 8.1$ (m, 2H; ArH), 7.4 (m, 3H; ArH), 7.2 (m, 5H; ArH), 5.6 (m, 1H; CH), 4.4 (d, $^2J = 12$ Hz, 2H; O- CH_2), 4.3 (d, $^2J = 12$ Hz, 2H; O- CH_2), 3.4 (m, 2H, CH_2), 3.2 (m, 1H, CH_2), 3.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 2.2 (m, 2H, CH_2), 2.1 (s, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 201.6, 162.6, 135.6, 127.9, 126.5, 126.1, 125.4, 124.6, 70.9, 63.7, 55.5, 44.8, 32.6, 27.9$. IR: $\nu = 2924, 1720, 1465, 1451, 1365, 1099, 734, 696$ cm^{-1} . MS (CI): m/z (%): 351 (20) $[M+H]^+$.

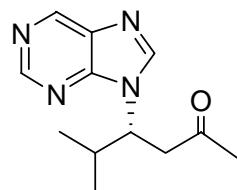
24a. (3-methyl-acryloyl)-benzamide (95 mg, 0.5 mmol) was used. The product **24a** was obtained in 93% yield (156 mg) and 95.5% enantiomeric excess, as determined by chiral


HPLC (Chiralcel OD, 10% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 10$ ($c = 1.00$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.0$ (s, 1H; N-H), 8.1 (m, 2H; ArH), 7.8 (d, 2H; $^3J = 7$ Hz; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.4 (t, 2H; $^3J = 7$ Hz; ArH), 7.3 (m, 3H; ArH), 5.5 (m, 1H, CH), 4.0 (dd, $^3J = 8$ Hz, $^2J = 18$ Hz, 1H; CH_2), 3.6 (dd, $^3J = 5$ Hz, $^2J = 18$ Hz, 1H; CH_2), 1.7 (d, $^3J = 7$ Hz, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 170.1, 163.5, 162.6, 131.2, 129.9, 127.9, 126.8, 126.5, 125.5, 125.3, 124.6, 53.8, 41.0, 18.8$. IR: $\nu = 3290, 1714, 1689, 1467, 1242, 709$ cm^{-1} . MS (CI): m/z (%): 336 (20) $[M]^+$.

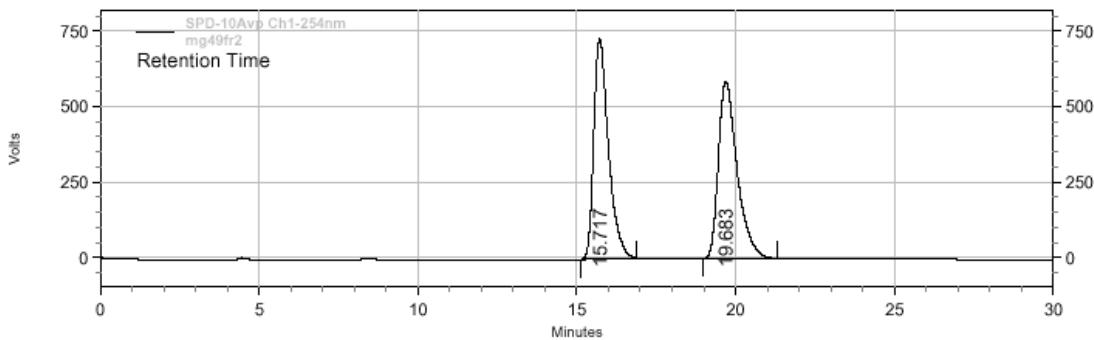
24b. [3-(t-butyl-dimethyl-silyloxyethyl)-acryloyl]-benzamide (159 mg, 0.5 mmol) was used. The product **24b** was obtained in 94% yield (218 mg) and 97% enantiomeric excess, as determined by chiral HPLC (Chiralcel OD, 8% ethanol/hexanes, 1.2 ml/min, 254 nm), $[\alpha]^{20}_D = 16$ ($c = 0.75$ in chloroform). 1H NMR (500 MHz, $CDCl_3$): $\delta = 9.0$ (s, 1H; N-H), 8.1 (m, 2H; ArH), 7.8 (m, 2H; ArH), 7.6 (t, 1H; $^3J = 7$ Hz; ArH), 7.4 (t, 2H; $^3J = 7$ Hz; ArH), 7.4 (m, 3H; ArH), 5.6 (m, 1H, CH), 4.1 (m, 3H; CH_2), 3.7 (dd, $^3J = 4$ Hz, $^2J = 18$ Hz, 1H; CH_2), 0.8 (s, 9H; $C(CH_3)_3$), -0.04 (s, 3H; CH_3), -0.06 (s, 3H; CH_3). ^{13}C NMR (125 MHz, $CDCl_3$): $\delta = 174.5, 168.7, 167.6, 131.4, 130.1, 128.9, 127.4, 126.9, 123.5, 123.1, 122.6, 67.1, 57.7, 42.4, 20.7, -3.2, -3.3$. IR: $\nu = 2930, 2857, 1715, 1687, 1467, 1252, 1124, 836, 779, 709, 693$ cm^{-1} . MS (CI): m/z (%): 464 (900) $[M+H]^+$.

Retention Time	Area	Area %	Height	Height %
15.417	21025494	48.27	407467	55.49
19.700	22531350	51.73	326781	44.51
Totals	43556844	100.00	734248	100.00

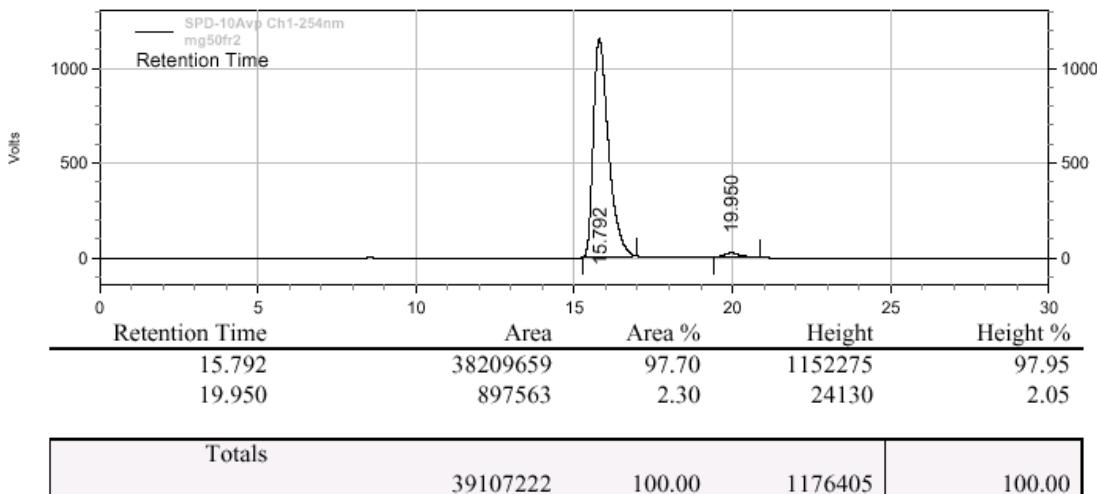




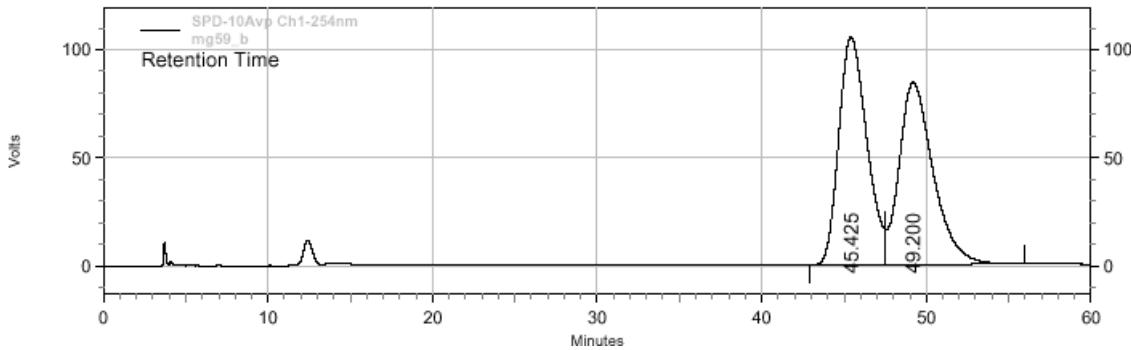
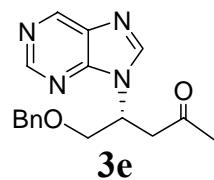

SPD-10Avp

Ch1-254nm

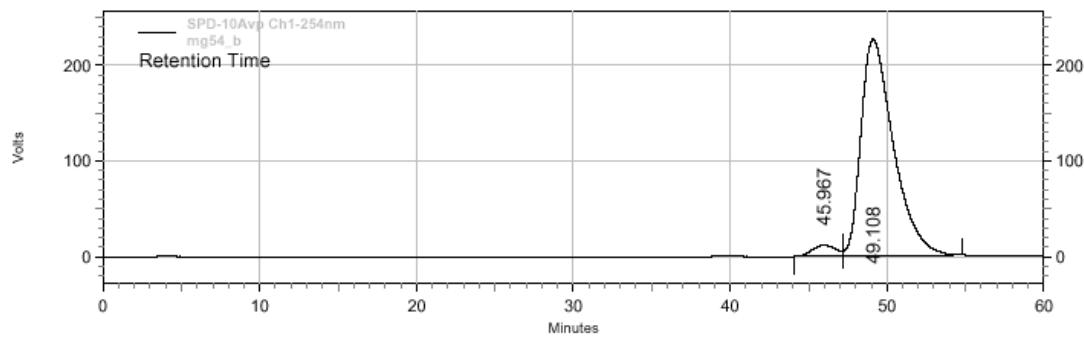

Results

Retention Time	Area	Area %	Height	Height %
11.142	543341	1.70	26485	2.38
12.525	31395318	98.30	1087352	97.62
Totals	31938659	100.00	1113837	100.00

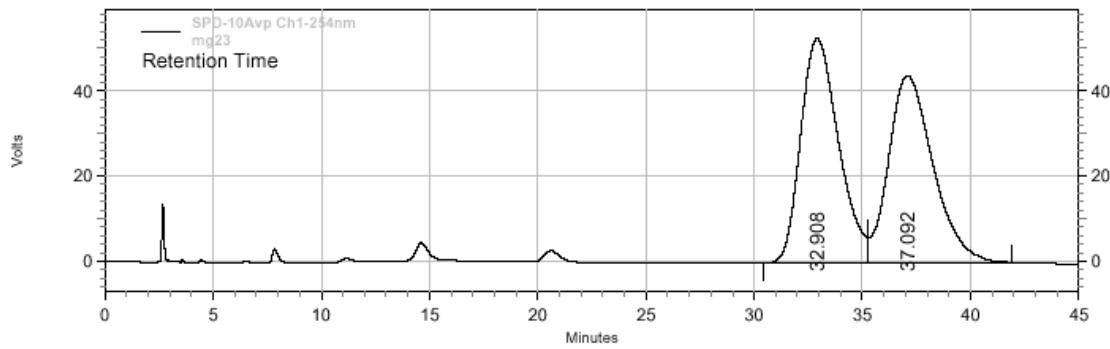
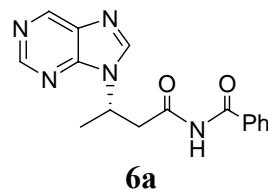


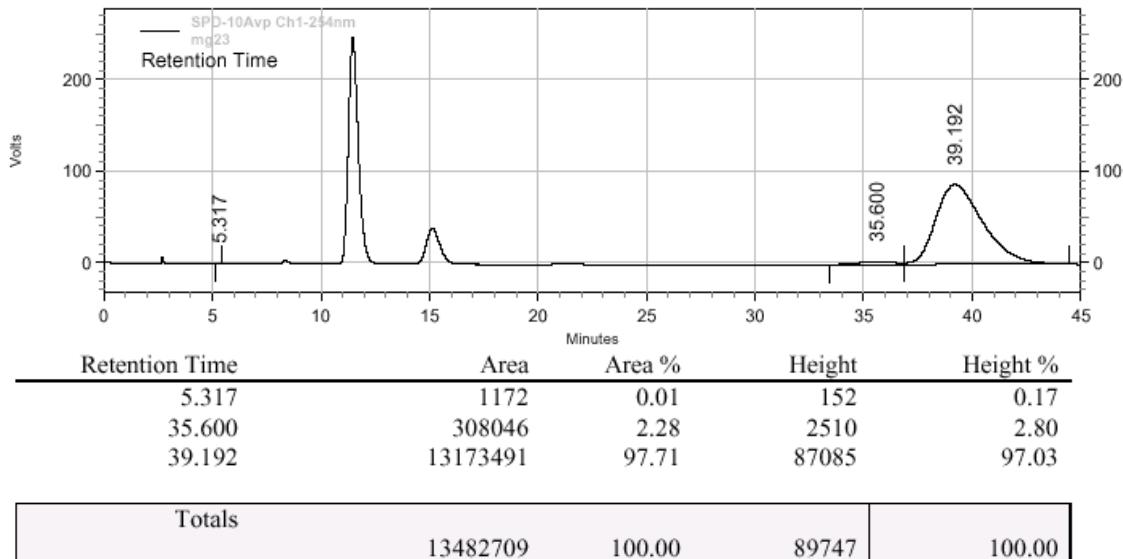



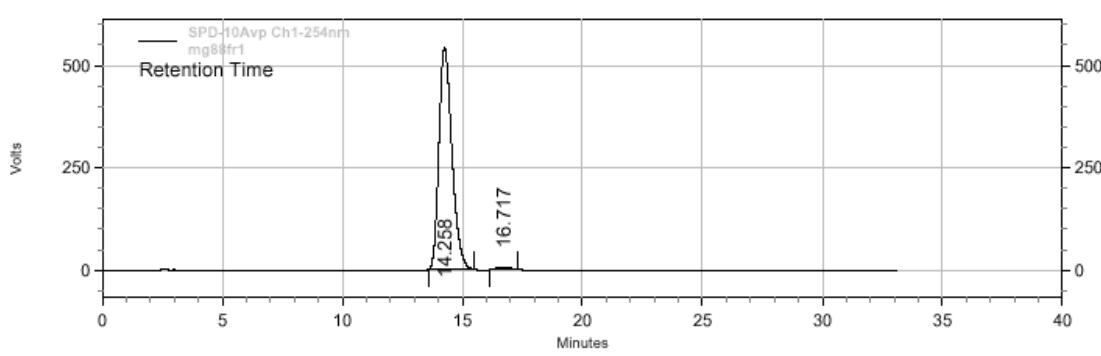
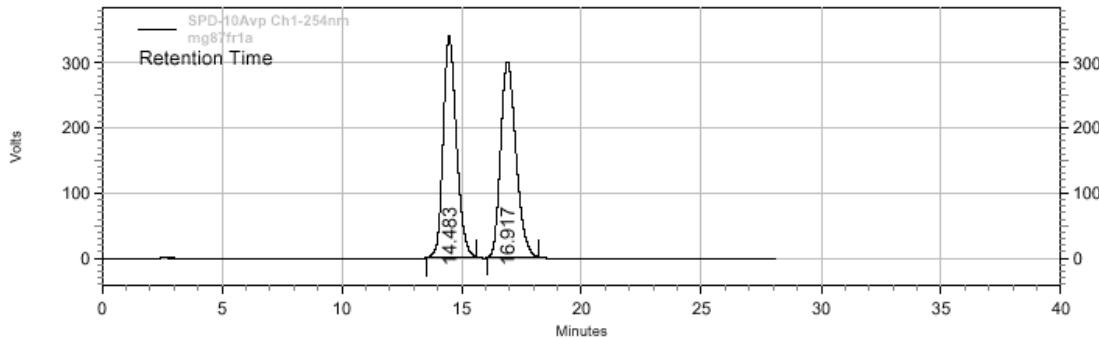
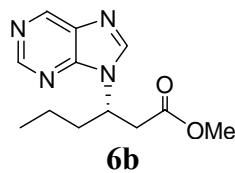
3d

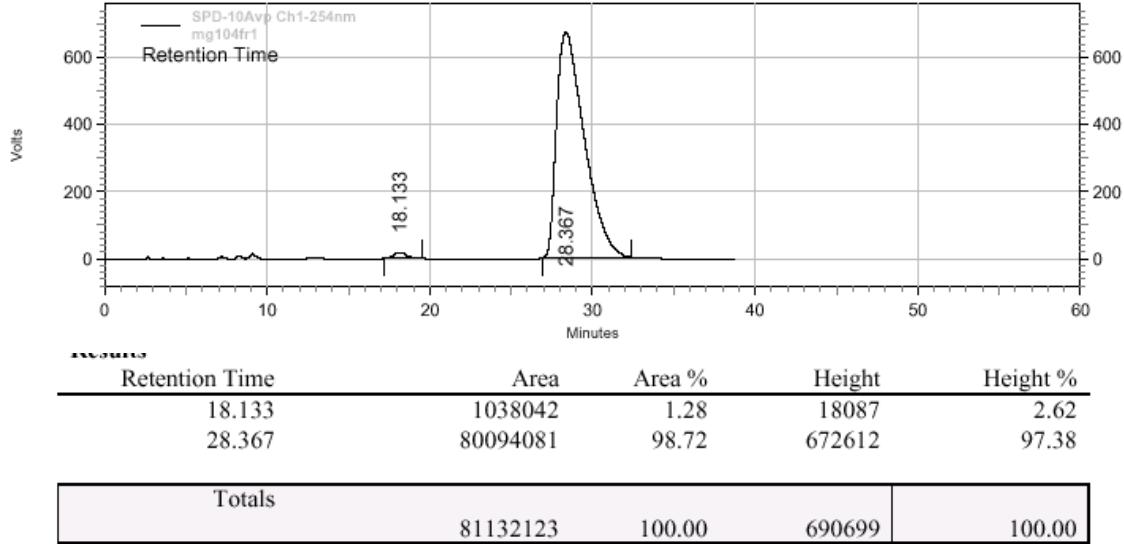
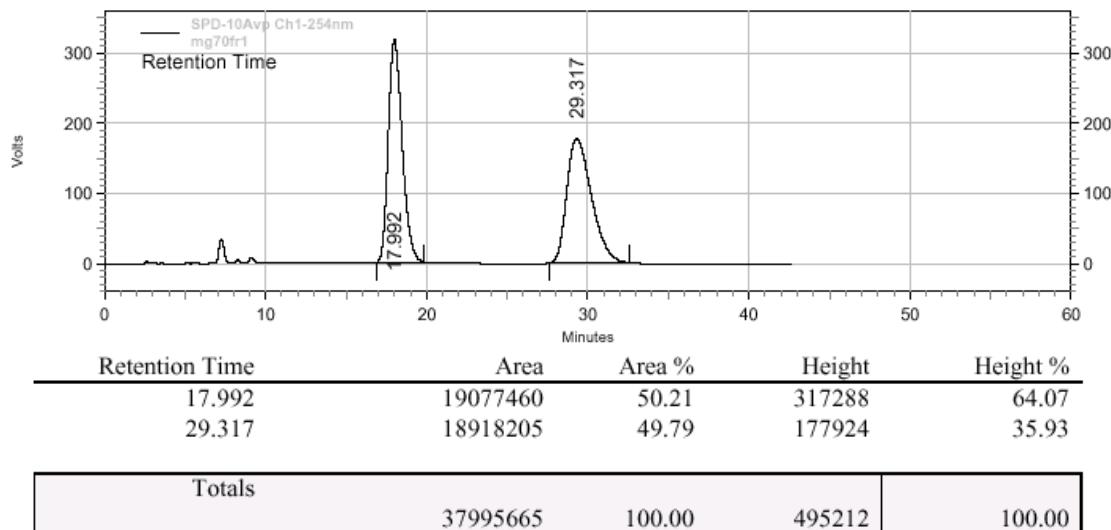
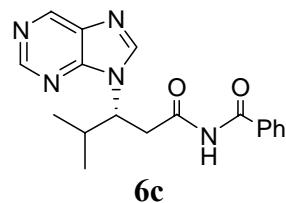


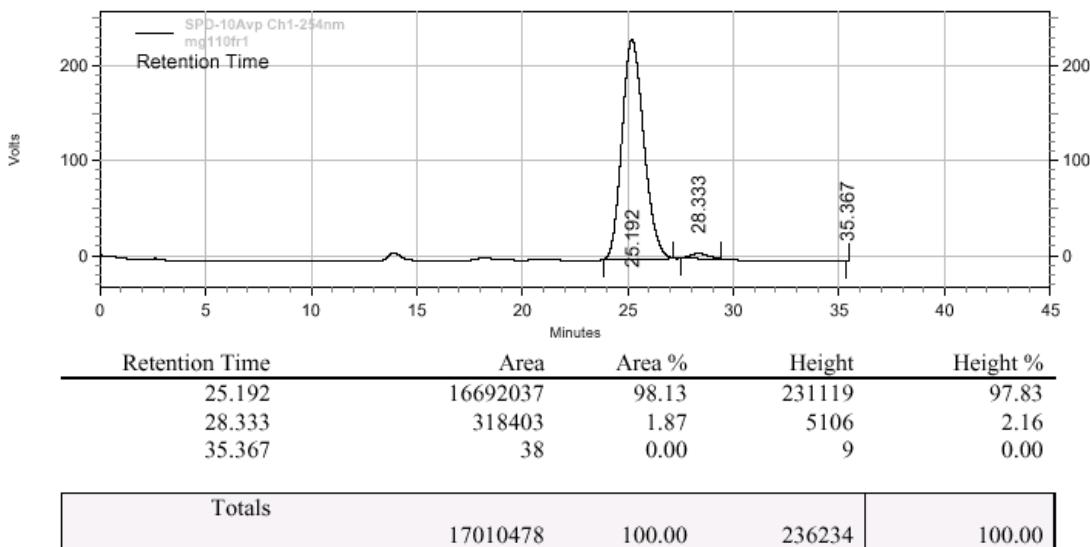
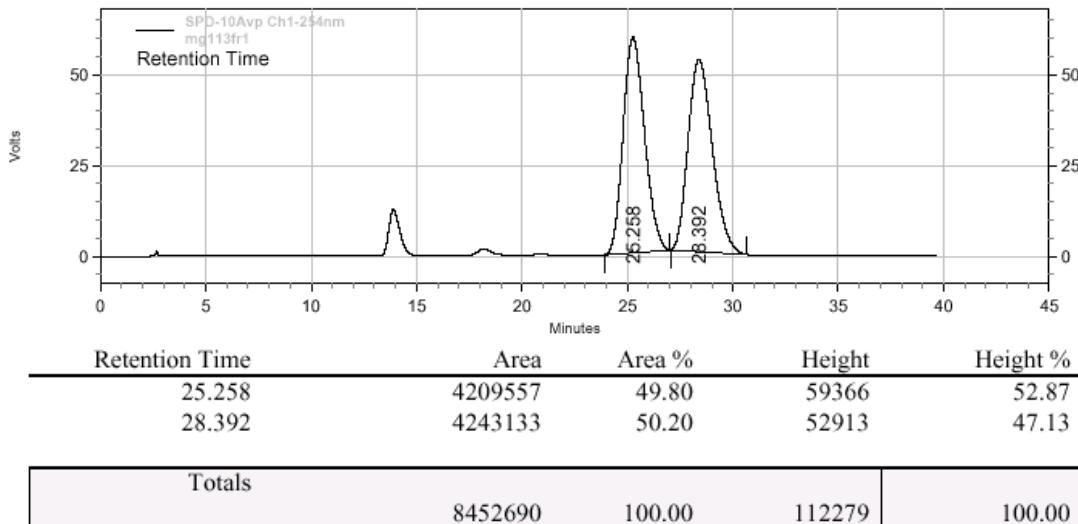
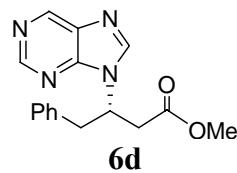
Retention Time	Area	Area %	Height	Height %
15.717	23465014	49.20	729522	55.34
19.683	24230496	50.80	588797	44.66
Totals	47695510	100.00	1318319	100.00

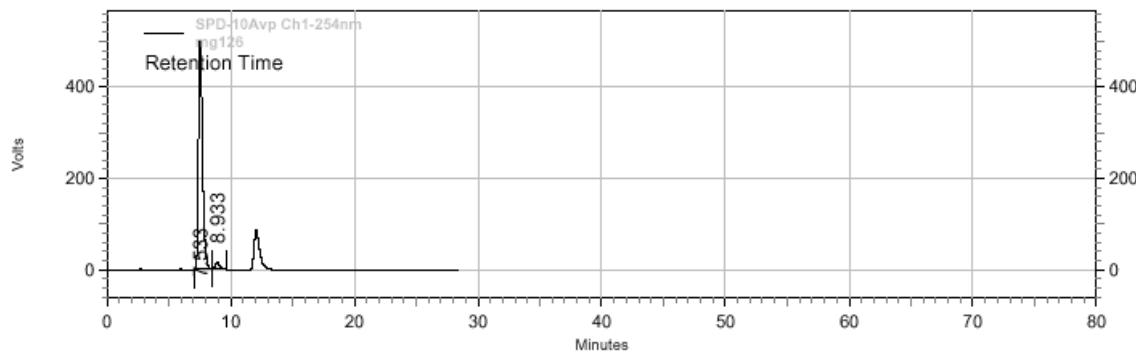
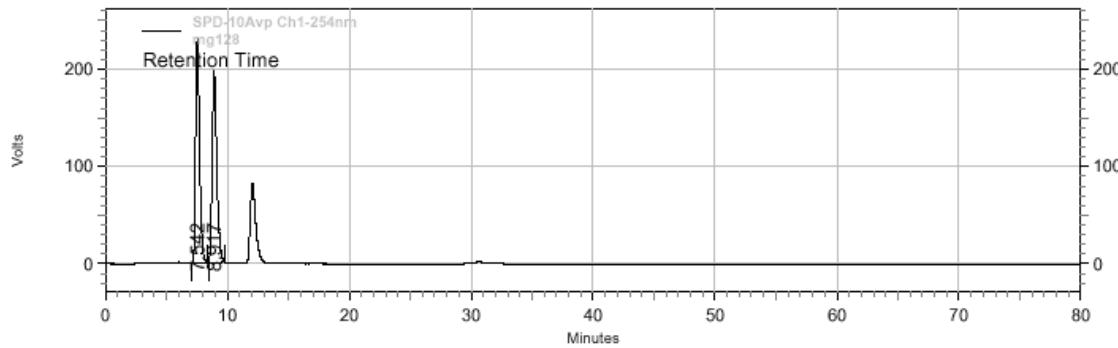
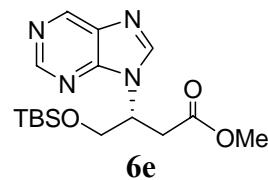



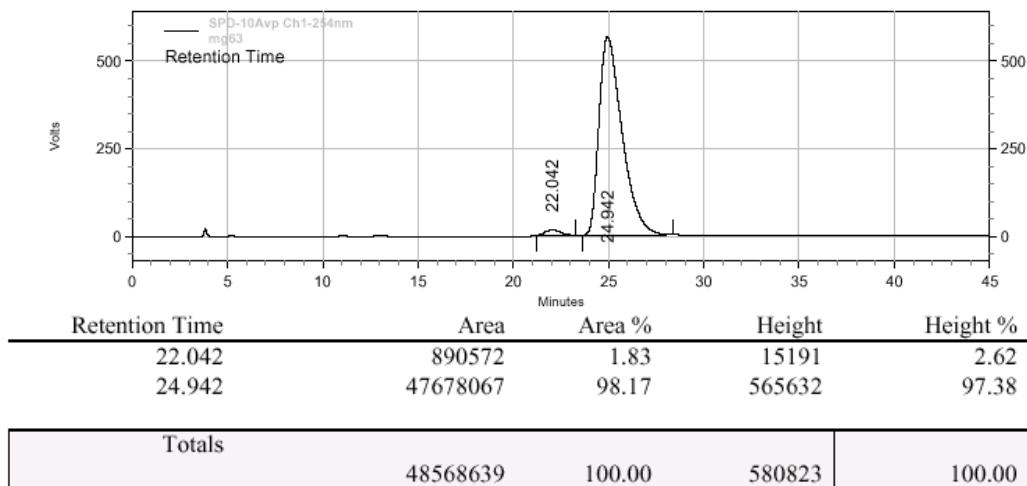
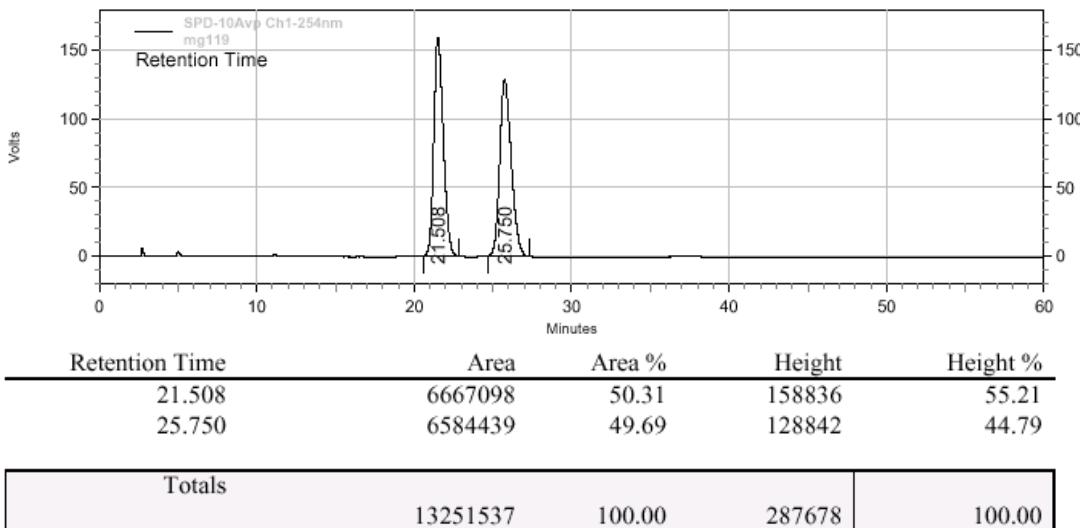
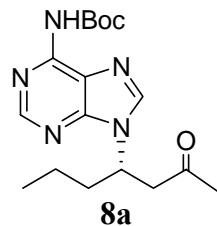

Retention Time	Area	Area %	Height	Height %
45.425	12501803	50.82	105368	55.50
49.200	12097963	49.18	84468	44.50
Totals	24599766	100.00	189836	100.00

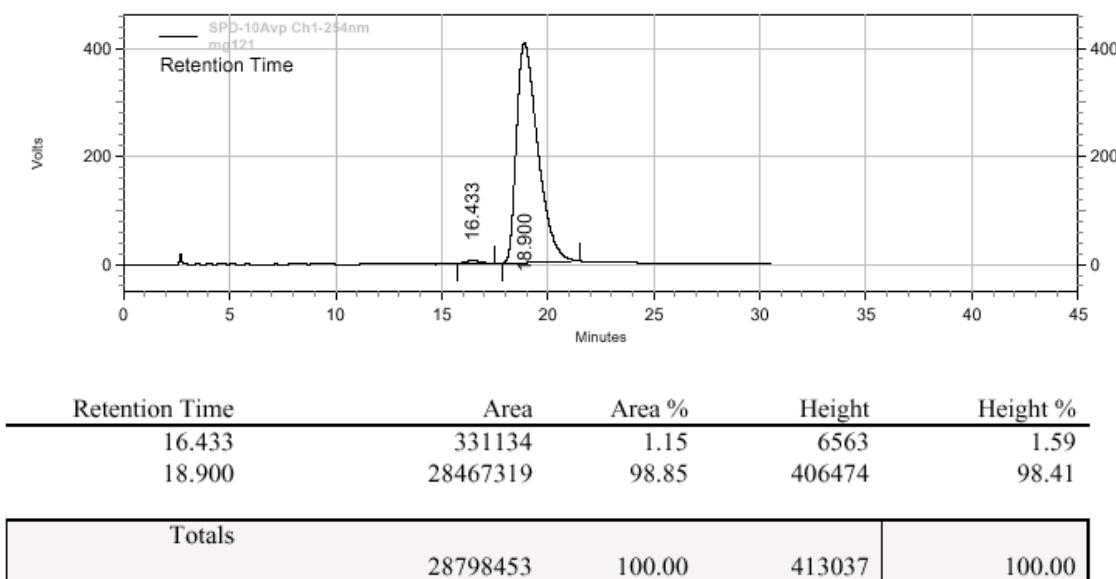
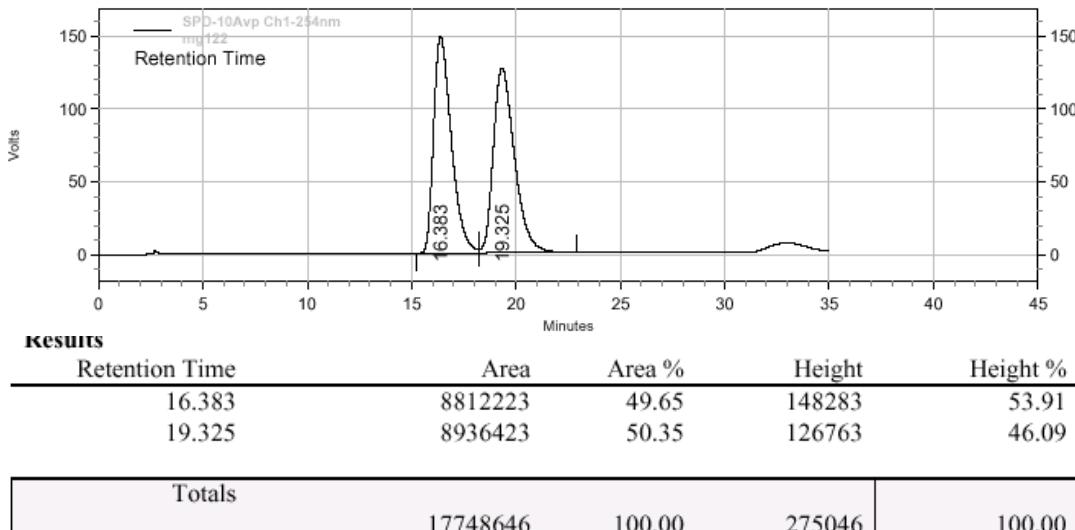
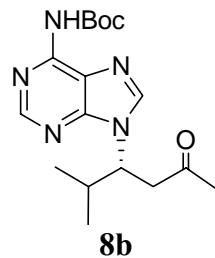




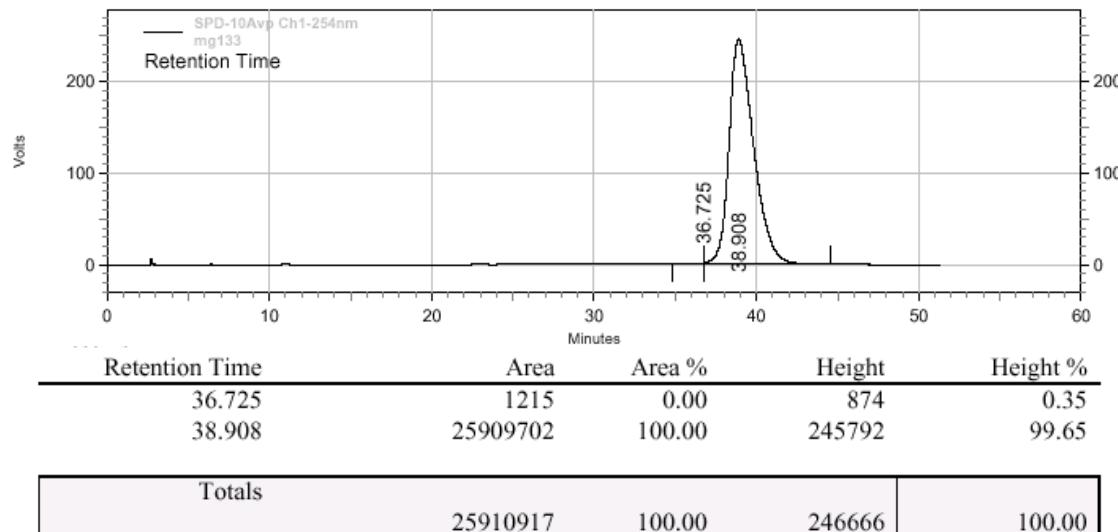
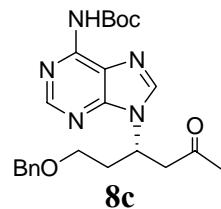



Retention Time	Area	Area %	Height	Height %
45.967	1199163	3.56	11557	4.85
49.108	32506598	96.44	226530	95.15
Totals	33705761	100.00	238087	100.00

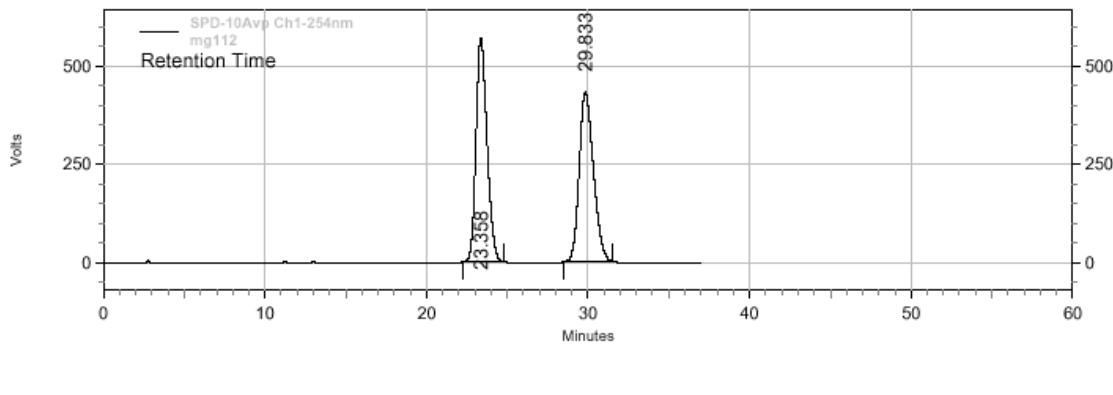
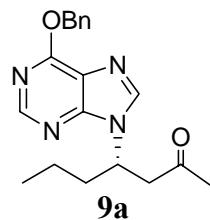




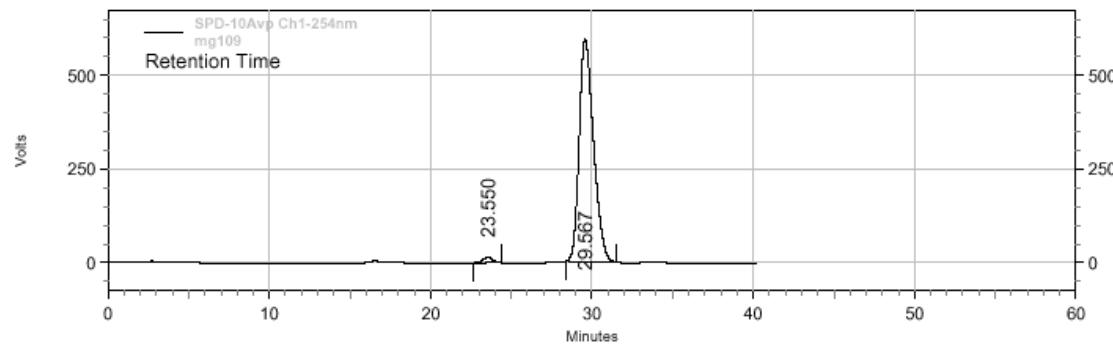



Retention Time	Area	Area %	Height	Height %
32.908	6399092	50.50	52668	54.50
37.092	6273260	49.50	43970	45.50
Totals				
	12672352	100.00	96638	100.00

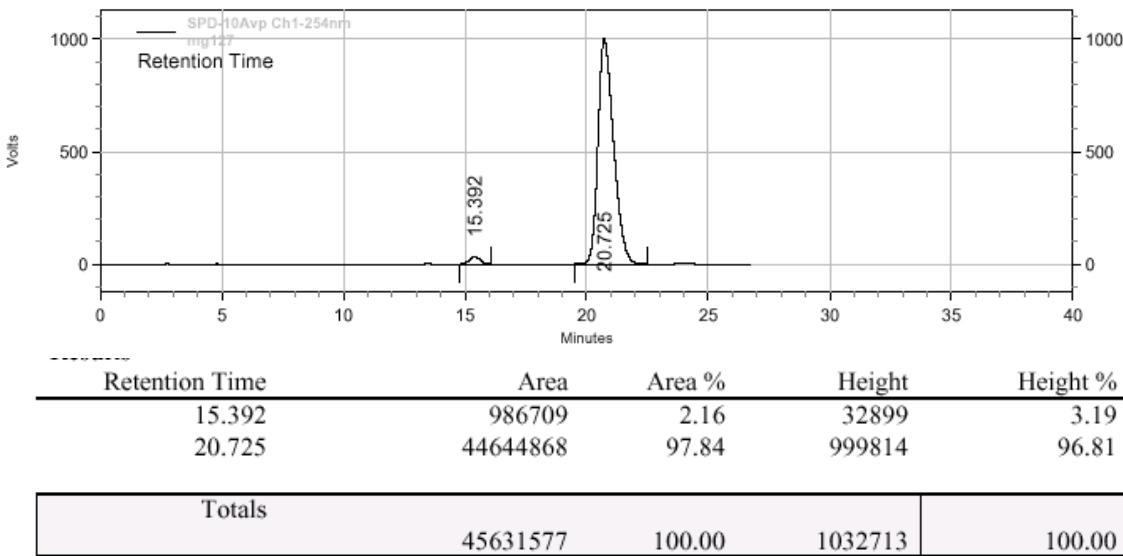
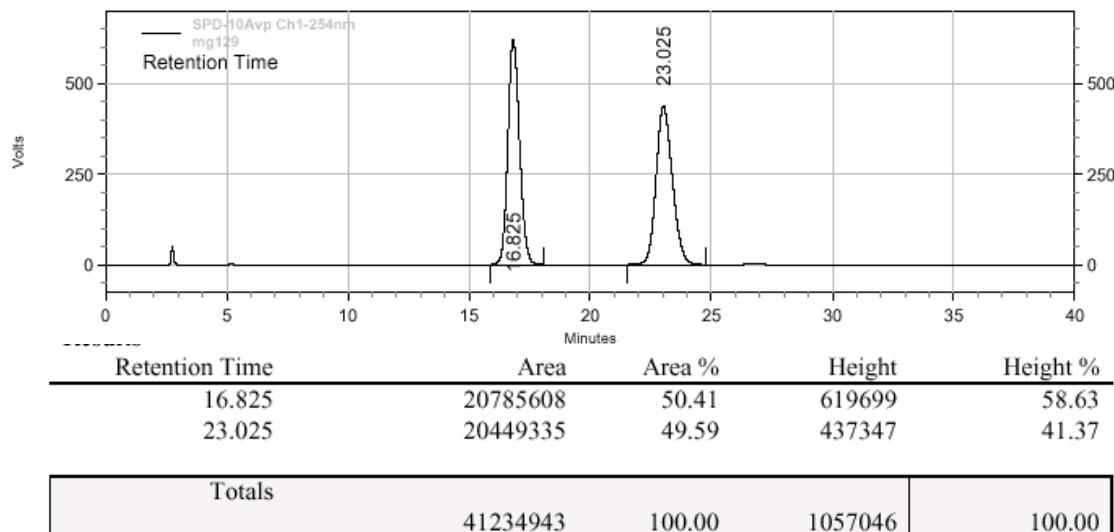
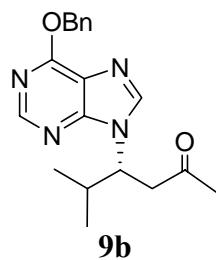




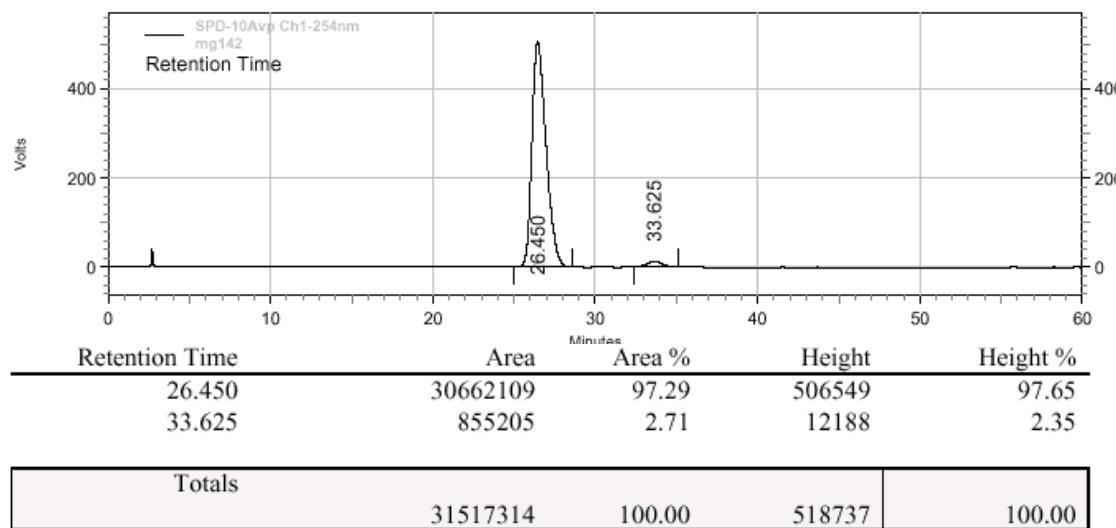
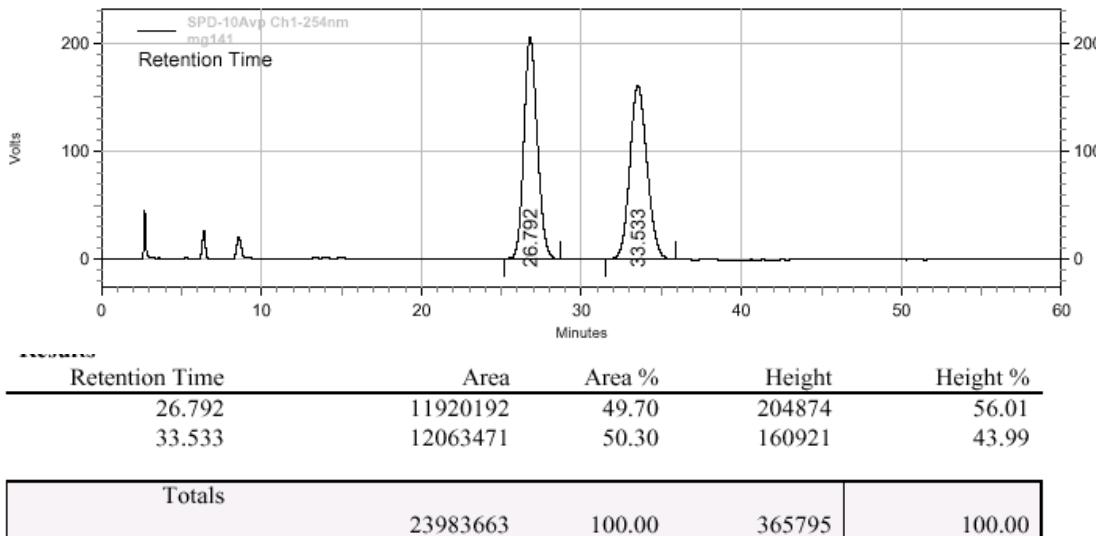
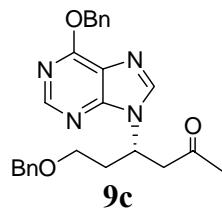




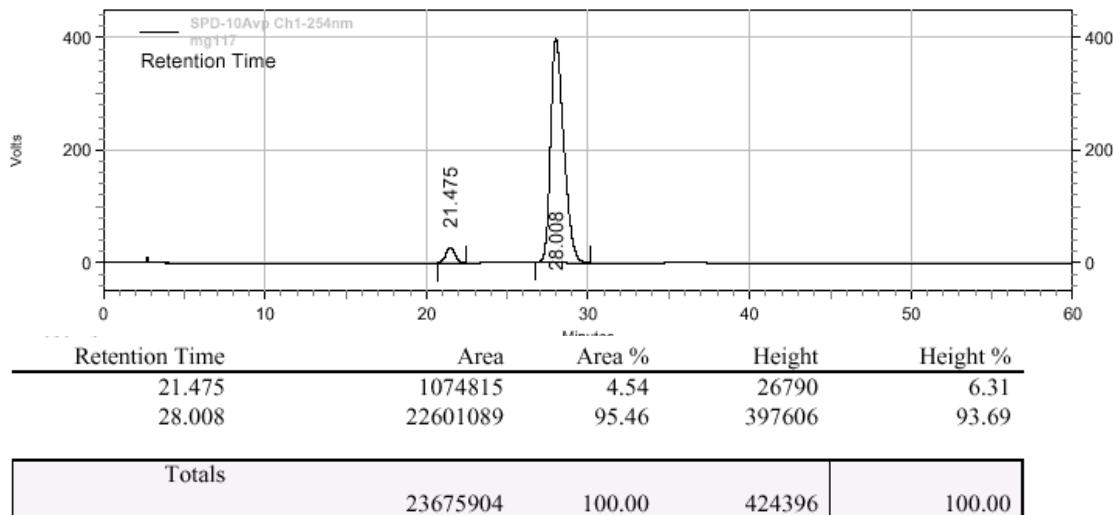
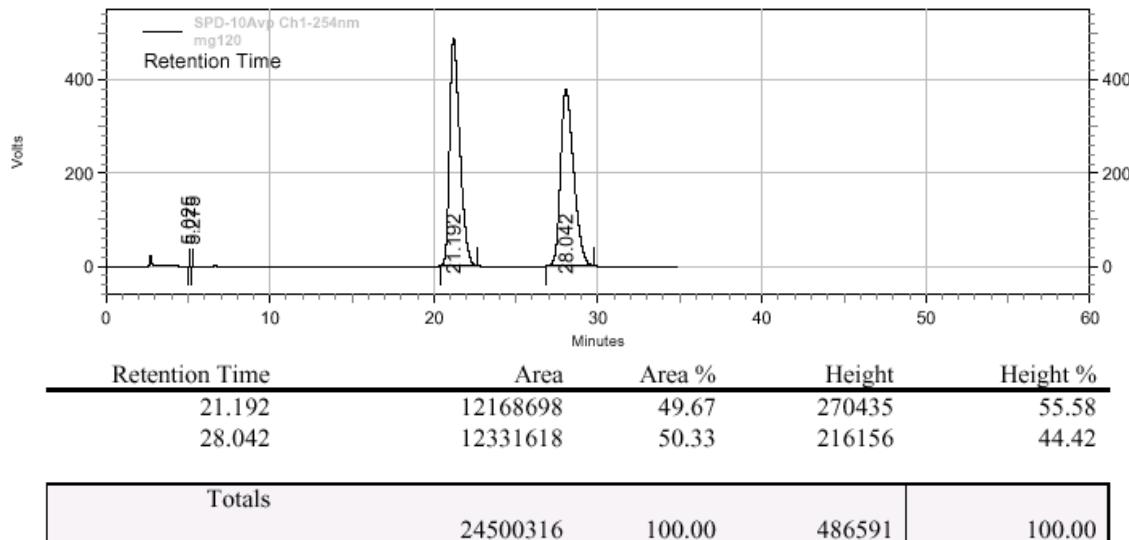
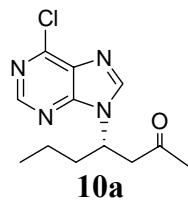



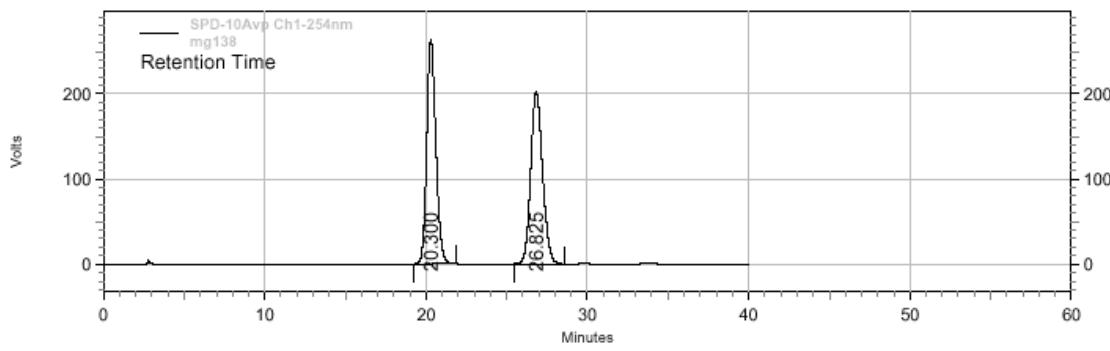
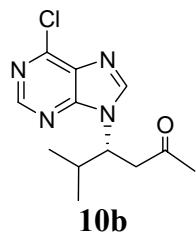





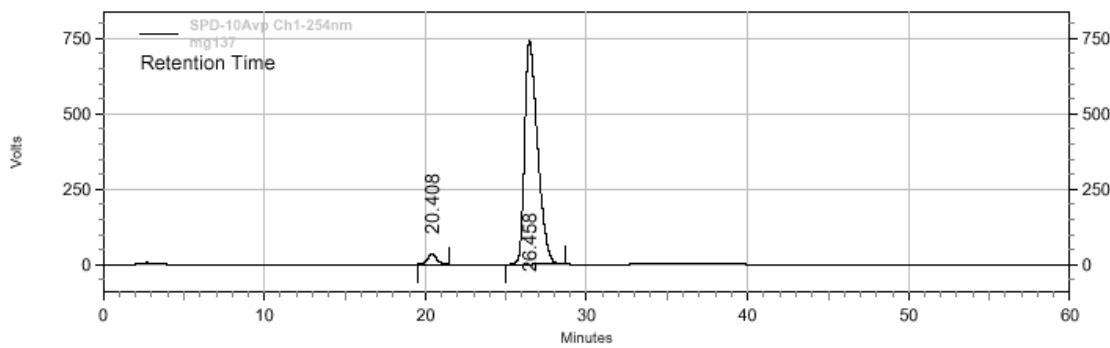




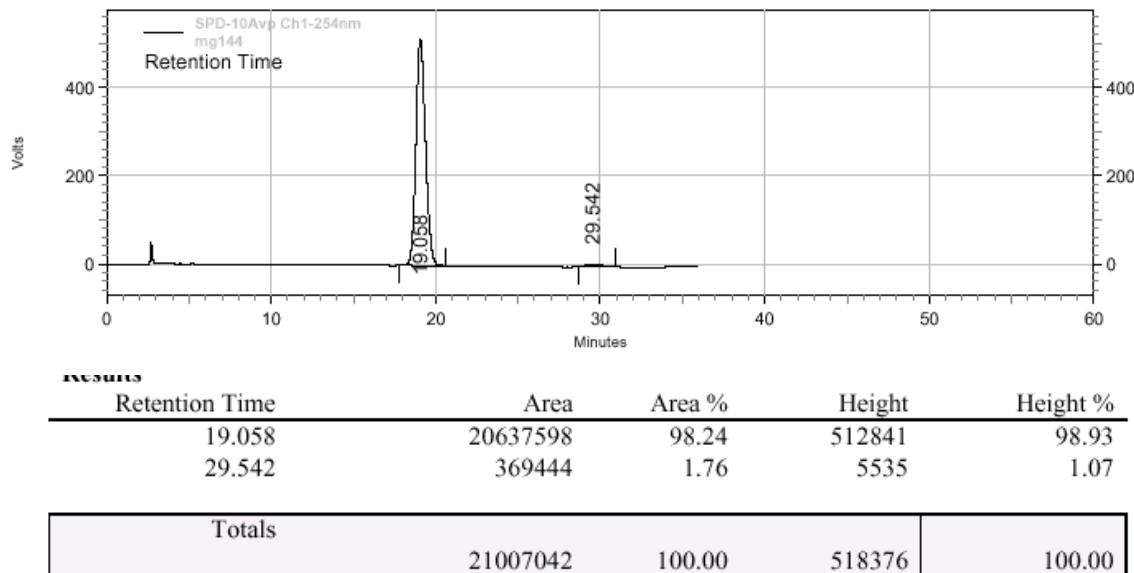
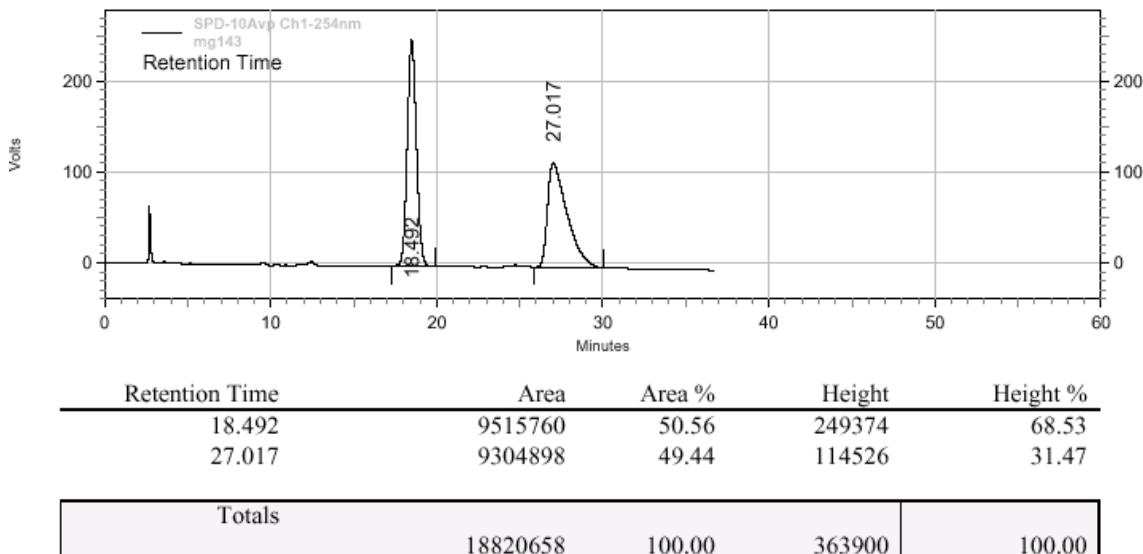
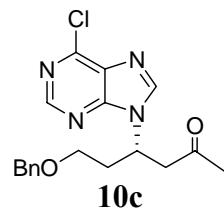




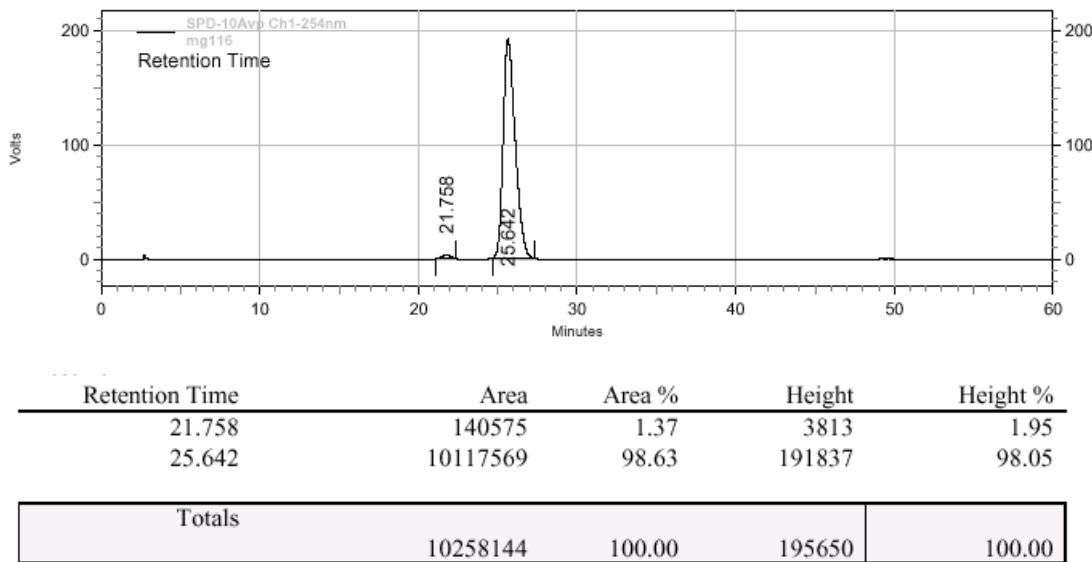
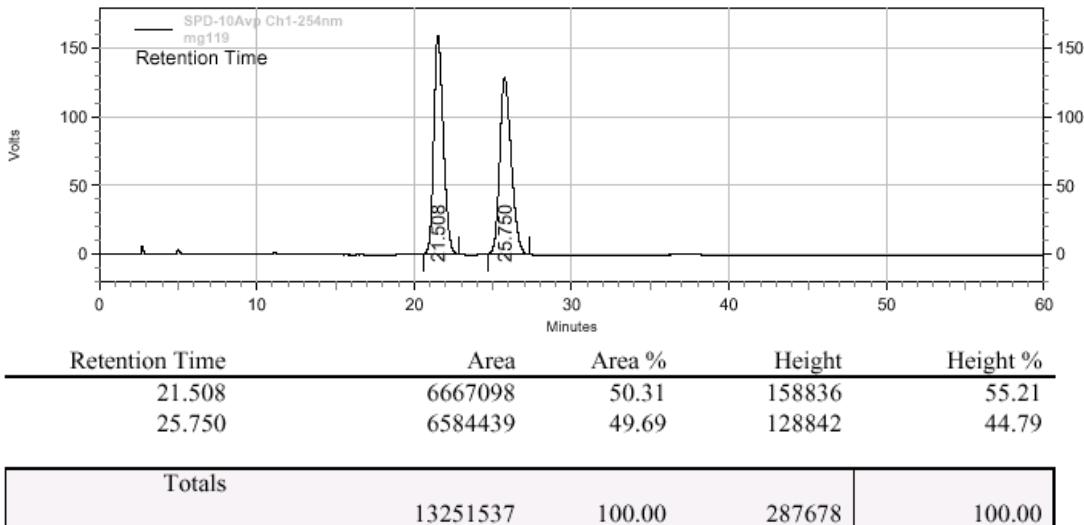
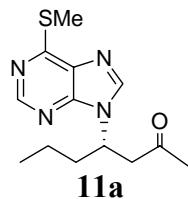



Retention Time	Area	Area %	Height	Height %
23.358	27214937	50.67	569092	56.83
29.833	26496009	49.33	432326	43.17
Totals	53710946	100.00	1001418	100.00

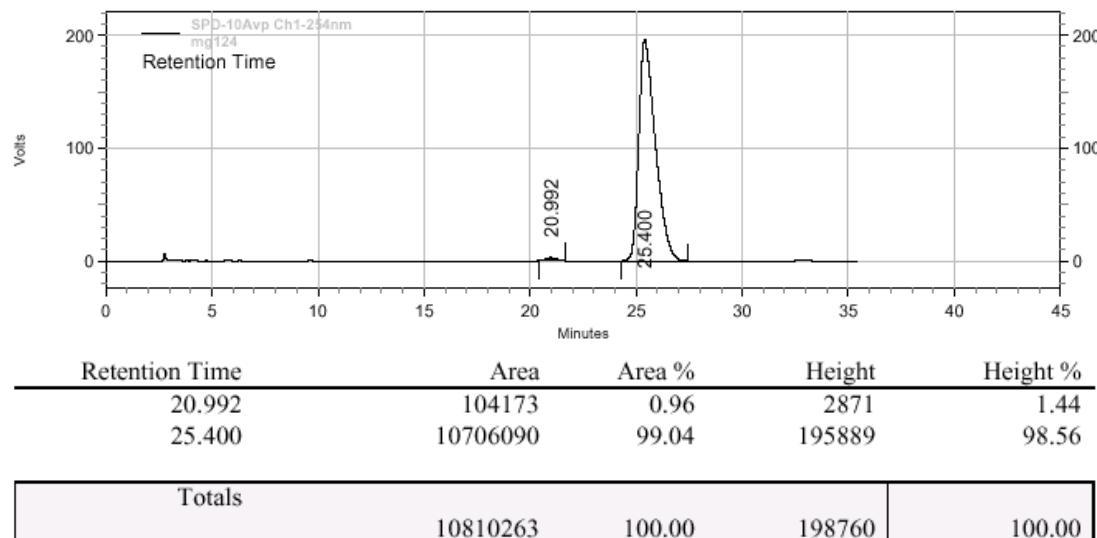
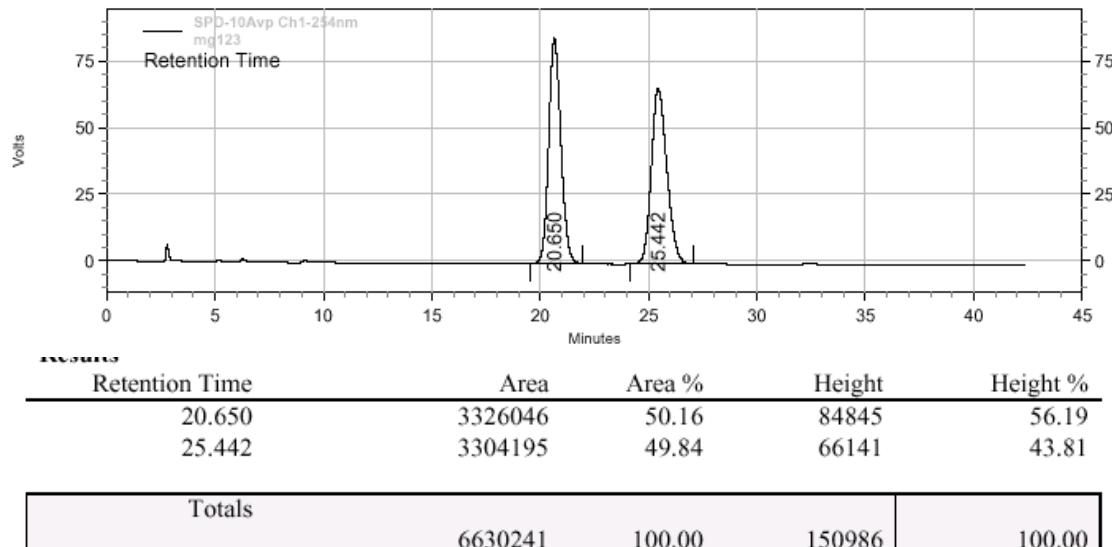
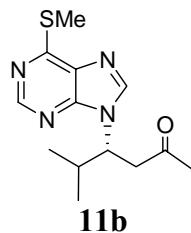



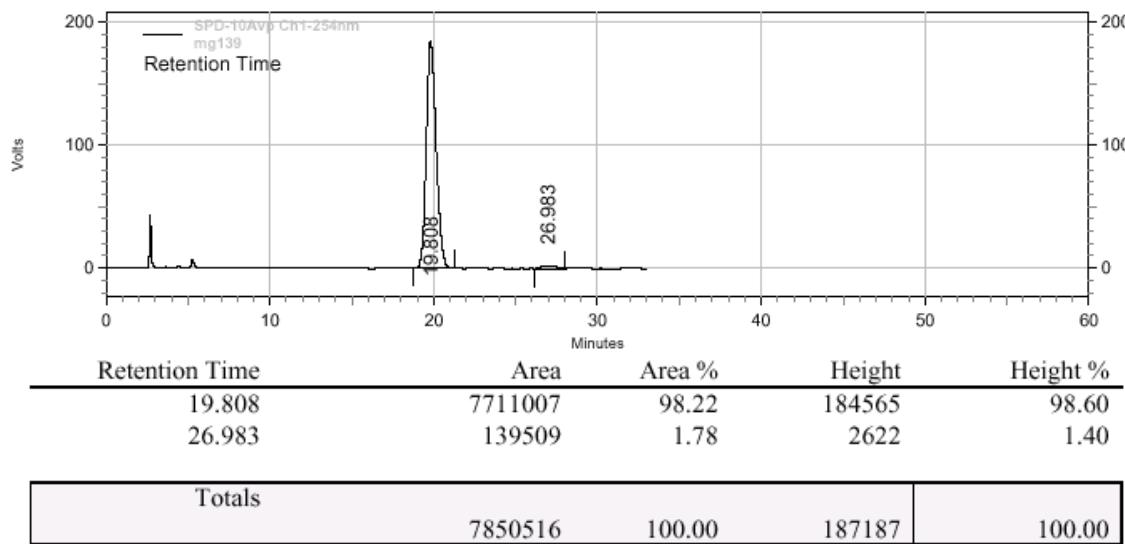
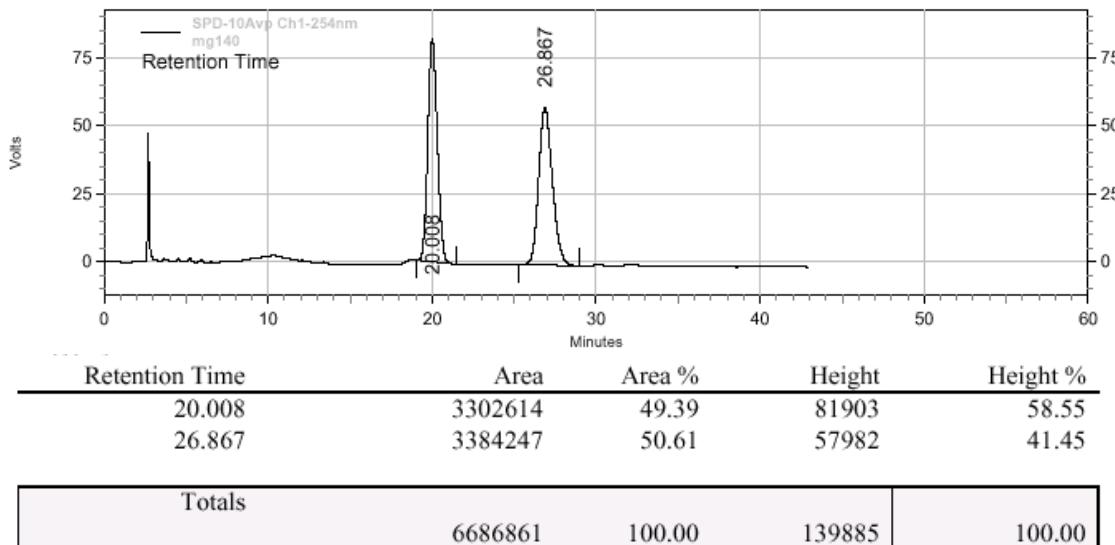
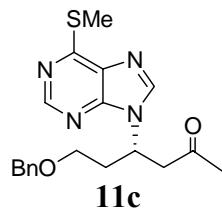
Retention Time	Area	Area %	Height	Height %
23.550	615384	1.65	13958	2.30
29.567	36779054	98.35	594052	97.70
Totals	37394438	100.00	608010	100.00

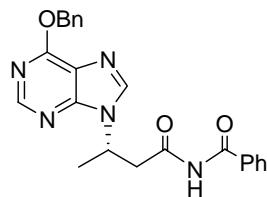


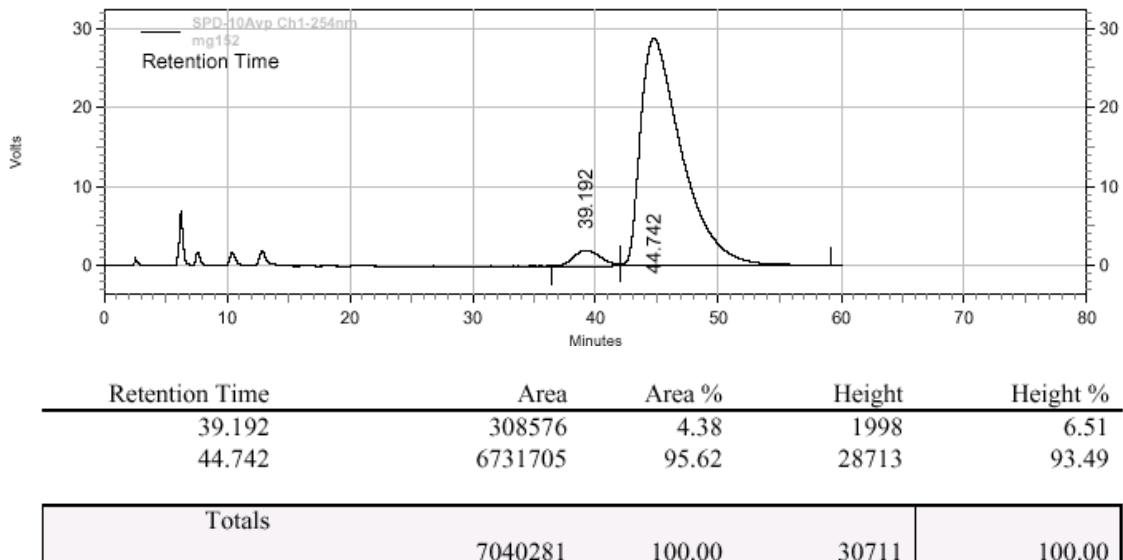
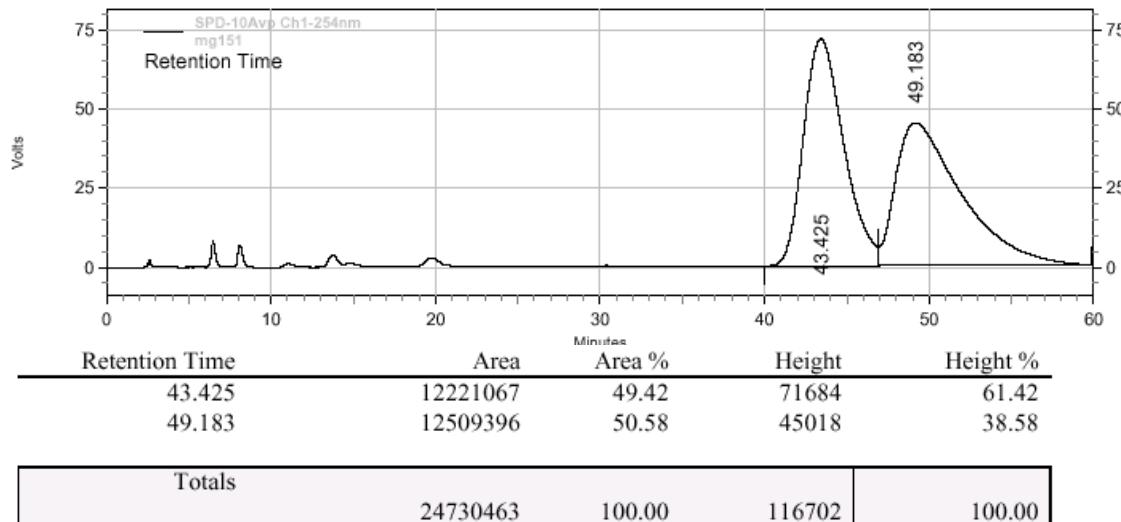




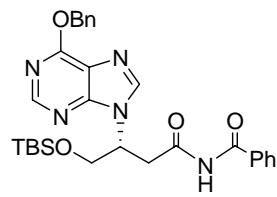



RESULTS

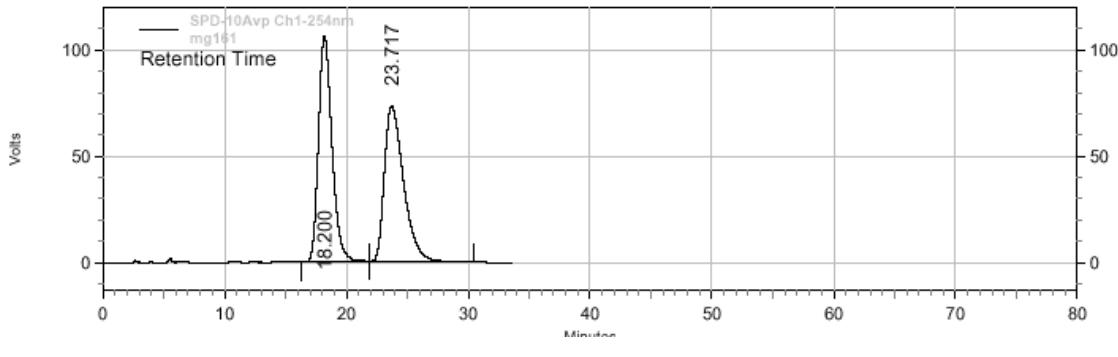



Retention Time	Area	Area %	Height	Height %
20.300	10325380	50.03	263276	56.56
26.825	10311881	49.97	202230	43.44
Totals	20637261	100.00	465506	100.00

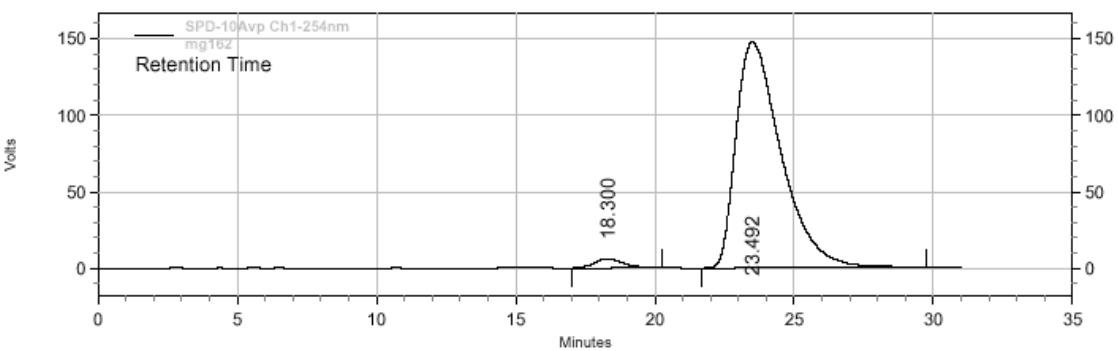

Retention Time	Area	Area %	Height	Height %
20.408	1319015	3.11	34549	4.45
26.458	41088453	96.89	742362	95.55
Totals	42407468	100.00	776911	100.00

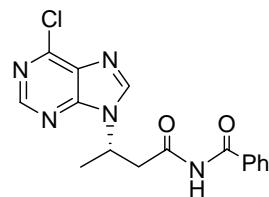



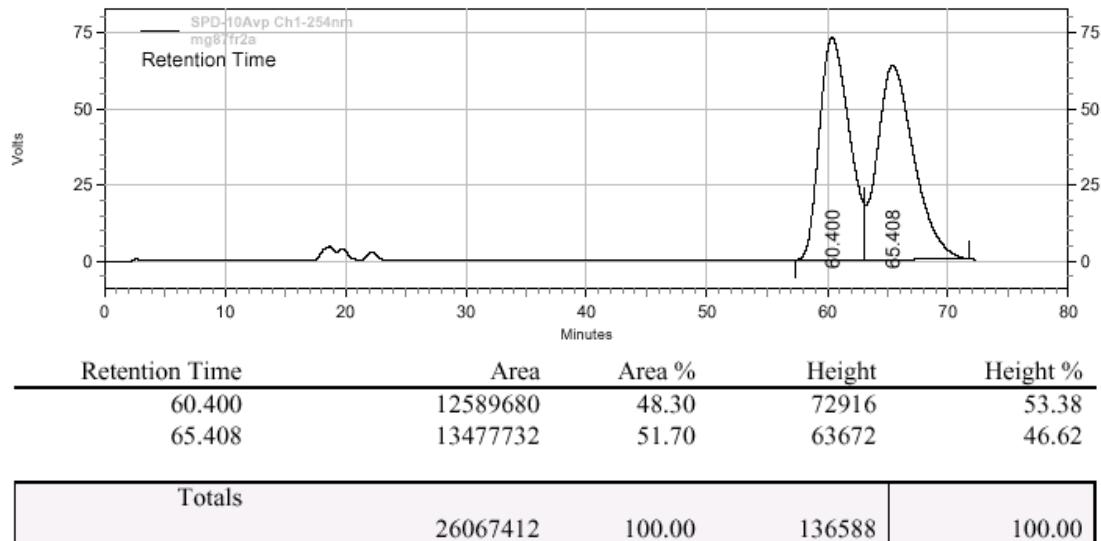


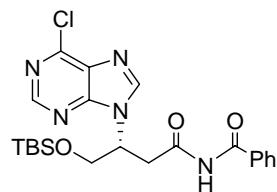


12a

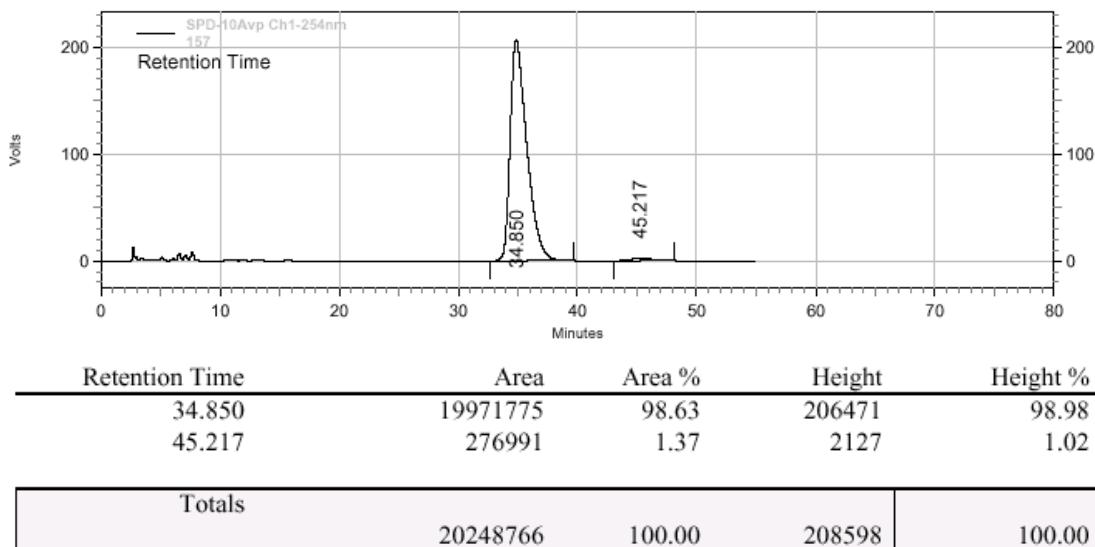
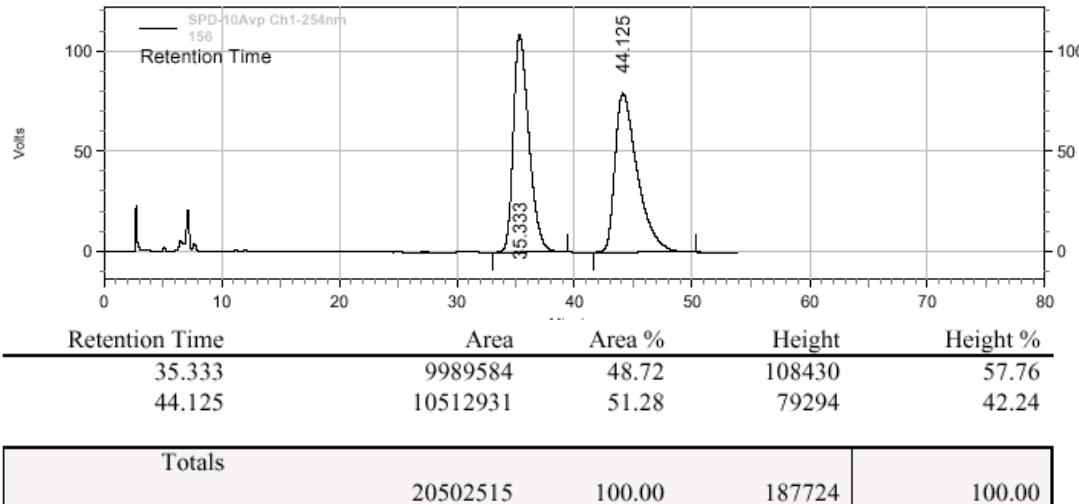


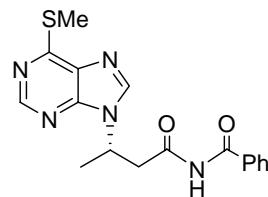

12b

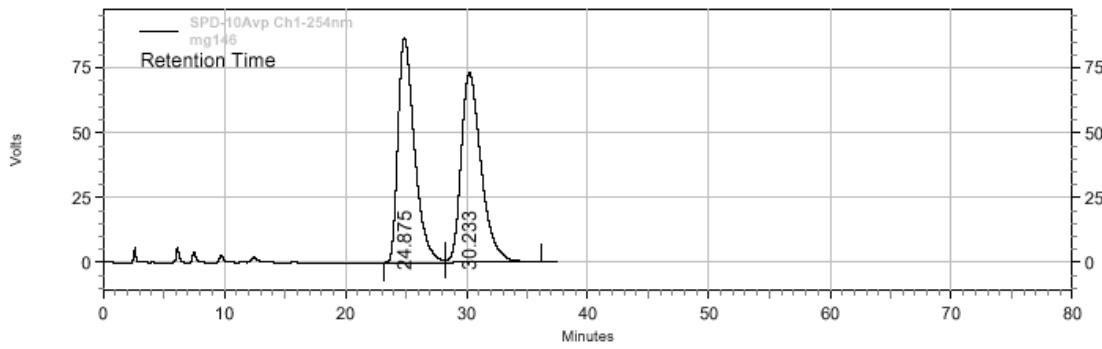

Retention Time	Area	Area %	Height	Height %
18.200	8177044	50.48	106126	59.16
23.717	8022531	49.52	73275	40.84
Totals	16199575	100.00	179401	100.00



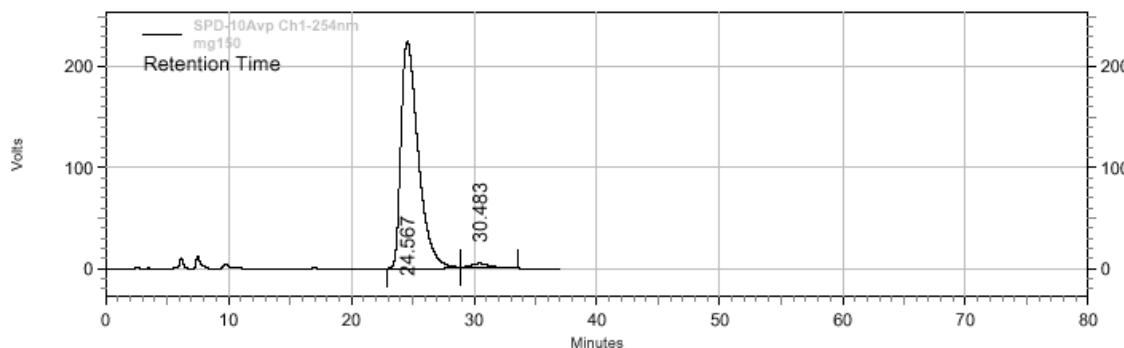
Retention Time	Area	Area %	Height	Height %
18.300	432006	2.52	5845	3.81
23.492	16702455	97.48	147618	96.19
Totals	17134461	100.00	153463	100.00

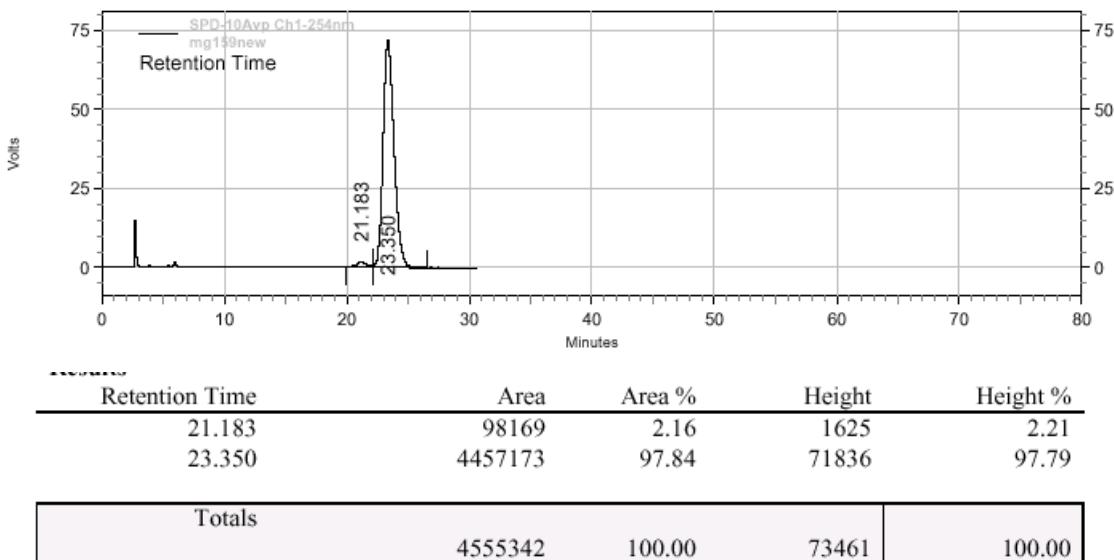
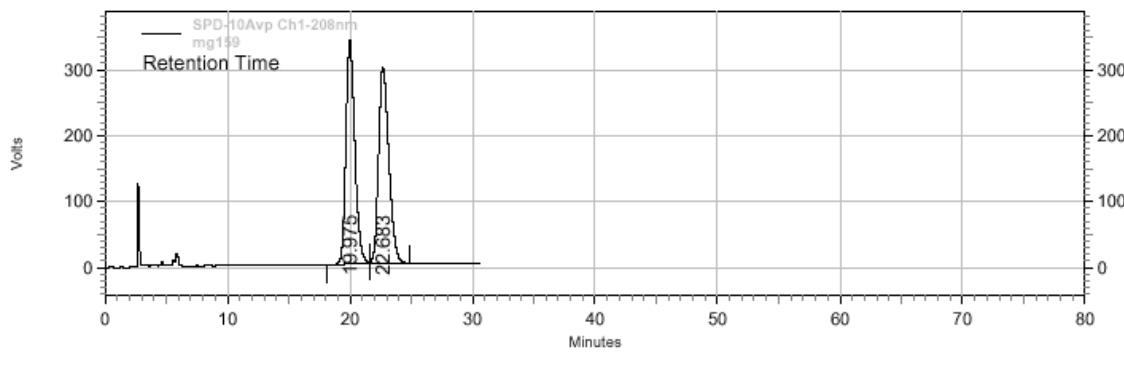
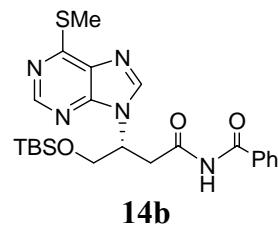



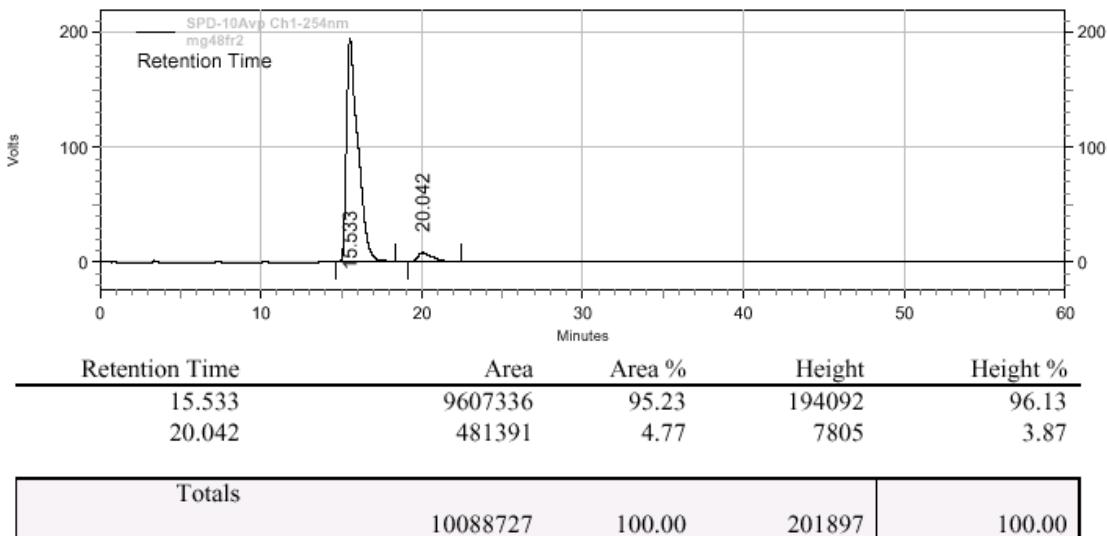
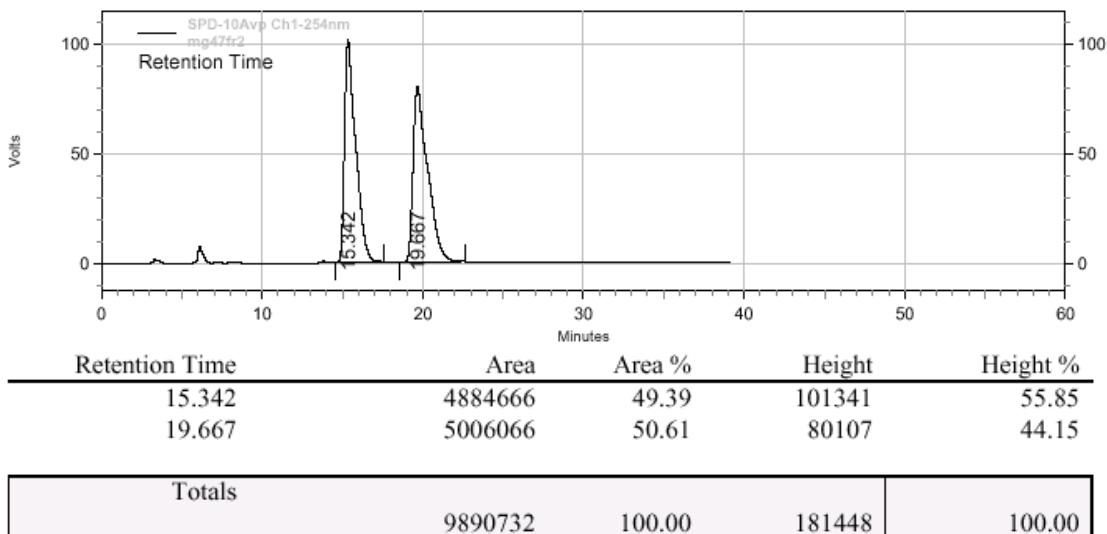
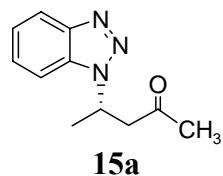

13a

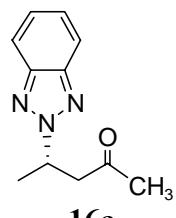


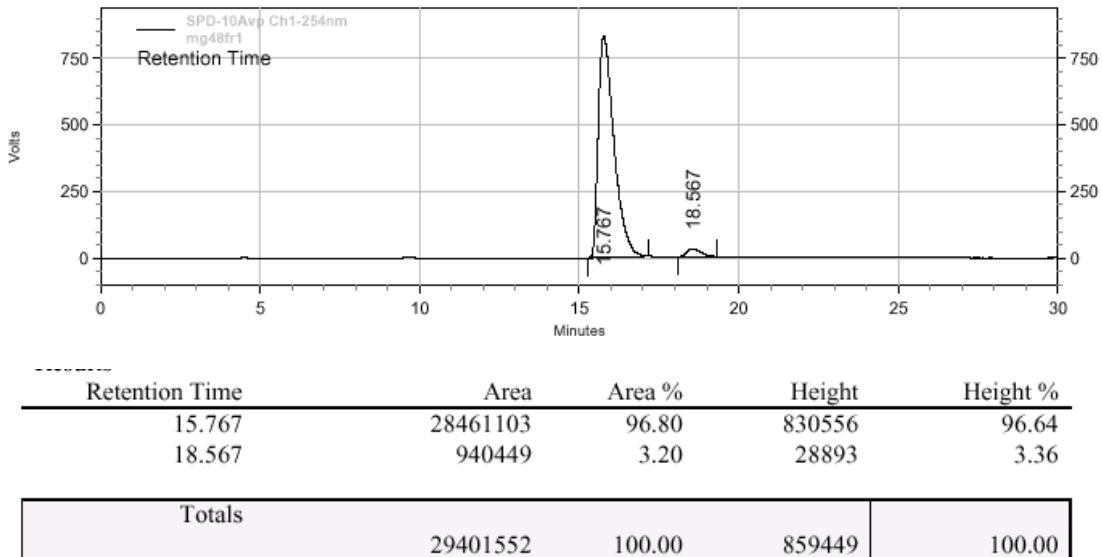
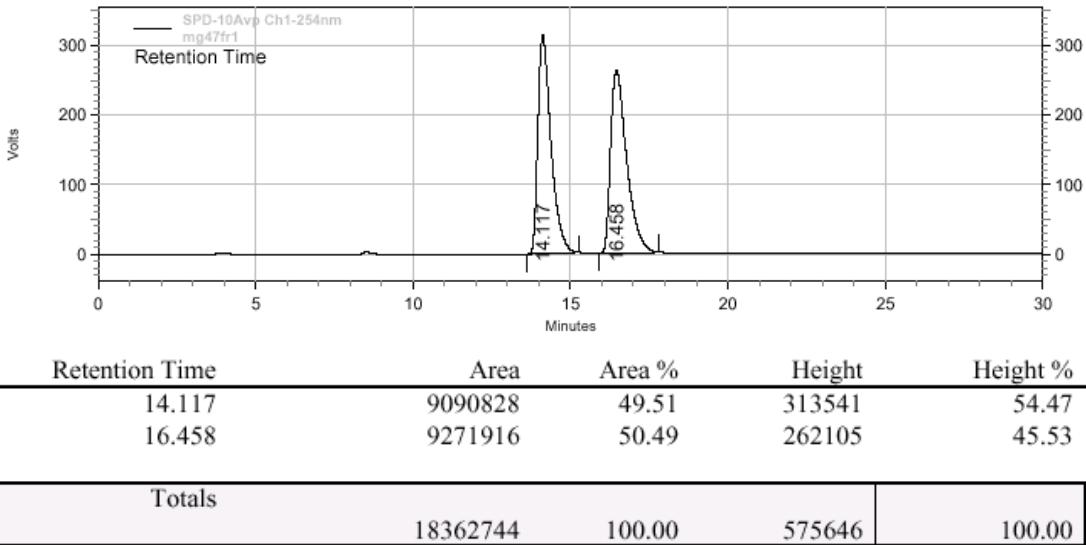
13b

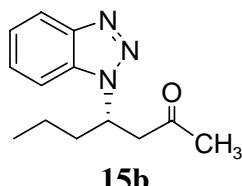


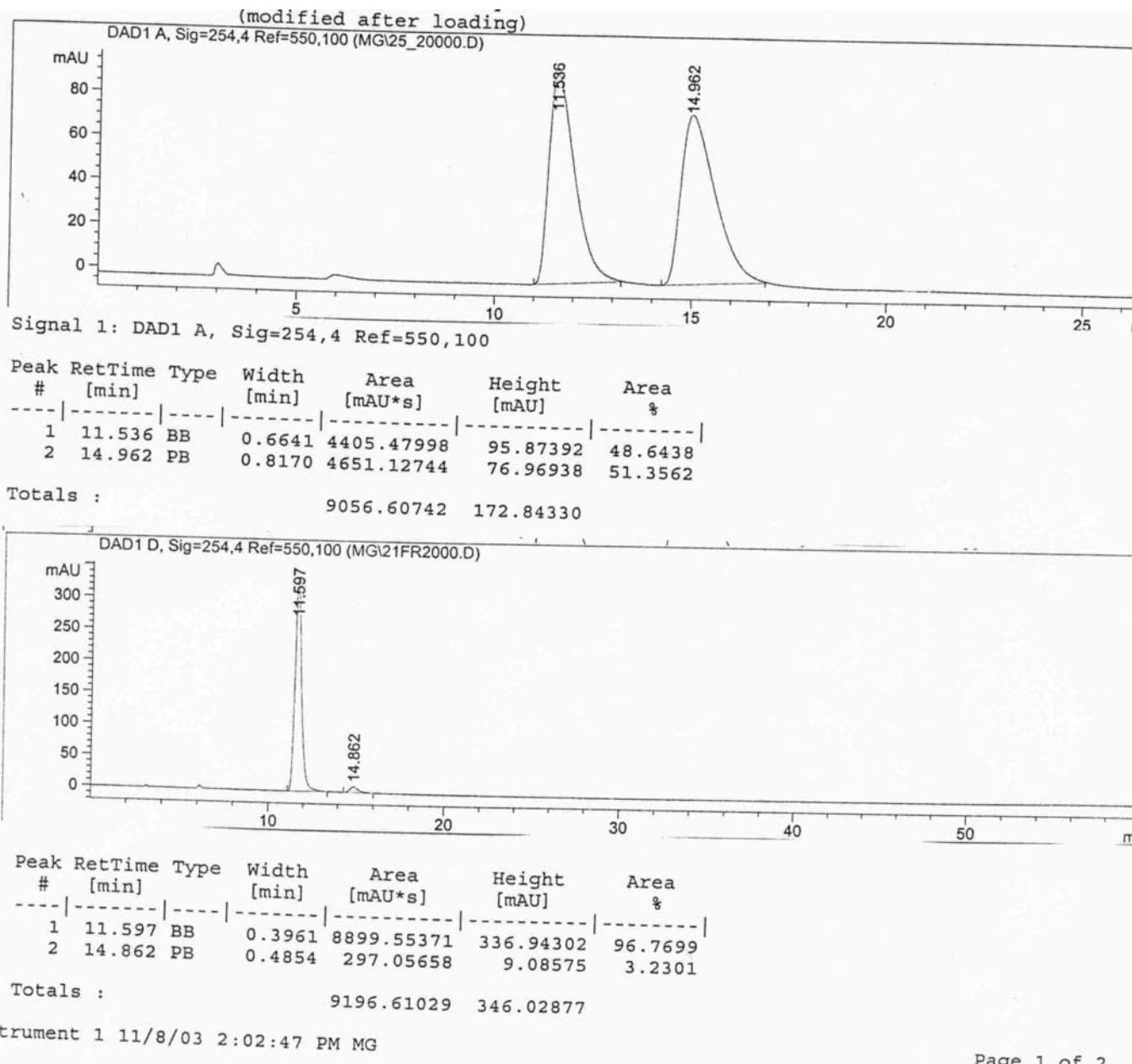



14a

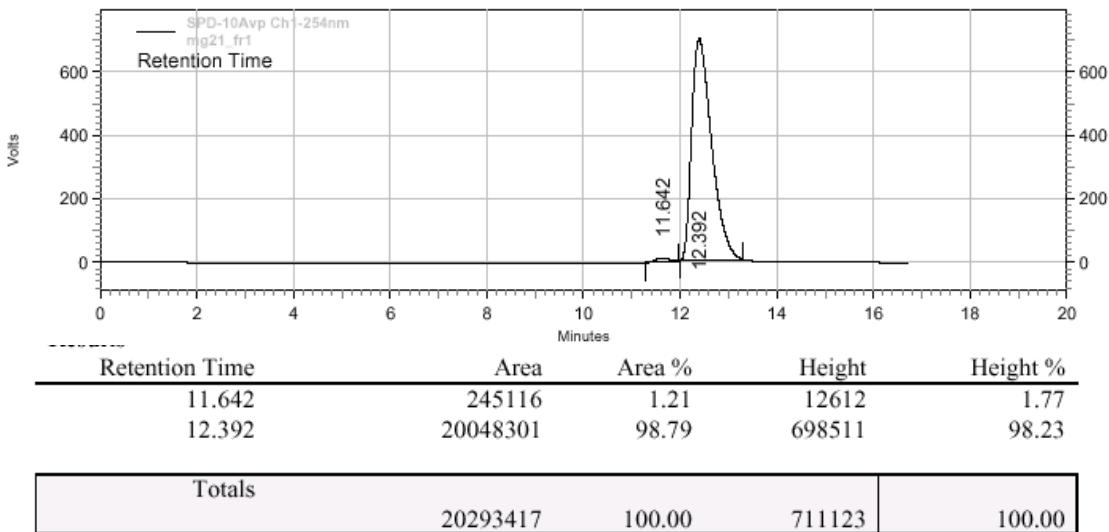
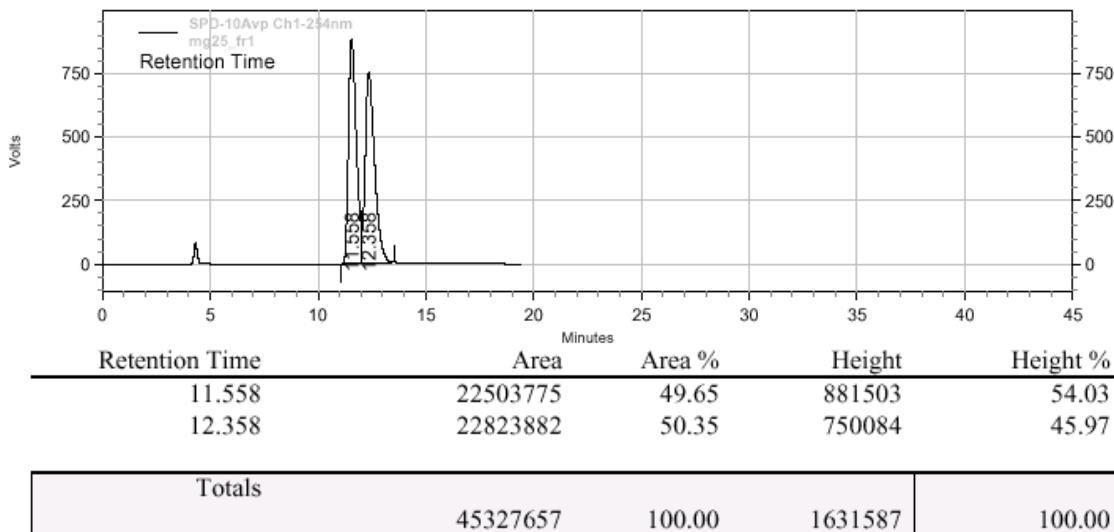
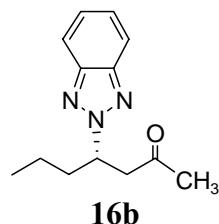




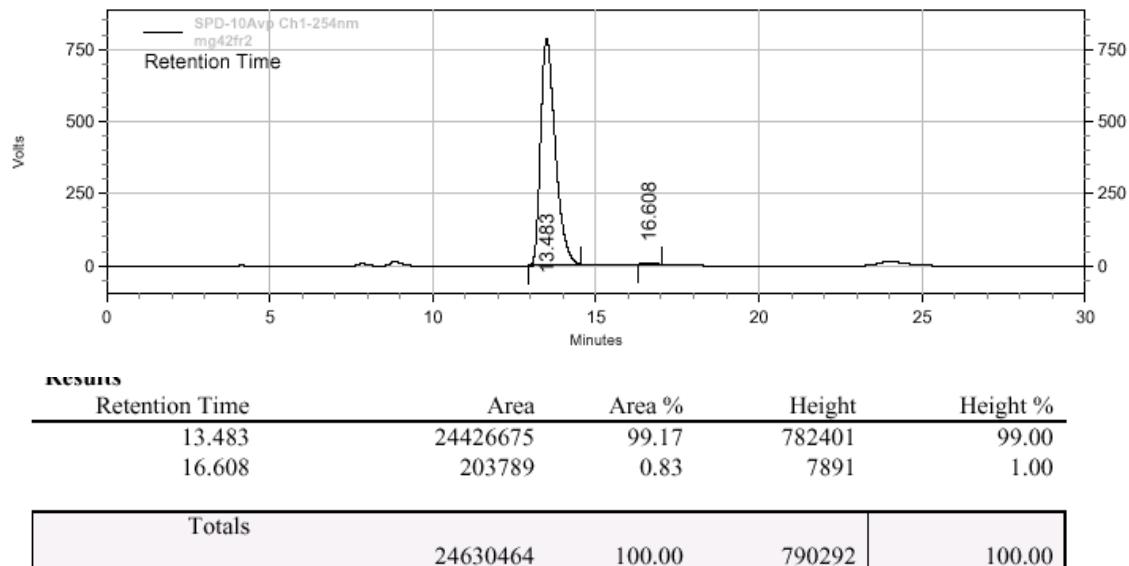
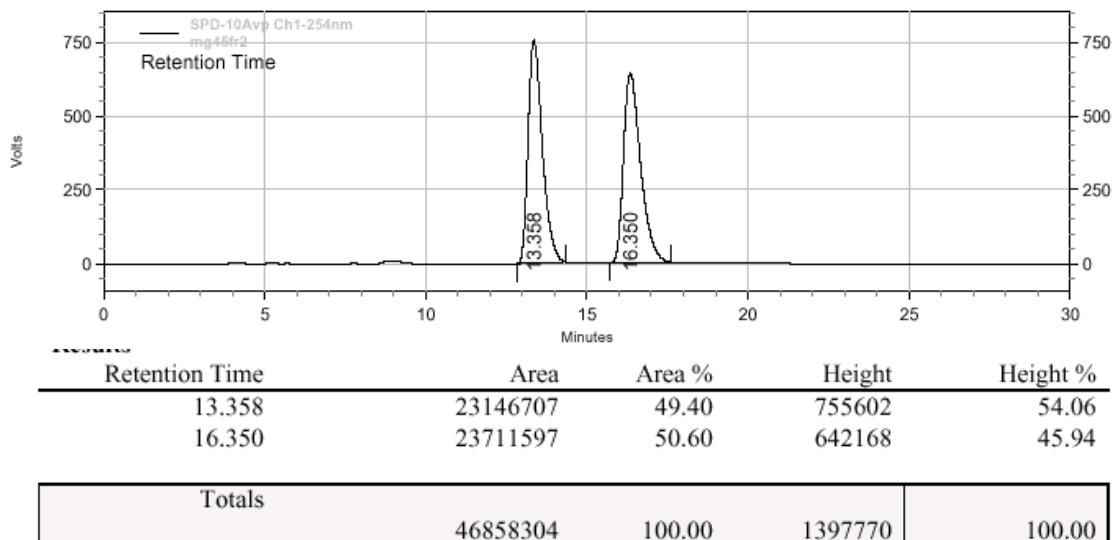
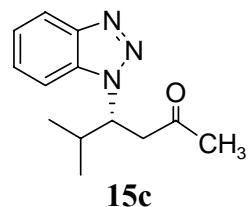

Retention Time	Area	Area %	Height	Height %
24.875	8230456	49.41	86637	54.22
30.233	8425499	50.59	73157	45.78
Totals	16655955	100.00	159794	100.00

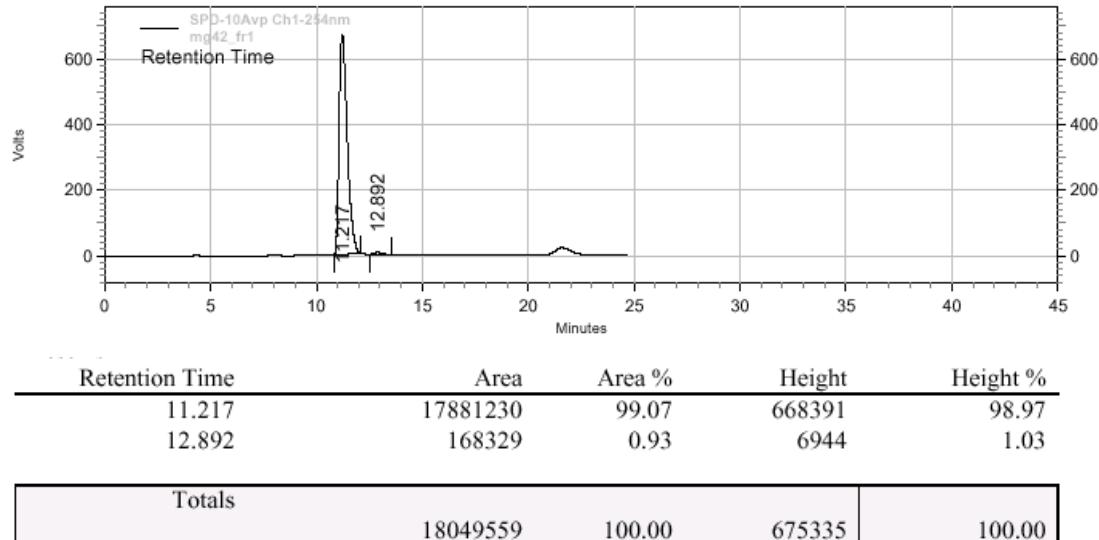
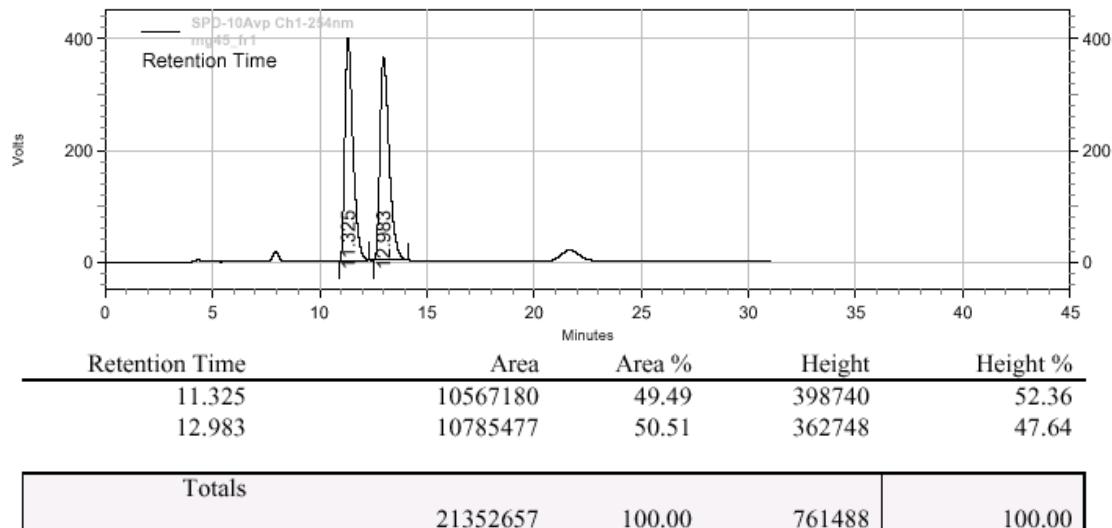
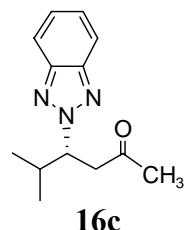


Retention Time	Area	Area %	Height	Height %
24.567	21965132	97.40	225216	97.89
30.483	587007	2.60	4846	2.11
Totals	22552139	100.00	230062	100.00

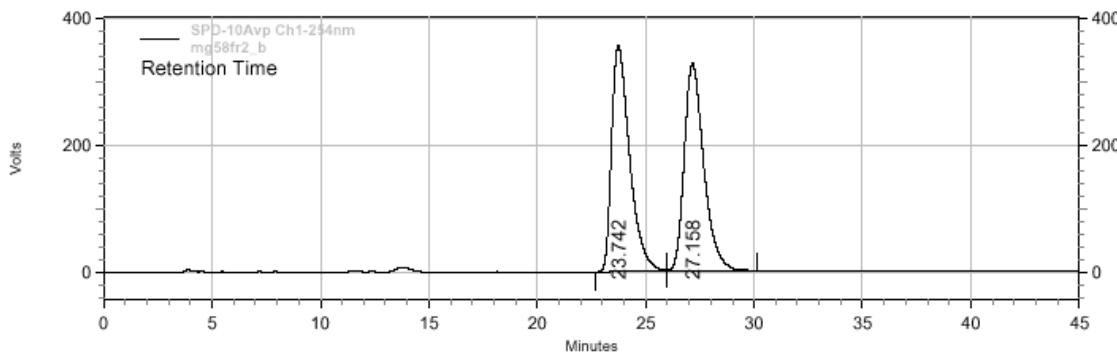
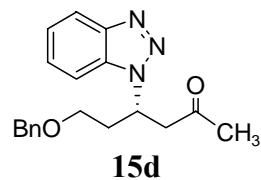


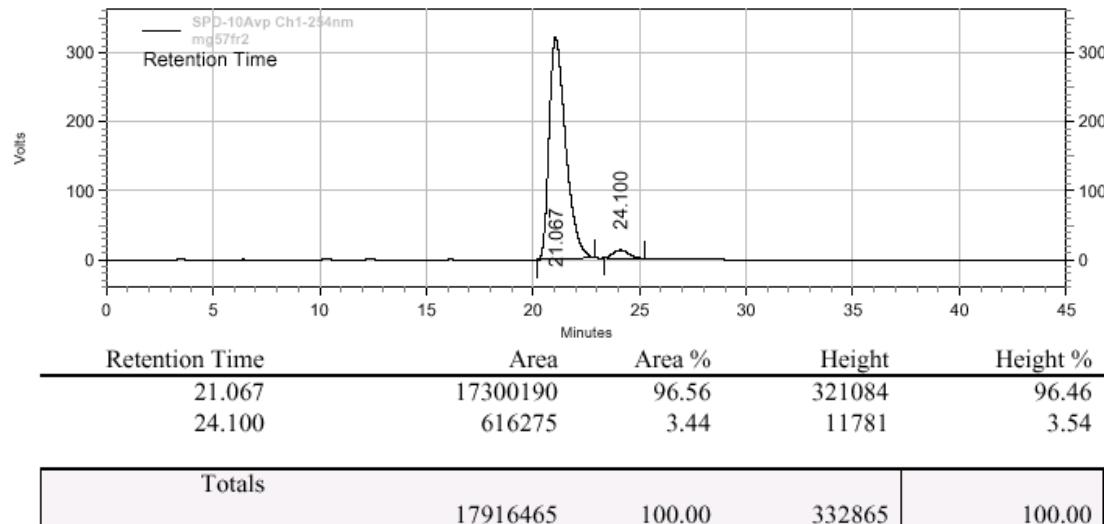


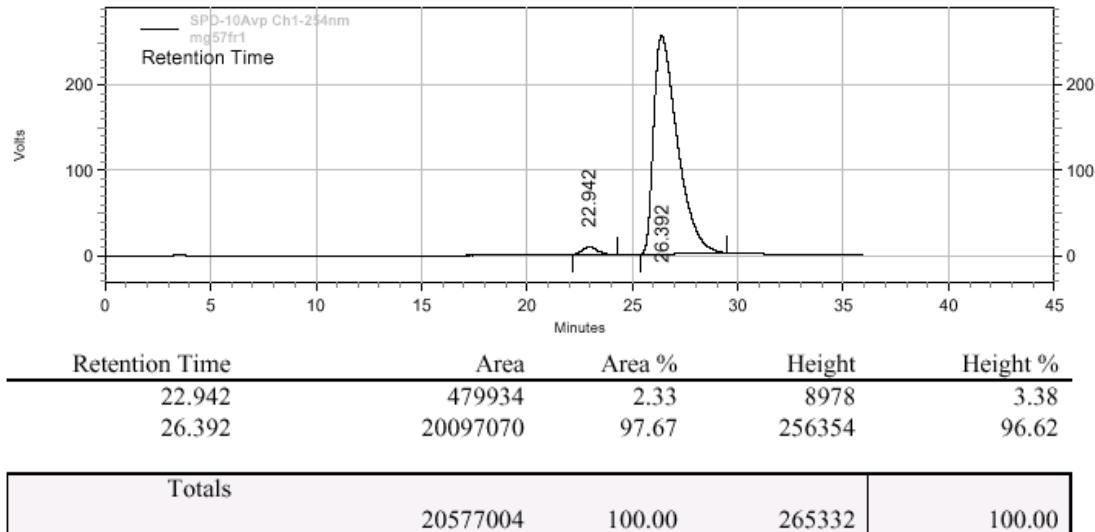
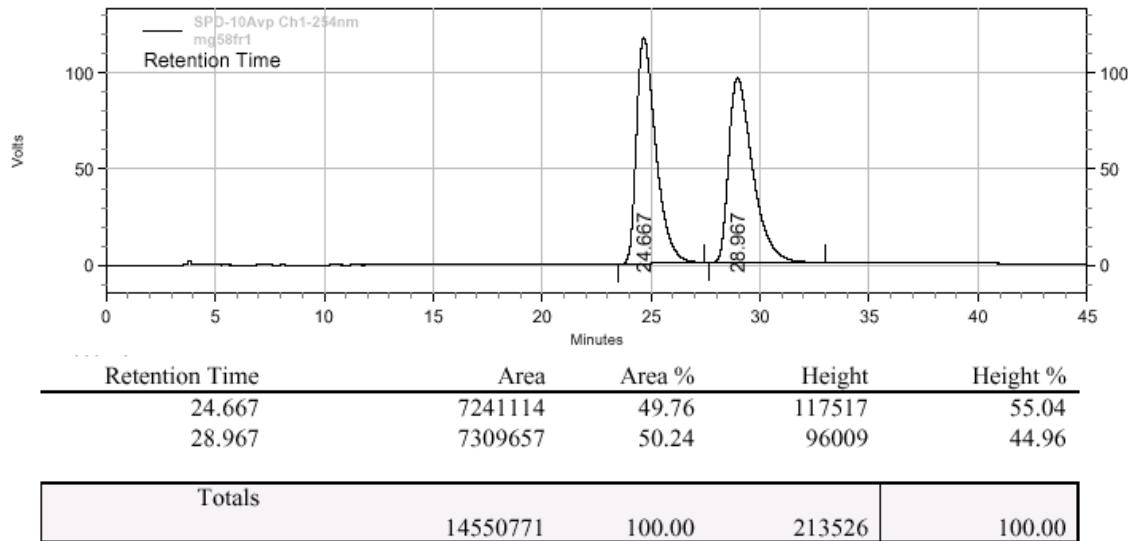
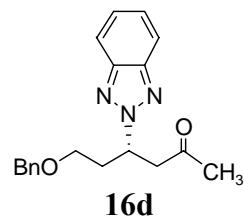



16a

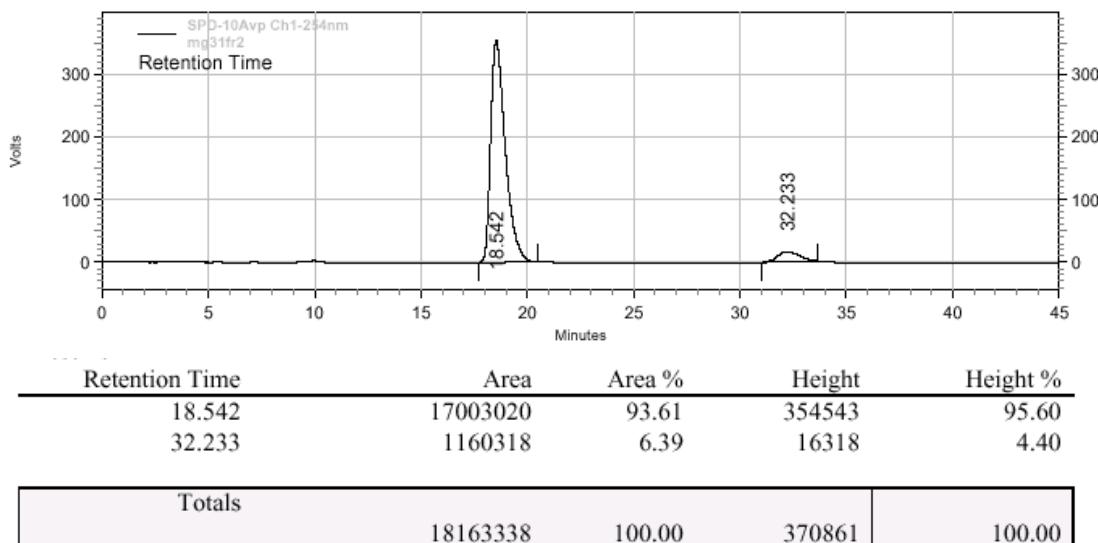
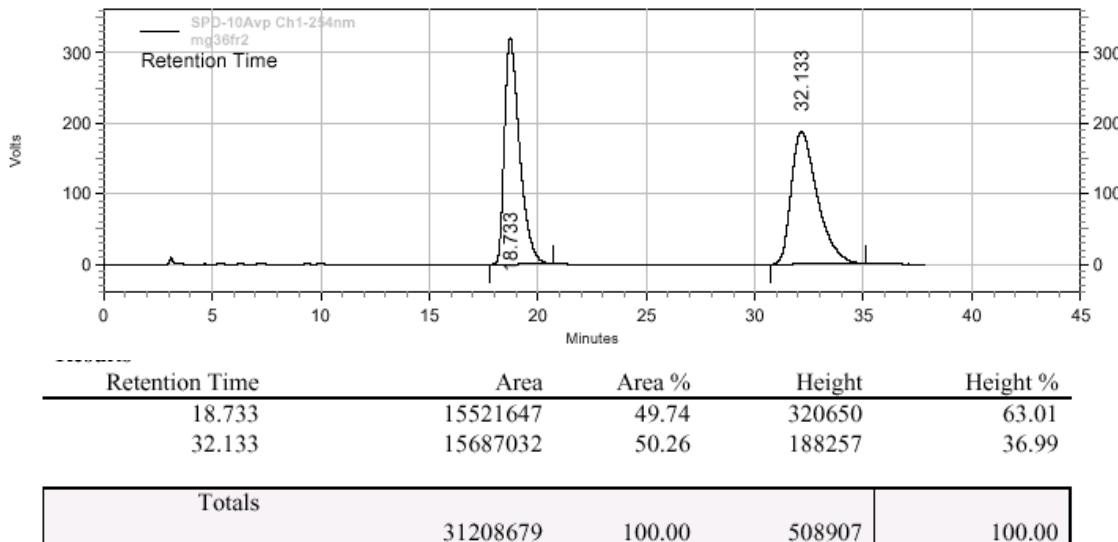
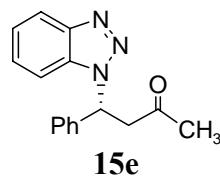




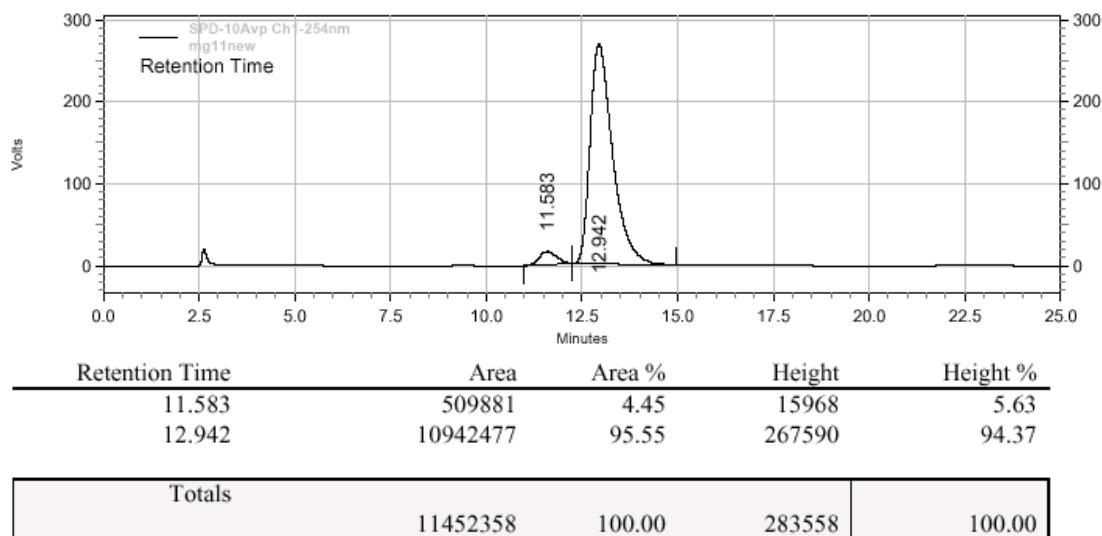
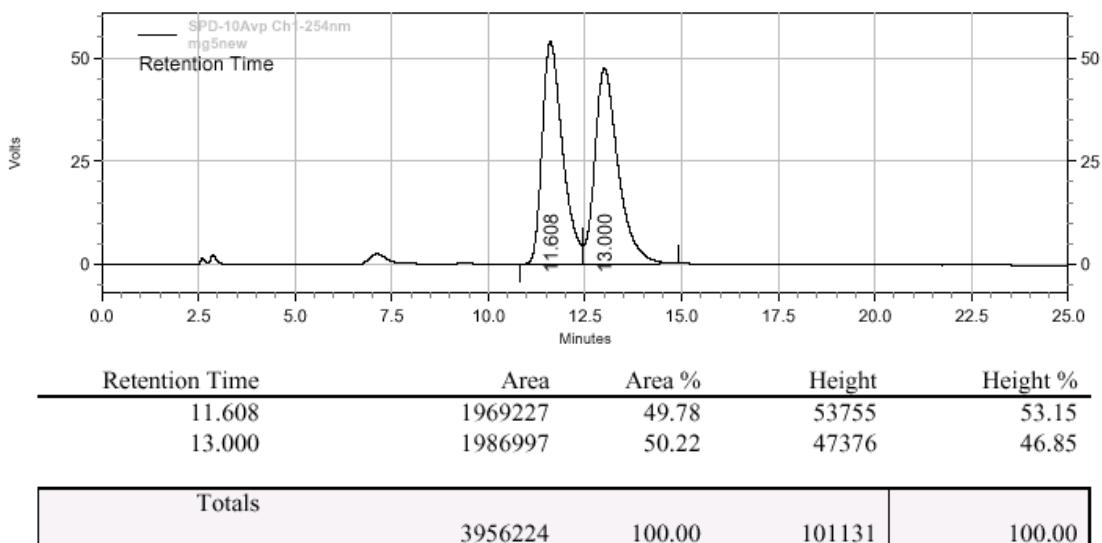
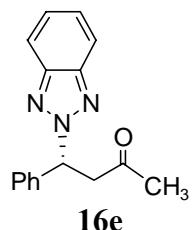




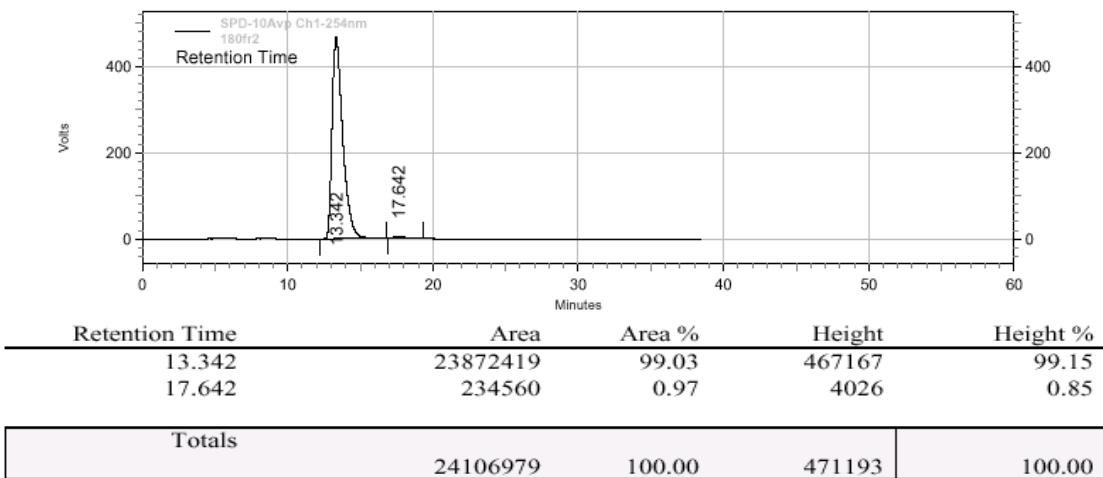
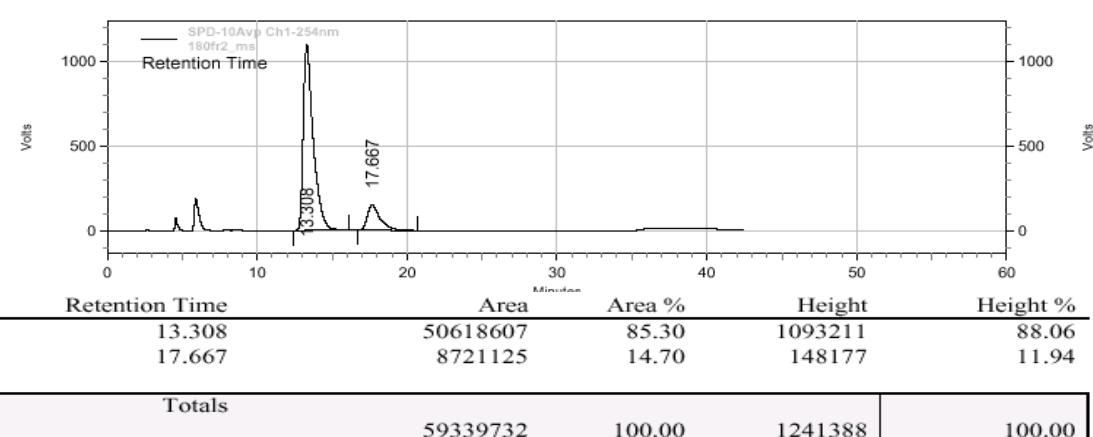
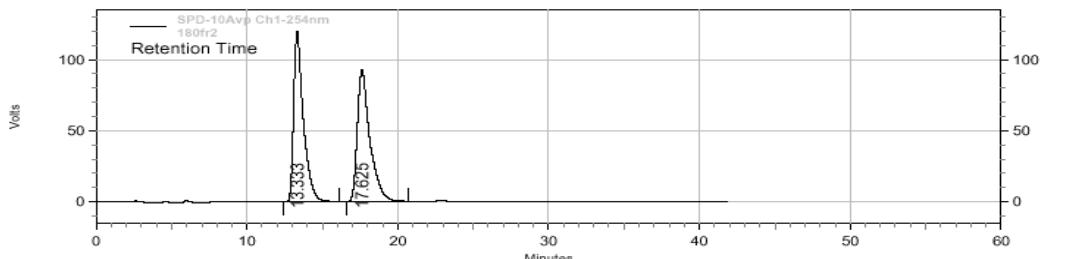
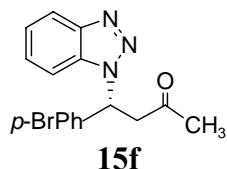


15b



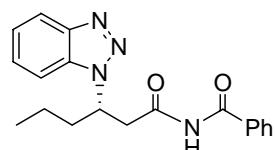



RESULTS

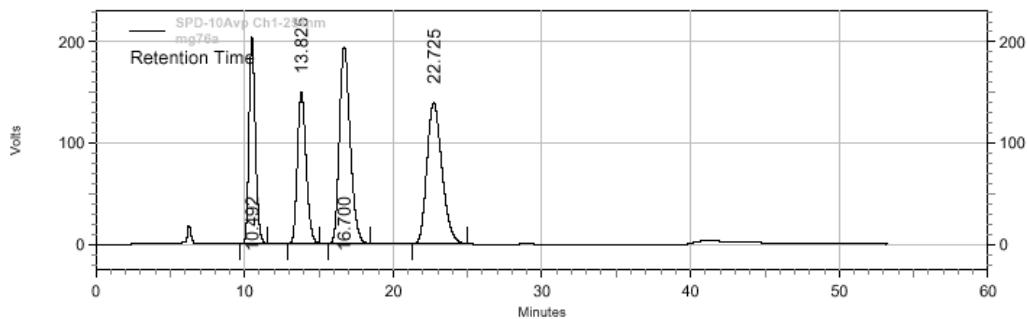



Retention Time	Area	Area %	Height	Height %
23.742	20586885	49.97	355845	52.05
27.158	20610948	50.03	327849	47.95
Totals				
	41197833	100.00	683694	100.00

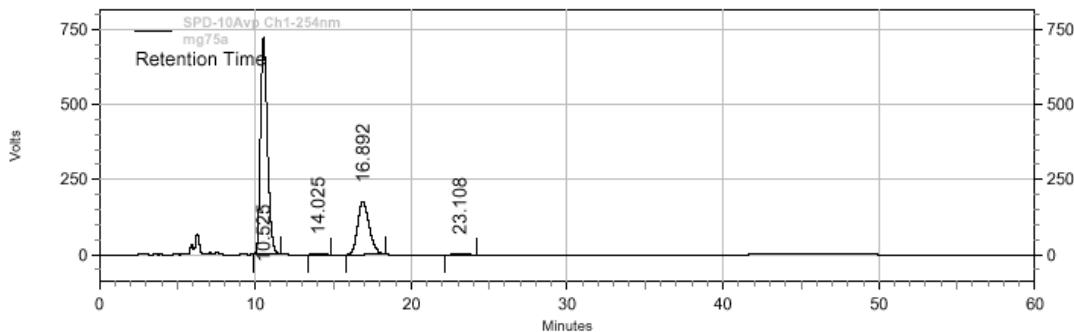




Retention Time	Area	Area %	Height	Height %
21.067	17300190	96.56	321084	96.46
24.100	616275	3.44	11781	3.54

Totals	17916465	100.00	332865	100.00
---------------	----------	--------	--------	--------

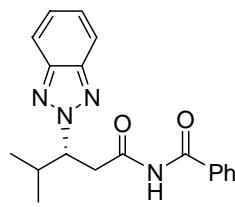


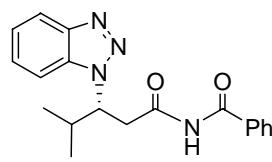

17a

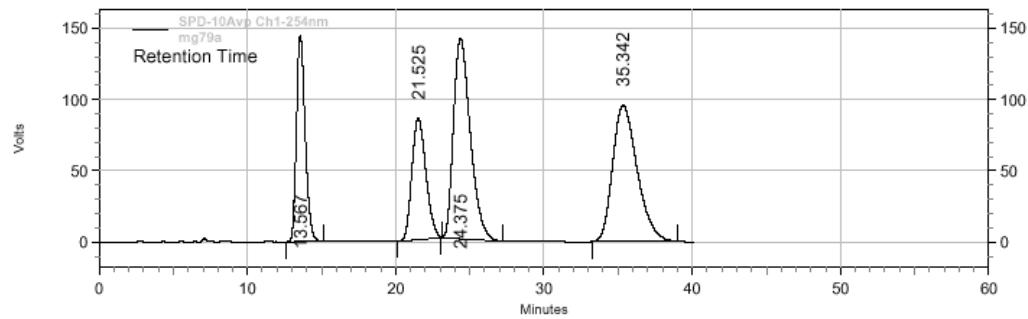
(rt_{major} 10.5 min; rt_{minor} 14.0 min)

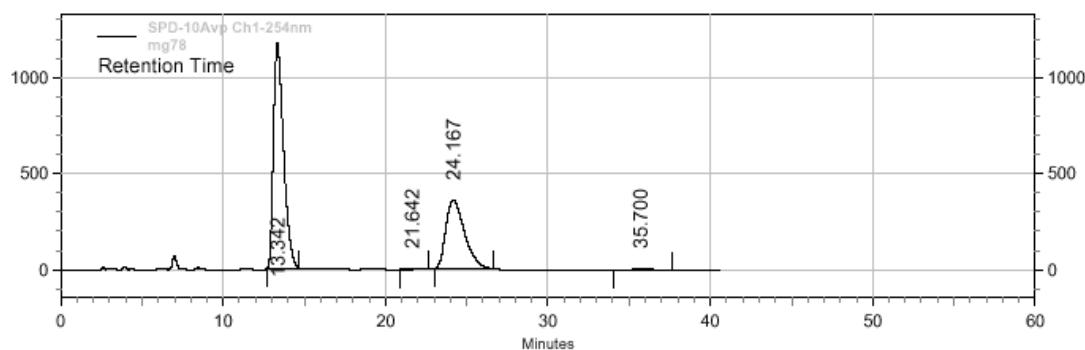


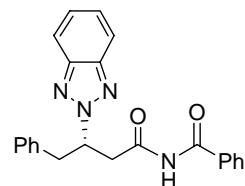
18a

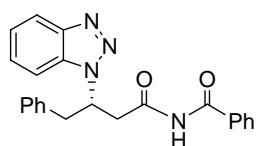

(rt_{major} 16.9 min; rt_{minor} 23.1 min)

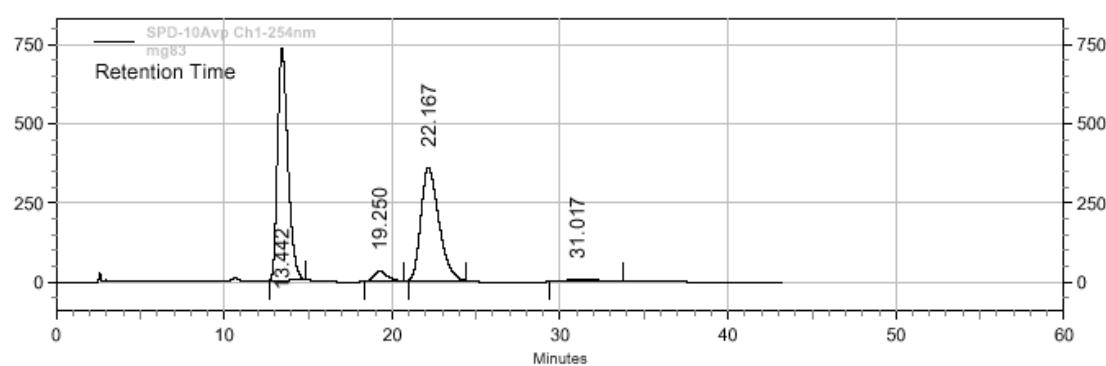
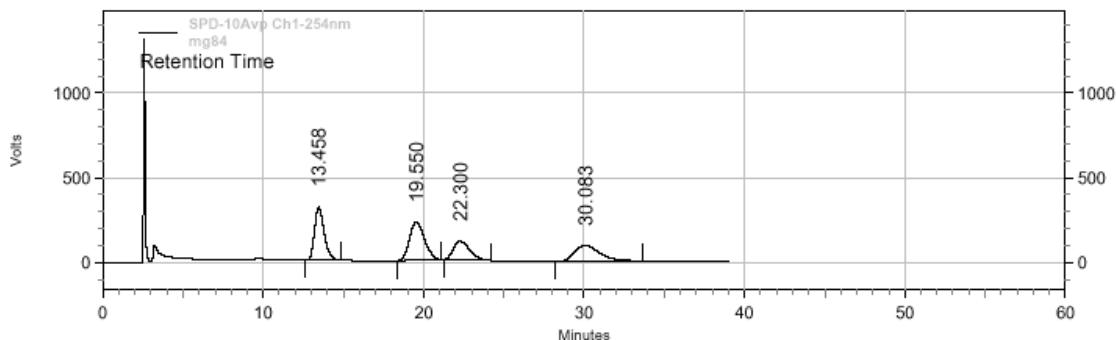

Retention Time	Area	Area %	Height	Height %
10.492	6114466	19.23	203906	29.67
13.825	6059343	19.06	149547	21.76
16.700	9834917	30.93	194409	28.29
22.725	9789371	30.79	139284	20.27
Totals	31798097	100.00	687146	100.00

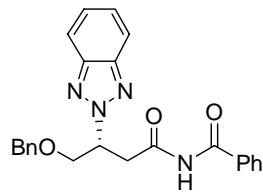

Retention Time	Area	Area %	Height	Height %
10.525	22518917	70.92	721864	80.15
14.025	81466	0.26	2045	0.23
16.892	9066545	28.55	175402	19.47
23.108	85884	0.27	1374	0.15
Totals	31752812	100.00	900685	100.00


17b
($t_{\text{R, major}}$ 13.3 min; $t_{\text{R, minor}}$ 21.6 min)

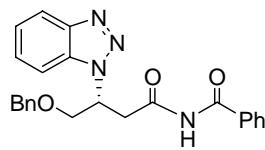

18b
($t_{\text{R, major}}$ 24.2 min; $t_{\text{R, minor}}$ 35.7 min)


Retention Time	Area	Area %	Height	Height %
13.567	5921898	17.62	144543	31.02
21.525	5600635	16.66	85175	18.28
24.375	11076176	32.95	140631	30.18
35.342	11017814	32.77	95626	20.52
Totals	33616523	100.00	465975	100.00

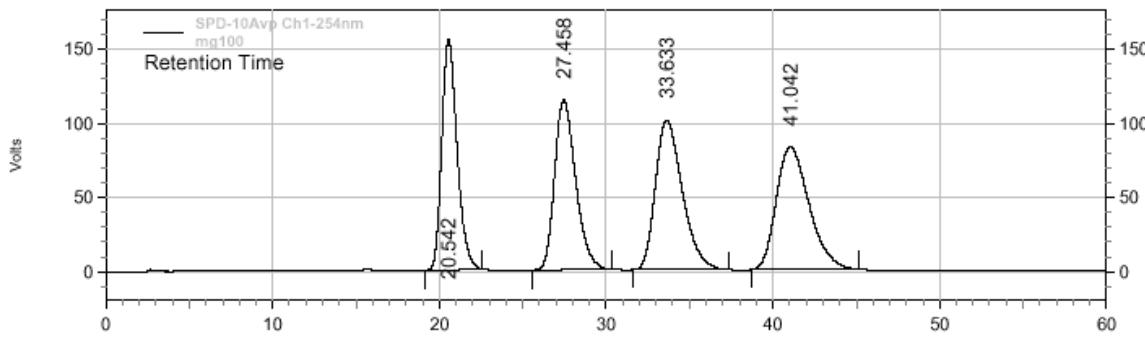


Retention Time	Area	Area %	Height	Height %
13.342	50366111	63.21	1170678	76.28
21.642	125859	0.16	2272	0.15
24.167	29048489	36.45	360442	23.48
35.700	144883	0.18	1389	0.09
Totals	79685342	100.00	1534781	100.00



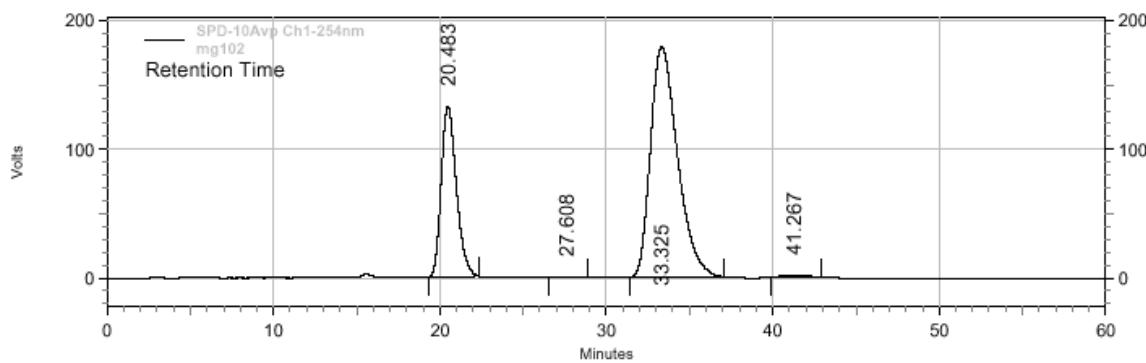
17c
(rt_{major} 13.4 min; rt_{minor} 19.3 min)



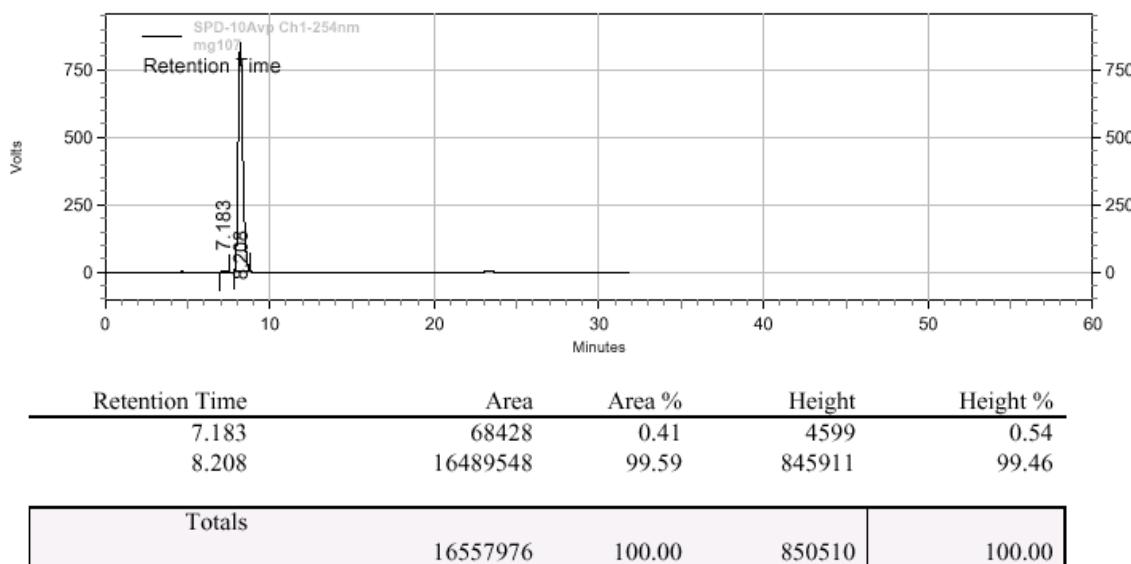
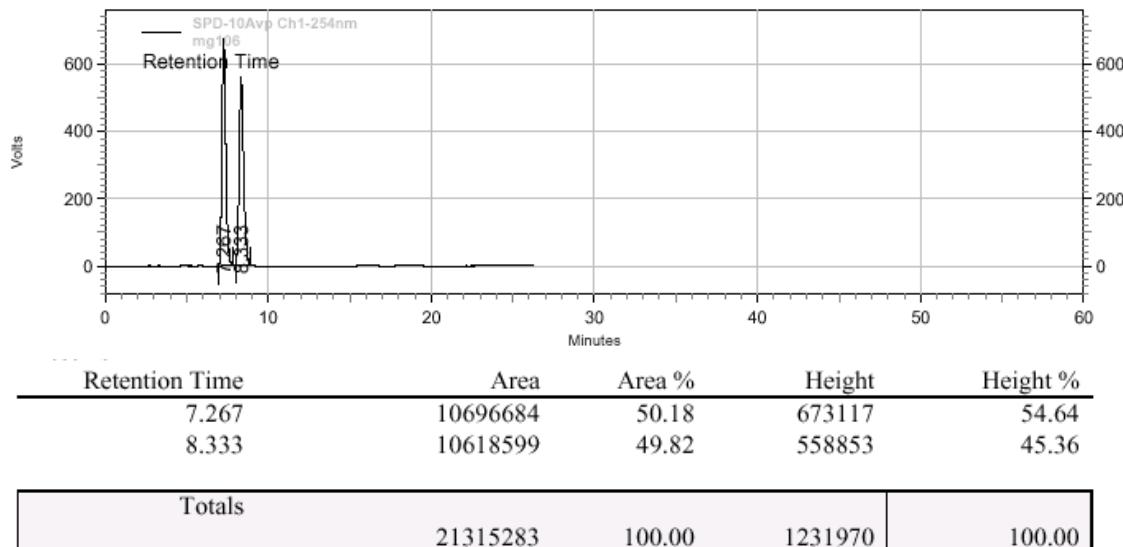
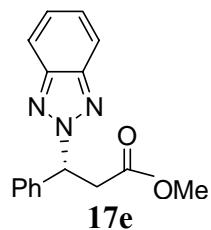
18c
(rt_{major} 22.2 min; rt_{minor} 31.0 min)

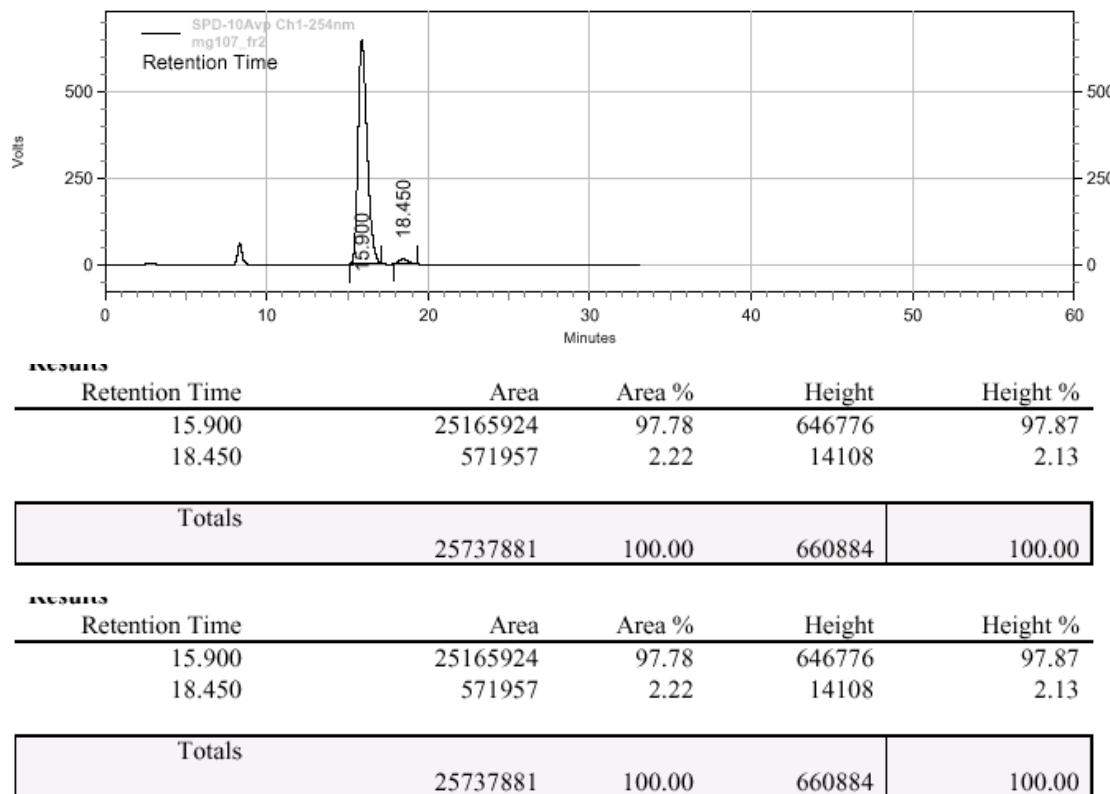
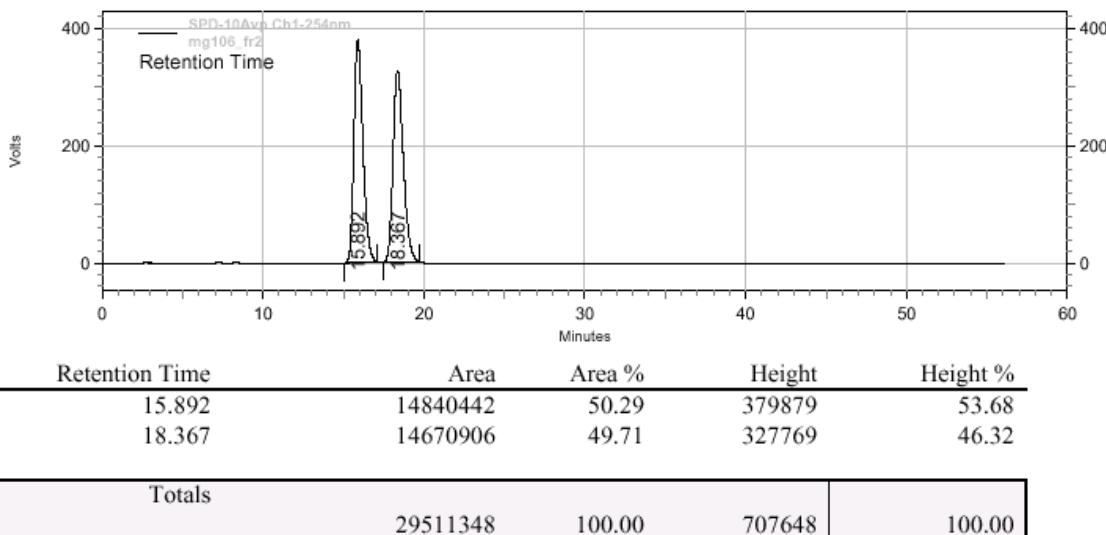
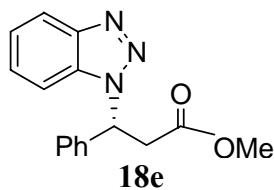


17d
(rt_{major} 20.5 min; rt_{minor} 27.6 min)



18d
(rt_{major} 33.3 min; rt_{minor} 41.3 min)




Retention Time	Area	Area %	Height	Height %
20.542	9919407	23.22	155239	34.23
27.458	10054527	23.54	114316	25.20
33.633	11369588	26.62	101016	22.27
41.042	11374163	26.63	83009	18.30




Totals	42717685	100.00	453580	100.00
--------	----------	--------	--------	--------

Retention Time	Area	Area %	Height	Height %
20.483	8354979	28.99	132447	42.22
27.608	42898	0.15	598	0.19
33.325	20248079	70.25	178882	57.03
41.267	175348	0.61	1744	0.56

Totals	28821304	100.00	313671	100.00
--------	----------	--------	--------	--------

