

Supporting Information © Wiley-VCH 2005

69451 Weinheim, Germany

Determination by asymmetric total synthesis of the absolute configuration of lucilactaene, a cell cycle inhibitor in p53-transfected cancer cells

Junichiro Yamaguchi, † Hideaki Kakeya, ¶ Takao Uno, † Mitsuru Shoji, † Hiroyuki Osada, ¶ and Yujiro Hayashi*, †

†Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

⁹Antibiotics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(3E, 5E, 7E, 9E)-2-Ethylidene-11-[(1R, 4S,

5R)-4-(2-hydroxy-ethyl)-4-methoxy-2-oxo-6-oxa-3-azabicyclo[3.1.0]

hex-1-yl]-4,10-dimethyl-11-oxo-undeca-3,5,7,9-tetraenoic acid methyl ester (7)

To a MeOH (25 mL) solution of NG391 (2) (358 mg, 0.857 mmol) was added TsOH•H₂O (110 mg, 0.578 mmol), and the reaction mixture was stirred for 1.5 h at 45 °C. After addition of a saturated NaHCO₃ solution, the organic materials were extracted with CHCl₃ three times, dried over anhydrous Na₂SO₄, concentrated in vacuo after filtration to give 360 mg of crude methylether 7, which was used in the next reaction without purification.

(3E, 5E, 7E, 9E) (1R, 4S,

5R)-4-(2-tert-Butoxycarbonyloxy-ethyl)-4-methoxy-1-(10-methoxycarbonyl-2,8-dimethyl-dodeca-2, 4,6,8,10-pentaenoyl)-2-oxo-6-oxa-3-aza-bicyclo[3.1.0]hexane-3-carboxylic acid tert-butyl ester (8)

MeO O HO
$$(Boc)_2O$$
, Et_3N , $cat.DMAP$ $(Boc)_2O$, Et_3N , $cat.DMAP$ $(Boc)_2O$, Et_3N , $cat.DMAP$ $(CH_2Cl_2, 0 \square, 30 \min)$ $(CH_2Cl_2, 0 \square, 30$

To a CH₂Cl₂ (20 mL) solution of crude methylether **7** (360 mg) was added triethylamine (0.50 mL), Boc₂O (0.7 mL), and dimethylaminopyridine (5.0 mg) at 0 °C, and the reaction mixture was stirred for 30 min at that temperature. The reaction was quenched with pH 7 phosphate buffer solution and the organic materials were extracted with ethyl acetate three times, the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo after

filtration Purification by flash column chromatography (ethyl acetate/hexane= 1/5-1/3) gave epoxylactam **8** (373 mg, 0.591 mmol) in 69% yield.

¹H NMR (CDCl₃): \Box 1.44 (9H, s), 1.50 (9H, s), 1.65 (3H, s), 1.70 (3H, d, J=7.3 Hz), 1.93 (3H, s), 2.25-2.41 (1H, m), 2.70-2.83 (1H, m), 3.40 (3H, s), 3.72 (3H, s), 3.96 (1H, s), 4.18-4.28 (1H, m), 4.30-4.42 (1H, m), 6.20 (1H, s), 6.42 (1H, dd, J=15.1, 10.6 Hz), 6.58 (1H, d, J=15.1 Hz), 6.65 (1H, dd, J=14.5, 11.2 Hz), 6.75 (1H, dd, J=14.5, 10.6 Hz), 6.97 (1H, q, J=7.3 Hz), 7.42 (1H, d, J=11.2 Hz);

¹³C NMR (CDCl₃): ☐ 11.1, 14.2, 15.9, 27.7, 27.9, 33.1, 51.0, 51.9, 60.8, 61.6, 62.3, 82.2, 84.4, 91.2, 127.9, 128.0, 128.4, 130.4, 133.7, 138.0, 140.4, 142.2, 143.5, 145.9, 149.3 153.3, 167.0, 167.4, 188.9;

IR (neat) 2923, 2854, 1741, 1722, 1650, 1587, 1097, 862, 836, 802 cm⁻¹; $\left[\prod_{p}^{22} -85.2\right] (c = 0.2, \text{MeOH});$

HRMS (FAB) calced for $[C_{33}H_{45}NO_{10}+H]$; 616.3122, found: 616.3141.

(3E, 5E, 7E, 9E, 12

E)-(2R)-2-(2-tert-Butoxycarbonyloxy-ethyl)-2-methoxy-4-(10-methoxycarbonyl-2,8-dimethyl-dodec a-2,4,6,8,10-pentaenoyl)-5-oxo-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (9)

To a THF (3.0 mL) solution of epoxylactam **8** (96.0 mg, 0.152 mmol) was added 0.1 M THF solution of SmI₂ (15.0 mL) at -78 °C, and the reaction mixture was stirred for 40 min at -78 °C. After addition of a buffer solution, the organic materials were extracted with ethyl acetate three times, the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo after filtration. Crude lactam **9** was purified by thin layer chromatography (ethyl acetate/hexane 1/1) to give 70.6 mg lactam **9** in 75%.

(3E, 5E, 7E,

9E)-2-Ethylidene-11-(3a-methoxy-5-oxo-hexahydro-furo[3,2-b]pyrrol-6-yl)-4,10-dimethyl-11-oxo-u ndeca-3,5,7,9-tetraenoic acid methyl ester (10), lucilactaene (1)

To a $CH_2Cl_2(8.0 \text{ mL})$ and H_2O (0.2 mL) solution of lactam **10** (70.6 mg, 0.111 mmol) was added CF_3COOH (2.0 mL) at 0 °C and the reaction mixture was stirred for 2.5 h at room temperature. After the solvent and CF_3COOH were removed in vacuo, purification by preparative thin layer chromatography (Et_2O) gave methylether **10** (25.3 mg, 0.063 mmol) in 55% yield and lucilactaene (**1**) (11.3 mg, 0.027 mmol) in 28% yield over 2 steps.

Methylether 10

¹H NMR (CDCl₃): \Box 1.70 (3H, s), 1.73 (3H, d, J=7.2 Hz), 1.95 (3H, s), 2.08-2.20 (1H, m), 2.28-2.38 (1H, m), 3.34 (3H, s), 3.72 (3H, m), 3.88-4.00 (1H, m), 4.01-4.09 (1H, m), 4.18 (1H, d, J=2.3 Hz), 4.75 (1H, d, J=2.3 Hz), 6.18 (1H, s), 6.27 (1H, brs), 6.40-6.76 (4H, m), 6.98 (1H, q, J=7.2 Hz), 7.26 (1H, d, J=11.2 Hz);

¹³C NMR (CDCl₃): ☐ 11.8, 14.3, 15.9, 40.0, 51.9, 52.0, 56.6, 67.3, 83.4, 99.6, 127.5, 128.3, 128.5, 130.4, 134.8, 138.1, 140.4, 141.3, 142.1, 142.8, 167.5, 171.4, 194.6;

IR (neat) 2950, 2925, 1716, 1648, 1585, 1241, 1056, 732 cm⁻¹;

 $[\Box]_{D}^{17}$ +36.6 (*c*=0.17, MeOH);

HRMS (FAB) calced for $[C_{23}H_{29}NO_6+H]$; 416.2073, found: 416.2054.

lucilactaene (1)

¹H NMR (CDCl₃): \Box 1.70 (3H, s), 1.73 (1H, d, J=7.2 Hz), 1.93 (3H, s), 2.21-2.29 (1H, m), 2.37-2.46 (1H, m), 3.72 (3H, s), 4.21 (1H, brs), 4.30 (1H, brs), 4.97 (1H, brs), 6.20 (1H, s), 6.45 (1H, dd, J= 15.2, 10.9 Hz), 6.62 (1H, d, J= 15.2 Hz), 6.66 (1H, dd, J= 14.7, 11.5 Hz), 6.82 (1H, dd, J= 14.7, 11.0 Hz), 6.99 (1H, q, J=7.2 Hz), 7.45 (1H, d, J=11.5 Hz);

¹³C NMR (CDCl₃): ☐ 11.5, 14.2, 15.9, 37.4, 51.9, 56.6, 68.5, 85.7, 94.5, 128.0, 128.1, 128.3, 130.3, 134.1, 137.9, 140.6, 142.3, 143.6, 145.5, 167.5, 170.7, 197.0;

IR (neat) 2948, 1716, 1652, 1585, 1436, 1243, 1118, 1243, 991, 734 cm⁻¹;

HRMS (FAB): calced for [C₂₂H₂₇NO₆]; 401.1838, found; 401.1838.

(3E, 5E, 7E, 9E)-2-Ethylidene-11-[(1R, 4S,

5R)-4-(2-hydroxy-ethyl)-2-oxo-4-(2-phenylselanyl-ethoxy)-6-oxa-3-aza-bicyclo[3.1.0]hex-1-yl]-4,1 0-dimethyl-11-oxo-undeca-3,5,7,9-tetraenoic acid methyl ester (11)

To a CH₂Cl₂ (4.0 mL) solution of NG391 (2) (170.0 mg, 0.405 mmol) was added PhSeCH₂CH₂OH (97.8 mg, 0.496 mmol) and TsOH•H₂O (15.4 mg, 0.081 mmol) at room temperature, and the reaction mixture was stirred for 3 h at that temperature. After addition of a saturated NaHCO₃ solution, the organic materials were extracted with CHCl₃ three times, dried over anhydrous Na₂SO₄, and concentrated in vacuo after filtration. Purification by flash column chromatography (ethyl acetate/hexane=1/3 - MeOH/ CHCl₃=1/10) gave selenoethylether 11 (74.8 mg 0.124 mmol) in 31% yield. NG-391 (2) (110 mg, 0.26 mmol) was recovered in 65 % yield.

¹H NMR (CDCl₃): \Box 1.69 (3H, s), 1.72 (3H, d, *J*=7.2 Hz), 1.92 (3H, s), 2.03-2.05 (2H, m), 2.07 (1H, brs), 3.09 (2H, t, *J*=6.2 Hz), 3.72 (3H, s), 3.78-3.83 (1H, m), 3.85 (1H, brd), 3.87 (2H, t, *J*=6.2 Hz), 3.93-3.99 (1H, m), 6.18 (1H, s), 6.42 (1H, dd, *J*=10.4, 4.5 Hz), 6.50-6.67 (3H, m), 6.75 (1H, dd, *J*=14.6, 10.7 Hz), 6.96 (1H, q, *J*=7.2 Hz), 7.16-7.28 (3H, m), 7.44 (1H, d, *J*=10.7 Hz), 7.51 (2H, brd); ¹³C NMR (CDCl₃): \Box 11.2, 14.2, 15.9, 27.7, 36.2, 51.9, 56.9, 61.7, 61.9, 62.5, 77.2, 88.2, 127.2, 127.9, 128.0, 128.4, 129.2, 130.3, 132.9, 133.9, 138.0, 140.5, 142.1, 143.2, 145.4, 167.4, 169.7, 189.4;

IR (neat) 3291, 1720, 1641, 1581, 1436, 1261, 1130, 1089, 877, 736 cm⁻¹; $[\Box]_D^{25} = +3.7$ (c=0.441, MeOH);

HRMS (FAB): calced for [C₃₀H₃₅NO₇Se]; 601.1581, found: 601.1575.

(3E, 5E, 7E, 9E) -(1R, 4S,

5R)-4-(2-tert-Butoxycarbonyloxy-ethyl)-1-(10-methoxycarbonyl-2,8-dimethyl-dodeca-2,4,6,8,10-pe ntaenoyl)-2-oxo-4-(2-phenylselanyl-ethoxy)-6-oxa-3-aza-bicyclo[3.1.0]hexane-3-carboxylic acid tert-butyl ester (12)

To a CH_2Cl_2 (2.1 mL) solution of selenoethylether **11** (42.0 mg, 0.070 mmol) was added Et_3N (29 $\Box L$, 0.21 mmol), Boc_2O (40 $\Box L$, 0.175 mmol) and DMAP (2 mg) at 0 °C, and the reaction mixture was stirred for 30 min at that temperature. After addition of a buffer solution, the organic materials were extracted with ethyl acetate three times, the combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 , concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate/hexane=1/3) gave epoxylactam **12** (40.8 mg, 0.051 mmol) in 73% yield.

¹H NMR (CDCl₃): \Box 1.45 (9H, s), 1.48 (9H, s), 1.69 (3H, s), 1.73 (3H, d, J=7.2 Hz), 2.33 (1H, dt, J=

14.4, 7.1 Hz), 2.77 (1H, dt, J=14.4, 5.5 Hz), 3.06 (2H, t, J=6.3 Hz), 3.73 (3H, s), 3.77-3.83 (1H, m), 3.94 (1H, brs), 3.94-3.40 (1H, m), 4.18-4.24 (1H, m), 4.29-4.35 (1H, m), 6.19 (1H, s), 6.42 (1H, dd, J=15.4 Hz), 6.57 (1H, d, J=15.4 Hz), 6.64 (1H, dd, J=14.5, 11.3 Hz), 6.76 (1H, dd, J=14.5,10.4 Hz), 6.98 (1H, q, J=7.2 Hz), 7.16-7.24 (3H, m), 7.39 (1H, d, J=11.3 Hz), 7.50 (1H, brd);

¹³C NMR (CDCl₃): ☐ 11.1, 14.2, 15.9, 27.1, 27.8, 27.9, 33.1, 51.9. 60.9, 61.7, 62.3, 63.3, 82.2, 84.5, 90.9, 127.1, 127.9, 128.0, 128.4, 129.1, 129.8, 130.3, 132.9, 133.7, 138.0, 140.4, 142.1, 143.4, 145.7, 149.1, 153.2, 166.8, 167.4, 188.6;

IR (neat) 2981, 1789, 1741, 1716, 1644, 1581, 1338, 1278, 1255, 1155, 993, 846 cm⁻¹; $[\Box]_D^{24}$ -54.8 (c=1.03, MeOH);

HRMS (FAB): calced for $[C_{40}H_{51}NO_{11}Se+H]$; 802.2710, found: 802.2730.

(3E, 5E, 7E, 9E)-2-((1R, 4S,

5R)-2-tert-Butoxycarbonyloxy-ethyl)-4-(10-methoxycarbonyl-2,8-dimethyl-dodeca-2,4,6,8,10-penta enoyl)-5-oxo-2-(2-phenylselanyl-ethoxy)-2,5-dihydro-pyrrole-1-carboxylic acid tert-butyl ester (13)

To a THF (0.4 mL) solution of epoxylactam **12** (22.3 mg, 0.02 mmol) was added 0.1 M THF solution of SmI₂ (0.6 mL) at -78 °C, and the reaction mixture was stirred for 40 min at that temperature. After addition of a buffer solution, the organic materials were extracted with ethyl acetate three times, the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo after filtration. Crude lactam **13** was purified by thin layer chromatography (ethyl acetate/hexane 1/1) to afford 14.5 mg lactam **13**.

(3E, 5E, 7E, 9E)- 2-Ethylidene-4,10-dimethyl-11-oxo-11-[(1R, 4S,

5R)-5-oxo-3a-(2-phenylselanyl-ethoxy)-hexahydro-furo[3,2-b]pyrrol-6-yl]-undeca-3,5,7,9-tetraenoic acid methyl ester (14)

To a CH_2Cl_2 (1.0 mL) solution of lactam **13** (14.5 mg) was added CF_3COOH (1.0 mL) at 0 °C and the reaction mixture was stirred for 2.5 h at room temperature. After solvent and CF_3COOH were removed in vacuo, purification by preparative thin layer chromatography ($Et_2O/Hexane = 5/1$) gave

selenoethylether 14 (5.8 mg, 0.049 mmol) in 36 % yield over 2 steps.

¹H NMR (CDCl₃): \Box 1.64 (3H, s), 1.68 (3H, d, J= 7.2 Hz), 1.88 (3H, s), 1.96 (2H, d, J=6.1 Hz), 1.97-2.03 (1H, m), 2.19-2.26 (1H, m), 3.00 (2H, t, J= 6.1 Hz), 3.74 (3H, s), 3.75-3.94 (2H, m), 4.10 (1H, brs), 4.64 (1H, brs), 4.64 (1H, brs), 6.12 (1H, s), 6.30-6.72 (4H, m), 6.91 (1H, d, J= 7.1 Hz), 7.16-7.18 (3H, m), 7.41-7.46 (2H, m);

¹³C NMR (CDCl₃): \Box 11.8, 14.3, 15.9, 27.7, 40.3, 51.9, 56.5, 64.1, 67.2, 83.7, 99.2, 127.0, 127.5, 128.3, 128.5, 129.1, 130.1, 130.4, 132.0, 134.8, 140.4, 141.3, 142.1, 142.9, 167.5, 171.1, 194.7; IR (neat) 2948, 1716, 1652, 1585, 1436, 1243, 1118, 1243, 991, 734 cm⁻¹; \Box _D²⁶ +28.0 (c=0.26, MeOH);

HRMS (FAB): calced for [C₃₀H₃₆NO₆Se+H]; 586.1710, found: 586.1712.

lucilactaene (1)

To a CH_2Cl_2 (0.2 mL) solution of selenoethylether **14** (3.9 mg, 0.0067 mmol) was added 0.1 M acetone solution of dimethyldioxirane (0.13 mL) at -78 °C, and the reaction mixture was stirred for 40 min at that temperature. The reaction was quenched with Me_2S (0.1 mL), and the mixture was stirred for 10 min at 0 °C. After solvent was removed in vacuo, purification by preparative thin layer chromatography (MeOH/ CHCl₃= 1/10) gave selenoxide (3.2 mg, 0.0055 mmol) in 82 % yield.

To a THF (0.5 mL) solution of the selenoxide was added DABCO (2.5 mg, 0.023 mmol) at room temperature, and the reaction mixture was stirred for 3 h at 60 $^{\circ}$ C. The reaction was quenched with pH 7 phosphate buffer solution and the organic materials were extracted with ethyl acetate three times, and the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo after filtration to give 3.3 mg of crude vinylether, which was used in the next reaction without purification.

To a CH_2Cl_2 (0.2 mL) solution of crude vinylether was added 0.1 M acetone solution of dimethyldioxirane (0.10 mL) at -78 °C, and the reaction mixture was stirred for 40 min at that temperature. The reaction was quenched with Me_2S (0.1 mL), and the mixture was stirred for 10 min at 0 °C. After the solvent was removed in vacuo, purification by preparative thin layer chromatography (Et₂O) gave lucilactaene (1) (1.2 mg, 0.003 mmol) in 56 % yield over 2 steps.

The optical purify of lucilactaene was determined by HPLC analysis with a Chiralcel OD-RH column ($CH_3CN/H_2O=45/100$), 1.0 mL/min major enantiomer tr = 40.5 min, minor enantiomer tr = 28.7 min.

 $[\Box]_D^{21} + 39.5 (c=0.1, MeOH).$

Production and isolation experiment of lucilactaene (Table 2).

The fungal strain *Fusarium sp.* RK-9794 was inoculated into the medium (70 ml) consisting of 2% glucose, 1% soluble starch, 0.3% meat extract, 2.5% yeast extract, 0.05% NaCl, 0.005% K₂HPO₄, 0.05% CaCO₃, and 0.05% MgSO₄•7H₂O (adjusted at pH 7.2 before sterilization), and cultured on a rotary shaker (150rpm) at 28 °C. At the indicated times, the fermentation broth (supernatant) and mycelia were separated by centrifugation. The broth was immediately adjusted at pH 7.0 and extracted with ethyl acetate. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was dissolved in methanol and analyzed by the chiral HPLC system. The chiral HPLC conditions as follows: column; CHIRALCEL OD-RH column (150 x 4.6 mm *i.d.*, Daicel Chemical Ind., Tokyo), mobile phase; CH₃CN:H₂O=45:55, flow rate; 0.6 ml/min, detection; 360nm. The mycelia were extracted with acetone, which was concentrated in vacuo. The ethyl acetate extract from the mycelia was prepared as described above and analyzed.

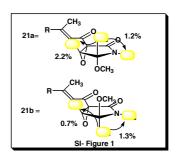
Typical procedure of the racemization of lucilactaene-model 17 (Table 1, entry 11).

To model **17** (0.7 mg, 0.002 mmol) was added culture medium (2.0 mL) which consists of 2% glucose, 1% soluble starch, 0.3% meat extract, 2.5% yeast extract, 0.05% NaCl, 0.005% K₂HPO₄, 0.05% CaCO₃, and 0.05% MgSO₄•H₂O adjusted pH 7.2. The reaction mixture was for 10 h or 48 h at 28 °C. The organic materials were extracted with ethyl acetate three times, the combined organic extracts were dried over anhydrous Na₂SO₄, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography gave model **17**, and the optical purify of model **17** was determined to be >99% ee by HPLC analysis with a Chiralpak AD-H column.

3a-Hydroxy-6-(2-methyl-5-phenyl-pent-2-enoyl)-hexahydro-furo[3,2-b]pyrrol-5-one (17)

¹H NMR (CDCl₃): ☐ 1.73 (3H, s), 2.20-2.25 (1H, m), 2.65 (1H, q, *J*=7.5Hz), 2.80-2.86 (1H, m), 3.95-4.04 (1H, m), 4.06-4.14 (1H, m), 4.20 (1H, s), 4.26 (1H, s), 4.81 (1H, s), 6.03 (1H, brs), 7.08 (1H, t, *J*=7.2Hz), 7.18-7.30 (5H, m);

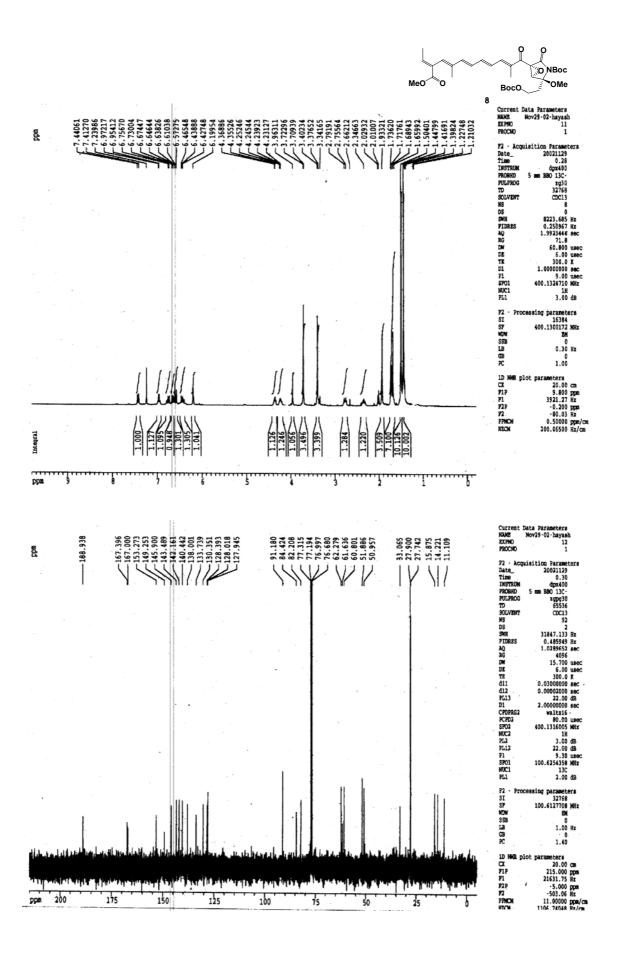
¹³C NMR (CDCl₃): ☐ 11.1, 31.8, 34.5, 56.7, 68.5, 85.7, 94.4, 126.3, 128.4, 128.6, 136.9, 140.7, 149.9, 170.1, 197.6;

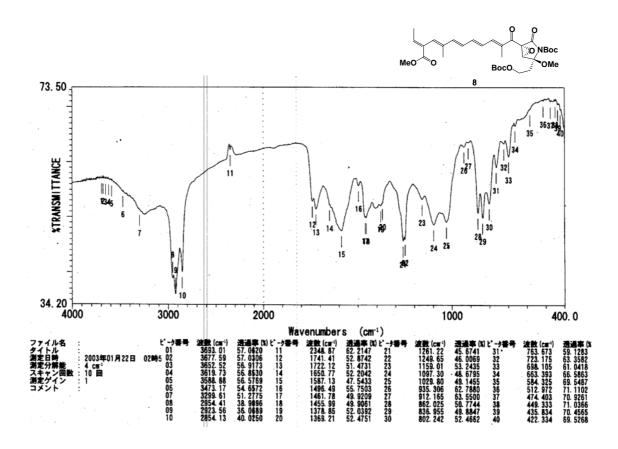

IR (neat) 2925, 2857, 1716, 1658, 1112, 1072, 742, 701 cm⁻¹;

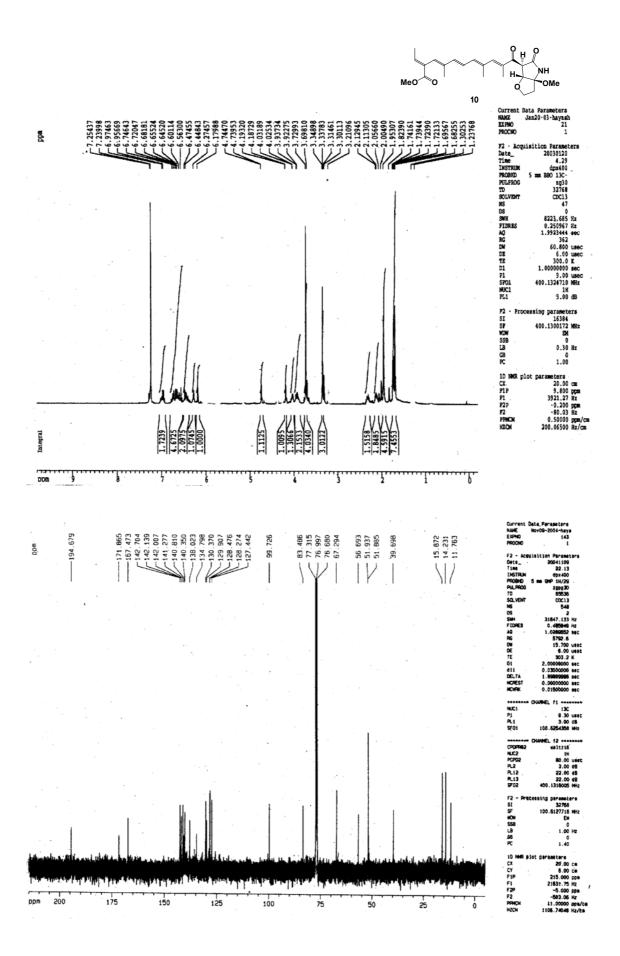
HRMS (FAB): calced for $[C_{18}H_{21}NO_4]$; 315.1471, found: 315.1481.

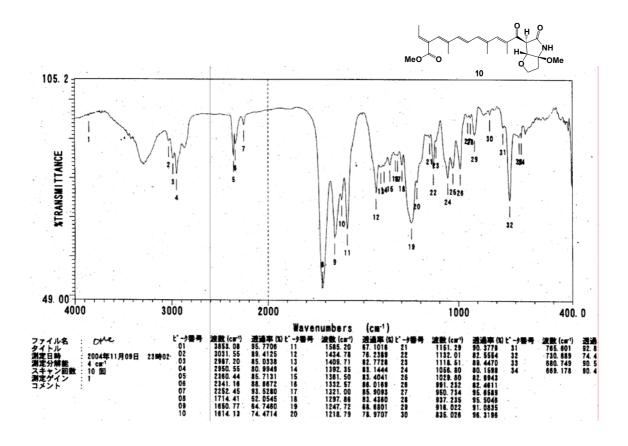
 $[\Box]_D^{28}$ +66.0 (c=0.05, MeOH).

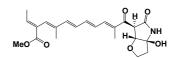
HPLC conditions: Chiralpak AD-H column, i-propanol/Hexane = 1/3, 1.0 mL/min, major enantiomer tr = 13.14 min, minor enantiomer tr = 7.7 min.

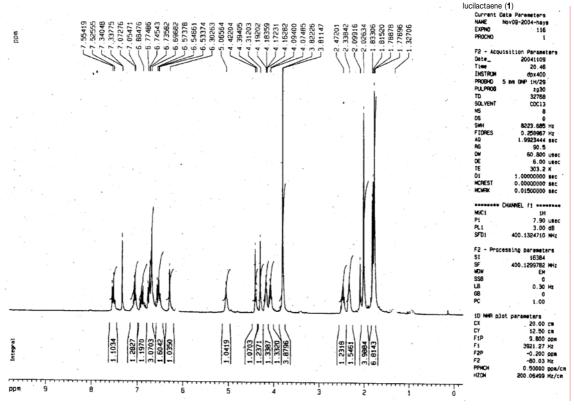

Determination of relative stereochemistry of 7.

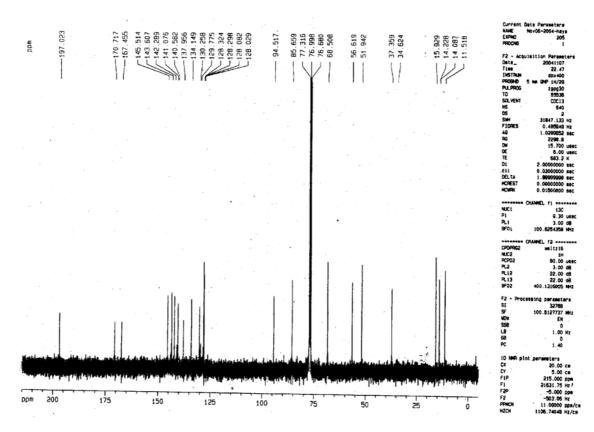


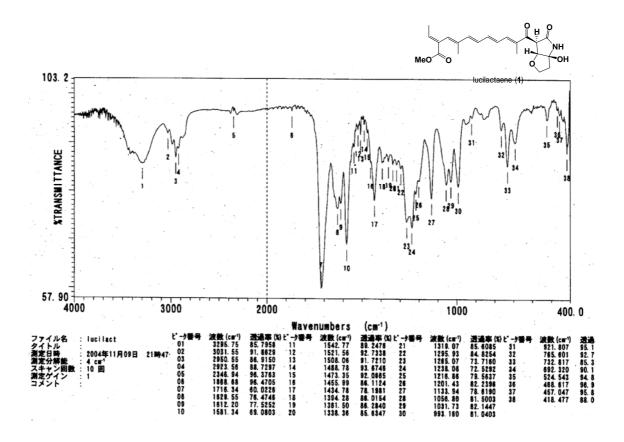

The relative stereochemistry of methyl ether 7 was determined as follows by analogy of the model 20. When

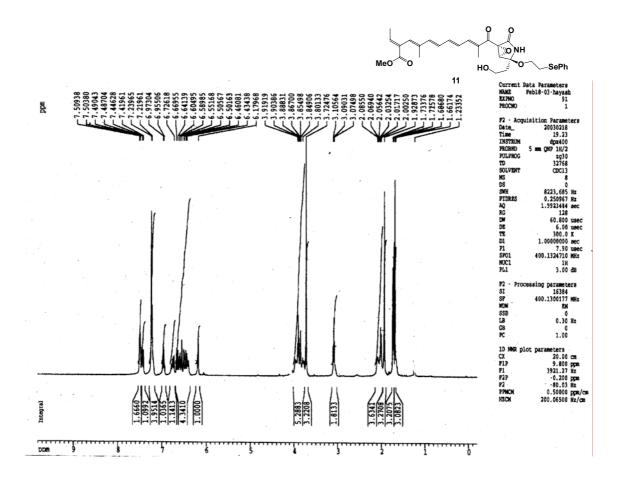

(3R,4R)-5-hydroxy-5-methyl-3-(2-methyl-2-undecenoyl)-3,4-epoxy-2-pyrrolidone **20** was treated with MeI and Ag₂O, both isomers

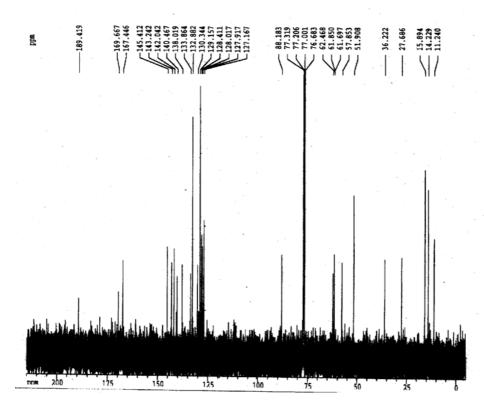

(3R,4R,5R)-5-methoxy-5-methyl-2-(2-methyl-2-undecenoyl)-2,3-epoxy-2-pyrrolidone **21a** and (3R,4R,5S)-isomer **21b** were obtained in 48% and 48% yield, respectively. By the careful comparison between the difference NOEs of the both diastereomers **21a** and **21b**, the compound in which larger difference NOE between 4-H and 5-Me is assigned to possess *syn* configuration between 4-H and 5-Me. When **20** was treated with TsOH•H₂O in MeOH, followed by MeI and Ag₂O, a single isomer **21b** was obtained stereoselectively, which indicates that the intermediate methyl ether is (3R,4R,5S)-5-hydroxy-5-methyl-3-(2-methyl-2-undecenoyl)-3,4-epoxy-2-pyrrolidone **22**. Under the basic reaction conditions, both \Box - and \Box -methoxy derivatives are formed, while only \Box -methoxy derivative is obtained stereoselectively under the acidic conditions, in which methanol attacks acyliminiun ion intermediate from the opposite side of epoxide. The same sense of attack is expected in the case of NG-391 and the stereochemistry of **7** should be as shown in the above figure.

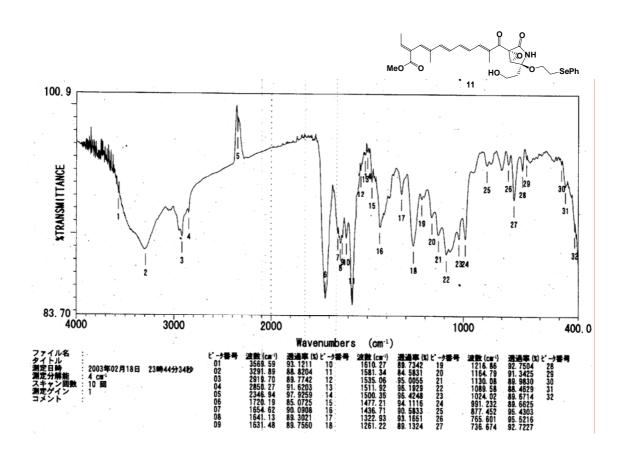


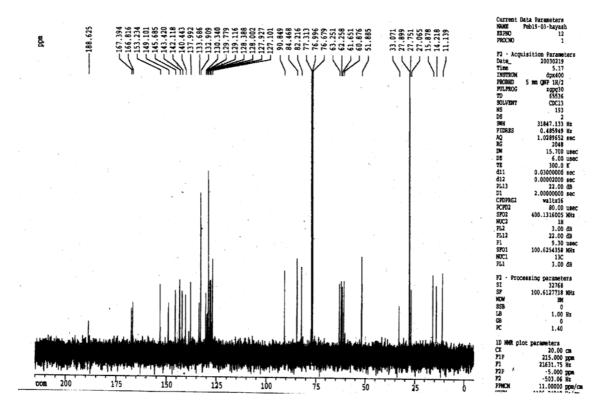


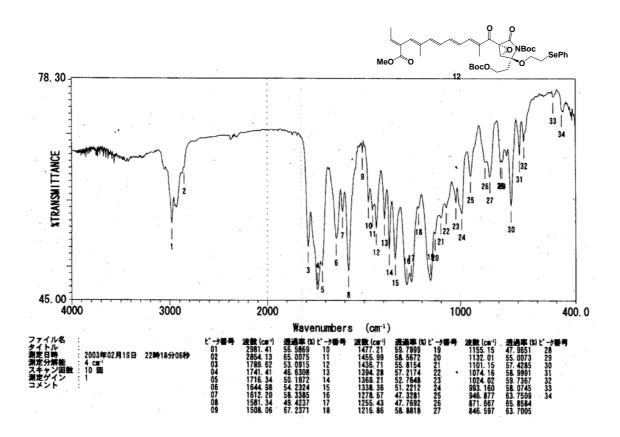


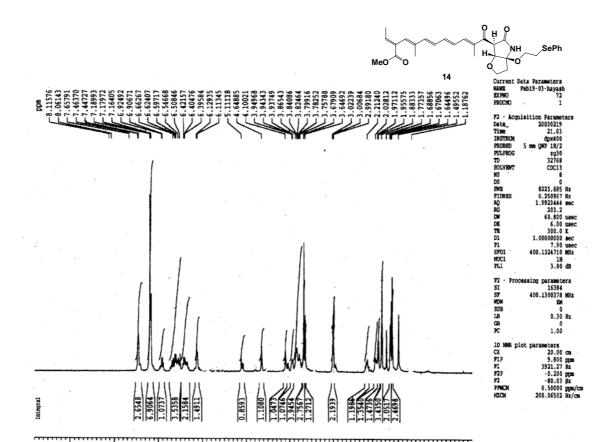


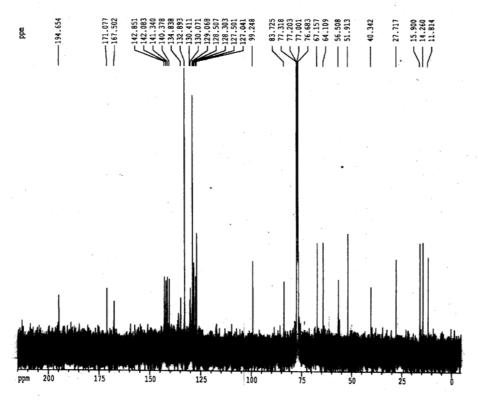


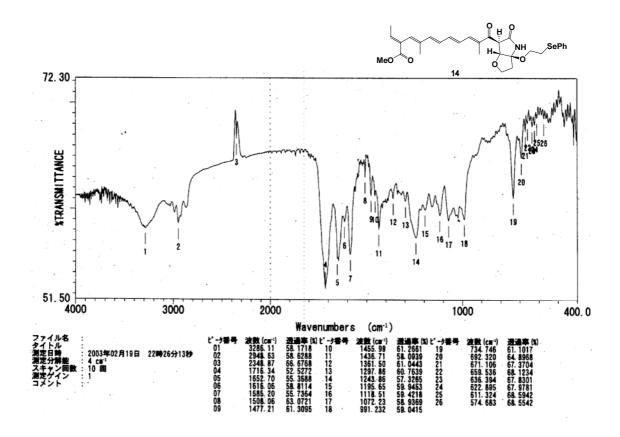


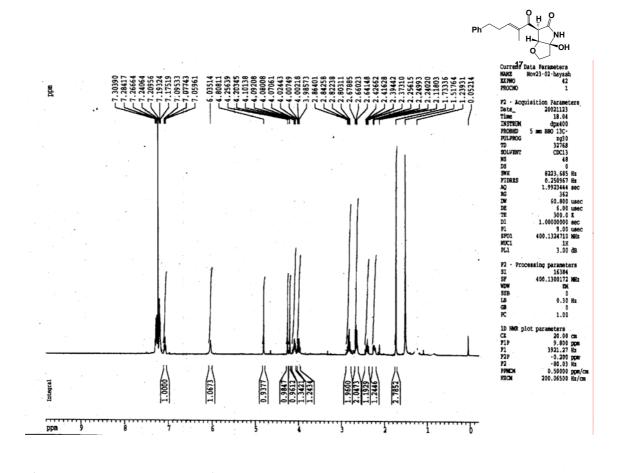


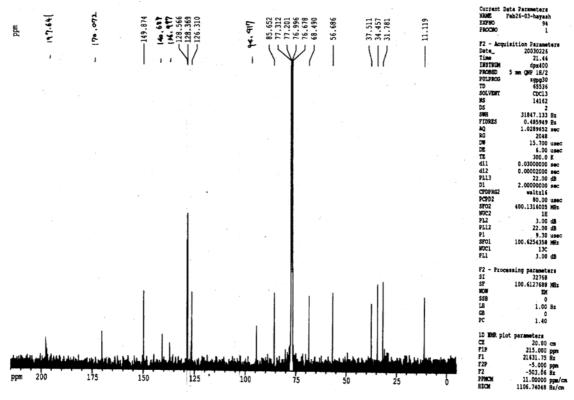


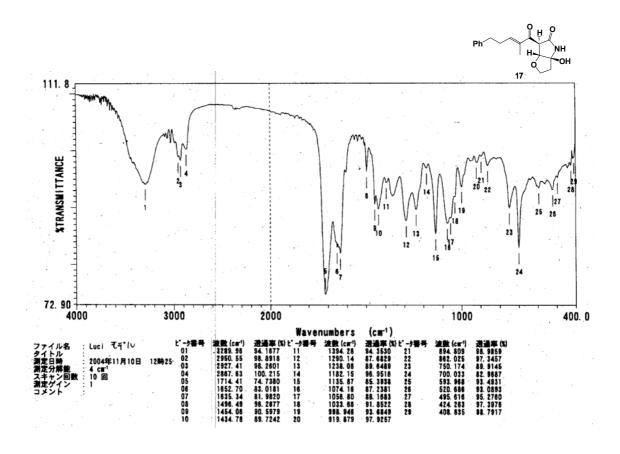

Current I	ata Parameters
NAME	Peb18-03-hayash
EXPNO	94
PROCNO	1
72 - Acm	isition Parameters
Date_	20030218
Time	19.49
INSTRUM	dpx400
PROBED PULPROG	5 mm QNP 1H/2
70	zgpg30 65536
90LVENT	CDC13
NS	373
DS	1
SWK	31847.133 Hz
PTDRES AO	0.485949 Hz
RG .	1.0289652 sec 812.7
DN	15.700 usec
DE	6.00 usec
TE	300.0 K
d11	0.03000000 sec
d12 PL13	0.00002000 sec 22.00 dB
D1	2.00000000 sec
CPDPRG2	waltzis
PCFD2	80.00 usec
- SPC2	400.1316005 MHz
NOC2	1H
PL2 PL12	3.00 dB 22.00 dB
21	9.30 usec
SPO1	100.6254358 MHz
NOC1	13C
PL1	3.00 dB
F2 - Processing parameters	
SI	essing parameters 32768
SP	100.6127708 MHz
NDM .	EX
SSB	0
Ш	1.00 Hz
GB PC	1.40
	1.40
1D NMR plot parameters	
CX	20.00 cm
P1P	215.000 ppm
P1	, 21631.75 Hz
P2P P2	-5.000 ppm
PPMCM	-503.06 Hz 11.00000 ppm/cm
	ppm/cm











C	Data Parameters	
NAME	Mar01-03-hayash	
EXPNO	13	
PROCNO	1	
F2 - Acquisition Parameters		
Date_	20030301	
Time	7.12	
DISTRUM	dpx400	
PROBED PULPROG	5 mm QKP 18/2	
TD	1gpg30 65536	
SOLVENT	CDC13	
NS	6548	
DS	2	
SWH	31847.133 Hz	
FIDRES	0.485949 Hz 1.0289652 sec	
RG	4096 BBC	
DW	15.700 usec	
DE	6.00 usec	
TE dll	300.0 K	
d12	0.03000000 sec 0.00002000 sec	
PL13	22.00 dB	
D1	2.00000000 sec	
CPDPRG2	waltz16	
PCPD2	80.00 usec	
SPO2	400.1316005 MHz	
PL2	3.00 dB	
PL12	22.00 dB	
P1	9.30 usec	
SFO1	100.6254358 MRz	
MOCT	13C	
PLI	3.00 dB	
F2 - Processing parameters		
SI	32768	
SF	100.6127688 MHz	
WDW	EN	
SSB LB		
68	1.00 Hz	
PC	1.40	
1D MMR plot parameters		
CX	20.00 cm	
F1P F1	215.000 ppm 21631.75 Hz	
F2P	-5.400 ppm	
F2	-503.06 Bz	
PPHCM	11.00000 ppm/cm	
BZCK	1106.74048 Ba/cm	

