

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

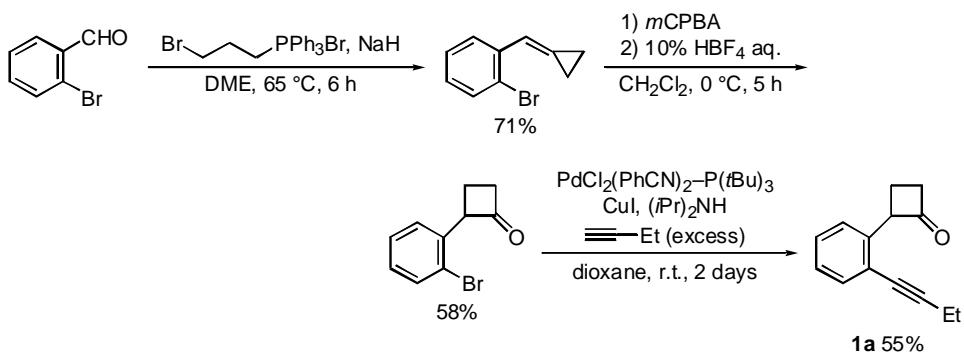
Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

Synthesis of Seven-Membered Ring Ketones by Arylative Ring-Expansion of Alkyne-Substituted Cyclobutanones

Takanori Matsuda, Masaomi Makino, and Masahiro Murakami*


Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

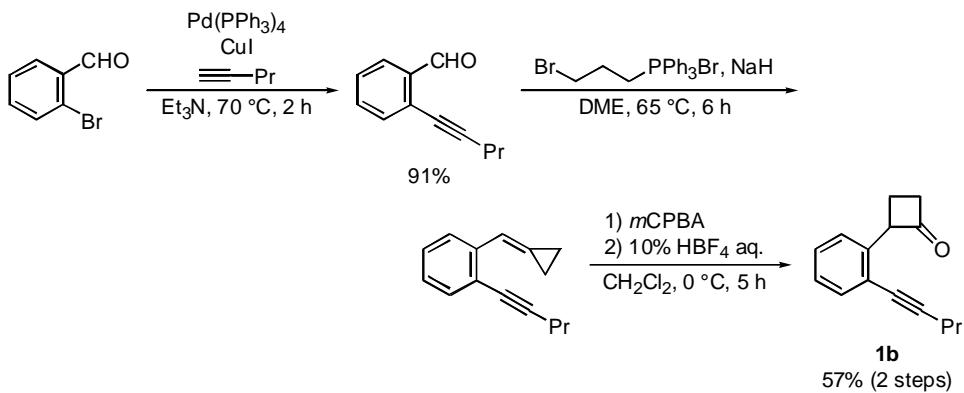
General. All reactions were carried out with standard Schlenk techniques under an argon atmosphere. Preparative thin-layer chromatography was performed with silica gel 60 PF₂₅₄ (Merck). ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 2000 (¹H at 300.07 Hz and ¹³C at 75.46 Hz) spectrometer. All NMR data were obtained in CDCl₃. Proton chemical shifts were referenced to the residual proton signal of the solvent at 7.26 ppm. Carbon chemical shifts were referenced to the carbon signal of the solvent at 77.00 ppm. High resolution mass spectra were recorded on a JOEL JMS-SX102A spectrometer. Infrared spectra were recorded on a Shimadzu FTIR-8100 spectrometer.

Materials. Hydroxo(cycloocta-1,5-diene)rhodium(I) dimer¹ and arylboroxins² were prepared according to the literature procedures. 1,4-Dioxane was distilled over sodium–benzophenone ketyl. Water was degassed prior to use. All other commercially available resources were used without further purifications.

Preparation of 2-(2-Alk-1-ynylphenyl)cyclobutanones 1

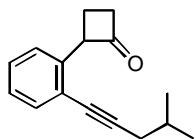
Method A:

[1] R. Usón, L. A. Oro, J. A. Cabeza, *Inorg. Synth.* **1985**, 23, 126–130.


[2] (a) T. Hayashi, T. Senda, Y. Takaya, M. Ogasawara, *J. Am. Chem. Soc.* **1999**, 121, 11591–11592. (b) Corey, E. J.; Shibata, T.; Lee, T. W. *J. Am. Chem. Soc.* 2002, 124, 3808–3809.

2-Bromobenzylidenecyclopropane. To a suspension of 3-bromopropyltriphenylphosphonium bromide (27.9 g, 60 mmol) in DME (100 mL) were added NaH (2.88 g, 120 mmol) and 10 drops of EtOH, and the mixture was heated at 65 °C for 5 h. To the mixture was added 2-bromobenzaldehyde (11.1 g, 60 mmol), and the mixture was heated for 6 h. After cooling to RT, hexane (100 mL) was added to the reaction mixture. The precipitate formed was filtered off, and the volatile materials were removed under reduced pressure. The residue was purified by column chromatography on silica gel (hexane) to give 2-bromobenzylidenecyclopropane (8.88 g, 71%).

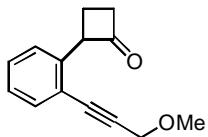
2-(2-Bromophenyl)cyclobutanone. To a solution of 2-bromobenzylidenecyclopropane (8.88 g, 42.4 mmol) in CH₂Cl₂ (250 mL) was added *m*-chloroperbenzoic acid (ca. 77%, 9.49 g, 42.4 mmol) at 0 °C. After stirring at 0 °C for 3 h, the reaction mixture was washed with NaHCO₃ saturated aqueous solution and brine, dried over MgSO₄, and concentrated. To the crude product in CH₂Cl₂ (150 mL) was added a 10% HBF₄ aqueous solution. After stirring at RT for 2 h, the mixture was extracted with CH₂Cl₂, washed with saturated NaHCO₃ aqueous solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography on silica gel (deactivated with NEt₃, hexane:AcOEt = 8:1) to give 2-(2-bromophenyl)cyclobutanone (5.53 g, 58%).

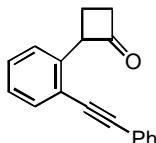

2-(2-But-1-ynylphenyl)cyclobutanone (1a). To a mixture of PdCl₂(PhCN)₂ (115 mg, 0.30 mmol, 6 mol%) and CuI (38 mg, 0.20 mmol, 4 mol%) in dioxane (10 mL) was added P(*t*Bu)₃ (134 mg, 0.66 mmol, 13 mol%), (*i*Pr)₂NH (1.21 g, 12.0 mmol), and 2-(2-bromophenyl)cyclobutanone (1.13 g, 5.0 mmol). After bubbling but-1-yne for 10 min, the mixture was stirred at RT for 2 days. The reaction mixture was filtered and washed with Et₂O. The filtrate was washed with saturated NH₄Cl aqueous solution and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 8:1) to give **1a** (0.55 g, 55%): ¹H NMR **d** 1.23 (t, *J* = 7.5 Hz, 3H), 2.24 (ddt, *J* = 11.2, 9.6, 8.4 Hz, 1H), 2.43 (q, *J* = 7.5 Hz, 2H), 2.56 (dq, *J* = 4.8, 10.7 Hz, 1H), 3.03 (dddd, *J* = 17.7, 9.5, 4.8, 2.5 Hz, 1H), 3.21 (dddd, *J* = 18.2, 9.9, 7.8, 2.1 Hz 1H), 4.81 (ddt, *J* = 10.7, 8.5, 2.2 Hz, 1H), 7.14-7.25 (m, 3H), 7.39 (d, *J* = 7.2 Hz, 1H); ¹³C NMR **d** 13.3, 13.8, 18.8, 45.0, 63.9, 78.4, 96.6, 123.1, 126.9, 127.1, 127.8, 132.5, 138.5, 207.9; IR (neat) 2977, 2234, 1782, 1485, 1447, 1320, 1202, 1071, 758 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₄O (M⁺) 198.1045, found 198.1045.

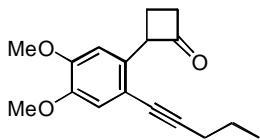
Method B:

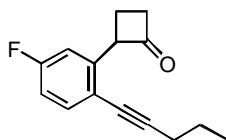


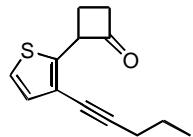
2-Pent-1-ynylbenzaldehyde. To a mixture of 2-bromobenzaldehyde (1.85 g, 10.0 mmol) and pent-1-yne (1.36 g, 20.0 mmol) in Et_3N (15 mL) were added $\text{Pd}(\text{PPh}_3)_4$ (346 mg, 0.30 mmol, 3 mol%) and CuI (133 mg, 0.70 mmol, 7 mol%). After being heated in a sealed tube at 70°C for 2 h, the reaction mixture was filtered and washed with Et_2O . The filtrate was washed with saturated NH_4Cl aqueous solution and brine, dried over MgSO_4 , and concentrated. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 8:1) to give 2-pent-1-ynylbenzaldehyde (1.57 g, 91%).

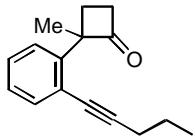

2-(2-Pent-1-ynylphenyl)cyclobutanone (1b). By using the same method as that for the synthesis of **1a**, **1b** (1.10 g, 57%, two steps) was prepared from 2-pent-1-ynylbenzaldehyde (1.57 g, 9.12 mmol). ^1H NMR **d** 1.04 (t, $J = 7.2$ Hz, 3H), 1.63 (sext, $J = 7.2$ Hz, 2H), 2.23 (ddt, $J = 11.0, 9.6, 8.5$ Hz, 1H), 2.40 (t, $J = 7.1$ Hz, 2H), 2.56 (dq, $J = 4.8, 10.7$ Hz, 1H), 3.03 (dddd, $J = 17.6, 9.7, 4.9, 2.6$ Hz, 1H), 3.21 (dddd, $J = 18.3, 9.8, 7.9, 2.0$ Hz 1H), 4.83 (ddt, $J = 10.8, 8.4, 2.3$ Hz, 1H), 7.15-7.23 (m, 3H), 7.40 (d, $J = 7.8$ Hz, 1H); ^{13}C NMR **d** 13.6, 18.9, 21.6, 22.2, 45.0, 63.9, 79.1, 95.2, 123.2, 126.9, 127.1, 127.8, 132.6, 138.5, 207.9; HRMS (EI) calcd for $\text{C}_{15}\text{H}_{16}\text{O}$ (M^+) 212.1201, found 212.1203.

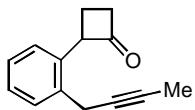

2-[2-(4-Methylpent-1-ynyl)phenyl]cyclobutanone (1c). Prepared according to Method B. ^1H NMR **d** 1.03 (d, $J = 6.3$ Hz, 6H), 1.91 (sept, $J = 6.6$ Hz, 1H), 2.21 (ddt, $J = 11.0, 9.6, 8.4$ Hz, 1H), 2.32 (d, $J = 6.6$ Hz, 2H), 2.56 (dq, $J = 4.8, 10.7$ Hz, 1H), 3.03 (dddd, $J = 17.7, 9.6, 4.8, 2.4$ Hz, 1H), 3.21 (dddd, $J = 18.2, 9.9, 7.8, 2.1$ Hz, 1H), 4.85 (ddt, $J = 10.7, 8.4, 2.3$ Hz, 1H), 7.14-7.25 (m, 3H), 7.40 (d, $J = 7.8$ Hz, 1H); ^{13}C NMR **d** 18.9, 22.1, 28.2, 28.8, 45.0, 63.9, 79.8, 94.3, 123.3, 126.9, 127.0, 127.8, 132.6, 138.5, 207.9; HRMS (EI) calcd for $\text{C}_{16}\text{H}_{18}\text{O}$ (M^+) 226.1358, found 226.1356.


2-{2-[4-(tert-Butyldimethylsiloxy)but-1-ynyl]phenyl}cyclobutanone (1d). Prepared according to Method B. ^1H NMR **d** 0.08 (s, 6H), 0.90 (s, 9H), 2.21 (ddt, J = 11.1, 9.5, 8.4 Hz, 1H), 2.56 (dq, J = 4.9, 10.8 Hz, 1H), 2.64 (t, J = 7.1 Hz, 2H), 3.03 (dddd, J = 17.6, 9.6, 4.8, 2.6 Hz, 1H), 3.20 (dddd, J = 18.0, 10.1, 8.1, 2.1 Hz, 1H), 3.81 (t, J = 7.1 Hz, 2H), 4.83 (ddt, J = 10.8, 8.4, 2.2 Hz, 1H), 7.15-7.25 (m, 3H), 7.39 (d, J = 8.1 Hz, 1H); ^{13}C NMR **d** -5.2, 18.3, 18.9, 24.0, 25.9, 45.0, 61.8, 63.8, 79.9, 92.1, 122.9, 126.9, 127.1, 128.0, 132.6, 138.7, 207.9; HRMS (EI) calcd for $\text{C}_{20}\text{H}_{29}\text{O}_2\text{Si}$ ($\text{M}^+ + \text{H}$) 329.1937, found 329.1935.

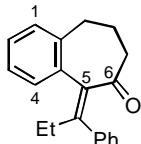

2-[2-(3-Methoxyprop-1-ynyl)phenyl]cyclobutanone (1e). Prepared according to Method B. ^1H NMR **d** 2.23 (ddt, J = 11.1, 9.5, 8.4 Hz, 1H), 2.58 (dq, J = 4.9, 10.8 Hz, 1H), 3.06 (dddd, J = 17.7, 9.6, 4.8, 2.5 Hz, 1H), 3.22 (dddd, J = 18.3, 9.9, 8.0, 2.0 Hz, 1H), 3.44 (s, 3H), 4.33 (s, 2H), 4.84 (ddt, J = 10.8, 8.4, 2.3 Hz, 1H), 7.17-7.31 (m, 3H), 7.45 (d, J = 7.5 Hz, 1H); ^{13}C NMR **d** 18.8, 45.1, 57.7, 60.4, 63.7, 84.6, 89.7, 121.8, 127.0, 127.2, 128.8, 132.9, 138.9, 207.6; HRMS (EI) calcd for $\text{C}_{14}\text{H}_{15}\text{O}_2$ ($\text{M}^+ + \text{H}$) 215.1072, found 215.1071.


2-(2-Phenylethynylphenyl)cyclobutanone (1f). Prepared according to Method A. ^1H NMR **d** 2.31 (ddt, J = 11.1, 9.6, 8.5 Hz, 1H), 2.62 (dq, J = 4.9, 10.8 Hz, 1H), 3.06 (dddd, J = 17.7, 9.6, 4.8, 2.4 Hz, 1H), 3.23 (dddd, J = 17.7, 10.3, 8.0, 2.4 Hz, 1H), 4.89 (ddt, J = 10.7, 8.5, 2.3 Hz, 1H), 7.23-7.36 (m, 6H), 7.49-7.55 (m, 3H); ^{13}C NMR **d** 19.0, 45.0, 64.0, 87.8, 94.1, 122.3, 123.0, 127.1, 127.4, 128.38, 128.43, 128.6, 131.4, 132.6, 138.9, 207.5; HRMS (EI) calcd for $\text{C}_{18}\text{H}_{14}\text{O}$ (M^+) 246.1045, found 246.1044.


2-(4,5-Dimethoxy-2-pent-1-ynylphenyl)cyclobutanone (1g). Prepared according to Method B. ^1H NMR **d** 1.03 (t, $J = 7.4$ Hz, 3H), 1.62 (sext, $J = 7.2$ Hz, 2H), 2.18 (ddt, $J = 11.0, 9.6, 8.7$ Hz, 1H), 2.38 (t, $J = 7.1$ Hz, 2H), 2.55 (dq, $J = 4.8, 10.7$ Hz, 1H), 3.00 (dddd, $J = 17.5, 9.6, 4.7, 2.4$ Hz, 1H), 3.19 (dddd, $J = 18.4, 9.8, 7.6, 2.0$ Hz, 1H), 3.92 (s, 3H), 3.94 (s, 3H), 4.75 (ddt, $J = 10.7, 8.5, 2.3$ Hz, 1H), 6.71 (s, 1H), 6.88 (s, 1H); ^{13}C NMR **d** 13.7, 19.2, 21.6, 22.3, 44.8, 55.90, 55.93, 63.6, 79.0, 93.6, 110.2, 115.0, 115.2, 131.8, 147.6, 148.7, 208.3; HRMS (EI) calcd for $\text{C}_{17}\text{H}_{20}\text{O}_3$ (M^+) 272.1412, found 272.1417.

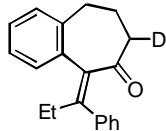

2-(5-Fluoro-2-pent-1-ynylphenyl)cyclobutanone (1h). Prepared according to Method B. ^1H NMR **d** 1.03 (t, $J = 7.4$ Hz, 3H), 1.62 (sext, $J = 7.2$ Hz, 2H), 2.19 (ddt, $J = 10.7, 9.7, 8.6$ Hz, 1H), 2.38 (t, $J = 7.2$ Hz, 2H), 2.58 (dq, $J = 4.9, 10.7$ Hz, 1H), 3.03 (dddd, $J = 17.7, 9.7, 4.9, 2.6$ Hz, 1H), 3.22 (dddd, $J = 18.4, 9.9, 7.9, 2.3$ Hz 1H), 4.81 (ddt, $J = 10.7, 8.4, 2.2$ Hz, 1H), 6.86 (dt, $^4J_{\text{H-H}} = 2.4$ Hz, $^3J_{\text{H-H}} = ^3J_{\text{H-F}} = 8.4$ Hz, 1H), 6.96 (dd, $^3J_{\text{H-F}} = 9.9$ Hz, $^4J_{\text{H-H}} = 2.7$ Hz, 1H), 7.36 (dd, $^3J_{\text{H-H}} = 8.6$ Hz, $^4J_{\text{H-F}} = 5.9$ Hz, 1H); ^{13}C NMR **d** 3.6, 18.7, 21.5, 22.1, 45.0, 63.4, 78.1, 94.7, 114.1 (d, $^2J_{\text{C-F}} = 20.9$ Hz), 114.2 (d, $^2J_{\text{C-F}} = 23.2$ Hz), 119.2 (d, $^4J_{\text{C-F}} = 2.3$ Hz), 134.2 (d, $^3J_{\text{C-F}} = 8.1$ Hz), 140.7 (d, $^3J_{\text{C-F}} = 8.1$ Hz), 161.8 (d, $^1J_{\text{C-F}} = 248.2$ Hz), 206.8; HRMS (EI) calcd for $\text{C}_{15}\text{H}_{15}\text{FO}$ (M^+) 230.1107, found 230.1106.

2-(3-Pent-1-ynylthiophen-2-yl)cyclobutanone (1i). Prepared according to Method B. ^1H NMR **d** 1.02 (t, $J = 7.4$ Hz, 3H), 1.60 (sext, $J = 7.2$ Hz, 2H), 2.27 (ddt, $J = 11.1, 9.5, 8.4$ Hz, 1H), 2.36 (t, $J = 6.9$ Hz, 2H), 2.60 (dq, $J = 4.8, 10.8$ Hz, 1H), 3.06 (dddd, $J = 17.6, 9.8, 4.9, 2.5$ Hz, 1H), 3.23 (dddd, $J = 18.5, 9.6, 8.0, 1.7$ Hz, 1H), 4.83 (ddt, $J = 10.6, 8.4, 2.1$ Hz, 1H), 6.94 (d, $J = 5.1$ Hz, 1H), 7.06 (d, $J = 5.1$ Hz, 1H); ^{13}C NMR **d** 6, 20.0, 21.5, 22.2, 45.2, 59.2, 74.8, 93.7, 121.0, 122.9, 130.2, 139.9, 205.6; HRMS (EI) calcd for $\text{C}_{13}\text{H}_{14}\text{OS}$ (M^+) 218.0765, found 218.0770.

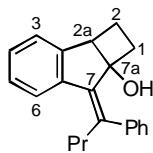

2-Methyl-2-(2-pent-1-ynylphenyl)cyclobutanone (1j). ^1H NMR δ 1.05 (t, $J = 7.4$ Hz, 3H), 1.62 (s, 3H), 1.65 (sext, $J = 7.4$ Hz, 2H), 2.28 (ddd, $J = 11.8, 9.7, 6.5$ Hz, 1H), 2.42 (t, $J = 6.9$ Hz, 2H), 2.68 (ddd, $J = 11.7, 10.4, 7.5$ Hz, 1H), 3.01 (ddd, $J = 18.0, 10.5, 6.6$ Hz, 1H), 3.11 (ddd, $J = 17.9, 9.7, 7.6$ Hz, 1H), 7.11-7.21 (m, 2H), 7.39-7.44 (m, 1H), 7.47-7.51 (m, 1H); ^{13}C NMR δ 22.1, 23.9, 27.2, 42.6, 67.8, 79.6, 96.3, 121.8, 125.4, 126.5, 127.4, 134.0, 143.9, 212.7; HRMS (CI) calcd for $\text{C}_{16}\text{H}_{19}\text{O}$ ($\text{M}^+ + \text{H}$) 227.1436, found 227.1438.

2-(2-But-2-ynylphenyl)cyclobutanone (1k). ^1H NMR δ 1.81 (t, $J = 2.6$ Hz, 3H), 2.18 (ddt, $J = 11.0, 9.6, 8.4$ Hz, 1H), 2.55 (dq, $J = 5.0, 10.7$ Hz, 1H), 3.02 (dddd, $J = 17.6, 9.7, 5.0, 2.4$ Hz, 1H), 3.23 (dddd, $J = 18.2, 9.9, 7.6, 2.3$ Hz, 1H), 3.48 (dq, $J = 18.3, 2.6$ Hz, 1H), 3.56 (dq, $J = 18.3, 2.6$ Hz, 1H), 4.83 (ddt, $J = 10.6, 8.3, 2.3$ Hz, 1H), 7.19-7.28 (m, 3H), 7.40-7.44 (m, 1H); ^{13}C NMR δ 3.6 18.0, 23.3, 44.6, 61.9, 76.2, 78.3, 126.3, 127.0, 127.3, 129.1, 134.7, 135.4, 207.9; HRMS (EI) calcd for $\text{C}_{14}\text{H}_{15}\text{O}$ ($\text{M}^+ + \text{H}$) 199.1123, found 199.1126.

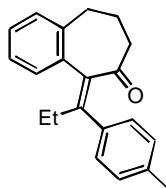
Rhodium-Catalyzed Arylative Ring-Expansion of Alkyne-Substituted Cyclobutanones 1


Scheme 1:

5-[(Z)-1-Phenylpropylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3aa). To a mixture of $[\text{Rh}(\text{OH})(\text{cod})]_2$ (4.6 mg, 0.010 mmol) and triphenylboroxin (62.3 mg, 0.20 mmol) in 1,4-dioxane (1.0 mL) were added $\text{P}(t\text{Bu})_3$ (8.1 mg, 0.040 mmol), **1a** (39.7 mg, 0.20 mmol), and water (10.8 mg, 0.60 mmol). After heating at 100 °C for 6 h, the reaction mixture was filtered through a pad of Florisil® (ether/AcOEt). The filtrate was concentrated, and the residue was purified by preparative thin-layer chromatography of silica gel (hexane:AcOEt = 10:1) to afford **3a** (40.1 mg, 73%) as a white solid: mp 98 °C; ^1H NMR δ 0.87 (t, $J = 7.2$ Hz, 3H), 1.95 (quint, $J = 6.3$ Hz, 2H), 2.30 (t, $J = 6.6$ Hz, 2H), 2.34 (q, $J = 7.2$ Hz, 2H), 2.91-2.99 (m, 2H), 7.17-7.39 (m, 9H); ^{13}C NMR δ 12.7, 26.2, 28.2, 33.2, 44.2, 126.6, 127.1, 127.9, 128.0, 128.1, 129.1, 129.2, 136.6, 139.7, 140.1, 140.6, 146.2, 205.0; IR (neat) 2936, 1688, 1491, 1450, 1375, 1258, 1208, 911, 735 cm^{-1} ; HRMS (EI) calcd for


$C_{20}H_{20}O$ (M^+) 276.1514, found 276.1514. Anal. Calcd for $C_{20}H_{20}O$: C, 86.92; H, 7.29. Found: C, 86.69; H, 7.32.

Eq. 2:


5-[(Z)-1-Phenylpropylidene]-5,7,8,9-tetrahydrobenzocyclohepten-7-d-6-one (3aa-d). The title compound **3aa-d** (36.8 mg, 66%, >87% D by 1H NMR) was prepared from **1a** (39.7 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and D_2O (12.0 mg, 0.60 mmol). 1H NMR δ 0.87 (t, J = 7.4 Hz, 3H), 1.94 (q, J = 6.0 Hz, 2H), 2.28 (t, J = 6.3 Hz, 1H), 2.34 (q, J = 7.4 Hz, 2H), 2.95 (t, J = 6.2 Hz, 2H), 7.18-7.39 (m, 9H); ^{13}C NMR δ 12.7, 26.1, 28.2, 33.1, 43.8 (t, $^1J_{C-D}$ = 19.7 Hz), 126.6, 127.1, 127.97 [overlapping], 128.03, 129.08, 129.14, 136.5, 139.7, 140.0, 140.5, 146.3, 205.1; HRMS (EI) calcd for (M^+) $C_{20}H_{19}DO$ 277.1576, found 277.1579.

Scheme 3:

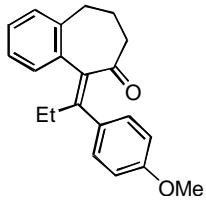
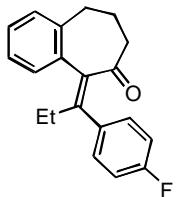
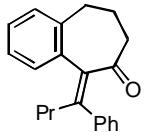

(2aR*,7aS*)-7-[(Z)-1-Phenylbutylidene]-1,2,2a,7-tetrahydrocyclobuta[a]inden-7a-ol (5ba). The title compound **5ba** (46.2 mg, 80%) was prepared from **1b** (42.5 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). 1H NMR δ 1.01 (t, J = 7.5 Hz, 3H), 1.47-1.64 (m, 3H), 1.82 (s, 1H), 1.98 (dddd, J = 12.2, 10.3, 6.1, 1.8 Hz, 1H), 2.28 (dddd, J = 12.3, 9.2, 6.5, 1.2 Hz, 1H), 2.47 (dddd, J = 11.4, 10.4, 9.2, 6.6 Hz, 1H), 2.68 (ddd, J = 13.3, 10.3, 6.2 Hz, 1H), 2.82 (ddd, J = 13.3, 10.3, 6.2 Hz, 1H), 3.48 (dd, J = 9.0, 4.2 Hz, 1H), 7.20-7.34 (m, 6H), 7.34-7.42 (m, 2H), 7.60-7.67 (m, 1H); ^{13}C NMR δ 14.2, 20.9, 23.2, 35.3, 38.1, 49.8, 82.9, 124.8, 125.0, 126.7, 127.2, 128.1, 128.3, 128.5, 139.1, 141.1, 143.0, 143.1, 147.9; HRMS (EI) calcd for $C_{21}H_{22}O$ (M^+) 290.1671, found 290.1668.

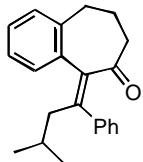
Table 1:



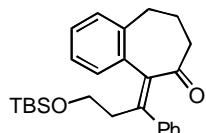
5-[(Z)-1-(4-Methylphenyl)propylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ab). The title compound **3ab** (41.1 mg, 71%) was prepared from **1a** (39.7 mg, 0.20 mmol), **2b** (70.8 mg, 0.20


mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** 0.86 (t, *J* = 7.4 Hz, 3H), 1.95 (quint, *J* = 6.2 Hz, 2H), 2.31 (t, *J* = 6.8 Hz, 2H), 2.32 (q, *J* = 7.6 Hz, 2H), 2.35 (s, 3H), 2.95 (t, *J* = 6.2 Hz, 2H), 7.12-7.32 (m, 8H); ¹³C NMR **d** 12.8, 21.2, 26.2, 28.1, 33.2, 44.3, 126.6, 127.88, 127.92, 128.8, 129.06, 129.14, 136.6, 136.8, 137.4, 139.7, 139.9, 146.0, 205.3; HRMS (EI) calcd for C₂₁H₂₂O (M⁺) 290.1671, found 290.1670.

5-[(Z)-1-(4-Methoxyphenyl)propylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ac). The title compound **3ac** (43.2 mg, 70%) was prepared from **1a** (39.7 mg, 0.20 mmol), **2c** (80.4 mg, 0.20 mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** 0.86 (t, *J* = 7.5 Hz, 3H), 1.94 (quint, *J* = 5.4 Hz, 2H), 2.31 (t, *J* = 6.6 Hz, 2H), 2.31 (q, *J* = 7.5 Hz, 2H), 2.93 (t, *J* = 6.2 Hz, 2H), 3.80 (s, 3H), 6.85-6.90 (m, 2H), 7.16-7.30 (m, 6H); ¹³C NMR **d** 12.9, 26.4, 28.0, 33.3, 44.5, 55.1, 113.5, 126.6, 127.8, 129.06, 129.09, 129.3, 132.4, 136.7, 139.7, 140.0, 145.2, 158.7, 205.8; HRMS (EI) calcd for C₂₁H₂₂O₂ (M⁺) 306.1620, found 306.1621.

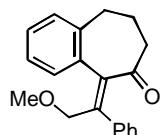


5-[(Z)-1-(4-Fluorophenyl)propylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ad). The title compound **3ad** (36.8 mg, 63%) was prepared from **1a** (39.7 mg, 0.20 mmol), **2d** (73.1 mg, 0.20 mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** 0.86 (t, *J* = 7.5 Hz, 3H), 1.95 (quint, *J* = 6.4 Hz, 2H), 2.30 (t, *J* = 6.5 Hz, 2H), 2.31 (q, *J* = 7.8 Hz, 2H), 2.94 (t, *J* = 6.3 Hz, 2H), 6.99-7.07 (m, 2H), 7.17-7.27 (m, 6H); ¹³C NMR **d** 12.7, 26.1, 28.4, 33.1, 44.1, 115.1 (d, ²J_{C-F} = 20.9 Hz), 126.7, 128.1, 129.1 [overlapping], 129.7 (d, ³J_{C-F} = 8.1 Hz), 136.2, 136.4 (d, ⁴J_{C-F} = 2.3 Hz), 139.6, 140.4, 145.4, 162.0 (d, ¹J_{C-F} = 245.9 Hz), 204.8; HRMS (EI) calcd for C₂₀H₁₉FO (M⁺) 294.1420, found 294.1418.

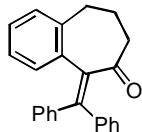


5-[(Z)-1-Phenylbutylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ba). The title compound **3ba** (44.6 mg, 74%) was prepared from **1b** (42.5 mg, 0.20 mmol), **2a** (62.3 mg, 0.20

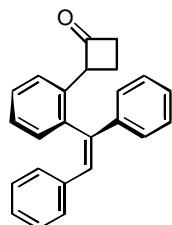
mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** 0.77 (t, *J* = 7.4 Hz, 3H), 1.28 (sext, *J* = 7.5 Hz, 2H), 1.96 (quint, *J* = 5.4 Hz, 2H), 2.31 (t, *J* = 7.4 Hz, 2H), 2.96 (t, *J* = 5.4 Hz, 2H), 2.96 (t, *J* = 6.2 Hz, 2H), 7.19-7.38 (m, 9H); ¹³C NMR **d** 13.9, 21.1, 26.2, 33.2, 36.7, 44.3, 126.6, 127.1, 127.89, 127.92, 128.0, 129.1, 129.3, 136.4, 139.7, 140.68, 140.74, 144.6, 205.3; HRMS (EI) calcd for C₂₁H₂₂O (M⁺) 290.1671, found 290.1670.



5-[(Z)-3-Methyl-1-phenylbutylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ca). The title compound **3ca** (46.2 mg, 76%) was prepared from **1c** (45.3 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** 0.76 (d, *J* = 6.6 Hz, 6H), 1.47 (non, *J* = 6.6 Hz, 1H), 1.97 (br s, 2H), 2.27 (d, *J* = 7.5 Hz, 2H), 2.32 (t, *J* = 6.8 Hz, 2H), 2.97 (br s, 2H), 7.17-7.38 (m, 9H); ¹³C NMR **d** 22.4, 26.2, 26.3, 33.4, 42.8, 44.8, 126.5, 127.2, 127.86, 127.89, 128.1, 129.1, 129.6, 136.1, 139.9, 140.5, 142.0, 143.0, 205.8; HRMS (EI) calcd for C₂₂H₂₄O (M⁺) 304.1827, found 304.1829.

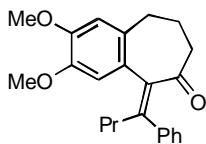

5-[(Z)-3-(tert-Butyldimethylsiloxy)-1-phenylpropylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3da). The title compound **3da** (40.3 mg, 50%) was prepared from **1d** (65.7 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** -0.11 (s, 6H), 0.81 (s, 9H), 1.88-2.02 (m, 2H), 2.30 (t, *J* = 6.6 Hz, 2H), 2.58 (t, *J* = 6.9 Hz, 2H), 2.89-3.01 (m, 2H), 3.48 (t, *J* = 6.9 Hz, 2H), 7.16-7.43 (m, 9H); ¹³C NMR **d** -5.5, 18.3, 25.9, 26.2, 33.3, 38.0, 44.3, 60.7, 126.6, 127.2, 128.03 [overlapping], 128.06, 129.0, 129.7, 136.1, 139.7, 140.2, 141.2, 142.4, 205.1; HRMS (CI) calcd for C₂₆H₃₅O₂Si (M⁺ + H) 407.2406, found 407.2406.

Scheme 4:



5-[(E)-2-Methoxy-1-phenylethylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ea). The title compound **3ea** (22.0 mg, 38%) was prepared from **1e** (42.9 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H₂O (10.8 mg, 0.60 mmol). ¹H NMR **d** 1.92-2.14 (m, 2H), 2.38 (t, *J* = 6.8 Hz, 2H),

2.93-3.01 (m, 2H), 3.17 (s, 3H), 4.12 (s, 2H), 7.17-7.23 (m, 1H), 7.23-7.37 (m, 8H); ^{13}C NMR **d** 26.4, 33.8, 45.0, 58.3, 72.5, 126.7, 127.6, 128.2, 128.3, 128.4, 129.37, 129.41, 134.9, 138.2, 138.7, 139.7, 144.9, 205.7; HRMS (EI) calcd for $\text{C}_{20}\text{H}_{20}\text{O}_2$ (M^+) 292.1463, found 292.1459.



5-Diphenylmethylene-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3fa). The title compound **3fa** (17.6 mg, 27%) was prepared from **1f** (49.3 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). ^1H NMR **d** 2.06 (quint, $J = 6.5$ Hz, 2H), 2.43 (t, $J = 6.8$ Hz, 2H), 3.00-3.07 (m, 2H), 6.84-6.95 (m, 4H), 7.04-7.17 (m, 5H), 7.24-7.34 (m, 5H); ^{13}C NMR **d** 27.3, 33.8, 44.0, 126.6, 127.4, 127.68 [overlapping], 127.74, 128.0, 129.0, 129.7, 130.4, 130.8, 137.0, 140.0, 141.0, 141.1, 141.4, 143.8, 206.1; HRMS (EI) calcd for $\text{C}_{24}\text{H}_{20}\text{O}$ (M^+) 324.1514, found 324.1514.

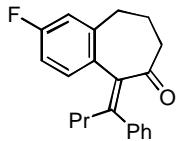
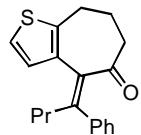
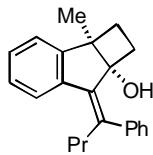

2-{2-[(Z)-1,2-Diphenylvinyl]phenyl}cyclobutanone (8fa). This compound was obtained as a byproduct (26%, a mixture of atropisomers) from the reaction of **1f** and **2a**. ^1H NMR **d** 1.60-1.94 (m, 2H), 2.76-3.03 (m, 2H), 4.33-4.43 (m, 1H), 6.90-7.00 (m, 2H), 7.08-7.19 (m, 5H), 7.22-7.42 (m, 8H); ^{13}C NMR **d** 20.0, 20.2, 44.9, 45.0, 62.2, 62.7, 126.6, 126.7, 127.2, 127.5, 127.7, 127.9, 128.1, 128.2, 128.3, 128.4, 128.5, 128.9, 129.1, 129.3, 130.7, 130.8, 136.0, 136.7, 136.9, 138.97, 139.02, 140.4, 141.9, 142.6, 208.8, 209.0.

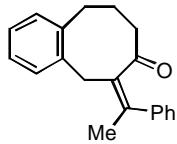
Table 2:



2,3-Dimethoxy-5-[(Z)-1-phenylbutylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ga). The title compound **3ga** (47.0 mg, 67%) was prepared from **1g** (54.5 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). ^1H NMR **d** 0.78 (t, $J = 7.4$ Hz, 3H), 1.29 (sext, $J = 6.6$ Hz, 2H), 1.95 (quint, $J = 5.8$ Hz, 2H), 2.26-2.36 (m, 4H), 2.88 (t, $J = 5.9$ Hz, 2H), 3.87 (s, 3H), 3.88 (s, 3H), 6.69 (s, 1H), 6.80 (s, 1H), 7.21-7.36 (m, 5H); ^{13}C NMR **d** 14.0, 21.3, 26.4, 33.2, 36.5, 44.5,


55.9, 56.0, 112.46, 112.54, 127.1, 127.8, 127.9, 128.0, 132.1, 140.5, 140.8, 143.4, 147.2, 148.2, 206.1; HRMS (EI) calcd for $C_{23}H_{26}O_3$ (M^+) 350.1882, found 350.1882.

2-Fluoro-5-[(Z)-1-phenylbutylidene]-5,7,8,9-tetrahydrobenzocyclohepten-6-one (3ha). The title compound **3ha** (35.2 mg, 58%) was prepared from **1h** (46.1 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). 1H NMR δ 0.76 (t, J = 7.4 Hz, 3H), 1.26 (sext, J = 7.5 Hz, 2H), 1.95 (quint, J = 5.7 Hz, 2H), 2.24-2.32 (m, 4H), 2.93 (t, J = 6.2 Hz, 2H), 6.89-7.00 (m, 2H), 7.20-7.37 (m, 6H); ^{13}C NMR δ 14.0, 21.1, 25.9, 33.2, 36.8, 44.1, 113.3 (d, $^2J_{C-F}$ = 20.9 Hz), 116.0 (d, $^2J_{C-F}$ = 22.0 Hz), 127.2, 127.8, 128.1, 130.9 (d, $^3J_{C-F}$ = 8.1 Hz), 132.3 (d, $^4J_{C-F}$ = 3.5 Hz), 139.7, 140.5, 142.2 (d, $^3J_{C-F}$ = 6.9 Hz), 145.4, 162.2 (d, $^1J_{C-F}$ = 247.0 Hz), 204.9; HRMS (EI) calcd for $C_{21}H_{21}FO$ (M^+) 308.1576, found 308.1573.



4-[(Z)-1-Phenylbutylidene]-4,6,7,8-tetrahydrocyclohepta[b]thiophen-5-one (3ia). The title compound **3ia** (42.4 mg, 72%) was prepared from **1i** (43.7 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). 1H NMR δ 0.81 (t, J = 7.4 Hz, 3H), 1.30 (sext, J = 7.5 Hz, 2H), 2.22 (quint, J = 6.0 Hz, 2H), 2.37-2.44 (m, 2H), 2.44-2.52 (m, 2H), 3.07 (t, J = 6.0 Hz, 2H), 6.89 (d, J = 5.1 Hz, 1H), 7.14 (d, J = 5.4 Hz, 1H), 7.17-7.34 (m, 5H); ^{13}C NMR δ 13.9, 21.0, 22.8, 29.1, 36.1, 43.2, 122.8, 127.2, 127.8, 128.0, 129.2, 131.1, 136.1, 139.2, 140.3, 141.8, 206.3; HRMS (EI) calcd for $C_{19}H_{20}OS$ (M^+) 296.1235, found 296.1234.

(2aR*,7aS*)-2a-Methyl-7-[(Z)-1-phenylbutylidene]-1,2,2a,7-tetrahydrocyclobuta[a]inden-7a-ol (5ja). The title compound **5ja** (38.6 mg, 63%) was prepared from **1j** (45.3 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). 1H NMR δ 1.01 (t, J = 7.4 Hz, 3H), 1.29 (s, 3H), 1.48-1.65 (m, 2H), 1.62 (s, 1H), 1.72 (ddd, J = 10.5, 9.0, 5.3 Hz, 1H), 1.86-2.08 (m, 2H), 2.20 (ddd, J = 11.4, 9.0, 6.2 Hz, 1H), 2.66 (ddd, J = 13.4, 10.6, 6.0 Hz, 1H), 2.85 (ddd, J = 13.4, 10.6, 6.0 Hz, 1H), 7.23-7.34 (m, 6H), 7.34-7.40 (m, 2H), 7.59-7.66 (m, 1H); ^{13}C NMR δ 14.2, 19.3, 21.0, 31.2,

33.8, 38.2, 51.5, 83.1, 123.5, 124.7, 126.8, 127.1, 128.17, 128.22, 128.7, 139.0, 140.0, 142.8, 143.2, 152.4; IR (neat) 3567, 2961, 1471, 1456, 1159, 911, 706 cm^{-1} ; HRMS (EI) calcd for $\text{C}_{22}\text{H}_{24}\text{O}$ (M^+) 304.1827, found 304.1828.

6-[(Z)-1-Phenylethylidene]-5,8,9,10-tetrahydrobenzocycloocten-7(6H)-one (3ka). The title compound **3ka** (9.5 mg, 17%) was prepared from **1k** (39.7 mg, 0.20 mmol), **2a** (62.3 mg, 0.20 mmol), and H_2O (10.8 mg, 0.60 mmol). ^1H NMR **d** 1.74-1.84 (m, 2H), 2.15-2.21 (m, 2H), 2.20 (s, 3H), 2.73-2.79 (m, 2H), 3.78 (s, 2H), 7.06-7.26 (m, 9H); ^{13}C NMR **d** 20.3, 26.6, 32.4, 34.5, 42.1, 126.9, 127.1, 127.2, 127.7, 128.1, 129.9, 130.2, 133.5, 137.5, 139.9, 141.9, 142.7, 212.0; HRMS (EI) calcd for $\text{C}_{20}\text{H}_{20}\text{O}$ (M^+) 276.1514, found 276.1517.