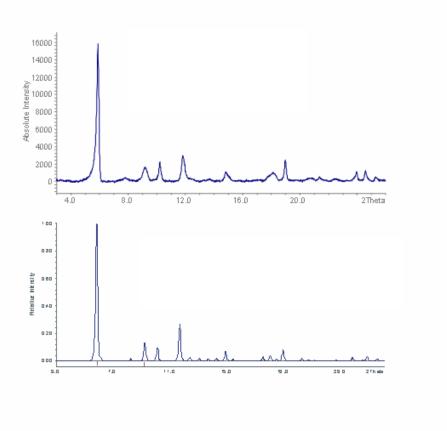


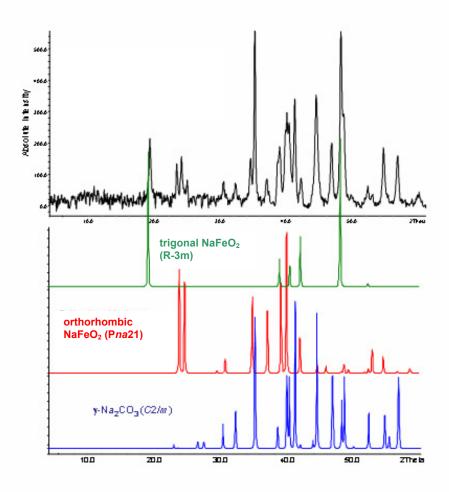
Supporting Information © Wiley-VCH 2005

69451 Weinheim, Germany

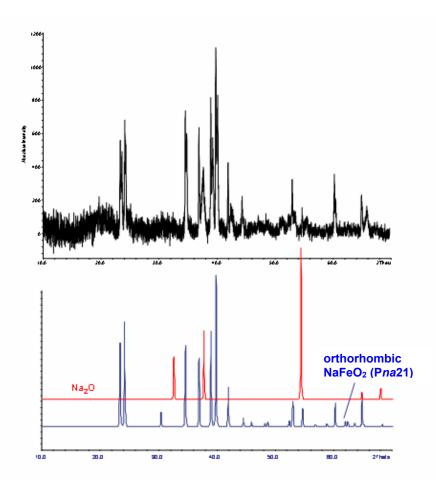
Thermolysis of a Hybrid Organic-Inorganic Supramolecular Coordination Assembly: Templating the Formation of Nanostructured Fibrous Materials and Carbon-based Microcapsules

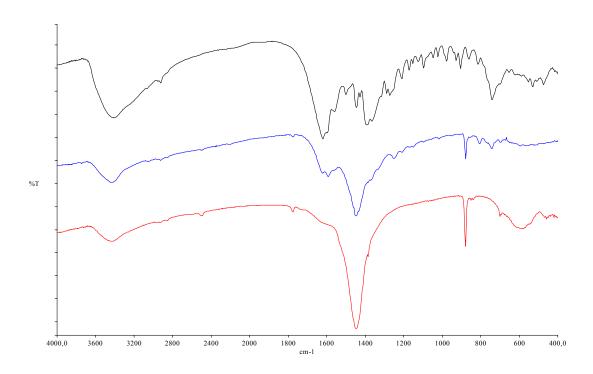

Wolfgang Schmitt, Jonathan P. Hill, Sharali Malik, Cynthia A. Volkert,

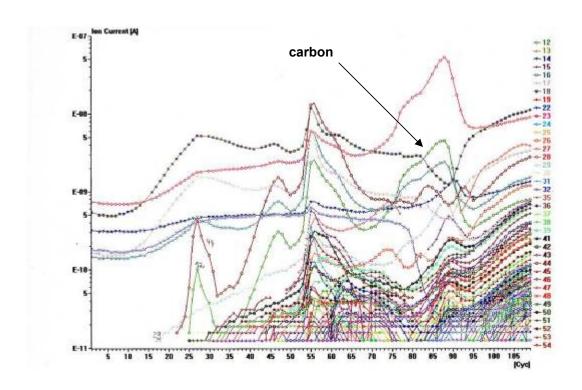
Christopher E. Anson and Annie K. Powell

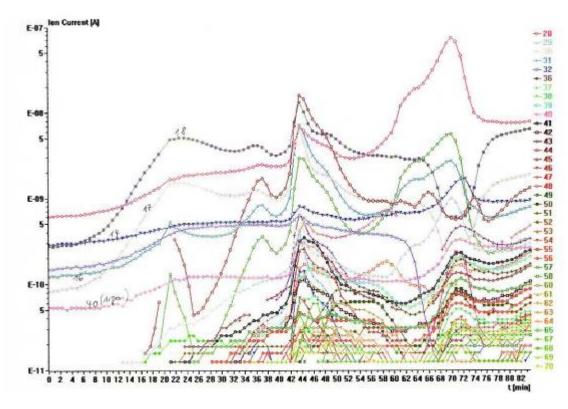

Contents	p:	age
Detailed Th	ermogravimetric Analysis	S1
Figure S1.	XRD pattern of 1 and pattern generated on the basis of the structural model given Figure 2.	S2
Figure S2.	Identification of components in XRD pattern of samples of 1 thermolyzed at 600°C.	S3
Figure S3.	Identification of components in XRD pattern of samples of 1 thermolyzed at 1000°C.	S4
Figure S4.	Comparison with FT-IR spectra of samples of 1 and thermolyzed samples.	S5
Figure S5.	TGA-MS analysis of 1 . (Products with $M = 12 - 54$ g/mol).	S6
Figure S6.	TGA-MS analysis of 1. (Products with $M = 28 - 70 \text{ g/mol}$).	S7
Figure S7.	TGA-MS analysis of 1. (Products with $M = 70 - 184$ g/mol).	S8
Figure S8.	TGA-MS analysis of 1. (Selected decomposition products).	S9
Figure S9.	TGA-MS analysis of 1 . Temperature-time correlation.	S10
Figure S10.	SEM micrographs of sample of 1 heated to 250 °C.	S11
Figure S11.	SEM micrographs of sample of 1 heated to 510 °C.	S11

Thermogravimetric Analysis


In the thermogravimetric analysis of 1 can be interpreted as follows. In the temperature range 25–88°C, seven of the nine water molecules are lost (Weight loss 10.4 %, theor. 11.0 %). Subsequently, between 240°C and 378°C there is a weight loss of 9.6 % corresponding approximately to the loss of the remaining water molecules and two molecules of carbon dioxide (theor. 10.8 %). During this event the formation of sodium carbonate is observed as indicated by infrared spectrophotometric and X-ray powder diffraction data. This also suggests the degradation of the organic ligands is commencing. The third step (380–480°C) in the TGA represents the combustion of the carboniferous materials and leads to a weight loss of 27.5 % corresponding to the destruction of the ligand. A combination of decomposition products were observed by TG-MS including benzene, naphthalene and carbon oxides. All that remains from the original sample is amorphous carbon (approx. 10 wt%), oxides of iron together with three equivalents of Na₂CO₃. Between 480°C and 600°C, further carbon dioxide (3.6 % equiv. to one molecule, theor. 3.9 %) is lost from the sample resulting in the formation of a mixture containing 2 equiv. NaFeO₂ and 2 equiv. Na₂CO₃ both of which are visible in the X-ray powder diffraction pattern of samples isolated after heating to 600°C. Finally, completion of the decomposition of sodium carbonate above 800°C (approx. 8 % weight loss) leads to the formation of the mixed oxide Na₂O·NaFeO₂.


Figure S1. XRD pattern of **1** (top) and pattern generated on the basis of the structural model given Figure 2 (bottom). **1** is isostructural with $K_6[Fe_2(\mu\text{-O})(\mu\text{-CO}_3)(CHNIDA)_2] \cdot 13.5H_2O$ [11].


Figure S2. XRD pattern of samples of **1** thermolyzed at 600° C (top). Identification of components by comparison with generated XRD patterns of trigonal NaFeO₂ (green), orthorhombic NaFeO₂ (red) and γ-Na₂CO₃.


Figure S3. XRD pattern of samples of **1** thermolyzed at 1000° C (top). Comparison with generated XRD patterns of orthorhombic NaFeO₂ (red) and Na₂O (blue).

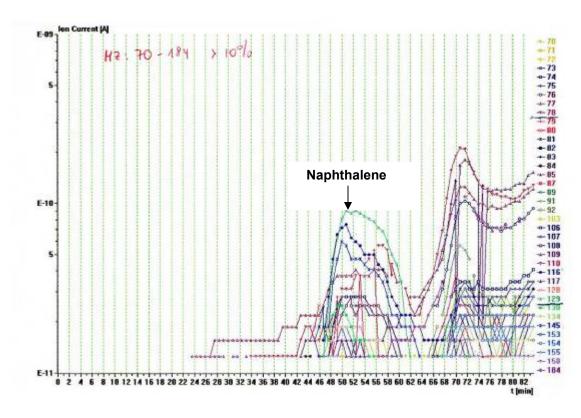
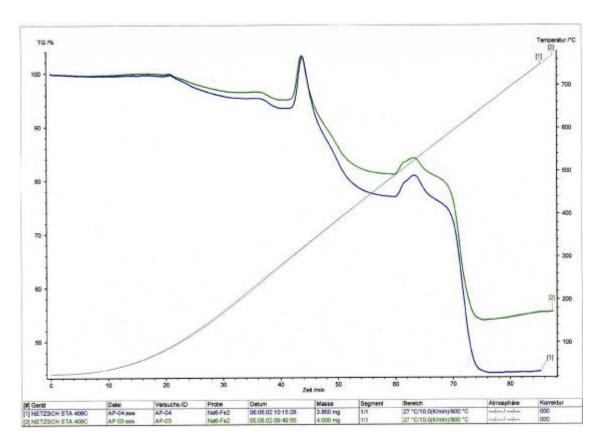
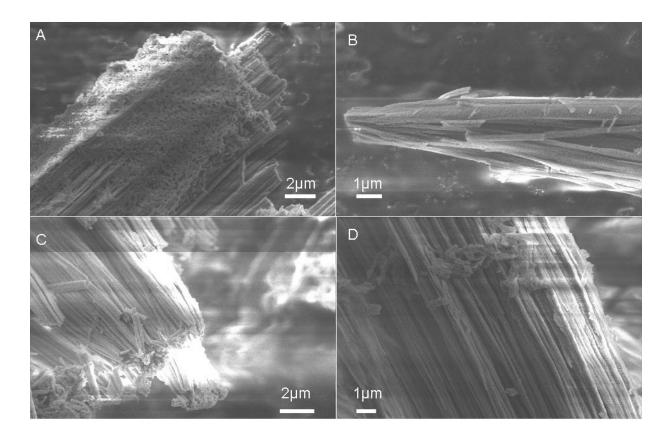

Figure S4. FT-IR spectrum of **1** (top). Comparison with FT-IR spectra of samples of **1** thermolyzed at 350°C (blue) and 450°C (red).

Figure S5. TGA-MS analysis of a sample of **1**. Identified decomposition products with a molecular weight between 12 and 54 g/mol (For time—temperature correlation see Figure S9).


Figure S6. TGA-MS analysis of a sample of **1**. Identified decomposition products with a molecular weight between 28 and 70 g/mol (For time—temperature correlation see Figure S9).


Figure S7. TGA-MS analysis of a sample of **1**. Identified decomposition products with a molecular weight between 70 and 184g/mol. (For time-temperature correlation see Figure S9).

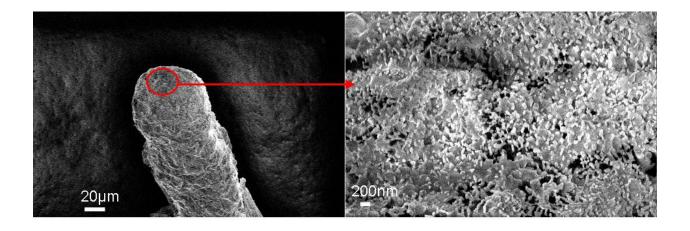

Figure S8. TGA-MS analysis of a sample of **1**. Thermogravimetric analysis (blue line) and selected decomposition products.

Figure S9. TGA-MS analysis of a sample of 1. Thermogravimetric analysis and time – temperature correlation for the experiment.

Figure \$10. SEM micrographs of samples of **1** heated to 250°C. The fibrous material appears less segmented, thicker and often crystalline.

Figure S11. SEM micrographs of a single crystal of **1** heated to 510 °C showing nanosized particulates (EDAX analysis identifies Na, Fe, O) on the surface.