

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany

Syntheses of 2-Arylated Corroles, a Directly Linked Corrole–Porphyrin Hybrid, a 1,4-Phenylene-bridged Corrole Dimer, and 2-Hydroxy-substituted Corrole via Regioselective Ir-Catalyzed Direct Borylation of Corrole^{}**

Satoru Hiroto, Ichiro Hisaki, Hiroshi Shinokubo,* and Atsuhiro Osuka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto

606-8502, Japan

CREST & PRESTO, Japan Science and Technology Agency (JST)

Instrumentation and Materials

¹H NMR (600 MHz), ¹³C NMR (151 MHz) and ¹⁹F NMR (565 MHz) spectra were taken on a JEOL ECA-600 spectrometer. Chemical shifts were reported as the delta scale in ppm relative to CHCl₃, DMSO, CH₂Cl₂, and CH₃CN as internal references for ¹H NMR (δ = 7.260, 1.730, 5.320, and 1.930 ppm, respectively), and CHCl₃ for ¹³C NMR (δ = 77.0 ppm). Hexafluorobenzene was used as external reference for ¹⁹F NMR (δ = -162.9 ppm). UV/vis absorption and steady-state fluorescence spectra were recorded on a Shimadzu UV-2550 spectrometer and a Shimadzu RF-5300PC spectrometer, respectively. MALDI-TOF mass spectra were obtained with a Shimadzu/KRATOS KOMPACT MALDI 4 spectrometer, using negative-MALDI ionization method without matrix. High resolution ESI-TOF mass spectra were taken on a Bruker microTOF. Recycling preparative GPC-HPLC was carried out on JAI LC-908 using preparative JAIGEL-2H, 2.5H, and 3H. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Experimental Section

2-(4'4',5',5'-Tetramethyl[1',3',2']dioxaborolan-2'-yl)-5,10,15-tris(pentafluorophenyl)corrole

(2).

A flask placed with $[\text{Ir}(\text{cod})\text{OMe}]_2$ (3.75 mg, 5.66 μmol), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (3.04 mg, 5.66 μmol), bis(pinacolate)diborane (105 mg, 0.415 mmol), and 5,10,15-tris(pentafluorophenyl)corrole (**1**) (300 mg, 0.377 mmol) was flushed with argon, and then charged with 1,4-dioxane (3 mL). The mixture was stirred at 100 °C for 24 h. After cooling, the reaction mixture was passed through a short pad of silica gel with dichloromethane. Concentration and purification by size-exclusion column chromatography gave the product **2** in 91% (315 mg, 0.342 mmol) yield. ^1H NMR (CDCl_3): δ 9.59 (d, J = 4.1 Hz, 1H, pyrrole β), 8.97 (s, 1H, pyrrole β), 8.73 (d, J = 4.6 Hz, 1H, pyrrole β), 8.70 (d, J = 4.6 Hz, 1H, pyrrole β), 8.54 (d, J = 4.6 Hz, 1H, pyrrole β), 8.51 (d, J = 4.6 Hz, 1H, pyrrole β), 8.48 (br, 1H, pyrrole β), 1.66 (s, 12H, CH_3), and -3.70 (br, 3H, NH); ^{19}F NMR (CDCl_3): δ -138.11 (dd, J^1 = 24.2 Hz, J^2 = 8.7 Hz, 2F), -138.53 (br, dd, 2F), -138.71 (br, dd, 2F), -153.08 (br, 1F), -153.55 (br, 1F), -153.83 (t, J = 20.7 Hz, 1F), -162.38 (br, 2F), -162.65 (br, 2F), and -162.88 (dt, J^1 = 22.5 Hz, J^2 = 8.7 Hz, 2F); UV/Vis (CH_2Cl_2): λ_{max} (ϵ [$\text{M}^{-1} \text{cm}^{-1}$]) = 408 (141000), 567 (26700), and 607 (16900) nm; Fluorescence (CH_2Cl_2 , $\lambda_{\text{ex}} = 408$ nm): $\lambda_{\text{em}} = 649$ nm.; HR-MS (ESI-MS): m/z = 921.1529, calcd for $(\text{C}_{43}\text{H}_{21}\text{BF}_{15}\text{N}_4\text{O}_2)^- = 921.1531$ ($[\text{M} - \text{H}]^-$).

General Procedures of Suzuki–Miyaura Cross-Coupling Reaction with 2-Borylcorrole.

2-Borylcorrole (**2**, 20.0 mg, 21.7 μmol), aryl halide (21.7 μmol , 1.0 equiv), Cs_2CO_3 (10.6 mg, 32.6 μmol , 1.5 equiv), CsF (9.89 mg, 65.1 μmol , 3.0 equiv), $\text{Pd}_2(\text{dba})_3$ (1.00 mg, 1.09 μmol , 5 mol%), and triphenylphosphine (1.14 mg, 4.34 μmol , 20 mol%) were dissolved in a mixture of toluene (1.5 mL), DMF (0.75 mL) and water (0.1 mL). The solution was deoxygenated via three times freeze-pump-thaw degas cycle, and the resulting mixture was stirred at 90 °C under argon atmosphere. After 5 h, the reaction was quenched with water and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and evaporated. Purification by silica-gel column chromatography afforded the coupling product.

2-(Anthracen-9'-yl)-5,10,15-tris(pentafluorophenyl)corrole (3a).

Following the general procedure, the reaction with 9-bromoanthracene (5.58 mg, 21.7 μ mol) gave **3a** in 94 % (19.8 mg, 20.3 μ mol) yield. 1 H NMR (CDCl_3): δ 8.91 (d, J = 4.1 Hz, 1H, pyrrole β), 8.86 (s, 1H), 8.80 (s, 1H, pyrrole β), 8.71 (d, J = 4.1 Hz, 1H, pyrrole β), 8.66 (d, J = 4.1 Hz, 1H, pyrrole β), 8.27 (d, J = 8.7 Hz, 2H), 8.16 (s, 1H, pyrrole β), 7.79 (d, J = 8.7 Hz, 1H), 7.63 (br, 1H, pyrrole β), 7.52 (m, 2H), and 7.19 (br, 2H); 19 F NMR (CDCl_3): δ -139.12 (dd, J^1 = 24.2 Hz, J^2 = 8.7 Hz, 2F), -138.44 (br, d, J = 19.0 Hz, 2F), -139.85 (br, d, J = 19.0 Hz, 2F), -153.11 (br, 2F), -153.59 (t, J = 20.7 Hz, 1F), -162.32 (br, 4F), and -162.75 (dt, J^1 = 21.6 Hz, J^2 = 8.7 Hz, 2F); UV/Vis (CH_2Cl_2): λ_{max} = 413, 567, and 610 nm; HR-MS (ESI-MS): m/z = 971.1301, calcd for ($\text{C}_{51}\text{H}_{18}\text{F}_{15}\text{N}_4$) $^-$ = 971.1297 ($[M - H]^-$).

2-(2',5'-Dimethoxyphenyl-1'-yl)-5,10,15-tris(pentafluorophenyl)corrole (3b).

Following the general procedure, the reaction with 1-bromo-2,5-dimethoxybenzene (3.27 μ L, 21.7 μ mol) gave **3b** in 75 % (15.2 mg, 16.3 μ mol) yield. 1 H NMR (CD_2Cl_2): δ 8.89 (d, J = 4.1 Hz, 1H, pyrrole β), 8.83 (d, J = 4.1 Hz, 1H, pyrrole β), 8.80 (d, J = 4.6 Hz, 1H, pyrrole β), 8.69 (br, 1H, pyrrole β), 8.65 (d, J = 4.6 Hz, 1H, pyrrole β), 8.63 (d, J = 4.1 Hz, 1H, pyrrole β), 8.51 (br, 1H, pyrrole β), 7.76 (br, 1H), 7.29 (d, J = 8.8 Hz, 1H), 7.17 (dd, J^1 = 9.2 Hz, J^2 = 3.2 Hz, 1H), 3.92 (s, 3H, OCH_3), and 3.89 (s, 3H, OCH_3); 19 F NMR (CD_2Cl_2): δ -139.19 (d, J = 19.0 Hz, 2F), -139.56 (br, 2F), -139.68 (br, 2F), -154.47 (br, 2F), -155.02 (br, 1F), -163.51 (br, 4F), and -163.90 (br, 2F); UV/Vis (CH_2Cl_2): λ_{max} = 414, 568, and 612 nm; HR-MS (ESI-MS): m/z = 931.1201, calcd for ($\text{C}_{45}\text{H}_{18}\text{O}_2\text{F}_{15}\text{N}_4$) $^-$ = 931.1196 ($[M - H]^-$).

2-[10',15',20'-Tris(3",5"-di-*tert*-butylphenyl)porphyrin-5'-yl]-5,10,15-tris(pentafluorophenyl)corrole (3c).

Following the general procedure, the reaction with 5-bromo-10,15,20-tris(3,5-di-*tert*-butylphenyl)porphyrin (20.7 mg, 21.7 μ mol) gave **3c** in 72 % (26.3 mg, 15.7 μ mol) yield. 1 H NMR (CDCl_3): δ 9.45 (s, 1H, pyrrole β), 9.09 (d, J = 4.6 Hz, 2H, pyrrole β), 9.07 (d, J = 4.6 Hz, 2H, pyrrole β), 9.01 (d, J = 4.6 Hz, 2H, pyrrole β), 8.96 (d, J = 4.6 Hz, 1H, pyrrole β), 8.93 (d, J = 4.6 Hz, pyrrole β), 8.77 (d, J = 4.6 Hz, 1H, pyrrole β), 8.73 (d, J = 4.6 Hz, 1H, pyrrole β), 8.65 (d, J = 5.0 Hz, 1H, pyrrole β), 8.15 (m, 4H), 8.09 (m, 2H), 7.88 (d, J =

4.6 Hz, 1H, pyrrole β), 7.84 (m, 1H), 7.75 (m, 2H), 7.19 (d, J = 4.1 Hz, 1H, pyrrole β), 1.56 (m, 18H, CH₃), 1.48 (s, 18H, CH₃), 1.46 (s, 18H, CH₃), and -2.35 (s, 2H, NH); ¹⁹F NMR (CDCl₃): δ -138.06 (dd, J^1 = 24.2 Hz, J^2 = 8.7 Hz, 2F), -138.34 (br, 2F), -138.89 (br, 2F), -153.15 (br, 2F), -153.56 (t, J = 17.8 Hz, 1F), -162.17 (br, 2F), -162.44 (br, 2F), and -162.72 (dt, J^1 = 22.5 Hz, J^2 = 8.7 Hz, 2F); UV / Vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹ cm⁻¹]) = 421 (270000), 438 (256000), 520 (28000), 568 (32800), 612 (26500), and 652 (13200) nm; Fluorescence (CH₂Cl₂, $\lambda_{\text{ex}} = 421$ nm): $\lambda_{\text{em}} = 661$ nm; HR MS (ESI-MS): *m/z* = 1668.6401, calcd for (C₉₉H₈₂F₁₅N₈)⁻ = 1668.6461 ([M - H]⁻).

1,4-bis[5',10',15'-tris(pentafluorophenyl)corrole-2'-yl]benzene (3d).

Following the general procedure, the reaction of 2-borylcorrole (30.0 mg, 32.5 μ mol) and 1,4-dibromobenzene (2.55 mg, 10.8 μ mol) gave **3d** in 56 % (10.1 mg, 6.06 μ mol) yield. ¹H NMR (CDCl₃): δ 9.30 (d, J = 4.6 Hz, 2H, pyrrole β), 8.99 (m, 4H, phenyl), 8.87 (s, 2H, pyrrole β), 8.81 (m, 4H, pyrrole β), 8.63 (d, J = 5.0 Hz, 2H, pyrrole β), 8.62 (d, J = 4.6 Hz, 2H, pyrrole β), 8.51 (br, 2H, pyrrole β); ¹⁹F NMR (CDCl₃): δ -138.10 (d, J = 13.8 Hz, 2F), -138.41 (d, J = 20.7 Hz, 2F), -138.73 (d, J = 22.0 Hz, 2F), -152.79 (br, 1F), -152.98 (br, 1F), -153.50 (t, J = 20.7 Hz, 1F), -162.20 (br, 4F), and -162.69 (t, J = 20.7 Hz, 2F); UV / Vis (CH₂Cl₂): $\lambda_{\text{max}} = 414, 569$, and 620 nm; HR-MS (ESI-MS): *m/z* = 832.0740, calcd for (C₈₀H₂₂F₃₀N₈)²⁻ = 832.0750 ([M - 2H]²⁻).

2-Oxo-3-hydro-5,10,15-tris(pentafluorophenyl)corrole (4K).

A solution of **2a** (40.0 mg, 43.4 μ mol) in THF (2 mL) was degassed by argon bubbling for 10 min, and then an aqueous solution (0.5 mL) of Oxone[®] (80.0 mg, 0.130 mmol) was added. After stirring for 5 h at room temperature, the reaction was quenched with Na₂S₂O₃ aqueous solution then poured into a separation funnel with CH₂Cl₂. The organic layer was washed with water and brine, dried over anhydrous Na₂SO₄, and evaporated. Separation by silica gel column chromatography with CH₂Cl₂/hexane solution followed by recrystallization from chloroform/hexane afforded **4K** in 62% (22.0 mg, 27.1 μ mol) yield as purple crystals. ¹H NMR (CDCl₃): δ 9.17 (d, J = 4.6 Hz, 1H, pyrrole β), 8.67 (d, J = 4.6 Hz, 1H, pyrrole β), 8.56 (d, J = 4.6 Hz, 1H, pyrrole β), 8.42 (br, d, 1H, pyrrole β), 8.39 (m, 2H, pyrrole β), 4.75 (m, 2H, CH₂), -0.44 (s, 1H, NH), -3.05 (s, 1H, NH), and -4.84 (s, 1H, NH); ¹⁹F NMR (CDCl₃): δ -138.61 (dd, J^1 = 22.6 Hz, J^2 = 8.7 Hz, 2F), -138.96 (m, 4F), -152.83 (m, 2F), -153.06 (t, J = 20.7 Hz, 1F), -162.02 -

–161.83 (m, 4F) and –162.19 (dt, $J^1 = 22.4$ Hz, $J^2 = 6.9$ Hz, 2F); ^{13}C NMR (CDCl_3): δ 197.9, 149.4, 147.1, 146.7, 146.3, 145.5, 145.1, 144.6, 141.0, 138.4, 135.9, 133.9, 133.2, 130.7, 126.2, 124.9, 123.4, 121.6, 120.5, 119.8, 119.6, 114.6, 113.2, 112.5, and 45.6; UV/Vis (CH_2Cl_2): λ_{max} (ε [$\text{M}^{-1}\text{cm}^{-1}$]) = 430 (208000), 516 (13000), 552 (8350), 609 (5400), and 663 (8600) nm; Fluorescence (CH_2Cl_2 , $\lambda_{\text{ex}} = 430$ nm): $\lambda_{\text{em}} = 670$ nm.; HR-MS (ESI-MS): $m/z = 811.0629$, calcd for ($\text{C}_{37}\text{H}_{10}\text{F}_{15}\text{N}_4\text{O}$) $^-$ = 811.0621 ($[M - H]^-$).

2-Hydroxy-5,10,15-tris(pentafluorophenyl)corrole (4E).

^1H NMR ($[\text{D}_6]\text{DMSO}$): δ 11.9 (br, 1H, OH), 9.25 (br, 1H, pyrrole β), 8.81–8.95 (m, 5H, pyrrole β), and 7.82 (s, 1H, pyrrole β), –0.59 (br, 1H, NH), –1.02 (br, 1H, NH), and –3.51 (br, 1H, NH); ^{19}F NMR ($[\text{D}_6]\text{DMSO}$): δ –140.33 (br, d, $J = 24.2$ Hz, 2F), –140.57 (br, 2F), –140.75 (br, 2F), –155.44 (br, 1F), –155.83 (br, 1F), –156.18 (t, $J = 20.7$ Hz, 1F), –163.76 (br, t, $J = 22.4$ Hz, 2F), –163.88 (br, t, $J = 25.9$ Hz, 2F), and –164.31 (br, t, $J = 22.5$ Hz, 2F); UV/Vis (DMSO): λ_{max} (ε [$\text{M}^{-1}\text{cm}^{-1}$]) = 435 (183000), 587 (13400), and 616 (19600) nm; Fluorescence (DMSO, $\lambda_{\text{ex}} = 435$ nm): $\lambda_{\text{em}} = 624$ nm.