

Supporting Information © Wiley-VCH 2005

69451 Weinheim, Germany

Rhodium-Catalyzed 1,3-Acyl Migration Reaction of Acetylenic β-Keto Esters with Arylboronic Acids and Application to Two-Carbon Ring Expansion

Tomoya Miura, Masahiko Shimada, and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

General. All reactions were carried out with standard Schlenk techniques under a nitrogen atmosphere. Preparative thin-layer chromatography was performed with silica gel 60 PF₂₅₄ (Merck). ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 2000 (¹H at 300.07 MHz and ¹³C at 75.46 MHz) spectrometer. All NMR data were obtained in CDCl₃. Proton chemical shifts were referenced to the residual proton signal of the solvent at 7.26 ppm. Carbon chemical shifts were referenced to the carbon signal of the solvent at 77.0 ppm. High-resolution mass spectra were recorded on a JOEL JMS-SX102A spectrometer. Infrared spectra were recorded on a Shimadzu FTIR-8100 spectrometer.

Materials. Hydroxo(cycloocta-1,5-diene)rhodium(I) dimer¹ was prepared according to the literature procedure. 1,4-Dioxane was distilled over sodium–benzophenone ketyl. Water was degassed prior to use. All other commercially available resources were used without further purification. Acetylenic β-keto esters 1a–1d and 5a–5g were prepared from the corresponding β-keto esters and various propargyl bromides in the presence of NaH in THF. Ethyl 2-methyl-3-oxo-3-phenylpropanoate,² 2-ethoxycarbonyl-1-indanone,³ 2-ethoxycarbonyl-1-tetralone,⁴ and 2-methylindane-1,3-dione⁵ were synthesized according to the corresponding literature methods. Ethyl 2-methylacetoacetate, ethyl 2-oxocyclohexanecarboxylate, ethyl 2-oxocyclooctanecarboxylate, 4-fluorophenylboronic acid, and 3-chlorophenylboronic acid were purchased from Aldrich Chemical Co. Ethyl 2-oxocyclopentanecarboxylate, 2-methylcyclohexane-1,3-dione, 1-bromo-2-butyne, 3-bromo-1-(trimethylsilyl)-1-propyne, 4-methylphenylboronic acid, and 3-methoxyphenylboronic acid were purchased from Tokyo Kasei Kogyo Co., Ltd. 1-Bromo-2-pentyne and phenylboronic acid were purchased from Wako Pure Chemical Industries, Ltd.

^[1] R. Usón, L. A. Oro, J. A. Cabeza, Inorg. Synth. 1985, 23, 126–130.

^[2] L. Benati, D. Nanni, P. Spagnolo, J. Org. Chem. 1999, 64, 5132-5138.

^[3] D. S. Brown, B. A. Marples, P. Smith, L. Walton, *Tetrahedron* **1995**, *51*, 3587–3606.

^[4] M. Chini, P. Crotti, F. Macchia, J. Org. Chem. 1989, 54, 3930–3936.

^[5] W. A. Mosher, R. W. Soeder, J. Org. Chem. 1971, 36, 1561-1563.

General procedure for the rhodium-catalyzed 1,3-acyl migration reaction. To an oven-dried, N₂-purged flask were added a solution of substrate 1 or 5 (0.20 mmol, 1.0 equiv) in 1,4-dioxane/H₂O [2.0 mL/20 mL (100:1)], arylboronic acid 2 (2.0–5.0 equiv), and [Rh(OH)(cod)]₂ (2.3 mg, 0.005 mmol, 0.05 equiv of Rh). The reaction mixture was stirred at room temperature. After complete consumption of the substrate (3–12 h), the reaction was quenched with aq. NH₄Cl. Then, the resulting solution was stirred at room temperature overnight. The aqueous layer was extracted with ethyl acetate three times. The combined organic extracts were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by preparative thin-layer chromatography (hexane:ethyl acetate) to give the product 4 or 6.

The ring-opening of **5c**, **5d** and **5f** required 3 weeks for completion.

Ethyl 2-hydroxy-1-methyl-2-phenyl-3-[(*Z*)-1-phenylethylidene]cyclobutane-1-carboxylate (3). This compound is unstable. Only ¹H NMR data are shown here: ¹H NMR: $\delta = 0.89$ (t, J = 7.1 Hz, 3H), 1.48 (s, 3H), 2.09 (s, 3H), 2.19 (s, 1H), 2.42 (dq, J = 15.8, 1.1 Hz, 1H), 3.36 (dq, J = 15.6, 1.5 Hz, 1H), 3.49–3.70 (m, 2H), 7.12–7.63 (m, 10H).

Ethyl (*Z*)-4-benzoyl-2-methyl-5-phenylhex-4-enoate (4aa). IR (neat): 2980, 1732, 1651, 1449, 1246, 1183 cm⁻¹; ¹H NMR: δ = 1.21 (t, J = 7.1 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 2.26 (s, 3H), 2.59–2.77 (m, 2H), 2.92–3.05 (m, 1H), 4.06 (q, J = 7.1 Hz, 2H), 6.91–7.06 (m, 5H), 7.10–7.18 (m, 2H), 7.22–7.29 (m, 1H), 7.57–7.63 (m, 2H); ¹³C NMR: δ = 14.2, 17.7, 20.9, 35.6, 38.9, 60.4, 127.3, 127.7, 127.8, 128.2, 129.2, 132.1, 135.2, 137.5, 141.3, 142.6, 176.1, 200.6; HRMS (CI⁺): Calcd for C₂₂H₂₅O₃, M+H⁺ 337.1804. Found m/z 337.1804.

Ethyl (*Z*)-4-benzoyl-2-methyl-5-(4-fluorophenyl)hex-4-enoate (4ab). IR (neat): 2980, 1732, 1651, 1509, 1227, 1183 cm⁻¹; ¹H NMR: δ = 1.20 (t, *J* = 7.2 Hz, 3H), 1.24 (d, *J* = 6.6 Hz, 3H), 2.23 (s, 3H), 2.57–2.75 (m, 2H), 2.90–3.03 (m, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 6.65–6,74 (m, 2H), 6.95–7.03 (m, 2H), 7.13–7.21 (m, 2H), 7.26–7.34 (m, 1H), 7.56–7.62 (m, 2H); ¹³C NMR: δ = 14.1, 17.7, 20.9, 35.5, 38.8, 60.4, 114.7 (d, *J* = 20.9 Hz), 127.8, 129.1, 129.9 (d, *J* = 8.1 Hz), 132.3, 135.6, 137.2, 138.5 (d, *J* = 3.5 Hz), 140.0, 161.7 (d, *J* = 247.1 Hz), 176.0, 200.5; HRMS (CI⁺): Calcd for C₂₂H₂₄FO₃, M+H⁺ 355.1709. Found m/z 355.1708.

Ethyl (*Z*)-4-benzoyl-2-methyl-5-(4-methylphenyl)hex-4-enoate (4ac). IR (neat): 2980, 1732, 1653, 1449, 1248, 1183 cm⁻¹; ¹H NMR: $\delta = 1.20$ (t, J = 7.1 Hz, 3H), 1.24 (d, J = 6.9 Hz, 3H), 2.12 (s, 3H), 2.23 (s, 3H), 2.57–2.75 (m, 2H), 2.91–3.03 (m, 1H), 4.05 (q, J = 7.0 Hz, 2H), 6.81 (d, J = 6.9 Hz, 3H), 2.23 (s, 3H), 2.57–2.75 (m, 2H), 2.91–3.03 (m, 1H), 4.05 (q, J = 7.0 Hz, 2H), 6.81 (d, J = 6.9 Hz, 2

7.8 Hz, 2H), 6.88–6.96 (m, 2H), 7.12–7.20 (m, 2H) 7.23–7.32 (m, 1H), 7.58–7.64 (m, 2H); 13 C NMR: δ = 14.1, 17.6, 20.9, 21.0, 35.6, 38.8, 60.4, 127.6, 128.1, 128.5, 129.2, 132.0, 134.7, 137.0, 137.4, 139.6, 141.3, 176.1, 200.8; HRMS (CI⁺): Calcd for C₂₃H₂₇O₃, M+H⁺ 351.1960. Found m/z 351.1959.

Ethyl (*Z*)-4-benzoyl-2-methyl-5-(3-chlorophenyl)hex-4-enoate (4ad). IR (neat): 2980, 1732, 1653, 1449, 1242, 1183 cm⁻¹; ¹H NMR: δ = 1.21 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 7.2 Hz, 3H), 2.23 (s, 3H), 2.58–2.76 (m, 2H), 2.92–3.03 (m, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 6.86–6.94 (m, 3H), 6.99–7.03 (m, 1H), 7.14–7.22 (m, 2H) 7.25–7.34 (m, 1H), 7.54–7.62 (m, 2H); ¹³C NMR: δ = 14.1, 17.7, 20.7, 35.5, 38.7, 60.5, 126.4, 127.3, 127.8, 128.2, 129.0, 129.1, 132.3, 133.6, 136.3, 137.2, 139.7, 144.2, 175.9, 200.2; HRMS (CI⁺): Calcd for C₂₂H₂₄ClO₃, M+H⁺ 371.1414. Found m/z 371.1412.

Ethyl (*Z*)-4-benzoyl-2-methyl-5-(3-methoxyphenyl)hex-4-enoate (4ae). IR (neat): 2980, 1730, 1656, 1578, 1221, 1179 cm⁻¹; ¹H NMR: δ = 1.21 (t, *J* = 7.2 Hz, 3H), 1.25 (d, *J* = 6.6 Hz, 3H), 2.24 (s, 3H), 2.58–2.71 (m, 2H), 2.92–3.03 (m, 1H), 3.63 (s, 3H), 4.06 (q, *J* = 7.1 Hz, 2H), 6.50 (ddd, *J* = 8.2, 2.8, 1.0 Hz, 1H), 6.54–6.58 (m, 1H), 6.63 (ddd, *J* = 7.8, 1.5, 0.9 Hz, 1H), 6.92 (t, *J* = 7.8 Hz, 1H), 7.13–7.21 (m, 2H), 7.24–7.32 (m, 1H), 7.58–7.64 (m, 2H); ¹³C NMR: δ = 14.1, 17.6, 20.7, 35.5, 38.8, 55.1, 60.4, 113.2, 113.6, 120.8, 127.6, 128.9, 129.0, 132.1, 135.2, 137.3, 141.0, 143.8, 158.8, 176.0, 200.6; HRMS (CI⁺): Calcd for C₂₃H₂₇O₄, M+H⁺ 367.1909. Found m/z 367.1910.

Ethyl (*Z*)-4-benzoyl-2-methyl-5-phenylhept-4-enoate (4ba). IR (neat): 2977, 1732, 1651, 1449, 1238, 1183 cm⁻¹; ¹H NMR: δ = 0.94 (t, *J* = 7.5 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 6.6 Hz, 3H), 2.49–2.66 (m, 2H), 2.67–2.82 (m, 2H), 3.00 (dd, *J* = 14.1, 7.8 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 6.90–7.04 (m, 5H), 7.10–7.19 (m, 2H) 7.21–7.30 (m, 1H), 7.56–7.63 (m, 2H); ¹³C NMR: δ = 12.7, 14.1, 17.7, 27.2, 34.7, 38.8, 60.4, 127.2, 127.6, 127.7, 128.9, 129.1, 132.0, 134.5, 137.6, 140.8, 147.3, 176.0, 200.6; HRMS (CI⁺): Calcd for C₂₃H₂₇O₃, M+H⁺ 351.1960. Found m/z 351.1959.

Ethyl (*Z*)-4-acetyl-2-methyl-5-phenylhept-4-enoate (4ca). IR (neat): 2979, 1732, 1676, 1352, 1177, 1121 cm⁻¹; ¹H NMR: δ = 0.87 (t, J = 7.7 Hz, 3H), 1.19 (d, J = 6.6 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.58 (s, 3H), 2.36–2.69 (m, 4H), 2.78 (dd, J = 13.7, 8.6 Hz, 1H), 4.08–4.19 (m, 2H), 7.09–7.15 (m, 2H), 7.28–7.34 (m, 3H); ¹³C NMR: δ = 12.5, 14.3, 17.2, 27.9, 31.3, 34.2, 38.8, 60.4, 128.0, 128.4, 128.5, 138.0, 141.4, 148.0, 176.0, 207.3; HRMS (EI⁺): Calcd for C₁₈H₂₄O₃, M⁺ 288.1725. Found m/z 288.1723.

Ethyl (*E*)-4-benzoyl-2-methyl-5-phenyl-5-trimethylsilylpent-4-enoate (4da). IR (neat): 2980, 1732, 1664, 1449, 1250, 1183 cm⁻¹; ¹H NMR: $\delta = 0.20$ (s, 9H), 1.17 (t, J = 7.1 Hz, 3H), 1.26 (d, J = 6.9 Hz, 3H), 2.49–2.63 (m, 1H), 2.68 (dd, J = 14.4, 6.9 Hz, 1H), 2.79 (dd, J = 14.1, 7.5 Hz, 1H), 3.97–4.08 (m, 2H), 6.72–6.79 (m, 2H), 6.84–7.00 (m, 3H), 7.19–7.28 (m, 2H), 7.32–7.39 (m, 1H), 7.61–7.67 (m, 2H); ¹³C NMR: $\delta = 0.7$, 14.1, 17.7, 37.4, 38.3, 60.4, 125.6, 127.4, 127.9, 128.2, 129.1, 132.5, 136.6, 142.1, 145.6, 149.6, 175.7, 200.0; HRMS (CI⁺): Calcd for C₂₄H₃₁O₃Si, M+H⁺ 395.2042. Found m/z 395.2044.

Ethyl 4-oxo-3-[(*Z*)-1-phenylethylidene]cycloheptane-1-carboxylate (6a). IR (nujol): 2924, 1725, 1684, 1161, 1102 cm⁻¹; ¹H NMR: δ = 1.29 (t, *J* = 7.1 Hz, 3H), 1.63–1.86 (m, 2H), 1.92–2.09 (m, 1H), 2.10 (s, 3H), 2.16–2.52 (m, 4H), 2.54–2.67 (m, 1H), 2.97 (d, *J* = 14.7 Hz, 1H), 4.18 (q, *J* = 6.9 Hz, 2H), 7.05–7.12 (m, 2H), 7.18–7.33 (m, 3H); ¹³C NMR: δ = 14.2, 20.8, 22.5, 31.5, 32.6, 42.8, 45.3, 60.7, 126.95, 127.05, 128.1, 137.2, 140.1, 142.9, 174.8, 208.7; HRMS (EI⁺): Calcd for C₁₈H₂₂O₃, M⁺ 286.1569. Found m/z 286.1569.

Ethyl 9-oxo-8-[(*Z*)-1-phenylethylidene]-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6-carboxylate (6b). IR (nujol): 2924, 1732, 1663, 1595, 1186, 1159 cm⁻¹; ¹H NMR: δ = 1.30 (t, J = 7.2 Hz, 3H), 2.22 (s, 3H), 2.65 (dd, J = 14.7, 8.4 Hz, 1H), 2.95 (dd, J = 14.6, 7.4 Hz, 1H), 3.08–3.19 (m, 1H), 3.27–3.42 (m, 2H), 4.10–4.27 (m, 2H), 7.10–7.17 (m, 2H), 7.23–7.35 (m, 5H), 7.45 (td, J = 7.5, 1.5 Hz, 1H), 7.81 (dd, J = 7.8, 1.5 Hz, 1H); ¹³C NMR: δ = 14.3, 22.5, 28.6, 33.9, 41.9, 60.9, 127.1, 127.4, 128.2, 129.7, 130.7, 132.7, 134.5, 137.4, 137.8, 143.7, 147.2, 173.8, 195.7 (1 carbon overlapping); HRMS (EI⁺): Calcd for C₂₂H₂₂O₃, M⁺ 334.1569. Found m/z 334.1567.

Ethyl 4-oxo-3-[(*Z*)-1-phenylethylidene]cyclooctane-1-carboxylate (6c). IR (neat): 2938, 1732, 1684, 1443, 1179, 1028 cm⁻¹; ¹H NMR: δ = 1.27 (t, *J* = 7.2 Hz, 3H), 1.35–1.89 (m, 7H), 1.92–2.06 (m, 1H), 2.15 (s, 3H), 2.34–2.48 (m, 1H), 2.60 (dd, *J* = 13.8, 11.7 Hz, 1H), 2.93 (dd, *J* = 13.8, 3.3 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 7.11–7.19 (m, 2H), 7.21–7.33 (m, 3H); ¹³C NMR: δ =14.3, 19.9, 24.4, 27.2, 29.7, 35.1, 43.1, 43.3, 60.6, 127.6, 127.7, 128.4, 135.8, 137.6, 142.5, 175.5, 215.4; HRMS (EI⁺): Calcd for C₁₉H₂₄O₃, M⁺ 300.1725. Found m/z 300.1723.

Ethyl 5,6,7,8,9,10-hexahydro-10-oxo-9-[(Z)-1-phenylethylidene]benzo[8]annulene-7-carboxylate (**6d**). IR (neat): 2936, 1732, 1653, 1597, 1445, 1240, 1184 cm⁻¹; ¹H NMR: δ = 1.22 (t, J = 7.2 Hz, 3H), 1.94–2.07 (m, 1H), 2.09–2.23 (m, 1H), 2.20 (d, J = 1.5 Hz, 3H), 2.66 (tdd, J = 12.0, 4.1, 2.9 Hz, 1H), 2.80 (dd, J = 14.9, 12.2 Hz, 1H), 2.89–2.98 (m, 1H), 3.02 (td, J = 14.7, 4.2 Hz,

1H), 3.65 (ddd, J = 14.3, 11.9, 4.0 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 6.96–7.05 (m, 2H), 7.08–7.23 (m, 5H), 7.40 (td, J = 7.4, 1.5 Hz, 1H), 7.69 (dd, J = 7.7, 1.4 Hz, 1H); ¹³C NMR: $\delta = 14.2$, 21.0, 31.8, 32.0, 32.1, 40.8, 60.7, 126.8, 126.9, 127.2, 128.0, 129.3, 131.3, 133.1, 136.2, 138.0, 138.9, 140.9, 142.7, 175.0, 199.8; HRMS (EI⁺): Calcd for C₂₃H₂₄O₃, M⁺ 348.1725. Found m/z 348.1725.

Ethyl 4-oxo-3-[(*Z*)-1-phenylethylidene]cyclodecane-1-carboxylate (6e). IR (neat): 2934, 1732, 1667, 1445, 1177, 1034 cm⁻¹; ¹H NMR: δ = 1.15–1.85 (m, 12H), 1.28 (t, *J* = 7.2 Hz, 3H), 2.16 (s, 3H), 2.60–2.78 (m, 2H), 2.82–2.96 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 7.11–7.20 (m, 2H), 7.26–7.35 (m, 3H); ¹³C NMR: δ = 14.3, 21.7, 22.6, 24.5, 26.6, 30.1, 31,9, 42.4, 43.4, 60.5, 128.1, 128.4, 140.8 142.2, 143.2, 176.1, 212.6 (2 carbon overlapping); HRMS (EI⁺): Calcd for C₂₁H₂₈O₃, M⁺ 328.2038. Found m/z 328.2039.

2-Methyl-4-[(*Z*)-1-phenylethylidene]cyclooctane-1,5-dione (6f). IR (nujol): 1700, 1671, 1367, 1306, 1125, 1073 cm⁻¹; ¹H NMR: $\delta = 1.12$ (d, J = 6.3 Hz, 3H), 1.84–2.01 (m, 4H), 2.16 (s, 3H), 2.22–2.35 (m, 1H), 2.41–2.58 (m, 2H), 2.71 (dd, J = 13.4, 4.7 Hz, 1H), 2.93–3.07 (m, 1H), 7.12–7.19 (m, 2H), 7.25–7.33 (m, 3H); ¹³C NMR: $\delta = 16.8$, 19.8, 22.7, 38.4, 43.46, 43.51, 44.7, 127.7, 128.0, 128.5, 137.3, 138.1, 142.0, 213.0, 216.3; HRMS (EI⁺): Calcd for C₁₇H₂₀O₂, M⁺ 256.1463. Found m/z 256.1464.

5,9-Dioxo-6-methyl-8-[(Z)-1-phenylethylidene]-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene (6g). IR (neat): 2975, 1682, 1592, 1443, 1375, 1240 cm⁻¹; ¹H NMR: δ = 1.31 (d, J = 6.6 Hz, 3H), 2.11 (s, 3H), 2.48 (dd, J = 14.9, 11.6 Hz, 1H), 2.88 (ddd, J = 15.3, 5.4, 0.9 Hz, 1H), 3.15–3.30 (m, 1H), 6.91–6.98 (m, 2H), 7.17–7.25 (m, 3H), 7.51–7.66 (m, 3H), 7.68–7.72 (m, 1H); ¹³C NMR: δ = 17.2, 21.5, 32.1, 45.8, 127.2, 128.1, 128.3, 128.4, 131.9, 132.3, 136.0, 137.8, 138.2, 142.4, 143.4, 197.0, 205.3; HRMS (EI⁺): Calcd for C₂₀H₁₈O₂, M⁺ 290.1307. Found m/z 290.1306.