Hockey puck-micelles from oligo(p-benzamide)-b-PEG rod-coil block copolymers

Figure SI-1 SFM-image of 1. The sample was prepared by drop casting of a chloroform solution (c = 5 mg·L$^{-1}$) onto freshly cleaved mica. Left: topography image, right: phase image. The image was taken in soft tapping mode (r$_{SP}$ = 0.96). The image shows a 5 µm x 5 µm surface area covered with micelles of 1.
Figure SI-2 SFM-image of 1. The sample was prepared by drop casting of a chloroform solution (c = 5 mg·L⁻¹) onto amorphous carbon. The image was taken at rSP = 0.72. Left: topography image, right: phase image.

Figure SI-3 SFM-image of 1. The sample was prepared by drop casting of a chloroform solution (c = 5 mg·L⁻¹) onto SiO₂ (oxidized Si-wafer). The image was taken at rSP = 0.93. Left: topography image, right: phase image.
Figure SI-4 SFM-image of 1. The sample was prepared by drop casting of a chloroform solution (c = 5 mg·L\(^{-1}\)) onto freshly cleaved mica. The SFM-tip was plasma-cleaned but not hydrophobized. The image was taken at \(r_{SP} = 0,97\). Left: topography image, right: phase image.

Figure SI-5 Two SFM-images of OPBA-MPEG. The samples were prepared by drop casting of a chloroform solution (c = 1 g·L\(^{-1}\)) onto freshly cleaved mica. The images show dendritic structures typically observed for diffusion limited aggregation (DLA).
Supporting Light Scattering Data

Figure SI-6 Figures a) and b) show representative dynamic light scattering data for 1 and 2, respectively. Both samples are measured in chloroform as solvent with added tetrabutylammonium bromide ($c_{\text{TBABr}} = 10^{-4}$ M), the scattering angle is 90° ($q^2 = 4.1222 \times 10^{10} \text{ cm}^{-2}$), the wavelength is $\lambda_0 = 632.8 \text{ nm}$.

Open circles show the experimental field correlation function $g_1(t)$ as obtained from the measured intensity correlation function $g_2(t)$ via the Siegert relation. Solid lines represent the biexponential fits to the experimental data from which the angular dependent apparent diffusion coefficient D_q can be extracted.
Figure SI-7 Figures a) and b) show representative plots of the angular dependent apparent diffusion coefficient D_q, obtained by biexponential fits to the field correlation functions at several scattering angles. Linear extrapolation to zero scattering angle yields the apparent diffusion coefficient D, which can be converted to a sphere-equivalent apparent hydrodynamic radius R_h via the Stokes-Einstein equation. In dilute solutions, the measured diffusion coefficient D for both samples were independent of polymer concentration ($c_{\text{Polymer}} = 0.05 - 3.0$ g/L) and the amount of added salt ($c_{\text{TBABr}} = 0 - 6.25 \times 10^{-4}$ M).