

Supporting Information © Wiley-VCH 2006

69451 Weinheim, Germany

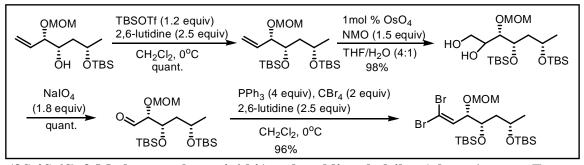
Stereoselective Synthesis of the Side-Chains of Mycolactones A and B Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes

Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi*

General Procedures. All reactions were run under a dry Ar atmosphere. Reactions were monitored by GC analysis of reaction aliquots. GC analysis was performed on an HP6890 Gas Chromatograph using an HP-5 capillary column (30 m × 0.32 mm, 0.5 μM film) packed with SE-30 on Chromosorb W. Column chromatography was carried out on 230-400 mesh silica gel. ¹H and ¹³C NMR spectra were recorded on a Varian-Inova-300 spectrometer. IR spectra were recorded on a Perkin-Elmer Spectrum 2000 FT-IR spectrometer. LRMS and HRMS were obtained on Hewlett Packed 5995 GC-MS and Finnigan MATL95 mass spectrometers, respectively. Optical rotations were performed on a Autopol III automatic polarimeter. THF was distilled from sodium/benzophenone. ZnBr₂ was flame-dried under vacuum. Cl₂Pd(DPEphos)^[a] and Pd(*t*Bu₃P)₂^[b] were prepared according to the literature procedure.

Methoxymethyl allyl ether: To a stirred solution of allyl alcohol (5.45 mL, 80 mmol) and Hünig's base (20.9 mL, 120 mmol) was added chloromethyl methyl ether (7.60 mL, 100 mmol) dropwise at 0°C. The reaction mixture was warmed up to room temperature and stirred for 12 h, then guenched with water and extracted with CH₂Cl₂ (3 × 20 mL).

1

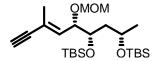

The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and distilled to afford methoxymethyl allyl ether (7.013 g, 86% yield) as a colorless oil: B.p. 80-81°C, ¹H NMR (300 MHz, CDCl₃) δ 3.44 (s, 3 H), 4.12 (d, J = 5.7 Hz, 2 H), 4.71 (s, 2 H), 5.25 (d, J = 10.5 Hz, 1 H), 5.36 (d, J = 16.8 Hz, 1 H), 5.9-6.05 (m, 1 H); ¹³C NMR (300 MHz, CDCl₃) δ 55.2, 68.2, 95.6, 117.0, 134.3 ppm.

(*S*)-Ethyl 3-(*tert*-Butyldimethylsiloxy)butyrate: To a stirred solution of (*S*)-ethyl 3-hydroxybutyrate (5.91 g, 50 mmol) in DMF (80 mL) were added imidazole (8.6 g, 125 mmol) and TBSCl (9.8 g, 65 mmol) at 0°C. Then the reaction mixture was stirred at 23°C for 12 h, quenched with saturated NaHCO₃ (100 mL) and extracted with ether (3 × 50 mL). The combined organic layers were washed with H₂O and brine (50 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by flash chromatography (eluent: 3 % EtOAc in hexanes) and to give the silyl ether as a colorless oil (12.008 g, 97% yield): 1 H NMR (300 MHz, CDCl₃) δ 0.03 (s, 3 H), 0.05 (s, 3 H), 0.85 (s, 9 H), 1.18 (d, J = 6.6 Hz, 3 H), 1.25 (t, J = 5.6 Hz, 3 H), 2.34 (dd, J = 5.1, 14.4 Hz, 1 H), 2.46 (dd, J = 7.8, 14.4 Hz, 1 H), 4.05-4.15 (m, 2 H), 4.2-4.3 (m, 1 H); 13 C NMR (75.4 MHz, CDCl₃) δ -5.11, -4.6, 14.1, 17.9, 23.9, 25.7, 44.9, 60.2, 65.8, 71.6 ppm.

(*S*)-3-(*tert*-Butyldimethylsiloxy)butanal: A stirred solution of (*S*)-ethyl 3-(*tert*-butyldimethylsiloxy)butyrate (11.8 g, 47.9 mmol) in CH₂Cl₂ (480 mL) was cooled to -78°C under argon atmosphere. To this solution was added diisobutylaluminum hydride (52.7 mL, 1.0 M in hexanes, 52.7 mmol) very slowly over 1 h period. After the addition was completed, the reaction mixture was further stirred at -78°C for half an hour. Then methanol (30 mL) was added to the reaction mixture slowly over 15 min. After removing dry ice/acetone bath, the reaction mixture was stirred for another 15 min, then saturated aqueous Rochelle salts (45 mL) was added and the resultant solution was stirred for 2 h. The layers were separated and the aqueous phase was extracted three times with methylene chloride. The combined organic phase was dried with Na₂SO₄ and concentrated. Purification by a flash chromatography (eluent: 3% EtOAc in hexanes) gave (*S*)-3-(*tert*-Butyldimethylsiloxy) butanal (8.217 g, 85% yield) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 0.06 (s, 3 H), 0.08 (s, 3 H), 0.887 (s, 9 H), 1.24 (d, *J* = 6.3 Hz,

3 H), 2.46 (ddd, J = 2.4, 5.4, 15.9 Hz, 1 H), 2.55 (ddd, J = 3.0, 7.2, 15.9 Hz, 1 H), 4.3-4.4 (m, 1 H), 9.81-9.80 (m, 1 H); ¹³C NMR (75.4 MHz, CDCl₃) δ -4.6, -5.1, 17.8, 24.0, 25.5, 52.8, 64.4, 201.6 ppm.

(3S,4S,6S)-3-Methoxymethoxy-6-tert-butyldimethylsiloxy-hept-1-en-4-ol: To a stirred solution of methoxymethyl allyl ether (4.39 g, 43.0 mmol) in THF (90 mL) was added sec-butyllithium in cyclohexane (1.4 M, 25.6 mL, 35.8 mmol) at -78°C slowly. After the resultant orange yellow solution was stirred at -78°C for 30 min, (+)-Bmethoxydiisopinocamphenylborane (11.32 g, 35.8 mmol) in THF (90 mL) was added. After the addition was completed, the mixture was stirred at -78°C for 1 h and boron trifluoride etherate (6 mL, 47.6 mmol) was added dropwisely. Immediately afterwards, (S)-3-(tert-Butyldimethylsiloxy)-butanal (7.248 g, 35.8 mmol) was added dropwisely, then the mixture was kept at -90°C for 3 h and warmed to room temperature over 12 h. The mixture was cooled to 0°C and saturated NaHCO₃ (80 mL) was added followed by 30% H₂O₂ (50 mL) and further stirred for 30 min. Et₂O (80 mL) was added and the organic layer was collected. The aqueous layer was extracted with Et₂O (2 × 30 mL) and the combined organic layers were then dried over MgSO₄. Removal of the solvent in vacuo and purification by flash chromatography eluting with a solvent gradient of hexane, then 15% EtOAc/hexane through 20% EtOAc/hexane gave the product (9.898 g, yield 91%, 96/4 diastereoisomer) as a colorless oil: $\left[\alpha\right]_{D}^{25} = 64^{\circ}$ (c 3.63, CH₂Cl₂); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta -0.08 \text{ (s, 6 H)}, 0.73 \text{ (s, 9 H)}, 1.01 \text{ (d, } J = 6.0 \text{ Hz, 3 H)}, 1.44-1.47 \text{ (m, 1.44-1.47)}$ 2 H), 3.09 (s, 1 H), 3.20 (s, 3 H), 3.5-3.6 (m, 1 H), 3.73-3.77 (m, 1 H), 3.9-3.95 (m, 1 H), 4.41 (d, J = 7.2 Hz, 1 H), 4.55 (d, J = 6.0 Hz, 1 H), 5.10 (s, 1 H), 5.15 (d, J = 3.6 Hz, 1 H), 5.64-5.52 (m, 1 H); 13 C NMR (75.4 MHz, CDCl₃) δ -5.21, -4.6, 17.5, 23.4, 25.5, 41.5, 55.0, 67.4, 71.5, 80.1, 93.5, 118.8, 134.5 ppm; IR: 3401, 2858, 1463, 1251, 1106, 1006 cm⁻¹; HRMS (CI) m/z for M + H⁺: 305.2149, calcd. 305.2148.


(3S,4S,6S)-3-Methoxymethoxy-4,6-bi(*tert*-butyldimethylsiloxy)-hept-1-en: To a cooled solution of (3S,4S,6S)-3-methoxymethoxy-6-*tert*-butyldimethyl-siloxy-hept-1-en-4-ol (9.48 g, 31.2 mmol) in CH₂Cl₂ (200 mL) were added successively 2,6-lutidine (9.0 mL, 77.8 mmol) and TBSOTf (8.4 mL, 37.4 mmol). The reaction mixture was stirred at 0°C for 1 h, and then quenched with water and the layers were separated. The aqueous layer was extracted once with CH₂Cl₂. The combined organic layers were dried over MgSO₄. The product was obtained after flash chromatography (eluent: 1% EtOAc in hexanes) as a colorless oil (13.07 g, 100% yield): 1 H NMR (300 MHz, CDCl₃) δ 0.05 (s, 3 H), 0.06 (s, 3 H), 0.07 (s, 3 H), 0.08 (s, 3 H), 0.88 (s, 9 H), 0.90 (s, 9 H), 1.15 (d, J = 6.0 Hz, 3 H), 1.55-1.65 (m, 1 H), 1.7-1.8 (m, 1 H), 3.36 (s, 3 H), 3.80-3.85 (m, 1 H), 3.95-4.05 (m, 2 H), 4.58 (d, J = 6.6 Hz, 1 H), 4.68 (d, J = 6.6 Hz, 1 H), 5.24 (s, 1 H), 5.28 (d, J = 3.6 Hz, 1 H), 5.75-5.9 (m, 1 H); 13 C NMR (75.4 MHz, CDCl₃) δ -4.3, -4.35, -4.6, -4.7, 18.0, 18.1, 23.7, 25.88, 25.91,42.7, 55.5, 65.5, 71.7, 79.2, 94.4, 117.9, 135.1 ppm.

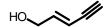
(3S,4S,6S)-3-Methoxymethoxy-4,6-bi(*tert*-butyldimethylsiloxy)-heptane-1,2-diol: A solution of (3S,4S,6S)-3-methoxymethoxy-4,6-bi(*tert*-butyldimethylsiloxy)-hept-1-en (8.2 g, 19.6 mmol) and NMO (50% solution in H_2O , 14 mL, 58.8 mmol) in THF- H_2O (4:1, 150 mL) was treated with OsO₄ (4% solution in H_2O , 1.3 mL, 0.2 mmol) and the resultant reaction mixture was stirred at room temperature for 24 hours. After saturated aqueous $Na_2S_2O_3$ (30 mL) was added, the mixture was extracted with EtOAc (2 × 30 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was simply purified by short silica gel column chromatography (eluent: 40% EtOAc in hexanes) to afford the diol (8.7 g, 98% yield) for the next step use.

(2R,3S,5S)-2-Methoxymethoxy-3,5-bi(*tert*-butyldimethylsiloxy)-hexanal: To the (3S,4S,6S)-3-methoxymethoxy-4,6-bis-triethylsiloxy-heptane-1,2-diol (8.286 g, 18.3 mmol) in THF-H₂O (130 mL, 1:1) was added NaIO₄ (7.593 g, 35.5 mmol). The heterogenous reaction mixture was stirred at 23°C for 1 h, and then filtered through Celite and extracted with ether. The combined layers were dried over MgSO₄. After removal of the solvent in vacuo, the residue was simply purified by a short silica gel column and used immediately for next step without further purification.

(3S,4S,6S)-1,1-dibromo-3-methoxymethoxy-4,6-bi(tert-Butyldimethylsiloxy)-hept-1-

ene: In a reaction flask under Ar were combined PPh₃ (19.2 g, 73.2 mmol) and CH₂Cl₂ (180 mL). The flask was cooled to 0°C, and the CBr₄ (12.14 g, 36.6 mmol) was added (afforded a yellow solution). The reaction mixture was stirred at 0°C for 15 min, then 2,6-lutidine (4.9 g, 5.33 mL, 45.8 mmol) was added (afforded a dark yellow solution). Then the aldehyde (ca. 18.3 mmol) from above in CH₂Cl₂ (30 mL) was added *via* cannula and the reaction mixture was further stirred for 20 min at 0°C. Then the reaction mixture was poured into hexanes (500 mL) and filtered. The dibromo product was obtained after flash chromatography (2% EtOAc in hexanes) as a colorless oil (10.13 g, 96% yield): $[\alpha]_D^{25}$ = 37° (c 1.48, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 0.06 (s, 6 H), 0.07 (s, 3 H), 0.08 (s, 3 H), 0.88 (s, 9 H), 0.89 (s, 9 H), 1.63 (ddd, J = 5.7, 7.5, 15.3Hz, 1 H), 1.14 (d, J = 6.0 Hz, 3 H), 1.87 (ddd, J = 5.4, 7.2, 15.3Hz, 1 H), 3.34 (s, 3 H), 3.85-3.95 (m, 2 H), 4.26 (dd, J = 3.6, 8.7 Hz, 1 H), 4.55 (d, J = 6.9 Hz, 1 H), 4.66 (d, J = 6.9 Hz, 1 H), 6.48 (d, J = 9.0 Hz, 1 H); ¹³C NMR (75.4 MHz, CDCl₃) δ -4.1, -4.6, -4.55, 18.0, 18.1, 24.1, 25.9, 43.5, 55.7,65.4, 70.8, 78.0, 92.1, 94.6, 137.0 ppm; IR 2930, 1472, 1256, 1029 cm⁻¹; HRMS (EI) m/z for [M-OTBS]⁺: 443.0249, calcd. 443.0253.

(5*S*,6*S*,8*S*)-6,8-bi(*tert*-Butyldimethylsiloxy)-5-methoxymethoxy-3-methyl-3-nonen-1-yne. To a solution of trimethylsilyl acetylene (200μL, 1.4mmol) in THF (2 mL) was added *n*-BuLi (0.56 mL, 2.5 mL in hexanes, 1.4 mmol) at -78 °C. To this was added *via*


cannula a solution of dry ZnBr₂ (316mg, 1.4 mmol) in THF (2 mL). The mixture thus obtained was stirred for 15 min at -78 °C and then warmed to 23 °C over 30 min, and added via cannula to a mixture of (3S,4S,6S)-1,1-dibromo-4,6-bis-(tert-butyl-dimethylsiloxy)-3-methoxymethoxy-1-heptene (574mg, 1.0 mmol) and Cl₂Pd(DPEphos) (36 mg, 0.01 mmol) in THF (3 mL) via cannula at 0 °C. After stirring at 0 °C for 45 min, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. The crude product was passed through a short (5 cm) column using 1:24 EtOAc/hexanes as eluent. To a mixture of the crude product obtained above and Pd(tBu₃P)₂ (10 mg, 0.02 mmol) in THF (6 mL) was added Me₂Zn (0.75 mL, 2.0 M solution in toluene, 1.5 mmol) at 23 °C. After stirring at 23 °C for 3 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. The crude product was dissolved in MeOH (8 mL) followed by addition of K₂CO₃ (28 mg, 0.2 mmol) at 23 °C. After 4 h, the solvent was removed in vacuo, and the remaining slurry was chromatographed (silica gel, EtOAc/hexanes 3:200) to afford the title compound (278 mg, 61% over three steps) as oil. $[\alpha]_D^{23}$ +25° (c 3.8, CH₂Cl₂); IR (neat) 3315, 2956, 2888, 2858, 1472, 1463, 1380, 1361, 1255, 1148, 1032, 836, 808 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.055 (s, 3 H) 0.065 (s, 3 H), 0.071 (s, 3 H), 0.086 (s, 3 H), 0.89 (s, 9 H), 0.90 (s, 9 H), 1.15 (d, J = 5.8 Hz, 3 H), 1.6-1.85 (m, 2 H), 1.88 (d, J = 1.2 Hz, 3 H), 2.85 (s, 1 H), 3.40 (s, 3 H), 3.75-3.85 (m, 1 H), 3.96 (sextet, J = 6.5 Hz, 1 H), 4.29 (dd, J = 4.7, 10.0 Hz, 1 H), 4.52 (d, J = 7.1 Hz, 1 H), 4.62 (d, J = 6.5 Hz, 1 H), 5.85 (d, J = 8.8 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ_{s} -4.55, -4.09, -3.94, 18.13, 18.28, 18.41, 24.23, 26.10, 26.20, 43.89, 55.78, 65.79, 72.07, 73.87, 75.59, 86.11, 94.20, 121.91, 136.17 ppm; HRCI-MS m/z ([M+H]⁺) 457.3174; calcd. 457.3169.

(5*S*,6*S*,8*S*)-6,8-Bi(*tert*-butyldimethylsiloxy)-1-iodo-5-methoxymethoxy-3-methyl-1,3-nonadiene. A flame-dried, round-bottomed flask was charged with HCp₂ZrCl (263mg, 1.03 mmol). To this was added a solution of (5*S*,6*S*,8*S*)-6,8-bi(*tert*-butyldimethylsiloxy)-

5-methoxymethoxy-3-methyl-3-nonen-1-yne (360 mg, 0.79 mmol) in THF (5 mL) at 23 °C. After stirring for 2 h, a solution of I₂ (401 mg, 1.58 mmol) in THF (3 mL) was added *via* cannula at -78 °C. The reaction mixture was stirred at -78 °C for 0.5 h, and then quenched with a mixture of Na₂S₂O₃ (sat.) and NaHCO₃ (sat.) solution (1:1), extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, EtOAc/hexanes 2:98) afforded the title compound (376 mg, 81%) as oil. $[\alpha]_D^{23}$ +27° (c 3.4, CH₂Cl₂); IR (neat) 2955, 2929, 2857, 1472, 1256, 1098, 1032, 808, 774 cm⁻¹; ¹H NMR (300 MHz, benzene-d₆) δ 0.09 (s, 6 H), 0.11 (s, 3 H), 0.13 (s, 3 H), 0.96 (s, 9 H), 0.97 (s, 9 H), 1.15 (d, J = 5.9 Hz, 3 H), 1.52 (s, 3 H), 1.75-1.85 (m, 2 H), 3.12 (s, 3 H), 3.8-3.9 (m, 1 H), 4.08 (sextet, J = 6.6 Hz, 1 H), 4.33 (d, J = 6.4 Hz, 1 H), 4.37 (dd, J = 7.1, 11.2 Hz, 1 H), 4.49 (d, J = 6.5 Hz, 1 H), 5.22 (d, J = 10.0 Hz, 1 H), 5.98 (d, J = 14.6 Hz, 1 H), 6.94 (d, J = 14.6 Hz, 1 H); ¹³C NMR (75 MHz, benzene-d₆) δ -4.05, -4.01, -3.67, -3.50, 18.01, 18.66, 18.77, 24.52, 26.53, 26.59, 44.65, 55.69, 66.34, 72.86, 74.69, 77.56, 94.26, 130.85, 139.33, 149.43 ppm; HRESI-MS m/z ([M+Na]⁺) 607.2108; calcd. 607.2112.

HO____I

(*E*)-3-Iodo-2-propen-1-ol. To a solution of Cp₂ZrCl₂ (7.0g, 24 mmol) in THF (90 mL) was added DIBAL-H (3.9 mL, neat, 22mmol) at 0 °C with the exclusion of light. This reaction mixture was stirred at 0 °C for 30min. Meanwhile, in another flask, propargyl alcohol (1.16 mL, 20 mmol) was dropped in a solution of DIBAL-H (4.2 mL, neat, 24mmol) in THF at -78 °C. This reaction mixture was stirred at 0 °C for 30 min and transfer to the flask containing *in situ* generated HCp₂ZrCl solution. After stirring at 23 °C for 2 h, a solution of I₂ (7.6 g, 30 mmol) in THF (20 mL) was added *via* cannula at -78 °C. The reaction mixture was stirred at -78 °C for 0.5 h, and then quenched with 1 M HCl, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, Et₂O/pentane 1:9-3:7) afforded the title compound (2.71 g, 74%) as liquid. ¹H NMR (300 MHz, CDCl₃) δ 3.94 (d, J = 5.1 Hz, 2 H), 4.19 (s, 1 H), 6.28 (d, J = 15.5 Hz, 1 H), 6.58 (td, J = 5.4, 14.5 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 64.44, 78.04, 144.35 ppm.

(E)-2-Penten-4-yn-1-ol. A flame-dried round-bottomed flask was charged with ZnBr₂ (405mg, 1.8 mmol). To this were added sequentially at 0 °C THF (2 mL), and C₂H₅MgBr (3.3 mL, 1.0 M solution in THF, 3.3 mmol). This slurry mixture was stirred at 0 °C for 30 min. A solution of (E)-3-iodo-2-propen-1-ol (552 mg, 3 mmol) in THF (1 mL) was dropped in and the reaction mixture was stirred for another 30 min. Meanwhile, another flask was charged with ZnBr₂ (472 mg, 2.1 mmol). To this were added sequentially at 0 °C THF (2 mL), and C₂HMgBr (7.8 mL, 0.5 M solution in THF, 3.9 mmol). This reaction mixture was stirred at 0 °C for 30 min and then transferred to the flask containing above obtained alkenylzinc mixture, followed by the introduction of a suspension of Cl₂Pd(DPEphos) (107mg, 0.15 mmol) in DMF(7 mL). After stirring at 23 °C for 4 h, the reaction mixture was guenched with 1 M HCl, extracted with Et₂O, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, 1:9 – 1:4 Et₂O/pentane) afforded the title compound (191 mg, 78%) as liquid. ¹H NMR (300 MHz, CDCl₃) δ 2.96 (d, J = 1.8 Hz, 1 H), 3.22 (s, 1 H), 4.22 (s, 1 H), 5.75 (dd, J = 1.8, 15.8 Hz, 1 H), 6.58 (td, J = 4.7, 16.4 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 62.43, 78.10, 81.78, 109.08, 143.94 ppm.

(2*E*,4*E*)-5-Iodo-4-methyl-2,4-pentadien-1-ol. To a solution of Me₃Al (2.0 mL, 21.2 mmol) in CH₂Cl₂ (15 mL) was introduced (*E*)-2-penten-4-yn-1-ol (600 mg, 7.3 mmol) in CH₂Cl₂ (10 mL) with syringe at -78 °C. The reaction mixture was warmed to 0 °C and stirred for 1 h. To this reaction mixture was then added a solution of Cp₂ZrCl₂ (1.06 g, 3.65 mmol) in CH₂Cl₂ (15 mL) via cannula at 0 °C. The reaction mixture was warmed to 23 °C and stirred for 3 h. TLC analysis indicated that the starting material had been completely consumed. To this mixture was added *via* cannula a solution of I₂ (2.41 g, 9.5 mmol) in THF (10 mL) at -78 °C. After stirring at -78 °C for 30 min, the reaction mixture was quenched with 1 M HCl, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, 1:9 – 1:4 Et₂O/pentane)

afforded the title compound (1.14 g, 70%) as oil. ¹H NMR (300 MHz, CDCl₃) δ 1.95 (s, 3 H), 3.07 (s, br, 1 H), 6.3-6.35 (m, 2 H), 4.14 (d, J = 4.3 Hz, 1 H), 5.89 (td, J = 5.3, 15.8 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.96, 62.71, 83.88, 128.70, 131.45, 144.30 ppm.

(2E,3E)-2,3-Heptandien-6-yn-1-ol. A flame-dried round-bottomed flask was charged with ZnBr₂ (579mg, 2.6 mmol). To this were added sequentially at 0 °C THF (3 mL), and C₂H₅MgBr (4.72 mL, 1.0 M solution in THF, 4.72 mmol). This slurry mixture was stirred at 0 °C for 30 min. A solution of (2E,4E)-5-iodo-4-methyl-2,4-pentadien-1-ol (960 mg, 4.3 mmol) in THF (3 mL) was dropped in and the reaction mixture was stirred for another 30 min. Meanwhile, another flask was charged with ZnBr₂ (673 mg, 3.0 mmol). To this were added sequentially at 0 °C THF (3 mL), and C₂HMgBr (11.1 mL, 0.5 M solution in THF, 5.55 mmol). This reaction mixture was stirred at 0 °C for 30 min and then transferred to the flask containing above obtained alkenylzing mixture, followed by the introduction of a suspension of Cl₂Pd(DPEphos) (153 mg, 0.22 mmol) in DMF(9 mL). After stirring at 23 °C for 4 h, the reaction mixture was quenched with 1 M HCl. extracted with Et₂O, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, 1:9 – 1:4 Et₂O/pentane) afforded the title compound (466 mg, 89%) as liquid. ¹H NMR (300 MHz, CDCl₃) δ 1.99 (s, 3 H), 2.88 (s, br, 1 H), 3.29 (d, J = 1.8 Hz, 1 H), 4.18 (d, J = 5.3 Hz, 2 H), 5.42 (s, 1 H), 5.91 (td, J = 5.9, 15.8)Hz, 1 H), 6.26 (d, J = 15.8 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 15.29, 63.08, 81.96, 84.25, 109.15, 131.12, 132.86, 148.11 ppm; HREI-MS m/z ([M]⁺) 122.0730; calcd. 122.0732.

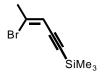
(2*E*,4*E*,6*E*)-4,6-Dimethyl-7-iodo-2,4,6-heptatrien-1-ol. To a solution of Me₃Al (1.7 mL, 17.5 mmol) in CH₂Cl₂ (16 mL) was introduced (2*E*,3*E*)-2,3-heptandien-6-yn-1-ol (820 mg, 6.7 mmol) in CH₂Cl₂ (16 mL) with syringe at -78 °C. The reaction mixture was warmed to 0 °C and stirred for 1 h. To this reaction mixture was then added a solution of

Cp₂ZrCl₂ (392 mg, 1.3 mmol) in CH₂Cl₂ (16 mL) via cannula at 0 °C. The reaction mixture was warmed to 23 °C and stirred for 1 h. TLC analysis indicated that the starting material had been completely consumed. To this mixture was added *via* cannula a solution of I₂ (2.21g, 8.7 mmol) in THF (10 mL) at -78 °C. After stirring at -78 °C for 30 min, the reaction mixture was quenched with a mixture of Na₂S₂O₃ (sat.) and NaHCO₃ (sat.) solution (1:1), extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, EtOAc/hexanes 1:5 – 1:4) afforded the title compound (1.22 g, 69%) as oil. ¹H NMR (300 MHz, CDCl₃) δ 1.62 (s, 3 H), 1.79 (s, 3 H), 3.19 (s, br, 1 H) 4.05 (d, J = 4.7 Hz, 2 H), 5.65-5.70 (m, 2 H), 6.00 (s, 1 H), 6.16 (d, J = 15.8 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.55, 25.65, 63.62, 82.06, 129.80, 132.06, 135.49, 135.53, 144.98 ppm; HREI-MS m/z ([M]⁺) 264.0015; calcd. 264.0011.

(2*E*,4*E*,6*E*)-1-(*tert*-Butyldimethylsiloxy)-4,6-dimethyl-7-iodo-2,4,6-heptatriene. To a solution of (2*E*,4*E*,6*E*)-4,6-dimethyl-7-iodo-2,4,6-heptatrien-1-ol (330 mg, 1.25 mmol) in DMF (6 mL) was introduced sequentially imidazole (170 mg, 2.50 mmol) and *ter*-butyldimethylsilyl chloride (281 mg, 1.88 mmol). After stirring at 23 °C for 3 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, Et₂O/hexanes 1:24) afforded the title compound (429 mg, 91%) as oil. ¹H NMR (300 MHz, benzene-d₆) δ 0.08 (s, 6 H), 0.99 (s, 9 H), 1.62 (s, 3 H), 1.77 (s, 3 H), 4.14 (d, *J* = 4.1 Hz, 2 H), 5.65-5.75 (m, 2 H), 5.95 (s, 1 H), 6.28 (d, *J* = 15.5 Hz, 1 H); ¹³C NMR (75 MHz, benzene-d₆) δ -4.63, 14.58, 18.92, 25.64, 26.54, 64.30, 81.68, 130.03, 131.66, 134.48, 135.61, 145.00 ppm; HREI-MS m/z ([M]⁺) 378.0881; calcd. 378.0876.

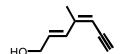
(2E,4E,6E,8E,10E,12S,13S,15S)-1,13,15-Tri(tert-butyldimethylsiloxy)-12-methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaene. To a solution of (2E,4E,6E)-1-(tert-butyldimethylsiloxy)-4,6-dimethyl-7-iodo-2,4,6-heptatriene (430 mg,

1.14 mmol) in Et₂O (3 mL) was added tBuLi (1.33 mL, 1.7 M in pentane, 2.3 mmol) slowly (5 min) at -78 °C. The resultant solution was stirred for 30 min at -78 °C. To this was added via cannula a solution of dry ZnBr₂ (256 mg, 1.1 mmol) in THF (3mL). The mixture thus obtained was stirred for 15 min at -78 °C and then warmed to 23 °C over 30 min. To this reaction mixture was added a solution of (5S,6S,8S)-6,8-bis-(tertbutyldimethylsiloxy)-1-iodo-5-methoxymethoxy-3-methyl-1,3-nonadiene (514 mg, 0.88) mmol) and Cl₂Pd(DPEphos) (36 mg, 0.05 mmol) in DMF (3 mL) via cannula at 23 °C. After stirring at 23 °C for 8 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, pure hexanes-98:2 hexanes/ethyl acetate) afforded the title compound (456 mg, 73%). $[\alpha]_D^{23} + 32^\circ$ (c 3.3, CH₂Cl₂); IR (neat) 2928, 2857, 1472, 1387, 1256, 1032, 961, 834, 774 cm⁻¹; ¹H NMR (300 MHz, benzene-d₆) δ 0.11 (s, 6 H), 0.15 (s, 3 H), 0.17 (s, 3 H), 0.20 (s, 3 H), 0.24 (s, 3 H), 1.01 (s, 9 H), 1.02 (s, 9 H), 1.05 (s, 9 H), 1.24 (d, J = 5.9 Hz, 3 H), 1.92 (s, 3 H), 1.94 (s, 3 H), 1.95-2.1 (m, 2 H), 3.22 (s, 3 H), 4.0-1.04 (d, J = 5.9 Hz, 3 H), 1.92 (s, 3 H), 1.94 (s, 3 H), 1.95-2.1 (m, 2 H), 3.22 (s, 3 H), 4.0-1.04 (s, 3 H), 1.95-2.1 (m, 2 H), 3.22 (s, 3 H), 4.0-1.04 (s, 3 H), 1.95-2.1 (m, 2 H), 3.22 (s, 3 H), 4.0-1.04 (s, 3 H), 1.95-2.1 (m, 2 H), 3.22 (s, 3 H), 4.0-1.04 (s, 3 H), 4.0-1.044.05 (m, 1 H), 4.2-4.25 (m, 3 H), 5.80 (td, J = 5.2, 15.2 Hz, 1 H), 1.84 (s, 3 H), 4.46 (d, J= 7.0 Hz, 1 H, 4.62 (dd, J = 5.3, 9.4 Hz, 1 H), 4.72 (d, J = 6.5 Hz, 1 H), 5.60 (d, J = 9.9)Hz, 1 H), 6.05 (s, 1 H), 6.21 (d, J = 11.1 Hz, 1 H), 6.36 (d, J = 15.2 Hz, 1 H), 6.60 (dd, J = 11.1 Hz, 1 H), 6.80 (dd, J = 11.1 Hz, 1 Hz = 11.1, 14.6 Hz, 1 H), 6.48 (d, J = 15.8 Hz, 1 H); 13 C NMR (75 MHz, benzene-d₆) δ -4.60, -3.98, -3.66, -3.43, 13.80, 15.04, 17.96, 18.66, 18.84, 18.96, 24.58, 26.54, 26.64, 44.93, 55.72, 64.62, 66.50, 73.25, 75.14, 94.27, 125.90, 128.59, 129.98, 132.37, 134.48, 135.86, 136.22, 136.34, 137.95, 139.62 ppm; HRESI-MS m/z ([M+Na]⁺) 731.4900; calcd. 731.4898.

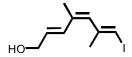

methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaen-1-ol. To a solution of (2*E*,4*E*,6*E*,8*E*,10*E*,12*S*,13*S*,15*S*)-1,13,15-Tri(*tert*-butyldimethylsiloxy)-12-methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaene (270 mg, 0.38 mmol) in THF (7 mL) was added TBAF (0.7 mL, 1M solution in THF, 0.7 mmol) slowly and the

reaction was monitored by TLC. After stirring at 23 °C for 2 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, 12:1 – 6:1 hexanes/ethyl acetate) afforded the title compound (185 mg, 82%) as oil. [α]_D²³ +40° (c 1.7, CH₂Cl₂); IR (neat) 3400, 2929, 2857, 1472, 1386, 1255, 1096, 962, 834 cm⁻¹; H NMR (300 MHz, benzene-d₆) δ 0.17 (s, 3 H), 0.19 (s, 3 H), 0.22 (s, 3 H), 0.27 (s, 3 H), 1.04 (s, 9 H), 1.08 (s, 9 H), 1.26 (d, J = 5.9 Hz, 3 H), 1.89 (s, 3 H), 1.94 (s, 3 H), 1.96 (s, 3 H), 2.0-2.1 (m, 2 H), 3.25 (s, 3 H), 4.0-4.05 (m, 3 H), 4.22 (sextet, J = 6.4 Hz, 1 H), 4.49 (d, J = 7.5 Hz, 1 H), 4.64 (dd, J = 5.3, 10.0 Hz, 1 H), 4.74 (d, J = 7.0 Hz, 1 H), 5.63 (d, J = 9.4 Hz, 1 H), 5.73 (td, J = 5.9, 15.2 Hz, 1 H), 6.06 (s, 1 H), 6.25 (d, J = 11.1 Hz, 1 H), 6.33 (d, J = 15.8 Hz, 1 H), 6.41 (d, J = 15.2 Hz, 1 H), 6.64 (dd, J = 11.2, 15.3 Hz, 1 H); ¹³C NMR (75 MHz, benzene-d₆) δ -4.01, -3.67, -3.46, 13.78, 14.97, 17.94, 18.64, 18.81, 24.54, 26.51, 26.61, 44.89, 55.71, 63.98, 66.50, 73.22, 75.14, 94.27, 125.84, 128.69, 130.04, 132.45, 134.37, 135.83, 136.45, 137.13, 137.64, 139.57 ppm; HRESI-MS m/z ([M+Na]⁺) 617.4030; calcd. 617.4034.

(2E,4E,6E,8E,10E,12S,13S,15S)-13,15-Bi(tert-butyldimethylsiloxy)-12-


material (2*E*,4*E*,6*E*,8*E*,10*E*,12*S*,13*S*,15*S*)-13,15-bi(*tert*-butyldimethylsiloxy)-12-methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaen-1-ol (85 mg, 0.14 mmol) was dissolved in CH₂Cl₂ (5 mL) followed by the introduction of NaHCO₃ (120 mg, 1.4 mmol) and Dess-Martin periodinane (130 mg, 0.30 mmol) with exclusion of light. After 20 min, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. This crude product was dissolved in *t*BuOH (3 mL), H₂O (1.5 mL) and 2-methyl-2-butene (1.5 mL) followed by the addition of NaH₂PO₄ (150 mg, 1.3 mmol) and NaClO₂ (60 mg, 0.66 mmol) with exclusion of light. After stirring at 23 °C for 6 h, the reaction mixture was quenched with NH₄Cl (sat.), extracted with EtOAc, washed with brine, dried over MgSO₄, filtered, and concentrated.

Flash chromatography (silica gel, 2:1–3:2 hexanes/ethyl acetate) afforded the title compound (67 mg, 77% over two steps) as oil. $[\alpha]_D^{23}$ +33° (c 6.6, CH₂Cl₂); IR (neat) 2955, 2930, 2857, 1683, 1609, 1256, 1029, 836, 775 cm⁻¹. ¹H NMR (300 MHz, benzene-d₆) δ 0.17 (s, 3 H), 0.19 (s, 3 H), 0.22 (s, 3 H), 0.26 (s, 3 H), 1.04 (s, 9 H), 1.08 (s, 9 H), 1.26 (d, J = 6.0 Hz, 3 H), 1.67 (s, 3 H), 1.73 (s, 3 H), 1.92 (s, 3 H), 1.9-2.1 (m, 2 H), 3.24 (s, 3 H), 4.05 (q, J = 6.1 Hz, 1 H), 4.22 (sextet, J = 6.0 Hz, 1 H), 4.49 (d, J = 6.6 Hz, 1 H), 4.64 (dd, J = 5.3, 9.8 Hz, 1 H), 4.72 (d, J = 6.6 Hz, 1 H), 5.68 (d, J = 9.8 Hz, 1 H), 6.48 (d, J = 15.4 Hz, 1 H), 6.1-6.15 (m, 2 H), 6.40 (d, J = 15.2 Hz, 1 H), 6.52 (dd, J = 10.9, 15.1 Hz, 1 H), 7.68 (d, J = 15.4 Hz, 1 H); ¹³C NMR (75 MHz, benzene-d₆) δ -4.00, -3.66, -3.48, 13.74, 14.29, 17.19, 18.66, 18.82, 24.53, 26.51, 26.59, 44.87, 55.71, 66.49, 73.17, 75.15, 94.37, 116.55, 125.33, 131.46, 133.05, 135.22, 136.09, 139.37, 139.68, 145.06, 153.51, 173.61 ppm; HRMS(ESI) calcd. for C₃₃H₆₀O₆Si₂Na [M+Na]⁺ 631.3826, found 631.3828.



(*Z*)-1-Trimethylsilyl-4-bromo-3-penten-1-yne. To a mixture of 4-trimethylsilyl-1,1-dibromo-1-buten-3-yne^[c] (1.49 g, 5.3 mmol) and $Cl_2Pd(DPEphos)$ (189 mg, 0.26 mmol) in THF (15 mL) and DMF (15 mL) was added Me_2Zn (1.7 mL, 2.0 M in toluene, 3.4 mmol) at 23 °C. The resultant mixture was stirred at 23 °C and monitored by GLC. After 2 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, pure hexanes) afforded the title compound (805 mg, 70%) as liquid. ¹H NMR (300 MHz, CDCl₃) δ 0.19 (s, 9 H), 2.34 (s, 3 H), 5.89 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 0.015, 28.87, 99.63, 101.91, 111.44, 134.77 ppm; HREI-MS m/z ([M]⁺) 215.9968; calcd. 215.9970.

(3Z,5E)-7-(tert-Butyldimethylsiloxy)-1-trimethylsily-3,5-heptadien-1-vne. solution of (E)-1-(tert-butyldimethylsiloxy)-3-iodo-2-propene^[d] (2.23g, 7.5 mmol) in Et₂O (7.5 mL) was added tBuLi (8.60 mL, 1.7 M in pentane, 14.6 mmol) slowly (~15 min) at -78 °C. The resultant solution was stirred for 30 min at -78 °C. To this was added via cannula a solution of dry ZnBr₂ (1.69 g, 7.5 mmol) in THF (7.5 mL). The mixture thus obtained was stirred for 15 min at -78 °C and then warmed to 23 °C over 30 min. To this reaction mixture was added a solution of (Z)-1-trimethylsilyl-4-bromo-3-penten-1yne (805 mg, 3.7 mmol) and Cl₂Pd(DPEphos) (134 mg, 0.19 mmol) in DMF (7.5 mL) via cannula at 23 °C. The reaction mixture was then warmed to 45 °C. After stirring at 45 °C for 8 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, pure hexanes – 99:1 hexanes/EtOAc) afforded the title compound (941 mg, 82%) as oil. ¹H NMR (300 MHz, CDCl₃) δ 0.11 (s, 6 H), 0.20 (s, 9 H), 0.94 (s, 9 H), 1.89 (s, 3 H), 4.34 (d, J = 4.1 Hz, 2 H), 5.40 (s, 1 H), 5.94 (td, J = 4.7, 15.2 Hz, 1 H), 6.99 (d, J = 15.3)Hz, 1 H); ¹³C NMR (75MHz, CDCl₃) δ -5.00, 0.26, 18.59, 19.59, 26.20, 63.77, 99.58, 102.76, 108.40, 128.12, 132.73, 146.38 ppm; HREI-MS m/z ([M]⁺) 308.1996; calcd. 308.1992.

(2*E*,3*Z*)-2,3-Heptandien-6-yn-1-ol. To a solution of (3*Z*, 5*E*)-7-(*tert*-butyldimethylsiloxy)-1-trimethylsily-3,5-heptadien-1-yne (941 mg, 3.1 mmol) in THF (7 mL) was added TBAF (6.20 mL, 1.0 M in THF, 6.2 mmol) at 23 °C. After stirring for 2 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, Et₂O/pentane 1:4 – 1:3) afforded the title compound (305 mg, 81%) as oil. ¹H NMR (300 MHz, CDCl₃) δ 1.87 (s, 3 H), 3.01 (brs, 1 H), 3.19 (d, *J* = 2.3 Hz, 1 H), 4.23 (d, *J* = 5.3 Hz, 2 H), 5.35 (s, 1 H), 5.97 (td, *J* = 5.9, 15,8 Hz, 1 H), 6.91 (d, *J* = 15.8 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.30, 63.21, 81.06, 82.71, 107.70, 129.11, 132.45, 146.95 ppm; HREI-MS m/z ([M]⁺) 122.0734; calcd. 122.0732.

(2E,4Z,6E)-4,6-Dimethyl-7-iodo-2,4,6-heptatrien-1-ol. To a solution of Me₃Al (0.60 mL, 6.2 mmol) in CH₂Cl₂ (5 mL) was introduced (2E, 3Z)-2,3-heptandien-6-yn-1-ol (305 mg, 2.5 mmol) in CH₂Cl₂ (5 mL) with syringe at -78 °C. The reaction mixture was warmed to 0 °C and stirred for 1 h. To this reaction mixture was then added a solution of Cp₂ZrCl₂ (213 mg, 0.73 mmol) in CH₂Cl₂ (5 mL) via cannula at 0 °C. The reaction mixture was warmed to 23 °C and stirred for 1 h. TLC analysis indicated that the starting material had been completely consumed. To this mixture was added via cannula a solution of I₂ (945 mg, 3.7 mmol) in THF (5 mL) at -78 °C. After stirring at -78 °C for 30 min, the reaction mixture was quenched with a mixture of Na₂S₂O₃ (sat.) and NaHCO₃ (sat.) solution (1:1), extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, EtOAc/hexanes 1:5–1:4) afforded the title compound (455 mg, 69%) as oil. ¹H NMR (300 MHz, benzene-d₆) δ 0.86 (brs, 1H), 1.69 (s, 3 H), 1.79 (s, 3 H), 3.96 (d, J = 5.3 Hz, 2 H), 5.51 (s, 1 H), 5.75 (td, J = 5.8, 15.6 Hz, 1 H), 6.08 (s, 1 H), 6.69 (d, J = 15.8 Hz, 1 H); ¹³C NMR (75 MHz, benzene-d₆) δ 21.24, 25.60, 63.78, 81.93, 128.93, 130.60, 131.82, 134.77, 144.80 ppm; HREI-MS m/z $([M]^{+})$ 264.0006; calcd. 264.0011.

(2*E*,4*Z*,6*E*)-1-(*tert*-Butyldimethylsiloxy)-4,6-dimethyl-7-iodo-2,4,6-heptatriene. To a solution of (2*E*,4*Z*,6*E*)-4,6-dimethyl-7-iodo-2,4,6-heptatrien-1-ol (455 mg, 1.7 mmol) in DMF (13 mL) was introduced imidazole (351 mg, 5.2 mmol) and *ter*-butyldimethylsilyl chloride (517 g, 3.4 mmol). After stirring at 23 °C for 3 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, Et₂O/hexanes 1:24) afforded the title

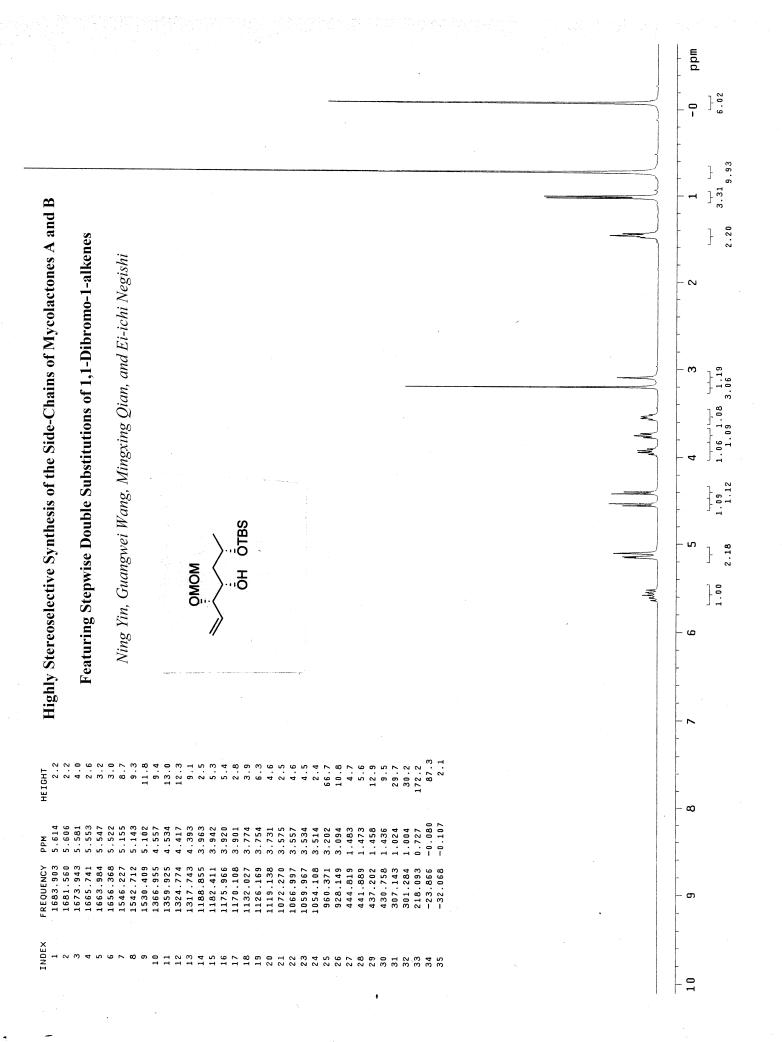
compound (612 mg, 94%) as oil. ¹H NMR (300 MHz, benzene-d₆) δ 0.03 (s, 6 H), 0.96 (s, 9 H), 1.69 (s, 3 H), 1.78 (s, 3 H), 4.08 (d, J = 4.3 Hz, 2 H), 5.50 (s, 1 H), 5.70 (td, J = 4.4, 15.7 Hz, 1 H), 6.04 (s, 1 H), 6.80 (d, J = 15.7 Hz, 1 H); ¹³C NMR (75 MHz, benzene-d₆) δ -4.67, 18.95, 21.23, 25.57, 26.63, 64.01, 81.52, 127.63, 130.12, 131.75, 134.79, 144.82, ppm; HREI-MS m/z ([M]⁺) 378.0870; calcd. 378.0876.

(2E,4Z,6E,8E,10E,12S,13S,15S)-1,13,15-Tri(tert-butyldimethylsiloxy)-12-

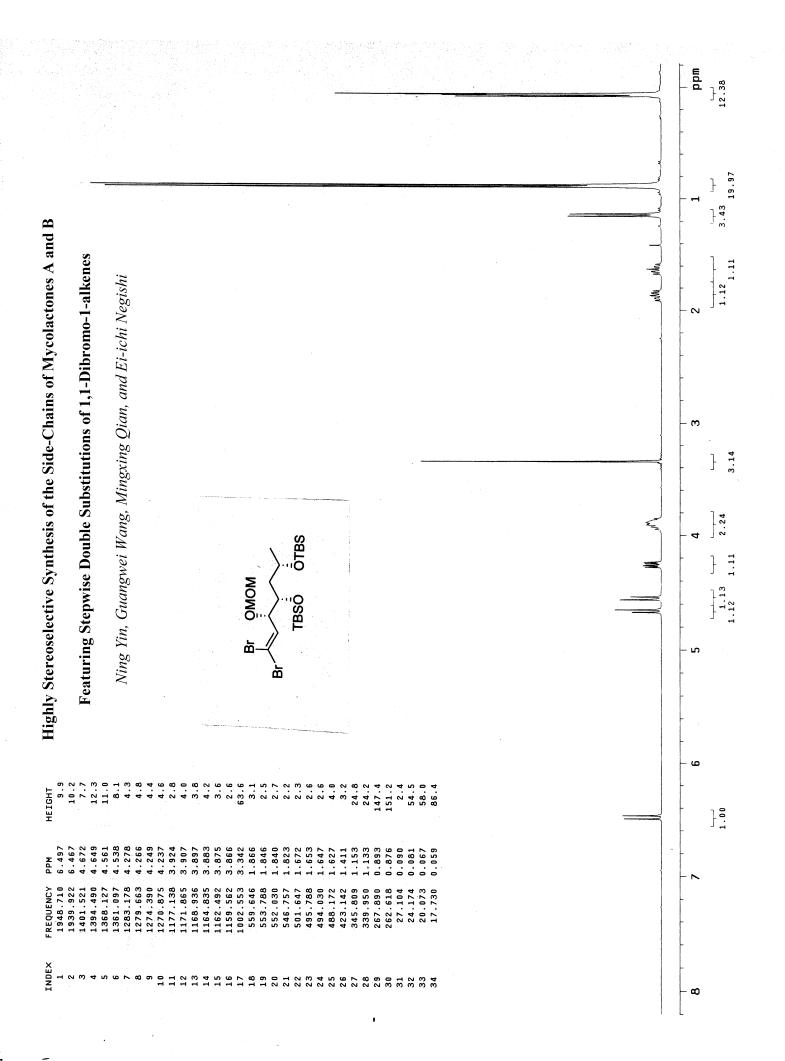
methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaene. To a solution of (2E,4Z,6E)-1-(t-butyldimethylsiloxy)-4,6-dimethyl-7-iodo-2,4,6-heptatriene (250 mg, 0.66 mmol) in Et₂O (2 mL) was added tBuLi (0.78 mL, 1.7 M in pentane, 1.3 mmol) slowly (5 min) at -78 °C. The resultant solution was stirred for 30 min at -78 °C. To this was added via cannula a solution of dry ZnBr₂ (149 mg, 0.66 mmol) in THF (2 mL). The mixture thus obtained was stirred for 15 min at -78 °C and then warmed to 23 °C over 30 min. To this reaction mixture was added a solution of (5S,6S,8S)-6,8-bi(tertbutyldimethylsiloxy)-1-iodo-5-methoxymethoxy-3-methyl-1,3-nonadiene (270 mg, 0.46 mmol) and Cl₂Pd(DPEphos) (16 mg, 0.022 mmol) in DMF (2 mL) via cannula at 23 °C. After stirring at 23 °C for 8 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, pure hexanes – 98:2 hexanes/ethyl acetate) afforded the title compound (231 mg, 71%) as oil. $[\alpha]_D^{23} + 35^\circ$ (c 2.8, CH₂Cl₂); IR (neat) 3045, 2955, 2930, 2857, 1683, 1609, 1256, 1029, 836, 775 cm⁻¹; 1 H NMR (300 MHz, benzene-d₆) δ 0.07 (s, 6 H), 0.14 (s, 3 H), 0.16 (s, 3 H), 0.19 (s, 3 H), 0.23 (s, 3 H), 1.00 (s, 9 H), 1.01 (s, 9 H), 1.04 (s, 9 H), 1.23 (d, J = 5.9 Hz, 3 H), 1.87 (s, 6 H), 1.82 (s, 3 H), 1.95-2.05 (m, 2 H), 3.21 (s, 3 H), 4.0-4.05 (m, 1 H), 4.20-4.25 (m, 3 H), 4.45 (d, J = 6.4 Hz, 1 H), 4.61 (dd, J= 5.3, 9.4 Hz, 1 H), 4.71 (d, J = 6.4 Hz, 1 H), 5.55 (d, J = 10.0 Hz, 1 H), 5.88 (s, 1 H), 5.80 (td, J = 4.7, 15.8 Hz, 1 H), 6.3-6.4 (m, 2 H), 6.61 (dd, J = 11.1, 14.6 Hz, 1 H), 7.17 (d, J = 15.8 Hz, 1 H); ¹³C NMR (75MHz, benzene-d₆) δ -4.68, -3.98, -3.66, -3.42, 13.81, 18.22, 18.68, 18.84, 22.16, 24.57, 26.54, 26.66, 44.93, 55.71, 64.30, 66.50, 73.25, 75.10, 94.21, 125.93, 128.63, 129.70, 130.77, 131.97, 133.49, 134.22, 135.56, 137.53, 139.69 ppm; HRESI-MS m/z ([M+Na]⁺) 731.4884; calcd. 731.4898.

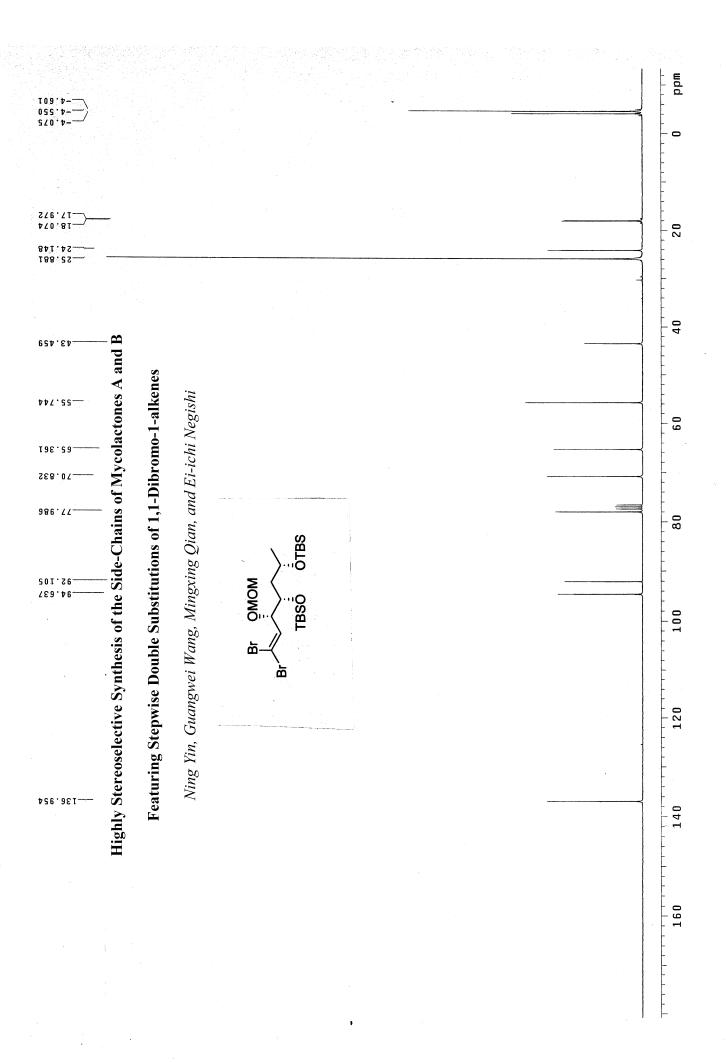
(2E,4Z,6E,8E,10E,12S,13S,15S)-13,15-Bi(tert-butyldimethylsiloxy)-12-

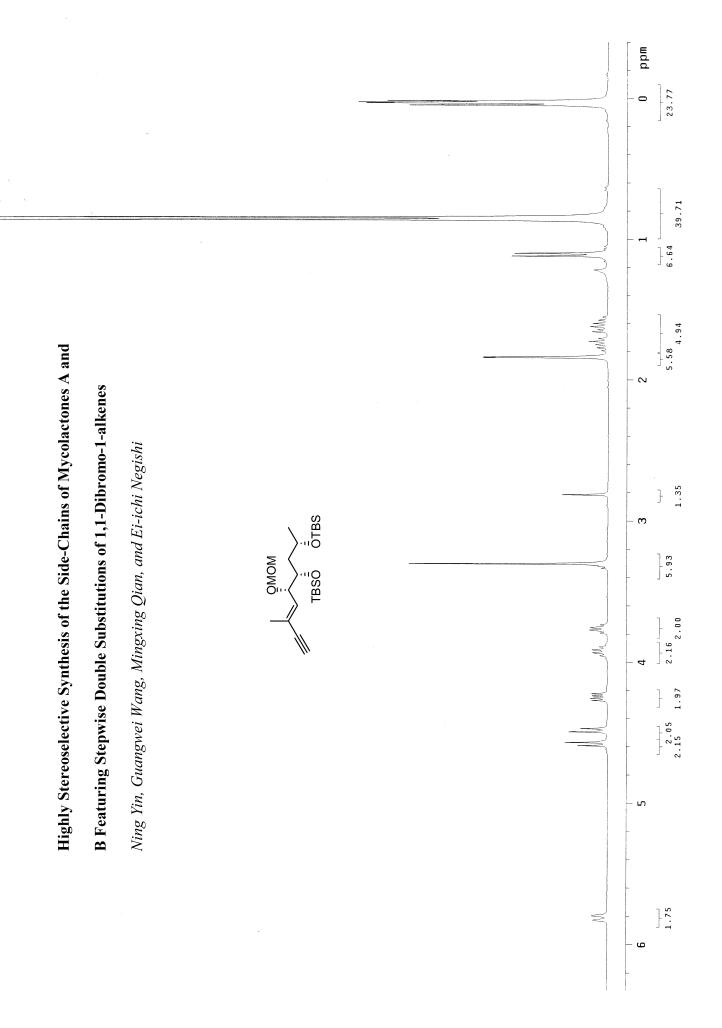
methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaen-1-ol. To a solution of (2E,4Z,6E,8E,10E,12S,13S,15S)-1,13,15-tri(tert-butyldimethylsiloxy)-12-


methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaene (110 mg, 0.16 mmol) in THF (3 mL) was added TBAF (0.35 mL, 1 M solution in THF, 0.35 mmol) slowly and the reaction was monitored by TLC. After stirring at 23 °C for 2 h, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, 12:1 - 6:1 hexanes/ethyl acetate) afforded the title compound (84 mg, 88%) as oil. $[\alpha]_D^{23}$ +44° (c 1.2, CH₂Cl₂); IR (neat) 3421, 2954, 2930, 2886, 2857, 1472, 1463, 1361, 1256, 1096, 1031, 940, 836, 775 cm⁻¹; ¹H NMR (300MHz, benzene-d₆) δ 0.13 (s, 3 H), 0.16 (s, 3 H), 0.18 (s, 3 H), 0.23 (s, 3 H), 1.01 (s, 9 H), 1.04 (s, 9 H), 1.22 (d, J = 6.5 Hz, 3 H), 1.84 (s, 3 H), 1.85 (s, 3 H), 1.91 (s, 3 H), 1.95-2.05 (m, 2 H), 3.20 (s, 3 H), 3.91 (brs, 2 H), 4.00 (q, J = 5.9 Hz, 1 H), 4.19 (hex, J = 6.4 Hz, 1 H), 4.43 (d, J = 7.1 Hz, 1 H), 4.6-4.65 (m, 1 H), 4.68 (d, J = 6.4Hz, 1 H), 5.53 (d, J = 9.4 Hz, 1 H), 5.72 (td, J = 5.8, 15.9 Hz, 1 H), 5.90 (s, 1 H), 6.26 (d, J = 11.2 Hz, 1 H), 6.36 (d, J = 15.2 Hz, 1 H), 6.60 (dd, J = 11.1, 14.8 Hz, 1 H), 6.98 (d, J = 11.1, 14.8 Hz), 6.98 (d, = 15.8 Hz, 1 H); 13 C NMR (75MHz, benzene-d₆) δ -3.67, -3.46, -4.01, 13.78, 18.18, 18.66, 18.82, 22.14, 24.55, 26.53, 26.62, 44.91, 55.71, 64.04, 66.50, 73.23, 75.13, 94.23, 125.86, 129.81, 129.99, 130.98, 132.13, 133.33, 134.65, 135.56, 137.53, 139.55 ppm; HRESI-MS m/z ([M+Na]⁺) 617.4024; calcd. 617.4034.

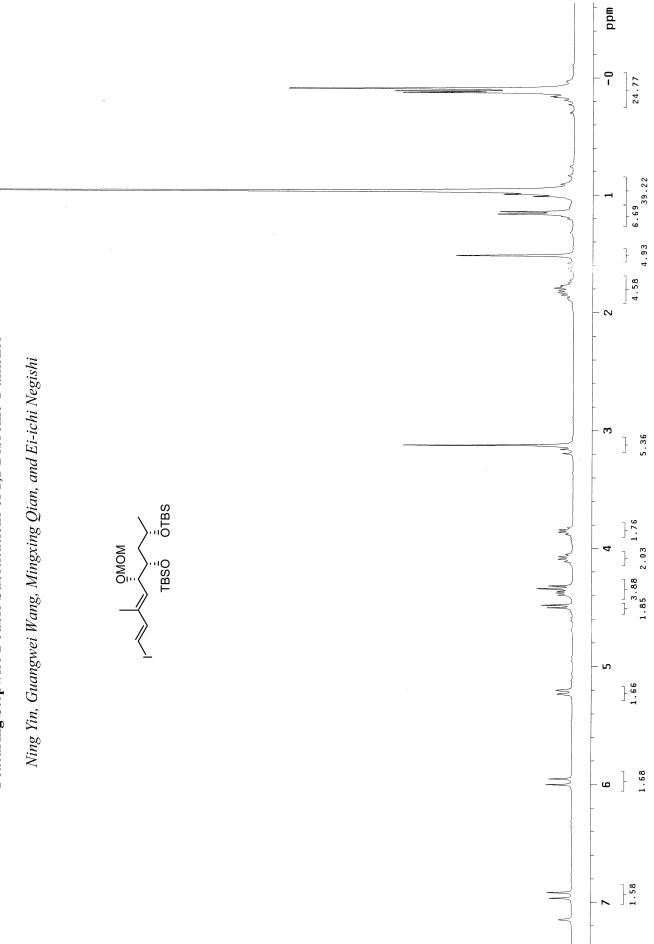
(2E,4Z,6E,8E,10E,12S,13S,15S)-13,15-Bi(tert-butyl-dimethyl-siloxy)-12-

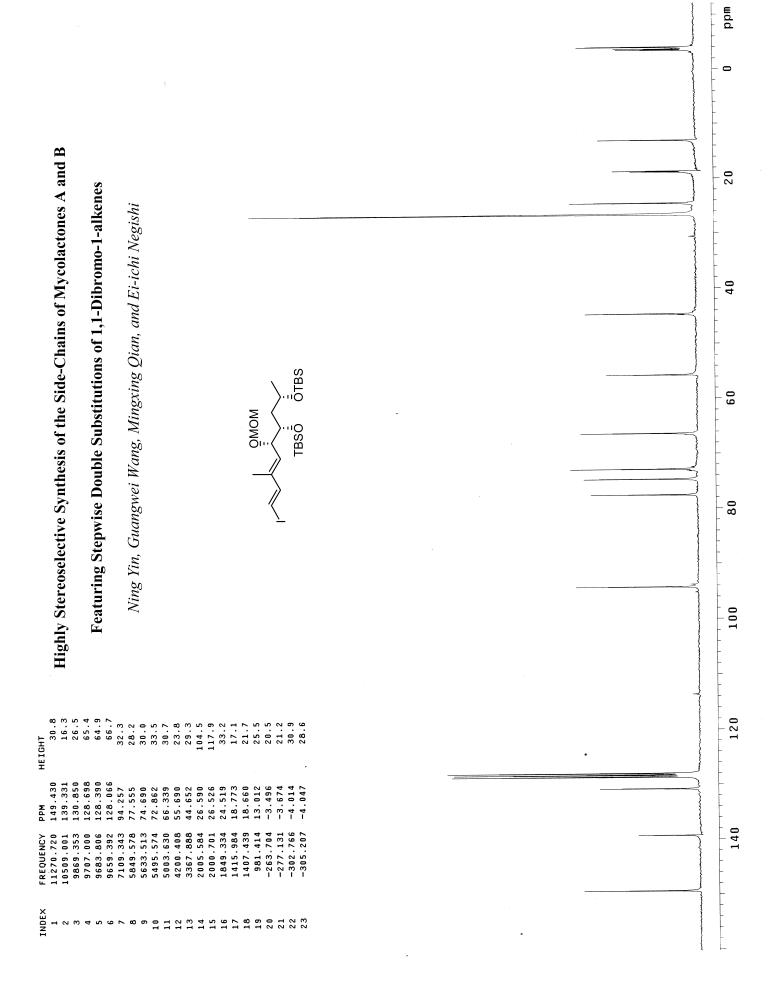

methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaenoic Starting material (2E,4Z,6E,8E,10E,12S,13S,15S)-13,15-bi(tert-butyldimethylsiloxy)-12methoxymethoxy-4,6,10-trimethyl-2,4,6,8,10-hexadecapentaen-1-ol (65 mg, 0.11 mmol) was dissolved in CH₂Cl₂ (3 mL) followed by the introduction of NaHCO₃ (88 mg, 1.05 mmol) and Dess-Martin periodinane (89 mg, 0.21 mmol) with exclusion of light. After 20 min, the reaction mixture was quenched with water, extracted with ether, washed with brine, dried over MgSO₄, filtered, and concentrated. This crude product was dissolved in tBuOH (2 mL), H₂O (1 mL) and 2-methyl-2-butene (1 mL) followed by the addition of NaH₂PO₄ (60 mg, 0.5 mmol) and NaClO₂ (40 mg, 0.44 mmol) with exclusion of light. After stirring at 23 °C for 6 h, the reaction mixture was quenched with NH₄Cl (sat.), extracted with EtOAc, washed with brine, dried over MgSO₄, filtered, and concentrated. Flash chromatography (silica gel, 2:1 – 3:2 hexanes/ethyl acetate) afforded the title compound (49 mg, 73% over two steps) as oil. $[\alpha]_D^{23}$ +26° (c 3.5, CH₂Cl₂); IR (neat) 2955, 2957, 2887, 1685, 1606, 1255, 1097, 1033, 835, 775 cm⁻¹; ¹H NMR (300 MHz, benzene-d₆) δ 0.14 (s, 3 H), 0.17 (s, 3 H), 0.20 (s, 3 H), 0.24 (s, 3 H), 1.01 (s, 9 H), 1.05 (s, 9 H), 1.23 (d, J = 6.4 Hz, 3 H), 1.63 (s, 3 H), 1.78 (s, 3 H), 1.87 (s, 3 H), 1.9-2.0 (m, 2 H)H), 3.32 (s, 3 H), 3.97 (sextet, J = 5.9 Hz, 1 H), 4.00 (q, J = 6.5 Hz, 1 H), 4.39 (dd, J =4.6, 10.0 Hz, 1 H), 4.49 (d, J = 6.5 Hz, 1 H), 4.60 (d, J = 7.0 Hz, 1 H), 5.58 (d, J = 9.4Hz, 1 H), 5.95-6.0 (m, 2 H), 6.13 (d, J = 10.6 Hz, 1 H), 6.35 (d, J = 15.2 Hz, 1 H), 6.47 $(dd, J = 10.5, 15.2, Hz, 1 H), 8.29 (d, J = 15.8 Hz, 1 H); {}^{13}C NMR (75 MHz, benzene-d₆)$ δ -4.00, -3.65, -3.48, 13.71, 17.65, 18.68, 18.82, 21.27, 24.61, 26.53, 26.62, 44.96, 55.72, 66.50, 73.20, 75.18, 94.51, 118.71, 125.38, 131.38, 131.66, 135.01, 135.53, 139.30, 139.54, 142.83, 145.25, 173.52 ppm; HRMS(ESI) calcd. for C₃₃H₆₀O₆Si₂Na [M+Na]⁺ 631.3826, found 631.3848.


References:

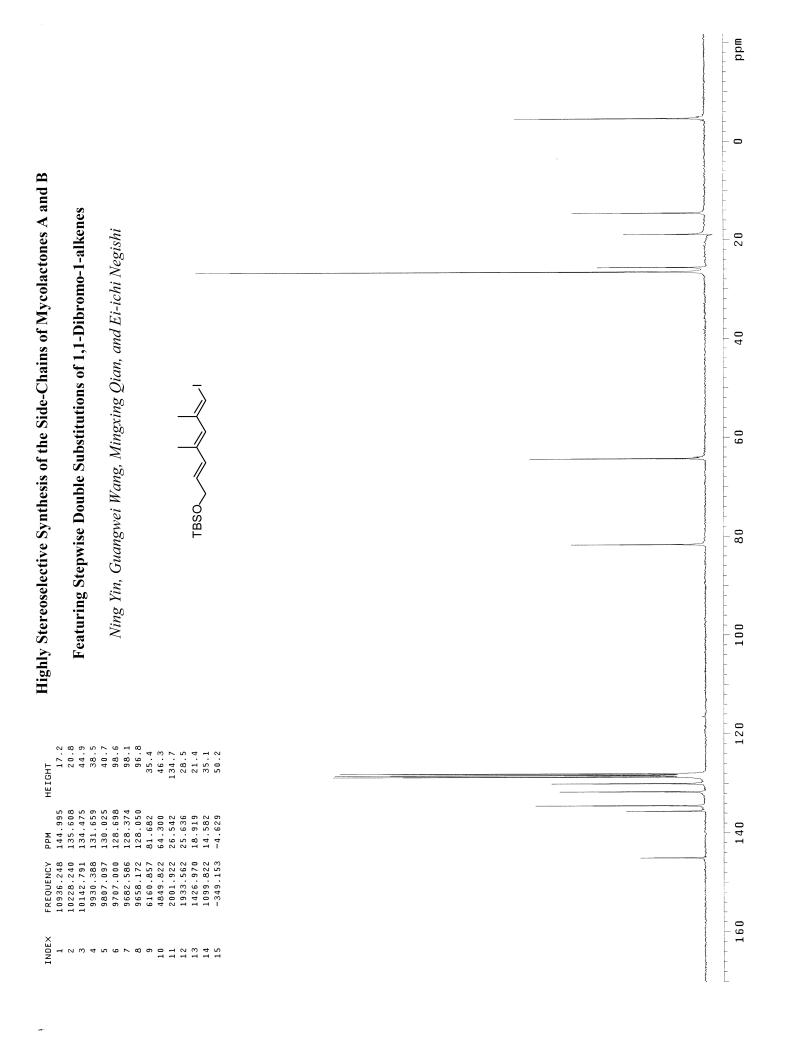

- [a] X. Zeng, Q. Hu, M. Qian, E.-i. Negishi, J. Am. Chem. Soc. 2003, 125, 13636-13637.
- [b] C. Dai, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 2719-2724.
- [c] J. Uenishi, R. Kawahama, O. Yonemitsu, J. Tsuji, J. Org. Chem. 1996, 61, 5716-5717.
- [d] C. Xu, E.-i. Negishi, Tetrahedron Lett. 1999, 40, 431-434.

						entako errendea (h. 1946). 1940 - Maria Harris, dari dari dari dari dari dari dari dari				
										шdd
	•						*	· .		
							-			0
\sim										
I pu										
A a	enes	\dot{i}					And an artist of the second			20
Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B	Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes	Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi		The second secon						
olact	no-1	ii Ne								
Ayec	bron	ï-icl								40
of N	I-Dil	nd E								
ains	of 1,1	ли, а								}
-Ch	ons (z Qie			•					0.9
Side	tutic	gxing								
the	ıbsti	Ming								
is of	le Sı	mg,								80
thes	qno	ei We		OTBS						
Syn	ise D	ıgwe)p						{ [
tive	epwi	Guai	OMOM	, }…ੁ						100
selec	g St	Yin,	Ō	''.\						
ereo	urin	ing		//						-
y St	Feat	~	· ************************************		WINDS OF STREET					120
lighl										-
Œ		•			•			•		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
										140
	V 0 15	2	· · · · · · · · · · · · · · · · · · ·							
НЕ І СНТ 47 43	45.	7.7 7.3 46.9 46.6 39.6 44.2	48.6 31.2 38.3 37.4							-
										160
M. 4648.826	.518 .085	77.000 76.575 71.477 67.401 55.030 41.496 25.463	.410 .543 .640						•	
										-
FREQUENCY 10141.983 8962.479	53.60 40.42 39.76	5807.724 5775.681 5391.159 5083.695 4150.620 3129.807	65.671 23.166 49.960 89.633							180
FRE 101 89	7 0 6 0 5 8	58 57 53 50 50 41 41	1765. 1323. -349.							1
INDEX 1 2	ω 4 τ.	2 2 3 3 3 4 3 5 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	M # 16 16							-
Z	- -		6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							200
						•				IF

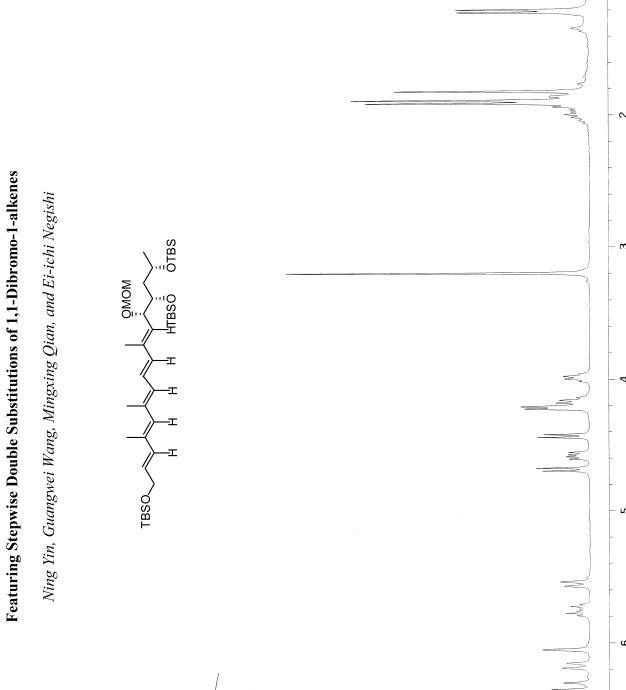




		midd 0
nes A and B alkenes ishi		20
Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi		40
nesis of the Side-Cl uble Substitutions Wang, Mingxing Q	TBSÖ ÖTBS	
Stereoselective Syntl aturing Stepwise Do Ning Yin, Guangwei		80
Highly Stereo Featurin		A D O
HEIGHT 32.5 20.6 33.0 14.3 27.5 28.5 27.7 27.7 35.1 29.0 33.7 34.2 31.0		120
Y PPM 3 136.166 4 94.208 1 86.110 4 77.653 0 77.230 5 76.807 5 76.807 5 76.807 5 76.807 5 76.807 5 76.807 7 76.807 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1
FREQUENCY 10270.293 9195.165 7105.614 6494.831 5857.004 5857.004 5857.004 5857.004 5857.004 5857.004 5857.004 5793.135 5701.075 571.895 571.895 571.895 571.895 571.895	1968.47 1827.21 1378.40 1378.40 1367.76 -298.07 -308.07	140
I ND E ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And the second s


Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes



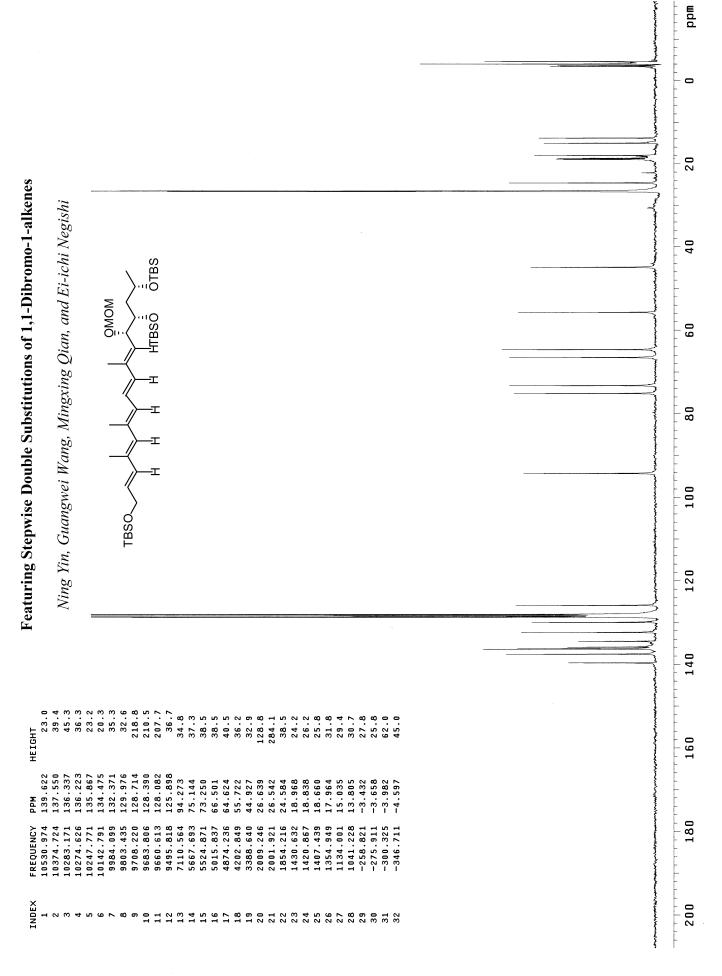
22.31 36.82 10.89 11.05 Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi 6.84 6.61 2.77 2.71

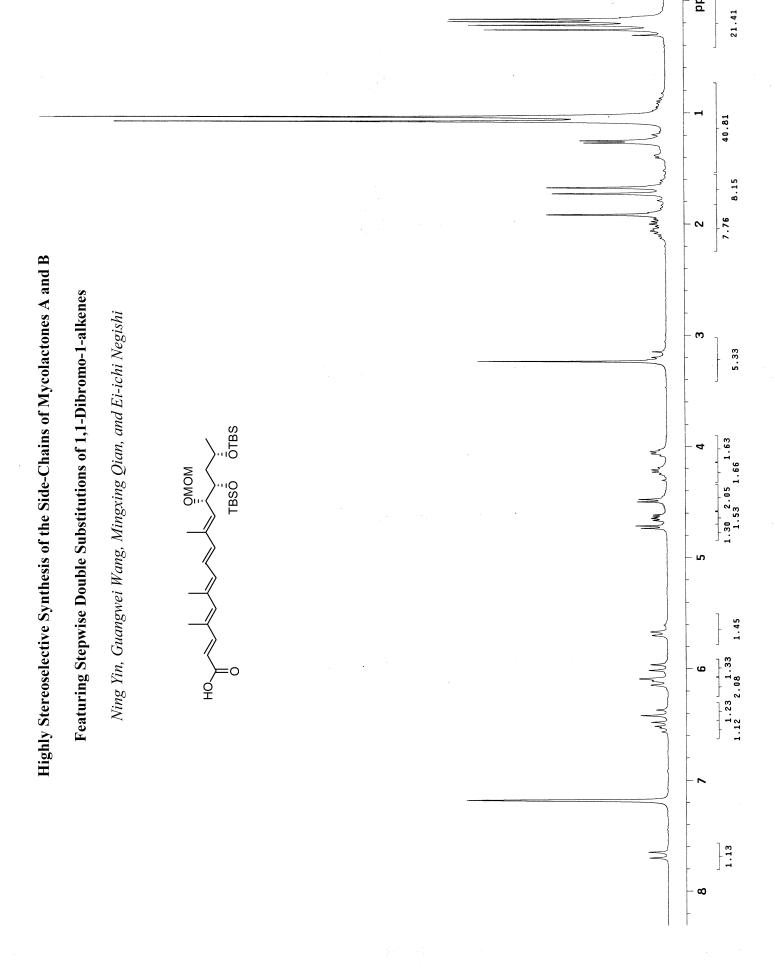
Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

шdd

22.16

4.56


14.81

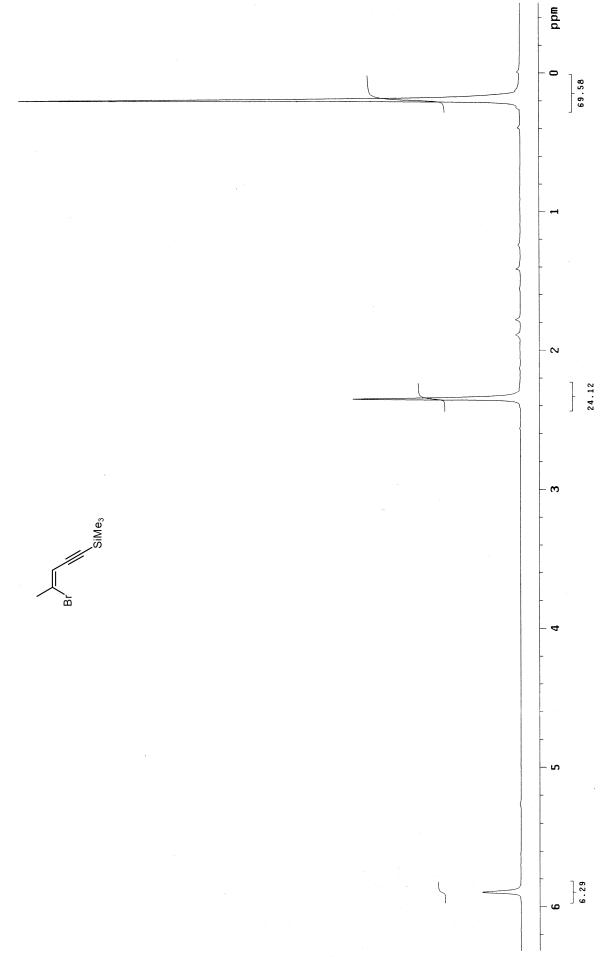

3.81

1.29 3.99 1.36

1.41

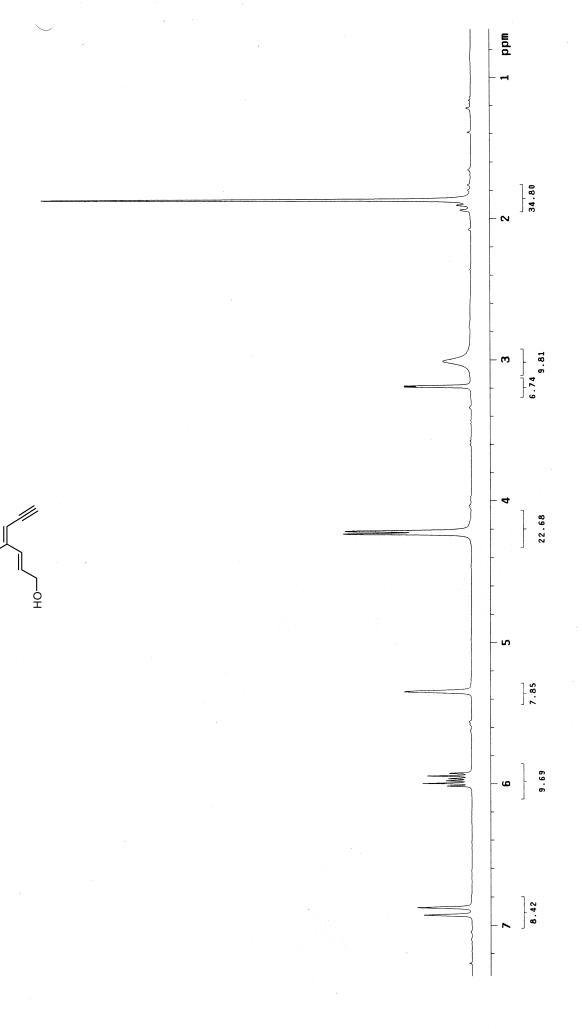
 $1.34 \quad 1.44 \quad 1.18 \\ 1.26 \quad 1.21$

Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

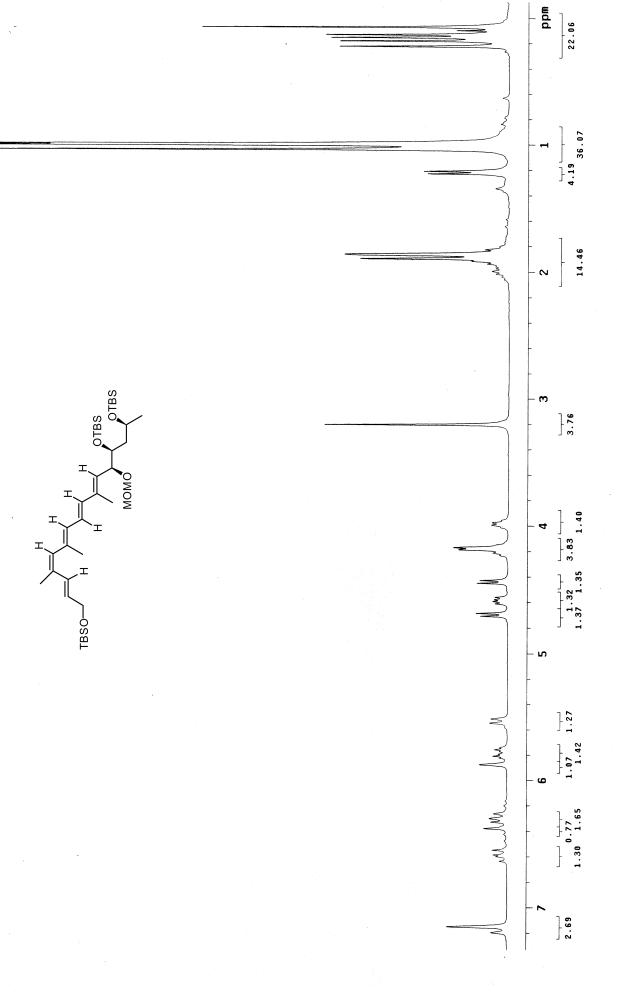

Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes

шdd

Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B


Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes

Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi


			-
			wdd
			-
			10
~			-
and I	5 0		20
Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B	Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi		-
acton	aturing Stepwise Double Substitutions of 1,1-Dibromo-1-alker Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi		30
1 ycol	oromo i-ichi		40
s of N	1-Dil		4
hain	, of 1,		20
ide-C	itions \mathcal{L}	g.	
the S	bstitu Aingx	SIMes	0.9
is of	le Su		
nthes	Doub		7.0
ve Sy	wise		
electi	Step		80
ereos	uring ing Yi		
ly Ste	Featu N,		06
High			0
			100
0.0	15.7 10.7 12.2 12.2 12.4 63.6		10
HE IGHT	15. 10. 12. 12. 12. 63.		-
PPM 134.765 111.444	101.911 99.629 77.667 77.230 76.809 28.871 0.015		120
FREQUENCY 10164.669 8405.636	7686.642 7514.523 5858.029 5825.070 5793.331 2177.609		130
10 8	N. OS. ÓS ÓS A A		
X	W 4 22 10 1/ 10 10		140
			F

Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

			_
			E
			-
			30
-			- m
and B	Ø		40
ies A	lkene ishi		-
lactor	10-1-a		20
Myco	lbrom Ei-ich		
ns of I	I,1-Di		09
Chaii	ns of J		
Side-	itutio gxing		7.0
of the	Substi , Min		-
hesis	uble 9	9	80
Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B	Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi	I	06
ective	tepwi Guar		6
leosel	ring S 1g Yin,		100
y Ster	Featur Niv		-
Highl	-		110
1T 31.9	83.1 89.9 88.8 91.6 27.1 96.8		120
HEIG			
PPM 146.949	132.451 129.109 107.703 82.711 81.063 63.205 19.320		130
ENCY P	052 11 491 11 493 8 8 207 8 207 8 5 204 6 6 237 11 237 11		
FREQUENCY 11083.617	99990.076 9738.052 8123.491 6238.493 6114.207 4767.204		140
X	2 10 4 50 9 7 80		9
H			150

													wdd
d B													0
lactones A an	no-1-alkenes	ii Negishi										As a second seco	20
Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B	aturing Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes	Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi						1					40
s of the Side-C	Substitutions	ıg, Mingxing ${\cal Q}$						ļ L	\ _0	!			09
ctive Synthesis	epwise Double	Guangwei War							-TBSO-				80
nly Stereoseled	Featuring St	Ning Yin,											100
High													120
	HEIGHT 6.7 8.7	16.4 17.5	27.4	27.8	17.9	15.9	19.0	10.2	17.3	7.1	23.4		140
	ррм 144.826 134.798	131.762 130.126	128.390	128.070	127.631	81.523	64.UIS	25.574	21.233	18.952	-4.666	- The state of the	-
		9938.131 9814.709 9708.260									-351.968	franchistation containing the state of the s	160
	INDEX 1 2	w 4 n	, .	7	∞ 6	D C	7 1	12	13	14	15		180

Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi

110.2

3388.640

2010.466 2001.921 1852.996

1201.628

1849.822

5664.031

9782.683

10224.578 10123.259 10068.328 9953.582 1671.111 1420.867 -300.325

-275.911

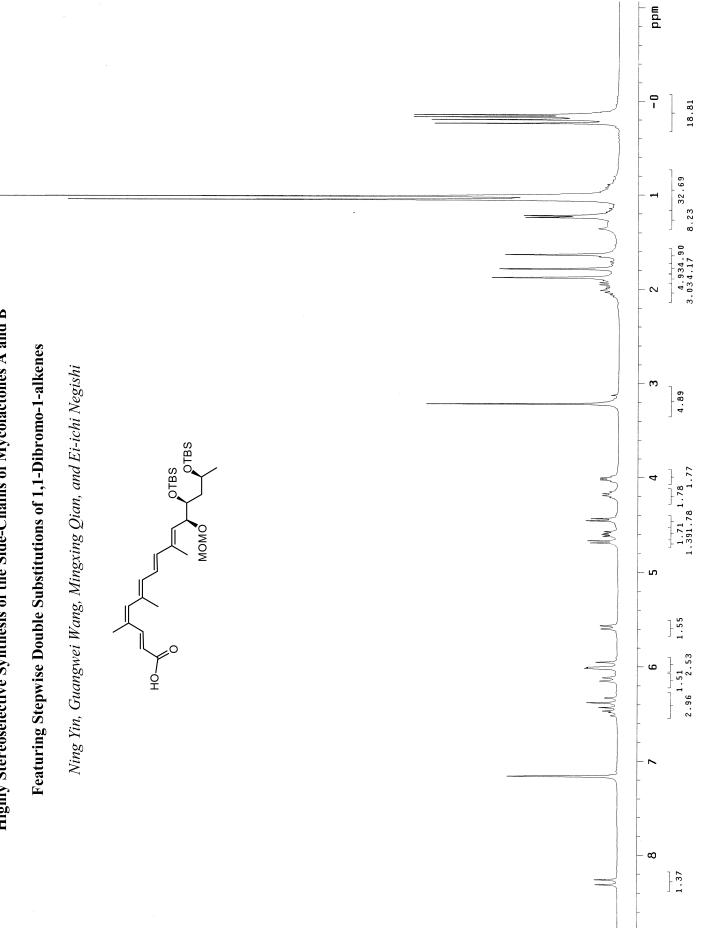
mdd

0

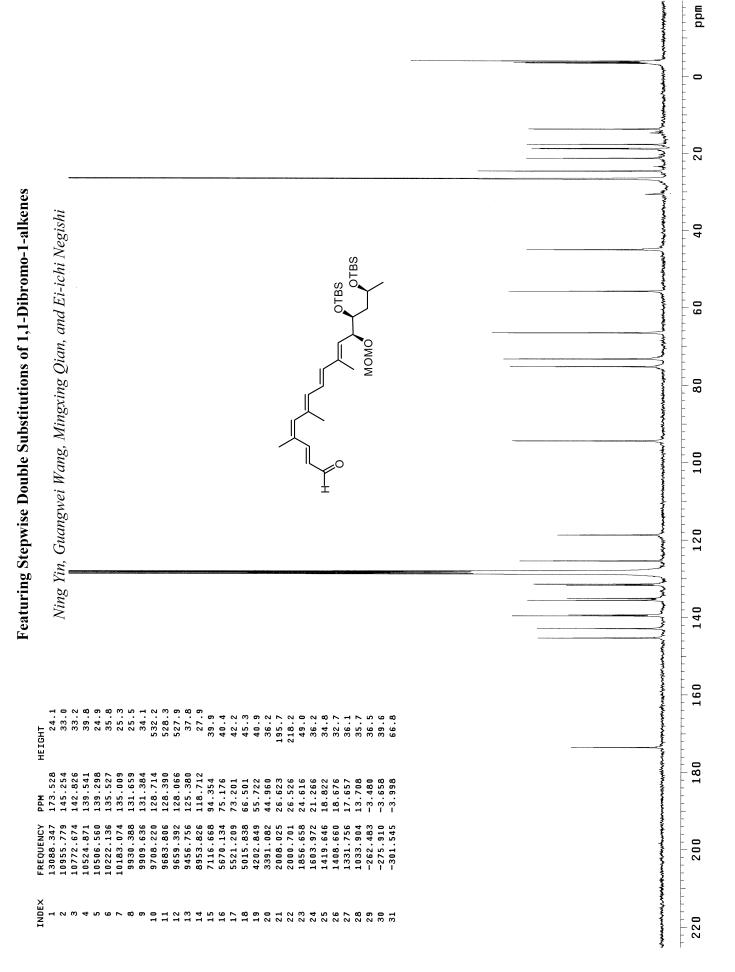
20

40

9


80

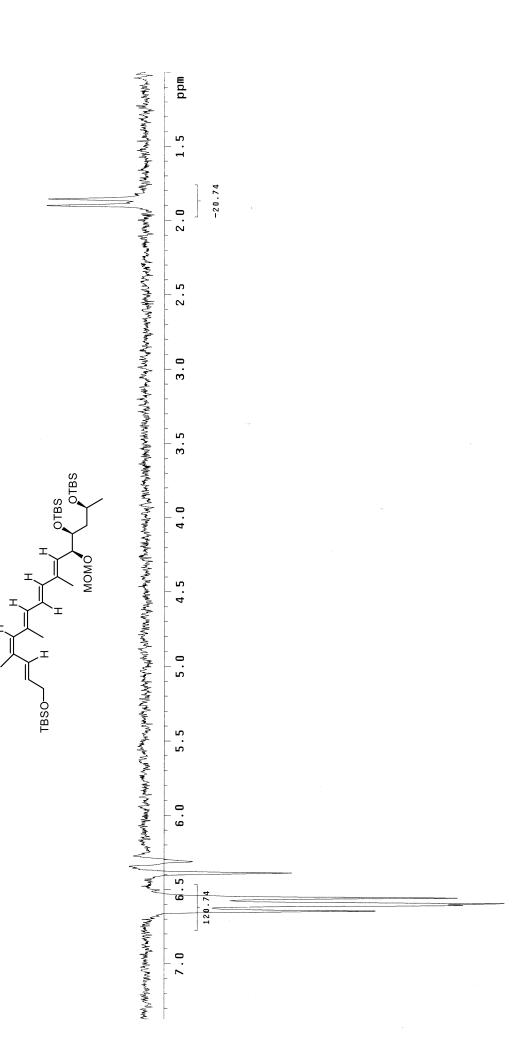
100


120

140

Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B


шdd THE STREET OF THE PROPERTY OF -1 Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi 11 12

Ning Yin, Guangwei Wang, Mingxing Qian, and Ei-ichi Negishi


Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes

Highly Stereoselective Synthesis of the Side-Chains of Mycolactones A and B

Featuring Stepwise Double Substitutions of 1,1-Dibromo-1-alkenes

