

Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

Gold(I)-Catalyzed Intramolecular Hydroamination of Alkenyl

Carbamates

Xiaoqing Han and Ross A. Widenhoefer*

P. M. Gross Chemical Laboratory

Duke University

Durham, North Carolina 27708-0346

Experimental procedures and analytical and spectroscopic data for selected compounds (14 pages).

Experimental

General Methods. Catalytic reactions were performed in sealed glass tubes under an atmosphere of dry nitrogen. NMR spectra were obtained on a Varian spectrometer operating at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, and 162 MHz for ³¹P NMR in CDCl₃ at room temperature unless noted otherwise. IR spectra were obtained on a Bomen MB-100 FT IR spectrometer. Gas chromatography was performed on a Hewlett-Parkard 5890 gas chromatograph equipped with a 25 m polydimethylsiloxane capillary column. Flash column chromatography was performed employing 200-400 mesh silica gel (EM). Thin layer chromatography (TLC) was performed on silica gel 60 F254 eluting with 5:1 mixtures of hexanes/EtOAc unless noted otherwise. Elemental analyses were performed by Complete Analysis Laboratories (Parsippany, NJ).

Sodium tetrachloroaurate(III) dihydrate, anhydrous toluene, anhydrous acetonitrile (Aldrich), AuPPh₃Cl, tertiary phosphines (Strem), 2,5-dimethylpyrrolidine (mixture of cis and trans isomers), anhydrous 1,4-dioxane, AgOTf, and TfOH (Acros) were used as received. Diethyl ether and THF were freshly distilled over sodium benzoquinone ketyl under nitrogen. Dichloromethane and 1,2dichloroethane (DCE) were freshly distilled over CaH₂ under nitrogen. Au[P(*t*-Bu)₂*o*-biphenyl]Cl (**6**) was synthesized employing a literature procedure.¹

Au(I) complexes:

Au[P(CH₃)₂Ph]Cl. Au[P(CH₃)₂Ph]Cl was synthesized in 56 % yield as a white solid employing a procedure similar to that reported for the synthesis of **6**. ¹H NMR: δ 7.75-7.79 (dd, J = 8.8, 13.6 Hz, 2 H), 7.54-7.47 (m, 3 H), 1.86 (d, J = 10.8 Hz, 6 H). ¹³C{¹H} NMR: δ 132.4 (d, J = 2.7 Hz), 132.1 (d, J = 13.3 Hz), 131.4 (d, J = 62.2 Hz), 129.6 (d, J = 11.8 Hz), 16.4, (d, J = 39.4 Hz). ³¹P NMR: δ 4.0. Anal. Calcd (found) for C₈H₁₁AuClP: C, 25.93 (26.09); H, 2.99 (2.96).

Au[P(4-MeOPh)₃]Cl. Au[P(4-MeOPh)₃]Cl was isolated in 68 % yield as a white solid employing a procedure similar to that reported for 6. ¹H NMR: δ 7.43 (dd, *J* = 8.8, 12.4 Hz, 6 H),

7.43 (dd, J = 1.6, 8.8 Hz, 6 H), 3.84 (s, 9 H). ¹³C{¹H} NMR: δ 162.7, 135.9 (d, J = 15.5 Hz), 120.7, (d, J = 67.9 Hz), 151.1 (d, J = 12.9 Hz), 55.8. ³¹P NMR: δ 29.8. Anal. Calcd (found) for C₂₁H₂₁AuClO₃P: C, 43.13 (43.49); H, 3.62 (3.57).

Au[P(4-CF₃Ph)₃]Cl. Au[P(4-CF₃Ph)₃]Cl was isolated in 45 % yield as a white solid employing a procedure similar to that reported for **6**. ¹H NMR: δ 7.80 (d, J = 6.8 Hz, 6 H), 7.43 (dd, J = 8.4, 13.2 Hz, 6 H). ³¹P NMR: δ 33.6. Anal. Calcd (found) for C₂₁H₁₂AuClF₉P: C, 36.10 (35.70); H, 1.73 (1.71).

Alkenyl carbamates

Benzyl 2,2-diphenyl-4-pentenylcarbamate (4). Benzyl chloroformate (0.70 mL, 4.9 mmol) was added slowly to a mixture of 2,2-diphenyl-4-pentenylamine (S1)² (1.16 g, 4.89 mmol) and NaHCO₃ (0.63 g, 7.3 mmol) in ethanol/water (3:2, 25 mL) at room temperature. The resulting suspension was stirred for 1 h and treated with water (40 mL). The resulting mixture was extracted with ether (2 × 50 mL) and the combined ether extracts were dried (MgSO₄) and concentrated. The resulting oily residue was chromatographed (hexanes–EtOAc = 20:1) to give **4** (1.68 g, 92%) as a white solid. mp 56-58 °C. TLC: $R_f = 0.41$. ¹H NMR (50 °C): δ 7.37-7.29 (m, 9 H), 7.25-7.18 (m, 6 H), 5.54-5.42 (m, 1 H), 5.08 (s, 2 H), 5.02-4.97 (m, 2 H), 4.37 (br s, 1 H), 3.96 (d, *J* = 6.0 Hz, 2 H), 2.90 (d, *J* = 7.2 Hz, 2 H). ¹³C{¹H} NMR (50 °C): δ 156.6, 145.6, 137.0, 134.1, 128.8, 128.6, 128.44, 128.40, 128.35, 126.8, 118.8, 67.1, 50.7, 48.3, 42.2. IR (neat, cm⁻¹): 3434, 3348, 3060, 2935, 1724, 1511, 1445, 1222, 1143. Anal. Calcd (found) for C₂₅H₂₅NO₂: C, 80.83 (81.03); H, 6.78 (6.73); N, 3.77 (3.79).

tert-Butyl 2,2-diphenyl-4-pentenylcarbamate (Table 2, entry 3). A solution of BOC₂O (0.81 g, 3.7 mmol), S1 (0.73 g, 3.1 mmol), and Et₃N (0.60 g, 4.3 mmol) in CH₂Cl₂ (20 mL) was stirred at room temperature overnight, treated with water (30 mL), and extracted with CH₂Cl₂ (30 mL). The organic extract was dried (MgSO₄) and concentrated under vacuum. The resulting oily

residue was chromatographed (hexanes–EtOAc = 20:1) to give *tert*-butyl 2,2-diphenyl-4pentylcarbamate (0.88 g, 85%) as a white solid. mp 65-67 °C. TLC: $R_f = 0.44$. ¹H NMR (50 °C): δ 7.32-7.27 (m, 4 H), 7.23-7.17 (m, 6 H), 5.50-5.40 (m, 1 H), 5.00-4.96 (m, 2 H), 4.13 (br s, 1 H), 3.86 (d, J = 6.0 Hz, 2 H), 2.88 (d, J = 6.8 Hz, 2 H), 1.39 (s, 9 H). ¹³C{¹H} NMR (50 °C): δ 156.1, 145.9, 134.3, 128.6, 128.4, 126.7, 118.7, 79.6, 50.8, 47.4, 42.3, 28.7. IR (neat, cm⁻¹): 3442, 2975, 2929, 1718, 1507, 1364, 1232, 1168. Anal. Calcd (found) for C₂₂H₂₇NO₂: C, 78.30 (78.50); H, 8.06 (8.25); N, 4.15 (4.18).

4-Methoxybenzyl 2,2-diphenyl-4-pentenylcarbamate (Table 2, entry 4). 4-Methoxybenzyl 2,2-diphenyl-4-pentenylcarbamate was isolated in 45% yield as a white solid from reaction of **S1** and 4-methoxybenzyloxycarbonyl azide employing a procedure similar to that used to synthesize 4. mp 69-71 °C. TLC (hexanes–EtOAc = 2:1): $R_f = 0.66$. ¹H NMR (60 °C): δ 7.28-7.14 (m, 13 H), 6.85 (br d, J = 8.8 Hz, 2 H), 5.45-5.40 (m, 1 H), [4.97 (s), 4.94 (s), 4 H], 4.28 (br s, 1 H), 3.92 (d, J = 6.0 Hz, 2 H), 3.77 (s, 3 H), 2.86 (d, J = 6.8 Hz, 2 H). ¹³C{¹H} NMR (60 °C): δ 160.1, 156.7, 145.6, 134.1, 130.2, 129.2, 128.6, 128.4, 126.8, 118.8, 114.4, 66.9, 55.6, 50.7, 48.3, 42.2. IR (neat, cm⁻¹): 3435, 2934, 1722, 1514, 1246, 1223, 1033. Anal. Calcd (found) for C₂₆H₂₇NO₃: C, 77.78 (77.80); H, 6.78 (6.84); N, 3.49 (3.74).

9-Fluorenylmethyl 2,2-diphenyl-4-pentenylcarbamate (Table 2, entry 5). A solution of 9-fluorenylmethyl chloroformate (0.62 g, 2.4 mmol), **S1** (0.57 g, 2.41 mmol), and Et₃N (0.51 g, 3.62 mmol) in CH₂Cl₂ (10 mL) was stirred for 1 h at room temperature, treated with water (30 mL), and extracted with ether (2 × 30 mL). The combined ether extracts were washed (brine), dried (MgSO₄), and concentrated under vacuum. The resulting oily residue was chromatographed (hexanes–EtOAc = 20:1) to give 9-fluorenylmethyl 2,2-diphenyl-4-pentenylcarbamate (0.82 g, 73%) as a white solid. mp: 90-91 °C. TLC: $R_f = 0.31$. ¹H NMR (75 °C, C₆D₆): δ 7.56 (d, J = 7.6 Hz, 2 H), 7.38 (d, J = 7.2, Hz, 2 H), 7.22-6.97 (m, 14 H), 5.56-5.46 (m, 1 H), 4.95-4.87 (m, 2 H), 4.35 (d, J = 6.4 Hz, 2 H), 4.12 (br s, 1 H), 4.01 (t, J = 6.4 Hz, 1 H), 3.85 (br d, J = 5.6 Hz, 2 H), 2.71 (d, J = 7.2 Hz, 2 H).

¹³C{¹H} NMR (75 °C, C₆D₆): δ 156.6, 146.2, 145.1, 142.3, 134.7, 128.83, 128.81, 127.7, 127.6, 127.0, 125.7, 120.5, 118.8, 67.1, 51.4, 48.8, 48.4, 42.6. IR (neat, cm⁻¹): 3343, 3059, 2974, 1708, 1521, 1492, 1447, 1235. Anal. Calcd (found) for C₃₂H₂₉NO₂: C, 83.63 (83.86); H, 6.36 (6.20); N, 3.05 (2.99).

Benzyl (1-allylcyclohexyl)methylcarbamate (Table 2, entry 6). Benzyl (1-allylcyclohexyl)methylcarbamate was isolated in 87% yield as a colorless oil from the reaction of (1allylcyclohexyl)methylamine² and benzyl chloroformate employing a procedure similar to that used to synthesize 4. TLC: $R_f = 0.41$. ¹H NMR (60 °C): δ 7.37-7.29 (m, 5 H), 5.83 (tdd, J = 8.0, 10.8,17.6 Hz 1 H), 5.16-5.03 (m, 4 H), 4.72 (br s, 1 H), 3.13 (d, J = 6.4 Hz, 2 H), 2.06 (td, J = 1.2, 7.2 Hz, 2 H), 1.56-1.24 (m, 10 H). ¹³C{¹H} NMR (60 °C): δ 157.1, 137.3, 134.9, 128.8, 128.43, 128.37, 117.7, 67.1, 48.1, 41.2, 37.3, 33.7, 26.5, 21.8. IR (neat, cm⁻¹): 3436, 3343, 2925, 2855, 1712, 1537, 1518, 1242, 1130, 1002. Anal. Calcd (found) for C₁₈H₂₅NO₂: C, 75.22 (74.93); H, 8.77 (8.81); N, 4.87 (4.78).

Benzyl [1-(2-methylallyl)cyclohexyl]methylcarbamate (Table 2, entry 7). Benzyl [1-(2-methylallyl)cyclohexyl]methylcarbamate was isolated in 96% yield as a colorless oil from the reaction of [1-(2-methyl-2-propenyl)cyclohexyl]methylamine² and benzyl chloroformate employing a procedure similar to that used to synthesize 4. TLC: $R_f = 0.53$. ¹H NMR (60 °C): δ 7.37-7.28 (m, 5 H), 5.12 (s, 2 H), 4.91-4.88 (m, 1 H), 4.80 (br s, 1 H), 4.71-4.70 (m, 1 H), 3.20 (d, J = 6.4 Hz, 2 H), 2.04 (s, 2 H), 1.80 (s, 3 H), 1.56-1.34 (m, 10 H). ¹³C{¹H} NMR (60 °C): δ 157.0, 143.5, 137.3, 128.8, 128.4, 128.3, 115.2, 67.0, 47.8, 45.5, 38.0, 34.3, 26.5, 25.6, 22.0. IR (neat, cm⁻¹): 3341, 2926, 2859, 1706, 1516, 1454, 1237. Anal. Calcd (found) for C₁₉H₂₇NO₂: C, 75.71 (75.51); H, 9.03 (9.23); N, 4.65 (4.77).

Benzyl [1-(1-hydroxyallyl)cyclohexyl]methylcarbamate (Table 2, entry 8). Benzyl [1-(1-hydroxyallyl)cyclohexyl]methylcarbamate was isolated in 77% as a white solid from the reaction of 1-(1-aminomethylcyclohexyl)-2-propen-1-ol² and benzyl chloroformate employing a procedure

similar to that used to synthesize **4**. mp 61-62 °C. TLC (hexanes–EtOAc = 2:1): $R_f = 0.58$. ¹H NMR: δ 7.36-7.28 (m, 5 H), 5.95 (ddd, J = 6.4, 10.4, 17.2 Hz, 1 H), 5.16 (br s, 1 H), 5.28-5.19 (m, 2 H), 5.09 (s, 2 H), 3.96-3.92 (m, 1 H), 3.38 (dd, J = 6.8, 14.0 Hz, 1 H), 3.20 (dd, J = 4.8, 14.0 Hz, 1 H), 2.49 (d, J = 3.6 Hz, 1 H), 1.64-1.18 (m, 10 H). ¹³C{¹H} NMR: δ 157.5, 137.3, 137.0, 128.8, 128.41, 128.36, 117.2, 79.6, 67.0, 44.0, 40.4, 30.4, 30.2, 26.4, 21.6, 21.5. IR (neat, cm⁻¹): 3400, 2928, 2861, 1694, 1519, 1454, 1253. Anal. Calcd (found) for C₁₈H₂₅NO₃: C, 71.26 (71.37); H, 8.31 (8.39); N, 4.62 (4.43).

Benzyl [1-(1-acetoxyallyl)cyclohexyl]methylcarbamate (Table 2, entry 9). A solution of acetic anhydride (0.45 mL, 4.7 mmol), benzyl [1-(1-hydroxyallyl)cyclohexyl]methylcarbamate (0.95 g, 3.1 mmol), DMAP (0.38 g, 3.1 mmol), and Et₃N (0.44 mL, 3.1 mmol) in CH₂Cl₂ (15 mL) was stirred for 1 h at room temperature and quenched with water (30 mL). The resulting mixture was extracted with ether (2 × 30 mL) and the combined ether extracts were dried (MgSO₄) and concentrated to give an oily residue that was chromatographed (hexanes–EtOAc = 20:1) to give benzyl [1-(1-acetoxy-allyl)cyclohexyl]methylcarbamate (0.99 g, 90%) as a viscous colorless oil. TLC: $R_f = 0.20$. ¹H NMR (50 °C): δ 7.35-7.27 (m, 5 H), 5.86 (ddd, J = 6.4, 10.8, 16.8 Hz, 1 H), 5.29-5.22 (m, 3 H), 5.11 (s, 2 H), 5.08 (br s, 1 H), 3.48 (br dd, J = 8.4 13.2, 1 H), 3.11 (dd, J = 4.8, 14.4 Hz, 1 H), 2.06 (s, 3 H), 1.56-1.28 (m, 10 H). ¹³C{¹H} NMR (50 °C): δ 170.1, 156.9, 137.2, 133.0, 128.8, 128.34, 128.32, 118.8, 79.2, 67.0, 43.8, 40.6, 30.5, 29.8, 26.2, 21.43, 21.38, 21.2. IR (neat, cm⁻¹): 3354, 2931, 2863, 1725, 1521, 1237, 1021. Anal. Calcd (found) for C₂₀H₂₇NO₄: C, 69.54 (69.66); H, 7.88 (7.96); N, 4.05 (4.11).

Benzyl 2-(4-methoxy)phenyl-4-pentenylcarbamate (Table 2, entry 10). Benzyl 2-(4-methoxy)-phenyl-4-pentenylcarbamate was isolated in 75 % as a white solid from the reaction of 2-(4-methoxyphenyl)-4-pentenylamine² and benzyl chloroformate employing a procedure similar to that used to synthesize 4. mp 57-59 °C. TLC: $R_f = 0.26$. ¹H NMR (50 °C): δ 7.37-7.28 (m, 4 H), 7.08 (d, J = 8.4 Hz, 2 H), 6.86 (d, J = 8.8 Hz, 2 H), 5.69 (tdd, J = 7.2, 10.4, 16.8 Hz 1 H), 5.08-4.95

(m, 4 H), 4.60 (br s, 1 H), 3.79 (s, 3 H), 3.66-3.54 (m, 1 H), 3.23 (ddd, J = 5.2, 8.8, 13.6 Hz 1 H), 2.88-2.80 (m, 1 H), 2.44-2.30 (m, 2 H). ¹³C{¹H} NMR (50 °C): δ 158.9, 156.6, 137.1, 136.3, 134.3, 129.0, 128.8, 128.3, 116.8, 114.5, 67.0, 55.6, 46.6, 45.3, 38.6. IR (neat, cm⁻¹): 3339, 2928, 1702, 1511, 1247, 1034. Anal. Calcd (found) for C₂₀H₂₃NO₃: C, 73.82 (73.66); H, 7.12 (6.89); N, 4.30 (4.09).

Benzyl 1-methyl-4-pentenylcarbamate (Table 2, entry 11).³ Benzyl 1-methyl-4pentenylcarbamate was isolated in 60 % yield as a colorless oil from the reaction of 1-methyl-4pentenylamine³ and benzyl chloroformate employing a procedure similar to that used to synthesize 4. TLC: $R_f = 0.42$. ¹H NMR (60 °C): δ 7.36-7.28 (m, 5 H), 5.81 (tdd, J = 6.4, 10.4, 17.6 Hz, 1 H), 5.11 (s, 2 H), 5.05-4.95 (m, 2 H), 4.56 (br s, 1 H), 3.80-3.67 (m, 1 H), 2.13-2.07 (m, 2 H), 1.61-1.48 (m, 2 H), 1.16 (d, J = 6.4 Hz, 3 H). ¹³C{¹H} NMR (60 °C): δ 156.1, 138.3, 137.2, 128.8, 128.3, 115.2, 66.8, 47.3, 36.8, 30.5, 21.5.

Benzyl 4-pentenylcarbamate (Table 2, entry 12). Benzyl 4-pentenylcarbamate was isolated in 43% yield as a colorless oil from the reaction of 4-pentenylamine and benzyl chloroformate employing a procedure similar to that used to synthesize 4. TLC (hexanes–EtOAc = 2:1): $R_f = 0.71$. ¹H NMR (60 °C): δ 7.36-7.27 (m, 5 H), 5.80 (tdd, J = 6.8, 10.4, 17.2 Hz, 1 H), 5.11 (s, 2 H), 5.06-4.97 (m, 2 H), 4.73 (br s, 1 H), 3.21 (q, J = 6.8 Hz, 2 H), 2.10 (q, J = 7.2 Hz, 2 H), 1.62 (quintet, J = 7.2 Hz, 2 H). ¹³C{¹H} NMR (60 °C): δ 156.8, 138.0, 137.2, 128.8, 128.4, 115.5, 67.0, 41.1, 31.2, 29.6. IR (neat, cm⁻¹): 3334, 2934, 1697, 1536, 1454, 1255, 1137, 1002, 912. Anal. Calcd (found) for C₁₃H₁₇NO₂: C, 71.21 (71.20); H, 7.81 (7.93); N, 6.39 (6.51).

Benzyl (2-allylphenyl)carbamate (Table 2, entry 13).⁴ Benzyl (2-allylphenyl)carbamate was isolated in 77% as a pale yellow solid from the reaction of 2-allyl-phenylamine⁵ and benzyl chloroformate employing a procedure similar to that used to synthesize **4**. ¹H NMR (60 °C): δ 7.80 (d, *J* = 8.0 Hz, 1 H), 7.42-7.23 (m, 6 H), 7.17 (dd, *J* = 2.0, 7.6 Hz, 1 H), 7.09 (td, *J* = 1.2, 7.6 Hz, 1 H), 6.61 (br s, 1 H), 5.96 (tdd, *J* = 6.4, 10.0, 16.8 Hz, 1 H), 5.22 (s, 2 H), 5.15 (qd, *J* = 1.6, 10.0 Hz, 1

H), 5.07 (qd, *J* = 2.0, 17.2 Hz, 1 H), 3.37 (td, *J* = 1.2, 6.0 Hz, 2 H). ¹³C{¹H} NMR (60 °C): δ 154.3, 136.8, 136.5, 136.1, 130.5, 130.0, 128.9, 128.6, 128.5, 127.8, 125.0, 122.9, 117.0, 67.4, 36.8.

cis-Benzyl (2-allylcyclohexyl)carbamate (Table 2, entry 14). *cis*-Benzyl (2allylcyclohexyl)carbamate was isolated in 77 % as a colorless oil from the reaction of *cis*-2-allylcyclohexylamine⁶ and benzyl chloroformate employing a procedure similar to that used to synthesize 4. TLC: $R_f = 0.44$. ¹H NMR (60 °C): δ 7.38-7.28 (m, 5 H), 5.84-5.73 (m, 1 H), 5.12 (s, 2 H), 5.03-4.97 (m, 2 H), 4.84 (br s, 1 H), 3.96-3.91 (m, 1 H), 2.15-2.03 (m, 1 H), 1.96-1.89 (m, 1 H), 1.78-1.25 (m, 8 H), 1.19-1.10 (m, 1 H). ¹³C{¹H} NMR (60 °C): δ 156.3, 137.3, 137.2, 128.8, 128.4, 128.3, 116.2, 66.9, 50.5, 40.1, 36.4, 31.2, 27.7, 24.7, 22.0. IR (neat, cm⁻¹): 3337, 2929, 2855, 1697, 1530, 1453, 1334, 1239. Anal. Calcd (found) for C₁₇H₂₃NO₂: C, 74.69 (74.38); H, 8.48 (8.25); N, 5.12 (5.21).

Benzyl [1-(3-butenyl)cyclohexyl]methylcarbamate (Table 2, entry 15). Benzyl [1-(3-butenyl)cyclohexyl]methylcarbamate was isolated in 79 % as a colorless oil from the reaction of 1-(3-butenyl)cyclohexylmethylamine and benzyl chloroformate employing a procedure similar to that used to synthesize **4**. TLC: $R_f = 0.38$. ¹H NMR (60 °C): δ 7.34-7.25 (m, 5 H), 5.77 (tdd, J = 6.4, 10.8, 17.0 Hz, 1 H), 5.08 (s, 2 H), 5.00-4.88 (m, 2 H), 4.65 (br s, 1 H), 3.11 (d, J = 6.4 Hz, 2 H), 1.99-1.93 (m, 2 H), 1.45-1.21 (m, 12 H). ¹³C{¹H} NMR (60 °C): δ 157.0, 139.5, 137.2, 128.8, 128.4, 128.3, 114.5, 67.0, 47.7, 36.7, 35.3, 33.8, 27.7, 26.5, 21.8. IR (neat, cm⁻¹): 3343, 2925, 2852, 1712, 1537, 1519, 1244, 1130. Anal. Calcd (found) for C₁₉H₂₇NO₂: C, 75.71 (75.52); H, 9.03 (8.92); N, 4.65 (4.67).

Cyclic Carbamates

Benzyl 2-methyl-4,4-diphenylpyrrolidinylcarbamate (5). A mixture of **4** (165 mg, 0.445 mmol), **6** (12 mg, 0.022 mmol), and AgOTf (6 mg, 0.02 mmol) in 1,4-dioxane (0.45 mL) was degassed via one freeze-pump-thaw cycle, pressurized with nitrogen, and stirred for 18 hours at 60

°C. The crude mixture was chromatographed without evaporation of solvent (hexanes–EtOAc = 20:1) to give benzyl 2-methyl-4,4-diphenylpyrrolidinylcarbamate (**5**, 160 mg, 97%) as a viscous colorless oil. TLC: $\mathbf{R}_f = 0.41$. ¹H NMR (1:1 ratio of rotamers): δ 7.40-7.11 (m, 5 H), [5.31 (d, J = 12.4 Hz), 5.09 (d, J = 12.4 Hz), 1:1, 1 H], [5.18 (abq, J = 12.4 Hz)], 1:1, 1 H], [4.74 (dd, J = 2.0, 11.6 Hz), 4.58 (dd, J = 1.6, 11.6 Hz), 1:1, 1 H], 3.81-3.65 (m, 2 H), 2.86-2.80 (m, 1 H), [2.31 (dd, J = 9.6, 12.4 Hz), 2.26 (dd, J = 9.6, 12.8 Hz), 1:1, 1 H], [1.36 (d, J = 6.0 Hz), 1.29 (d, J = 6.0 Hz), 1:1, 3 H]. ¹³C{¹H} NMR: δ [155.7, 154.9, (1:1)], [146.00, 145.96, (1:1)], [145.4, 145.3, (1:1)], [137.4, 137.3, (1:1)], 128.84, 128.82, 128.76, 128.73, 128.32, 128.28, 128.1, 127.8, 127.1, 126.79, 126.76, 126.68, 126.60, 126.57, [67.1, 66.9, (1:1)], 56.2, [53.13, 53.09, (1:1)], [52.9, 52.5, (1:1)], [47.2, 46.3, (1:1)], [21.5, 20.4, (1:1)]. IR (neat, cm⁻¹): 3031, 2963, 1700, 1447, 1410, 1357, 1216, 1095. Anal. Calcd (found) for C₂₅H₂₅NO₂: C, 80.83 (80.83); H, 6.78 (6.59); N, 3.77 (3.80).

All remaining cyclic carbamates were synthesized from the corresponding alkenyl carbamates employing a procedure analogous to that used to synthesize **5** unless noted otherwise.

tert-Butyl 2-methyl-4,4-diphenylpyrrolidinylcarbamate (Table 2, entry 3). Viscous colorless oil. TLC: $R_f = 0.44$. ¹H NMR (1.3:1 ratio of rotamers): δ 7.29-7.11 (m, 10 H), [4.71 (d, J = 11.6 Hz), 4.49 (d, J = 11.6 Hz), 1.3:1, 1 H], [3.75-3.69 (m), 3.60-3.50 (m), 3.59 (d J = 12.0 Hz), 3.52 (d, J = 11.6 Hz), 2 H], 2.81-2.73 (m, 1 H), [2.29 (dd, J = 9.6, 12.0 Hz), 2.22 (dd, J = 9.6, 12.0 Hz), 1.3:1, 1 H], [1.50 (s), 1.45 (s), 1:1.3, 9 H], [1.30 (d, J = 6.0 Hz), 1.26 (d, J = 6.0 Hz), 1:1.3, 3 H]. ¹³C{¹H} NMR: δ [155.4, 154.7, (1.3:1)], [146.1, 146.0, (1:1.3)], [145.63:145.56, (1:1.3)], 128.73, 128.69, 127.1, 126.9, 126.8, 126.7, 126.5, 126.4, 79.6, [56.5, 55.6, (1:1.3)], [53.2, 52.8, (1:1.3)], [52.55, 52.50, (1:1.3)], [47.3, 46.5, (1.3:1)], [28.9, 28.7, (1:1.3)], [21.3, 20.6, (1.3:1)]. IR (neat, cm⁻¹): 2970, 2930, 1690, 1392, 1160, 1135. Anal. Calcd (found) for C₂₂H₂₇NO₂: C, 78.30 (78.06); H, 8.06 (8.20); N, 4.15 (4.24).

4-Methoxybenzyl 2-methyl-4,4-diphenylpyrrolidinylcarbamate (Table 2, entry 4). Viscous colorless oil. TLC (hexanes–EtOAc = 2:1): $R_f = 0.66$. ¹H NMR (1:1 ratio of rotamers): δ [7.35, (d, J = 8.4 Hz), 7.29-7.11 (m), 12 H], [6.92 (d, J = 8.4 Hz), 6.85 (d, J = 8.8 Hz), 1:1, 2 H], [5.24 (d, J = 12.0 Hz), 5.09 (s), 5.02 (d, J = 11.6 Hz), 1:2:1, 2 H], [4.72, (dd, J = 2.0, 11.6 Hz), 4.54 (dd, J = 2.0, 11.6 Hz), 1:1, 1 H], [3.82-3.63 (m), 3.82 (s), 3.79 (s), 3.65 (dd, J = 2.0, 11.6 Hz), 5 H], 2.86-2.78 (m, 1 H), [2.29 (dd, J = 9.6, 12.4 Hz), 2.24 (dd, J = 9.6, 12.4 Hz), 1:1, 1 H], [1.34 (d, J = 6.0 Hz), 1.25 (d, J = 6.0 Hz), 1:1, 3 H]. ¹³C{¹H} NMR: δ [159.8, 159.6, (1:1)], [155.8, 155.0, (1:1)], 146.0, [145.4, 145.3, (1:1)], [130.2, 129.7, (1:1)], [129.6, 129.4, (1:1)], 128.83, 128.78, 128.7, [128.6, 128.3, (1:1)], [127.1, 126.8, (1:1)], 126.7, [126.6, 126.5, (1:1)], [114.2, 114.1, (1:1)], [66.9, 66.7, (1:1)], 55.2, [55.6, 55.5, (1:1)], 53.1, [52.9, 52.5, (1:1)], [47.1, 46.3, (1:1)], [21.4, 20.4, (1:1)]. IR (neat, cm⁻¹): 2959, 1698, 1513, 1407, 1354, 1247, 1093, 1033. Anal. Calcd (found) for C₂₆H₂₇NO₃: C, 77.78 (77.62); H, 6.78 (6.57); N, 3.49 (3.60).

9-Fluorenylmethyl 2-methyl-4,4-diphenyl-pyrrolidinyl-carbamate (Table 2, entry 5). White solid. mp 57-60 °C. TLC: $R_f = 0.27$. ¹H NMR (1:1 ratio of rotamers): δ 7.79 (d, J = 6.8 Hz, 1 H), 7.74 (dd, J = 2.8, 7.6 Hz, 1 H), [7.64 (d, J = 7.6 Hz), 7.61 (d, J = 7.2 Hz), 1:1, 1 H], [7.55 (d, J = 7.2 Hz) 7.43-7.14 (m), 15 H], [4.71 (d, J = 11.6 Hz), 4.59 (dd, J = 6.4, 10.8 Hz), 1:1, 1 H], 4.49 (d, J = 6.4 Hz, 1 H), 4.45-4.37 (m, 1 H), [4.31 (t, J = 6.8 Hz), 4.26 (t, J = 6.4 Hz), 1:1, 1 H], [3.83-3.77 (m), 3.71-3.60 (m), 3.69 (t, J = 11.6 Hz), 2 H], 2.84 (dd, J = 6.0, 12.4 Hz, 1 H), [2.29 (dd, J = 9.2, 12.4 Hz), 2.24 (dd, J = 9.2, 12.8 Hz), 1:1, 1 H], [1.35 (d, J = 6.0 Hz), 1.14 (d, J = 6.0 Hz), 1:1, 3 H]. ¹³C{¹H} NMR: δ [155.7, 154.8, (1:1)], [146.1, 146.0, (1:1)], [145.5, 145.3, (1:1)], [144.6, 144.5, (1:1)], [144.41, 144.40, (1:1)], [147.3, 141.69, (1:1)], [141.66, 141.64, (1:1)], [128.92, 128.90, (1:1)], 128.8, [127.99, 127.95, (1:1)], [127.89, 127.83, (1:1)], 127.42, 127.37, 127.27, 127.1, [126.83, 126.80, (1:1)], [126.73, 126.70, (1:1)], [126.67, 126.64, (1:1)], 125.32, 125.24, 125.17, 120.3, [120.19, 120.18, (1:1)], [67.3, 67.2, (1:1)], [56.25, 56.22, (1:1)], [53.1, 53.0, (1:1)], [52.9, 52.5, (1:1)], [47.8, 47.7, (1:1)], [47.1, 46.3, (1:1)], [21.2, 20.4, (1:1)]. IR (neat, cm⁻¹): 3061, 2963, 1696, 1449, 1415, 1352, 1200, 1097. HRMS Calcd (found) for C₃₂H₂₉NO₂ (M⁺): 459.2198 (459.2197).

Benzyl 2-methyl-4-cyclohexylpyrrolidinylcarbamate (Table 2, entry 6). Colorless oil.

TLC: $R_f = 0.41$. ¹H NMR (60 °C): δ 7.34-7.23 (m, 5 H), 5.11 (ABq, J = 12.4, 2 H), 3.93-3.84 (m, 1 H), 3.56 (br d, J = 10.0, 1 H), 2.99 (d, J = 11.2, 1 H), 1.99 (ddd, J = 2.0, 7.6, 13.2, 1 H), 1.44-1.22 (m, 14 H). ¹³C{¹H} NMR (60 °C): δ 155.5, 137.6, 128.7, 127.99, 127.96, 66.8, 57.2, 52.7, 46.4 (br), 41.5, 37.0, 35.2, 26.4, 24.1, 23.2, 21.5 (br). IR (neat, cm⁻¹): 2924, 2854, 1702, 1449, 1411, 1357, 1212, 1124, 1086. Anal. Calcd (found) for C₁₈H₂₅NO₂: C, 75.22 (75.03); H, 8.77 (8.85); N, 4.87 (4.99).

Benzyl 2,2-dimethyl-4-cyclohexylpyrrolidinylcarbamate (Table 2, entry 7). Colorless oil. TLC: $R_f = 0.61$. ¹H NMR (1.5:1 ratio of rotamers): δ 7.38-7.27 (m, 5 H), [5.15 (s), 5.10 (s), 1:1.5, 2 H], [3.41(s), 3.34 (s), 1:1.5, 2 H], [1.79 (s), 1.76 (s), 1:1.5, 2 H], 1.54-1.36 (m, 16 H). ¹³C{¹H} NMR: δ [155.6, 154.3, (1:1.5)], [137.7, 137.2, (1.5:1)], 128.7, 128.3, 128.1, 128.0, 127.9, [67.1, 66.2, (1:1.5)], [61.0, 60.2, (1.5:1)], [60.0, 58.3, (1:1.5)], [55.4, 53.9, (1:1.5)], [39.8, 39.2, (1.5:1)], 37.4, [29.6, 28.3, (1:1.5)], 26.2, 23.7. IR (neat, cm⁻¹): 2925, 2852, 1703, 1450, 1403, 1348, 1066. Anal. Calcd (found) for C₁₉H₂₇NO₂: C, 75.71 (75.80); H, 9.03 (8.98); N, 4.65 (4.81).

Benzyl 2-methyl-3-hydroxy-4-cyclohexylpyrrolidinylcarbamate (Table 2, entry 8). Viscous colorless oil. TLC (hexanes–EtOAc = 2:1): $R_f = 0.40$. ¹H NMR (60 °C, 3.6:1 mixture of diastereomers): δ 7.35-7.26 (m, 5 H), 5.13 (ABq, J = 12.4 Hz, 2 H), [3.98 (q, J = 6.4 Hz), 3.41 (br s), 3.6:1, 1 H], 3.78 (br s, 1 H), 3.58-3.50 (m, 1 H), [3.23 (d, J = 10.8 Hz), 2.99 (d, J = 11.6 Hz), 1 H, 3.6:1], [2.19 (br s), 1.89 (br s), 1 H, 1:3.6], [1.68-1.22 (m), 1.31 (d, J = 6.0 Hz), 13 H]. ¹³C{¹H} NMR (60 °C): δ 156.0, 137.5, 128.7, 128.1, 128.0, [85.7, 78.9, (1:3.6)], 67.0, [58.8, 56.9, (1:3.6)], [54.4, 53.8, (1.3:1)], [45.4, 43.7, (3.6:1)], [34.7, 33.9, (1:3.6)], 29.9, [26.9, 26.4, (1:3.6)], [24.0, 23.4, (1:3.6)], [22.9, 22.7, (3.6:1)], [19.5 (br s), 14.3 (br s), 1:3.6]. IR (neat, cm⁻¹): 3437, 2926, 2853, 1684, 1449, 1419, 1356, 1121, 1022. Anal. Calcd (found) for C₁₈H₂₅NO₃: C, 71.26 (70.95); H, 8.31 (8.57); N, 4.62 (4.42). Benzyl 2-methyl-3-acetyl-4-cyclohexylpyrrolidinylcarbamate (Table 2, entry 9). Viscous colorless oil. TLC: $R_f = 0.22$. ¹H NMR (60 °C, 3.0:1 mixture of diastereomers): δ 7.34-7.27 (m, 5 H), [5.14, (abq, J = 12.4 Hz), 5.14 (d, J = 5.2 Hz), 4.78 (d, J = 4.0 Hz), 3 H], [4.14-4.07 (m), 3.75-3.56 (m), 2 H], [3.31 (d, J = 10.8 Hz), 3.18 (d, J = 10.8 Hz), 1:3.0, 1 H], [2.08 (s), 2.06 (s), 3.0:1, 3 H], 1.57-1.19 (m, 13 H). ¹³C{¹H} NMR (60 °C): δ [170.5, 170.4, (1:3.0)], [155.6, 155.4, (3.0:1)], 137.3, 128.6, 128.1, 128.0, [85.0, 80.2, (1:3.0)], 67.0, [59.3, 55.9, (1:3.0)], [54.8, 54.7, (1:3.0)], [44.7, 44.0, (3.0:1)], [34.7, 33.4, (1:3.0)], [29.9, 29.4, (3.0:1)], [26.1, 26.0, (3.0:1)], 23.2, [23.0, 22.5, (1:3.0)], [21.0, 20.6, (1:3.0)], [19.2 (br), 14.27 (br), (1:3.0)]. IR (neat, cm⁻¹): 2930, 2855, 1735, 1701, 1409, 1355, 1229, 1120, 1023. Anal. Calcd (found) for C₂₀H₂₇NO₄: C, 69.54 (69.65); H, 7.88 (7.82); N, 4.05 (4.23).

Benzyl 2-methyl-4-(4-methoxyphenyl)pyrrolidinylcarbamate (Table 2, entry 10). Colorless oil. TLC: $R_f = 0.28$. ¹H NMR (60 °C, 3.5:1 mixture of diastereomers): δ 7.41-7.29 (m, 5 H), 7.16-7.14 (m, 2 H), 6.89-6.85 (m, 2 H), 5.19 (abq, J = 12.4 Hz, 2 H), [4.24-3.97 (m), 3.90-3.84 (m), 2 H], 3.79 (s, 3 H), [3.51-3.16 (m), 3.30 (t, J = 12.4 Hz), 2 H], [2.51 (quintet, J = 6.4 Hz), 2.16 (dt, J = 8.0, 12.4 Hz), 3.5:1, 1 H], [1.94 (dd, J = 6.0, 12.0 Hz), 1.74-1.64 (m), 1:3.5, 1 H], [1.40 (br d, J = 3.6 Hz), 1.32 (br d, J = 5.6 Hz), 3.5:1, 3 H]. ¹³C{¹H} NMR (60 °C): δ [158.92, 158.90, (3.5: 1)], [155.2 (br s), 155.0 (br s), (3.5:1)], [137.51, 137.46, (1:3.5)], [133.6, 132.9, (1:3.5)], 128.7, 128.3, 128.2, 128.12, 128.10, 128.07, [114.45, 114.42, (1:3.5)], [66.91, 66.86, (3.5:1)], 55.5, 54.3 (br s), 53.4, 42.6, 40.8 (br s), 21.1 (br s). IR (neat, cm⁻¹): 2960, 1697, 1515, 1411, 1355, 1269, 1179, 1034. Anal. Calcd (found) for C₂₀H₂₃NO₃: C, 73.82 (73.86); H, 7.12 (6.92); N, 4.30 (4.45).

The cis stereochemistry of the major diastereomer was determined by combined ¹H-¹H COSY and NOESY analysis of a pure sample of the major diastereomer.

Benzyl 2,5-dimethyl-pyrrolidinylcarbamate (Table 2, entry 11).^{3,7} ¹H NMR (1.5:1 mixture of diastereomers): δ 7.38-7.27 (m, 5 H), [5.17 (d, *J* = 12.4 Hz), 5.09 (d, *J* = 12.0 Hz)], 5.13 (s), 1:1.5, 2 H], 4.06-3.90 (m, 2 H), [2.16-2.04 (m), 2.04-1.92 (m), 1:1.5, 2 H], 1.64-1.50 (m, 2 H),

[1.25 (br s), 1.18 (d, J = 6.4 Hz), 1.11 (d, J = 6.4 Hz), 3 H]. An authentic sample was prepared in 84% yield by reaction of 2,5-dimethylpyrrolidine and benzyl chloroformate employing a procedure similar to that used to synthesize **4**.

Benzyl 2-methyl-pyrrolidinylcarbamate (Table 2, entry 12).⁸ ¹H NMR (60 °C): δ 7.38-7.25 (m, 5 H), 5.14 (ABq, *J* = 12.8 Hz, 2 H), 4.02-3.95 (m, 1 H), 3.44 (dd, *J* =6.4, 7.2 Hz, 2 H), 2.05-1.75 (m, 3 H), 1.60-1.54 (m, 1 H), 1.20 (d, *J* = 6.0 Hz, 3 H). ¹³C{¹H} NMR (60 °C): δ 155.1, 137.7, 128.7, 128.1, 128.0, 66.8, 53.5, 46.7, 33.4, 23.7, 20.6 (br).

Benzyl 2-methyl-2,3-dihydroindolylcarbamate (Table 2, entry 13). Viscous colorless oil. TLC: $R_f = 0.48$. ¹H NMR (60 °C): δ 7.75 (br s, 1 H), 7.45-7.32 (m, 6 H), 7.20-7.14 (m, 2 H), 6.97 (dd, J = 1.2, 7.6 Hz, 1 H), 5.31 (s, 2 H), 4.65-4.56 (dtd, J = 2.4, 6.4, 15.6 Hz 1 H), 3.38 (dd, J = 9.6, 16.0 Hz, 1 H), 2.66 (dd, J = 2.4, 16.0 Hz, 1 H), 1.33 (d, J = 6.4 Hz, 3 H). ¹³C{¹H} NMR (60 °C): δ 153.3, 141.8, 136.9, 130.4, 128.9, 128.45, 128.41, 127.8, 125.3, 123.1, 115.9, 67.5, 55.8, 36.3, 21.5. IR (neat, cm⁻¹): 2968, 1698, 1484, 1404, 1281, 1137, 1045. Anal. Calcd (found) for C₁₇H₁₇NO₂: C, 76.38 (76.56); H, 6.41 (6.48); N, 5.24 (5.26).

Benzyl 2-methyl-octahydroindolylcarbamate (Table 2, entry 14). Colorless oil. TLC: R_f = 0.44. ¹H NMR (60 °C, 2.5:1 mixture of rotamers): δ 7.37-7.25 (m, 5 H), [5.134 (s), 5.126 (ABq, J = 12.4 Hz), 2 H, 2.5:1], 4.4-3.72 (m, 2 H), 2.44-1.91 (m, 3 H), 1.74-1.57 (m, 4 H), [1.50-1.08 (m), 1.36 (d, J = 6.0 Hz), 7 H]. ¹³C{¹H} NMR (60 °C, major isomer): δ 155.2, 137.8, 128.7, 128.1, 128.0, 66.6, 58.4, 54.0, 36.7, 36.4, 29.9, 26.4, 24.4, 22.7 (br), 20.9. IR (neat, cm⁻¹): 2926, 2855, 1698, 1407, 1355, 1087. Anal. Calcd (found) for C₁₇H₂₃NO₂: C, 74.69 (74.57); H, 8.48 (8.34); N, 5.12 (5.34).

Benzyl 2-methyl-5-cyclohexylcarbamate (Table 2, entry 15). Colorless oil. TLC: $R_f = 0.44$. ¹H NMR: δ 7.36-7.27 (m, 5 H), 5.14 (ABq, J = 12.4 Hz, 2 H), 4.45 (br s, 1 H), 3.95 (br d, J = 10.4 Hz, 1 H), 2.56 (d, J = 13.6 Hz, 1 H), 1.91-1.82 (m, 1 H), 1.45-1.17 (m, 13 H), 1.13 (d, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR: δ 156.0, 137.5, 128.7, 128.1, 128.0, 67.1, 47.3, 46.7, 38.4, 33.4, 31.3,

30.8, 26.9, 25.6, 21.9, 21.8, 16.3. IR (neat, cm⁻¹): 2927, 1696, 1423, 1337, 1223, 1145. Anal. Calcd (found) for C₁₉H₂₇NO₂: C, 75.71 (75.45); H, 9.03 (9.12); N, 4.65 (4.66).

References

- 1) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178.
- 2) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
- 3) Harding, K. E.; Burks, S. R. J. Org. Chem. 1981, 46, 3920.
- 4) Danishefsky, S.; Taniyama, E.; Webb, R. R. Tetrahedron Lett. 1983, 24, 11.
- 5) Organ, M. G.; Xu, J.; N'Zemba, B. Tetrahedron Lett. 2002, 43, 8177.
- 6) Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444.
- 7) Harding, K. E.; Marman, T. H. J. Org. Chem. 1984, 49, 2838.
- 8) Nijhuis, W. H.; Verboom, W.; El-Fadl, A. A.; van Humme1, G. J.; Reinhoudt, D. N. J. Org. Chem. **1989**, *54*, 209.