

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

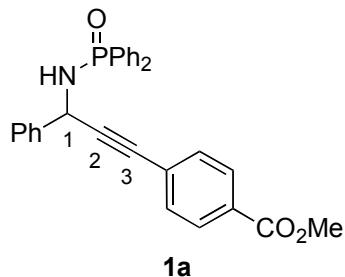
Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

SUPPLEMENTARY MATERIAL

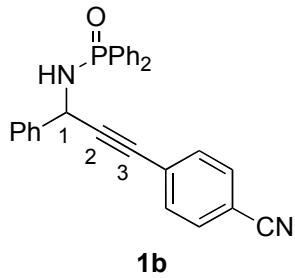
Pericyclic Cascade Reactions of *C*-Bicyclo[1.1.0]butylbenzylamines

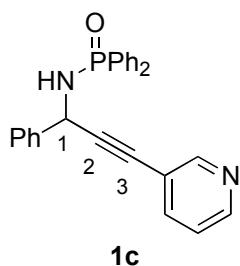

Peter Wipf,* and Maciej A. A. Walczak

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260

pwipf@pitt.edu

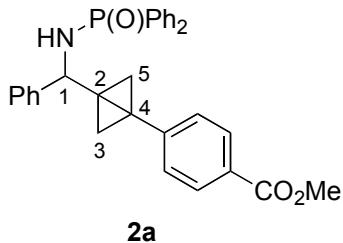
Experimental procedures and spectral data for new compounds. NOESY spectrum for **12**.


General Methods. All moisture-sensitive reactions were performed under an atmosphere of N₂ and glassware was flame dried under vacuum prior to use. THF was dried by distillation over Na/benzophenone and *i*-Pr₂NH was dried by distillation over CaH₂. Toluene and CH₂Cl₂ were purified by filtration through activated alumina. Me₂Zn (2.0 M in toluene) and Et₂Zn (neat) were purchased from the Aldrich Chemical Company. 3-bromo-1-phenylpropyne, cyclopropylallyl bromide and (*Z*)-cinnamyl bromide were obtained from 1-phenyl-1-propyn-3-ol,¹ cyclopropylallyl alcohol² and (*Z*)-cinnamyl alcohol,³ respectively, via reaction with Ph₃P·Br₂/imidazole in CH₂Cl₂ at 0 °C. 2,2-Dibromo-1-(chloromethyl)-1-phenylcyclopropane **3**,⁴ PhCH=NP(O)Ph₂,⁵ *t*-BuCH=NP(O)Ph₂,⁶ and *c*-C₆H₁₁CH=NTs⁷ were prepared according to literature protocols. Unless otherwise stated, solvents or reagents were used as received. Analytical thin layer chromatography (TLC) was performed on pre-coated silica gel 60 F-254 plates (particle size 0.040-0.055 mm, 230-400 mesh) and visualization was accomplished with a 254 nm UV light and/or by staining with Vaughn's reagent (4.8 g of (NH₄)₆Mo₇O₂₄•4H₂O and 0.20 g of Ce(SO₄)₂ in 100 mL of 3.5 N H₂SO₄ solution). NMR spectra were recorded at 300 MHz/75 MHz (¹H NMR/¹³C NMR) or 500 MHz/125 MHz (¹H NMR/¹³C NMR) using Bruker AVANCE 300 MHz or Bruker AVANCE 500 MHz spectrometers at 21 °C. Chemical shifts (δ) are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), coupling constants, and integration. IR spectra were obtained on a Nicolet AVATAR 360 FT-IR E.S.P. spectrometer. Mass spectra were obtained on a Micromass Autospec double focusing instrument. Melting points were recorded on Mel-Temp II apparatus and are uncorrected. Microwave reactions were run on a Personal Chemistry workstation.

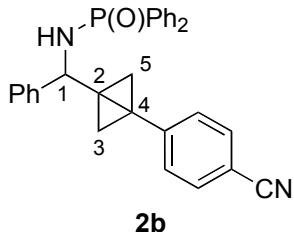

N-(3-(4-Methoxycarbonylphenyl)-1-phenylprop-2-ynyl)-*P,P*-diphenylphosphinamide (1a**). General Protocol**

A. A suspension of CuI (0.17 g, 0.91 mmol) and Pd(PPh₃)₄ (0.52 g, 0.45 mmol) in degassed *i*-Pr₂NH (100 mL) was cooled to 0 °C and treated with methyl 4-iodobenzoate (2.4 g, 9.1 mmol). A solution of alkyne **20** (3.0 g, 9.1 mmol) in THF (25 mL) was added via syringe and the reaction mixture was vigorously stirred at 0 °C for 1.5 h, quenched with sat. NH₄Cl, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. Purification by chromatography on SiO₂ (hexanes/EtOAc, 1:4) afforded **1a** (2.5 g, 59%) as a colorless solid: Mp 188.2-191.0 °C (hexanes/CH₂Cl₂); IR (KBr) 2951, 2847, 1721, 1604, 1493, 1451, 1437, 1404, 1308, 1276, 1186, 1126, 1109 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.11-8.04 (m, 2

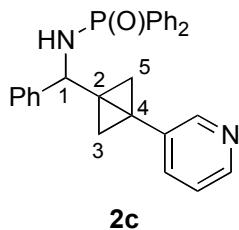
H), 7.98 (d, J = 8.3 Hz, 2 H), 7.90-7.83 (m, 2 H), 7.68 (d, J = 7.2 Hz, 2 H), 7.57-7.30 (m, 11 H), 5.44 (app t, J = 9.7 Hz, 1 H, NH), 3.94 (s, 3 H, CH₃), 3.54 (b t, J = 7.9 Hz, 1 H, H₁); ¹³C NMR (75 MHz, CDCl₃) δ 166.40 (CO), 139.90, 133.21, 132.67, 132.54, 131.97, 131.84, 131.71, 131.53, 131.09, 129.61, 129.30, 128.67, 128.52, 128.35, 128.04, 127.31, 127.19, 91.90 (d, J = 5.7 Hz, C₂), 84.73 (C₃), 52.14 (OCH₃), 47.00 (C₁); MS (EI) *m/z* (rel intensity) 465 (M⁺, 72), 388 (15), 330 (8), 264 (84), 201 (100); HRMS (EI) calc for C₂₉H₂₄NO₃P 465.1494, found 465.1480.



***N*-(3-(4-Cyanophenyl)-1-phenylprop-2-ynyl)-*P,P*-diphenylphosphinamide (1b).** According to the General Protocol A, alkyne **20** (0.50 g, 1.5 mmol), 4-iodobenzonitrile (0.33 g, 1.5 mmol), CuI (0.028 g, 0.15 mmol) and Pd(PPh₃)₄ (0.087 g, 0.075 mmol) in *i*-Pr₂NH (25 mL) and THF (10 mL) afforded **1b** (0.40 g, 62%) as a colorless solid: Mp 213.3-214.8 °C (hexanes/EtOAc); IR (KBr) 3434, 3148, 2227, 1603, 1438, 1187, 1126, 1110 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (dd, J = 12.1, 7.9 Hz, 2 H), 7.91 (dd, J = 12.0, 8.0 Hz, 2 H), 7.71 (d, J = 7.3 Hz, 2 H), 7.62-7.35 (m, 13 H), 5.48 (app t, J = 9.6 Hz, 1 H, NH), 4.07 (app t, J = 9.0 Hz, 1 H, H₁); ¹³C NMR (75 MHz, CDCl₃) δ 139.64, 139.57, 132.95, 132.49, 132.35, 132.04, 131.91, 131.81, 131.74, 131.68, 131.25, 131.12, 128.65, 128.45, 128.28, 128.06, 127.45, 127.08, 118.27 (CN), 111.49, 93.46 (d, J = 5.0 Hz, C₂), 83.74 (C₃), 46.82 (C₁); MS *m/z* (rel. intensity) 432 (M⁺, 67), 355 (4), 328 (14), 307 (3), 277 (7), 231 (92), 201 (100), 185 (17); HRMS (EI) calc for C₂₈H₂₁N₂OP 432.1389, found 432.1392.

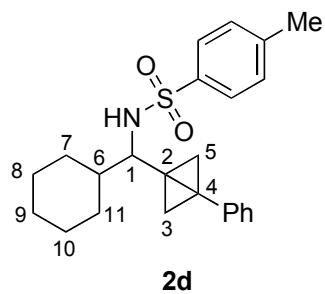

***N*-(1-Phenyl-3-(pyridin-3-yl)prop-2-ynyl)-*P,P*-diphenylphosphinamide (1c).** According to the General Protocol A, alkyne **20** (2.0 g, 6.0 mmol), 3-iodopyridine (1.2 g, 6.0 mmol), CuI (0.11 g, 0.60 mmol) and Pd(PPh₃)₄ (0.35 g, 0.030 mmol) in *i*-Pr₂NH (100 mL) and THF (20 mL) were stirred at 0 °C for 2.5 h. The reaction mixture was quenched with sat. NH₄Cl and extracted (3x) with EtOAc. The combined organic layers

were washed with water and brine, dried (Na_2SO_4) and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc, 1:10) afforded **1c** (1.9 g, 77%) as a colorless oil that solidified upon standing: IR (neat) 3151, 3058, 1620, 1592, 1566, 1476, 1438, 1412, 1307, 1276, 1188, 1123, 1109 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 8.64-8.55 (m, 2 H), 8.14 (dd, J = 12.1, 7.7 Hz, 2 H), 7.93 (dd, J = 12.1, 8.0, 2 H), 7.75-7.71 (m, 2 H), 7.61-7.36 (m, 9 H), 7.31-7.27 (m, 2 H), 5.52 (app t, J = 9.6 Hz, 1 H, H_1), 4.01 (app t, J = 8.9 Hz, 1 H, NH); ^{13}C NMR (75 MHz, CDCl_3) δ 151.86, 148.30, 139.86, 139.79, 138.41, 133.09, 132.79, 132.48, 132.38, 131.79, 131.73, 131.60, 131.39, 131.08, 128.49, 128.32, 128.22, 128.15, 127.84, 127.03, 122.70, 119.64, 92.47 (d, J = 5.2 Hz, C_2), 81.82 (C_3), 46.69 (C_1); MS (EI) m/z (rel. intensity) 408 (M^+ , 77), 331 (7), 305 (13), 283 (12), 207 (100), 201 (59), 192 (14); HRMS (EI) calc for $\text{C}_{26}\text{H}_{21}\text{N}_2\text{OP}$ 408.1392, found 408.1373.

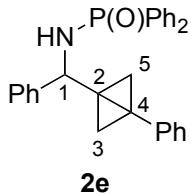


N-((3-(4-Methoxycarbonylphenyl)bicyclo[1.1.0]but-1-yl)(phenyl)methyl)-P,P-diphenylphosphinamide (2a).

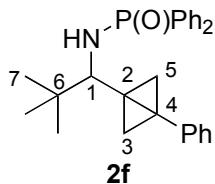
General Protocol B. Amide **1a** (1.0 g, 2.2 mmol) was dissolved in dry CH_2Cl_2 (80 mL), cooled to 0 °C and treated with Me_2Zn (1.1 mL, 2.2 mmol, 2.0 M in PhMe). After 1 h at 0 °C, the reaction mixture was cooled to -50 °C and transferred via cannula into a cold (-50 °C) solution of $(\text{CH}_2\text{I})_2\text{Zn}$ prepared by the addition of CH_2I_2 (0.69 mL, 8.6 mmol) to a solution of Et_2Zn (0.53 g, 4.3 mmol) in CH_2Cl_2 (80 mL) at -50 °C. The reaction mixture was warmed to 0 °C, stirred for 30 min, and quenched with sat. NH_4Cl . Extraction with EtOAc followed by purification by chromatography on SiO_2 (hexanes/EtOAc, 1:4 to 1:6) afforded **2a** (0.45 g, 42%) as a colorless solid: Mp 158.3-160.1 °C (hexanes/ CH_2Cl_2); IR (KBr) 3423, 3262, 3058, 2931, 1728, 1720, 1606, 1438, 1279, 1189, 1117 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 8.00 (dd, J = 11.9, 8.0 Hz, 2 H), 7.78 (d, J = 8.4 Hz, 2 H), 7.68 (dd, J = 11.3, 7.2 Hz, 2 H), 7.47-7.34 (m, 3 H), 7.28-7.23 (m, 3 H), 7.15-7.06 (m, 4 H), 6.90 (d, J = 8.3 Hz, 2 H), 6.76 (d, J = 7.0 Hz, 2 H), 4.60 (app t, J = 8.6 Hz, 1 H, H_1), 3.86 (s, 3 H, OCH_3), 3.68 (dd, J = 7.8, 5.6 Hz, 1 H, NH), 2.23 (d, J = 6.6 Hz, 1 H, $\text{H}_{3\text{exo}}$ or $\text{H}_{5\text{exo}}$), 1.98 (d, J = 6.6 Hz, 1 H, $\text{H}_{5\text{exo}}$ or $\text{H}_{3\text{exo}}$), 1.00 (s, 1 H, $\text{H}_{3\text{endo}}$ or $\text{H}_{5\text{endo}}$), 0.93 (s, 1 H, $\text{H}_{5\text{endo}}$ or $\text{H}_{3\text{endo}}$); ^{13}C NMR (75 MHz, CDCl_3) δ 166.85 (CO), 142.12, 139.91, 139.83, 132.02, 131.89, 131.82, 131.70, 131.53, 131.22, 129.13, 128.28, 128.18, 128.12, 128.02, 127.94, 127.25, 126.80, 126.50, 125.24, 54.88 (C_1), 51.69 (OCH_3), 34.08 (C_3 or C_5), 31.61 (C_5 or C_3), 30.75 (d, J = 5.1 Hz, C_2), 20.58 (C_4); MS (ES) m/z (rel. intensity) 516 ($[\text{M}+\text{Na}]^+$, 100), 413 (45), 371 (10), 301 (12), 227 (17), 221 (7), 201 (5); HRMS (ES) calc for $\text{C}_{31}\text{H}_{28}\text{NNaO}_3\text{P}$ ($\text{M}+\text{Na}$) 516.1705, found 516.1722.



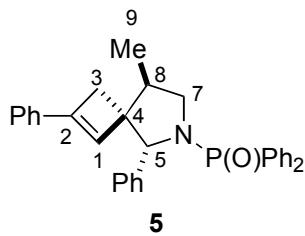
N-((3-(4-Cyanophenyl)bicyclo[1.1.0]but-1-yl)(phenyl)methyl)-P,P-diphenylphosphinamide (2b). According to General Protocol B, amide **1b** (1.1 g, 2.6 mmol) and Me_2Zn (1.3 mL, 2.6 mmol, 2.0 in PhMe) in CH_2Cl_2 (85 mL) were reacted with $(\text{CH}_2\text{I})_2\text{Zn}$ prepared by the addition of CH_2I_2 (0.83 mL, 10 mmol) to the solution of Et_2Zn (0.64 g, 5.2 mmol) in CH_2Cl_2 (85 mL) at -50°C . The reaction mixture was stirred at 0°C for 1 h, quenched with sat. NH_4Cl , and extracted (3x) with CH_2Cl_2 . The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc, 1:4) afforded **2b** (0.41 g, 35%) as a colorless foam: IR (KBr) 3500, 3057, 2930, 2223, 1605, 1438, 1189, 1123 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.79 (ddt, $J = 12.0, 6.7, 1.6$ Hz, 2 H), 7.61 (ddt, $J = 12.1, 6.9, 1.4$ Hz, 2 H), 7.48-7.20 (m, 7 H), 7.12-7.03 (m, 4 H), 6.80 (dd, $J = 6.7, 1.8$ Hz, 2 H), 6.65 (dd, $J = 6.9, 1.5$ Hz, 2 H), 4.50 (app. t, $J = 8.4$ Hz, 1 H, H_1), 3.46 (dd, $J = 7.5, 5.2$ Hz, 1 H, NH), 2.17 (dd, $J = 6.8, 1.1$ Hz, 1 H, $\text{H}_{3\text{exo}}$ or $\text{H}_{5\text{exo}}$), 1.88 (dd, $J = 6.6, 0.6$ Hz, 1 H, $\text{H}_{5\text{exo}}$ or $\text{H}_{3\text{exo}}$), 0.96 (s, 1 H, $\text{H}_{3\text{endo}}$ or $\text{H}_{5\text{endo}}$), 0.88 (s, 1 H, $\text{H}_{5\text{endo}}$ or $\text{H}_{3\text{endo}}$); ^{13}C NMR (75 MHz, CDCl_3) δ 142.65, 139.58, 139.50, 133.77, 132.80, 132.08, 131.92, 131.80, 131.52, 131.09, 128.43, 128.37, 128.24, 128.20, 128.13, 127.56, 126.82, 125.89, 119.22 (CN), 107.91, 54.99 (C_1), 34.69 (C_3 or C_5), 31.80 (C_5 or C_3), 31.58 (d, $J = 4.7$ Hz, C_2), 20.85 (C_4); MS (EI) m/z (rel. intensity) 460 (M^+ , 44), 346 (7), 306 (17), 259 (100), 243 (38), 201 (82); HRMS (EI) calc for $\text{C}_{30}\text{H}_{25}\text{N}_2\text{OP}$ 460.1705, found 460.1703.



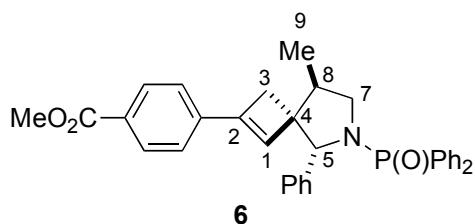
N-((3-(Pyridin-3-yl)bicyclo[1.1.0]but-1-yl)(phenyl)methyl)-P,P-diphenylphosphinamide (2c). According to General Protocol B, amide **1c** (0.50 g, 1.2 mmol) and Me_2Zn (0.61 mL, 1.2 mmol, 2.0 in PhMe) in CH_2Cl_2 (40 mL) were reacted with $(\text{CH}_2\text{I})_2\text{Zn}$ prepared by the addition of CH_2I_2 (0.40 mL, 4.9 mmol) to a solution of Et_2Zn (0.30 g, 2.5 mmol) in CH_2Cl_2 (40.0 mL) at -50°C . The reaction mixture was stirred at 0°C for 14 h, quenched with sat. NH_4Cl , and extracted (3x) with CH_2Cl_2 . The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc/MeOH, 1:8:1) afforded **2c** (0.21 g, 40%) as a colorless foam: IR (neat) 3058, 2926, 1591, 1570, 1477, 1454, 1438, 1420, 1311, 1191,


1123, 1110 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 8.21 (d, $J = 3.9$ Hz, 1 H), 7.97 (bs, 1 H), 7.80 (ddd, $J = 11.9, 8.0, 1.4$ Hz, 2 H), 7.66 (dd, $J = 12.0, 7.1$ Hz, 2 H), 7.42-7.20 (m, 8 H), 7.12-7.01 (m, 3 H), 6.92 (dd, $J = 7.8, 4.7$ Hz, 1 H), 6.70 (d, $J = 6.9$ Hz, 1 H), 4.52 (t, $J = 8.3$ Hz, 1 H, H_1), 3.66 (app t, $J = 5.6$ Hz, 1 H, NH), 2.14 (d, $J = 6.6$ Hz, 1 H, $\text{H}_{3\text{exo}}$ or $\text{H}_{5\text{exo}}$), 1.80 (d, $J = 6.6$ Hz, 1 H, $\text{H}_{5\text{exo}}$ or $\text{H}_{3\text{exo}}$), 0.90 (s, 1 H, $\text{H}_{3\text{endo}}$ or $\text{H}_{5\text{endo}}$), 0.80 (s, 1 H, $\text{H}_{5\text{endo}}$ or $\text{H}_{3\text{endo}}$); ^{13}C NMR (75 MHz, CDCl_3) δ 146.95, 146.07, 139.87, 139.79, 133.90, 132.65, 132.19, 132.07, 131.95, 131.83, 131.61, 131.39, 128.35, 128.29, 128.25, 128.19, 128.11, 128.09, 127.47, 126.83, 122.48, 55.01 (C_1), 33.65 (C_3 or C_5), 30.99 (C_5 or C_3), 28.69 (d, $J = 5.2$ Hz, C_2), 18.07 (C_4); MS (EI) m/z (rel. intensity) 436 (M^+ , 36), 332 (16), 306 (7), 235 (15), 218 (19), 201 (60), 77 (100); HRMS (EI) calc for $\text{C}_{28}\text{H}_{25}\text{N}_2\text{OP}$ 436.1705, found 436.1692.

Cyclohexyl(3-phenylbicyclo[1.1.0]but-1-yl)-N-tosylmethanamine (2d). General Protocol C. 2,2-Dibromo-1-(bromomethyl)-1-phenylcyclopropane **3** (0.50 g, 1.4 mmol) was dissolved in Et_2O (10.0 mL), cooled to -78 $^{\circ}\text{C}$ and treated with MeLi (0.84 mL, 1.4 mmol, $c = 1.6$ M in Et_2O). The reaction mixture was allowed to warm up to -50 $^{\circ}\text{C}$ over 1 h, cooled to -78 $^{\circ}\text{C}$ and treated with $t\text{-BuLi}$ (0.81 mL, 2.2 mmol, $c = 1.7$ M in pentane). After 1 h at -78 $^{\circ}\text{C}$, a solution of $c\text{-C}_6\text{H}_{11}\text{CH=NTs}$ (0.15 g, 0.54 mmol) in THF (5.0 mL) was added, the reaction mixture was stirred for 10 min, warmed up to rt, quenched with sat. NH_4Cl , and extracted (3x) with EtOAc . The combined organic layers were washed with water, brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/ EtOAc , 4:1) afforded **2d** (0.16 g, 75%) as a light yellow oil: IR (neat) 3286, 2925, 2853, 1601, 1447, 1325, 1159 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.50-7.48 (m, 2 H), 7.31-7.27 (m, 2 H), 7.22-7.10 (m, 5 H), 4.40 (d, $J = 8.0$ Hz, 1 H, NH), 3.43 (dd, $J = 8.0, 3.9$ Hz, 1 H, H_1), 2.41 (s, 3 H, CH_3), 1.94 (d, $J = 6.7$ Hz, 1 H, $\text{H}_{3\text{exo}}$ or $\text{H}_{5\text{exo}}$), 1.87 (d, $J = 6.7$ Hz, 1 H, $\text{H}_{5\text{exo}}$ or $\text{H}_{3\text{exo}}$), 1.67-1.53 (m, 6 H), 1.09-1.01 (m, 5 H), 0.97 (s, 1 H, $\text{H}_{3\text{endo}}$ or $\text{H}_{5\text{endo}}$), 0.84 (s, 1 H, $\text{H}_{5\text{endo}}$ or $\text{H}_{3\text{endo}}$); ^{13}C NMR (75 MHz, CDCl_3) δ 142.8, 138.0, 135.8, 129.4, 128.4, 126.9, 125.6, 125.2, 56.9 (C_1), 42.5 (C_6), 32.3 (C_3 or C_5), 30.7 (C_5 or C_3), 28.9, 28.8, 26.2, 26.1, 26.0, 25.0 (CH_3), 21.4, 18.4 (C_4); MS (EI) m/z (rel. intensity) 395 (M^+ , 15), 312 (14), 266 (40), 240 (19), 91 (100); HRMS (EI) calc for $\text{C}_{24}\text{H}_{29}\text{NO}_2\text{S}$ 395.1919, found 395.1919.

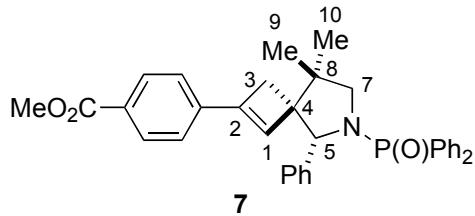


N-(Phenyl-3-phenylbicyclo[1.1.0]but-1-yl)methyl-P,P-diphenylphosphinamide (2e). According to the General Protocol C, 2,2-dibromo-1-bromomethyl-phenylcyclopropane **3** (0.30 g, 0.81 mmol) in Et₂O (5.0 mL) was treated with MeLi (0.59 mL, 0.81 mmol, c = 1.4 M in Et₂O), followed by *t*-BuLi (0.56 mL, 0.81 mmol, c = 1.5 M in pentane) and a solution of PhCH=NP(O)Ph₂ (0.11 g, 0.32 mmol) in THF (5.0 mL). The reaction mixture was warmed up to rt, quenched with sat. NH₄Cl and extracted (3x) with EtOAc. The combined organic layers were washed with water, brine, dried (Na₂SO₄), and evaporated. Purification by chromatography on SiO₂ (hexanes/EtOAc, 1:4) afforded **2f** (0.10 g, 73%) as a colorless oil: IR (neat) 3059, 1680, 1597, 1438, 1191 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (ddd, *J* = 10.5, 6.8, 1.5 Hz, 2 H), 7.70 (ddd, *J* = 12.1, 5.1, 1.4 Hz, 2 H), 7.56-7.38 (m, 4 H), 7.31-7.27 (m, 4 H), 7.18-7.10 (m, 4 H), 6.93 (dd, *J* = 7.8, 1.6 Hz, 2 H), 6.81 (dd, *J* = 7.7, 1.4 Hz, 2 H), 4.68 (app t, *J* = 8.5 Hz, 1 H, H₁), 4.45 (dd, *J* = 7.8, 5.3 Hz, 1 H, NH), 2.13 (d, *J* = 6.7 Hz, 1 H, H_{3exo} or H_{5exo}), 1.99 (d, *J* = 6.7 Hz, 1 H, H_{5exo} or H_{3exo}), 0.94 (s, 1 H, H_{3endo} or H_{5endo}), 0.89 (s, 1 H, H_{5endo} or H_{3endo}); ¹³C NMR (75 MHz, CDCl₃) δ 140.44, 140.36, 135.76, 132.16, 132.04, 131.99, 131.86, 131.59, 131.44, 128.38, 128.26, 128.22, 128.11, 128.02, 127.96, 127.16, 127.01, 125.56, 125.03, 55.02 (C₁), 33.18 (C₃ or C₅), 30.91 (C₅ or C₃), 28.30 (d, *J* = 5.2 Hz, C₂), 20.15 (C₄); MS (EI) *m/z* (rel. intensity) 435 (M⁺, 14), 306 (50), 218 (43), 201 (100); HRMS (EI) calc for C₂₉H₂₆NOP 435.1752, found 435.1749.



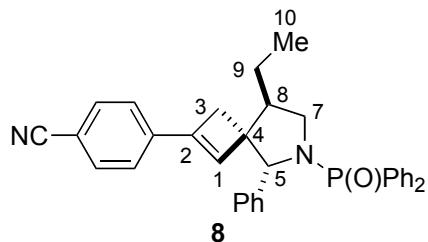
N-(2,2-Dimethyl-1-(3-phenylbicyclo[1.1.0]but-1-yl)propyl)-P,P-diphenylphosphinamide (2f). According to the General Protocol C, 2,2-dibromo-1-bromomethyl-phenylcyclopropane **3** (0.30 g, 0.81 mmol) in Et₂O (5.0 mL) was treated with MeLi (0.59 mL, 0.81 mmol, c = 1.4 M in Et₂O), followed by *t*-BuLi (0.56 mL, 0.81 mmol, c = 1.5 M in pentane) and a solution of *t*-BuCH=NP(O)Ph₂ (0.093 g, 0.32 mmol) in THF (5.0 mL). The reaction mixture was warmed up to rt, quenched with sat. NH₄Cl and extracted (3x) with EtOAc. The combined organic layers were washed with water, brine, dried (Na₂SO₄), and evaporated. Purification by chromatography on SiO₂ (hexanes/EtOAc, 1:4) afforded **2f** (0.094 g, 71%) as a colorless oil: IR (neat) 2957, 1438, 1188, 1123, 1109 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.57-7.51 (m, 2 H), 7.45-7.21 (m, 13 H), 3.12 (dd, *J* = 11.0, 7.6 Hz, 1 H, H₁), 2.69 (dd, *J* = 11.0, 4.4 Hz, 1 H, NH), 2.15 (d, *J* = 6.6 Hz, 1 H, H_{3exo} or H_{5exo}), 2.03 (d, *J* = 6.6, 1 H, H_{5exo} or H_{3exo}), 1.06

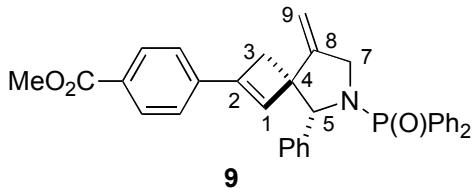
(s, 10 H, H_{3endo} or H_{5endo}, H₇), 0.92 (s, 1 H, H_{5endo} or H_{3endo}); ¹³C NMR (75 MHz, CDCl₃) δ 136.94, 134.60, 132.84, 132.70, 132.57, 132.28, 132.16, 131.71, 131.31, 131.27, 130.00, 128.28, 128.23, 128.20, 128.07, 128.03, 127.91, 126.68, 125.51, 59.22 (C₁), 37.56 (C₃ or C₅), 33.79 (C₅ or C₃), 30.16 (d, *J* = 9.9 Hz, C₂), 27.98 (C₆), 27.17 (C₇), 18.23 (C₄); MS (EI) *m/z* (rel. intensity) 415 (M⁺, 66), 414 (46), 357 (52), 284 (11), 199 (100), 181 (26), 154 (16); HRMS (EI) calc for C₂₇H₃₀NOP 415.2065, found 415.2051.



(4*S,5*R**,8*R**)-6-(*N*-(*P,P*-Diphenylphosphinyl))-8-methyl-2,5-diphenyl-6-azaspiro[3.4]oct-1-ene (5). General Protocol D.** Bicyclobutane **4a** (0.049 g, 0.11 mmol), allyl bromide (0.068 g, 0.56 mmol) and Bu₄NHSO₄ (0.020 g, 0.056 mmol) were dissolved in PhMe (5.0 mL), and treated with 50% aq NaOH (5.0 mL). The reaction mixture was vigorously stirred at rt for 36 h, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and evaporated. The product was purified by chromatography on SiO₂ (hexanes/EtOAc, 1:4) to give **5** (0.033 g, 63%) as a colorless oil: IR (neat) 2922, 1489, 1438, 1200, 1108 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (ddd, *J* = 11.7, 4.8, 1.6 Hz, 3 H), 7.61 (ddd, *J* = 11.8, 8.3, 1.3 Hz, 3 H), 7.49-7.44 (m, 5 H), 7.35-7.20 (m, 4 H), 7.15-7.06 (m, 5 H), 6.77 (s, 1 H, H₁), 4.54 (d, *J* = 11.3 Hz, 1 H, H₅), 3.59-3.49 (m, 1 H, H₇), 3.27-3.17 (m, 1 H, H₇), 2.81-2.69 (m, 1 H, H₈), 2.39 (d, *J* = 13.4 Hz, 1 H, H₃), 2.25 (d, *J* = 13.4 Hz, 1 H, H₃), 0.94 (d, *J* = 6.6 Hz, 3 H, H₉); ¹³C NMR (75 MHz, CDCl₃) δ 144.08, 144.04, 134.02, 132.56, 132.43, 132.32, 132.20, 131.67, 131.29, 128.54, 128.43, 128.37, 128.26, 127.85, 127.79, 127.67, 127.26, 126.67, 124.67, 69.25 (C₅), 56.66 (d, *J* = 3.8 Hz, C₄), 52.66 (C₇), 36.69 (C₈), 32.37 (C₃), 11.89 (C₉); MS (EI) *m/z* (rel. intensity) 475 (M⁺, 29), 318 (9), 306 (52), 274 (28), 230 (20), 201 (100); HRMS (EI) calc for C₃₂H₃₀NOP 475.2065, found 475.2095.

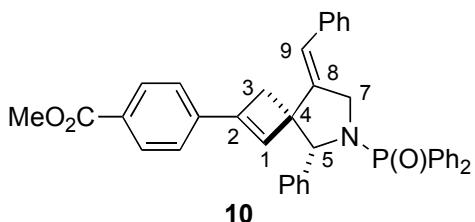
(4*S,5*R**,8*R**)-6-(*N*-(*P,P*-Diphenylphosphinyl))-2-((4-methoxycarbonyl)phenyl)-8-methyl-5-phenyl-6-azaspiro[3.4]oct-1-ene (6).** According to General Protocol D, bicyclobutane **2a** (0.10 g, 0.20 mmol), allyl


bromide (0.12 g, 1.0 mmol) and Bu_4NHSO_4 (0.034 g, 0.10 mmol) were dissolved in PhMe (10.0 mL) and treated with 50% aq NaOH (10.0 mL). The reaction mixture was vigorously stirred at rt for 36 h, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. The residue was purified by chromatography on SiO_2 (hexanes/EtOAc, 1:4) to afford **6** as a colorless oil (0.090 g, 83%): IR (neat) 3058, 2954, 2925, 2871, 1719, 1617, 1428, 1453, 1438, 1410, 1359, 1280, 1193, 1121, 1109 cm^{-1} ; ^1H NMR (500 MHz, CDCl_3) δ 8.05-7.97 (m, 4 H), 7.63 (dd, J = 11.1, 8.1 Hz, 2 H), 7.52-7.48 (m, 3 H), 7.40 (d, J = 8.2 Hz, 2 H), 7.31-7.24 (m, 4 H), 7.15-7.11 (m, 4 H), 6.96 (s, 1 H, H_1), 4.58 (d, J = 11.5 Hz, 1 H, H_5), 3.94 (s, 3 H, OCH_3), 3.59 (app t, J = 7.3 Hz, 1 H, H_7), 3.26 (q, J = 10.3 Hz, 1 H, H_7), 2.82-2.79 (m, 1 H, H_8), 2.45 (d, J = 13.3 Hz, 1 H, H_3), 2.30 (d, J = 13.3 Hz, 1 H, H_3), 0.97 (d, J = 6.5 Hz, 3 H, H_9); ^{13}C NMR (75 MHz, CDCl_3) δ 166.77 (CO), 148.03, 143.84, 143.35, 138.09, 134.75, 132.53, 132.41, 132.32, 132.20, 131.57, 131.33, 129.66, 129.16, 128.55, 128.39, 127.86, 127.68, 127.26, 126.79, 124.56, 68.93 (C_5), 57.03 (d, J = 3.5 Hz, C_4), 52.72 (C_7), 51.99 (OCH_3), 36.80 (d, J = 5.4 Hz, C_8), 32.41 (C_3), 11.91 (C_9); MS (EI) m/z (rel. intensity) 533 (M^+ , 15), 332 (24), 306 (43), 230 (11), 215 (14), 201 (80), 118 (100); HRMS (EI) calc for $\text{C}_{34}\text{H}_{32}\text{NO}_3\text{P}$ 533.2120, found 533.2129.


(4S*,5R*)-6-(N-(P,P-Diphenylphosphinyl))-2-((4-methoxycarbonyl)phenyl)-8,8-dimethyl-5-phenyl-6-azaspiro[3.4]oct-1-ene (7) from 4c. A mixture of bicyclobutane **2a** (0.030 g, 0.061 mmol), 3-bromo-2-methylpropene (0.030 mL, 0.030 mmol), Bu_4NHSO_4 (0.010 g, 0.030 mmol), powdered NaOH (0.012 g, 0.61 mmol) and K_2CO_3 (0.042 g, 0.30 mmol) in PhMe (3.0 mL) was vigorously stirred at rt for 2.5 h and at 110 °C for an additional 12 h. The reaction mixture was diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. The residue was purified by chromatography on SiO_2 (hexanes/EtOAc, 1:4) to afford a mixture (2.3:1) of diastereoisomers of **7** (0.022 g, 66%) as a colorless oil. Major isomer: ^1H NMR (300 MHz, CDCl_3) δ 8.03-7.84 (m, 3 H), 7.53-7.46 (m, 5 H), 7.20-7.11 (m, 5 H), 7.04-6.92 (m, 6 H), 6.32 (s, 1 H, H_1), 4.74 (d, J = 11.0 Hz, 1 H, H_5), 3.86 (s, 3 H, OCH_3), 3.53-3.30 (m, 2 H, H_7), 2.75 (d, J = 12.9 Hz, 1 H, H_3), 2.36 (d, J = 12.9 Hz, 1 H, H_3), 1.38 (s, 3 H, H_9 or H_{10}), 0.94 (s, 3 H, H_{10} or H_9); ^{13}C NMR (75 MHz, CDCl_3) δ 166.70 (CO), 145.97, 141.48, 141.30, 133.46, 132.59, 132.47, 132.30, 132.18, 131.87, 131.59, 129.49, 128.55, 128.39, 128.30, 127.53, 127.36, 127.22, 127.17, 126.36, 124.28, 68.21 (C_5), 60.52 (C_4), 59.89 (C_7), 51.98 (OCH_3), 42.48 (C_8), 31.60 (C_3), 23.15 (C_9 or C_{10}), 21.78 (C_{10} or C_9); IR(neat) 2955, 1720, 1605, 1438, 1280, 1193, 1122, 1109 cm^{-1} ; MS (EI) m/z (rel. intensity) 547 (M^+ , 52), 532 (9), 500

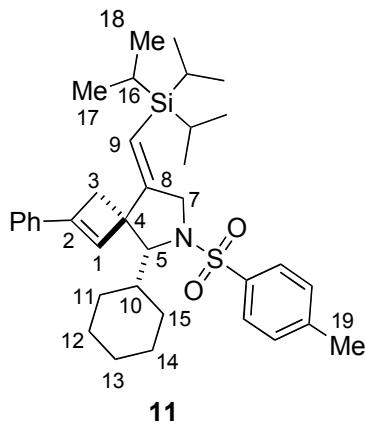
(10), 470 (8), 346 (53), 230 (15), 201 (100); HRMS (EI) calc for $C_{35}H_{34}NO_3P$ 547.2276, found 547.2251. Minor isomer (representative signals): 1H NMR (300 MHz, $CDCl_3$) δ 6.40 (s, 1 H, H_1), 4.81 (d, J = 11.5 Hz, 1 H, H_5), 3.87 (s, 3 H, OCH_3), 3.31 (app d, J = 10.8 Hz, 1 H, H_7), 2.50 (d, J = 13.2 Hz, 1 H, H_3), 1.36 (s, 3 H, H_9 or H_{10}), 1.07 (s, 3 H, H_{10} or H_9); ^{13}C NMR (75 MHz, $CDCl_3$) δ 67.87 (C_5), 43.49 (C_8), 32.24 (C_3), 23.98 (C_9 or C_{10}), 21.51 (C_{10} or C_9),.

Synthesis of **7** from *N*-(3-(4-methoxycarbonylphenyl)bicyclo[1.1.0]but-1-yl)(phenyl)methyl)-*N*-(2-methylallyl)-*P,P*-diphenylphosphinamide (**21**). A solution of bicyclobutane **19** (0.025 g, 0.047 mmol) in PhMe (1.5 mL) was heated at reflux (110 °C) for 6.5 h. The solvent was evaporated, and purification of the residue by chromatography on SiO_2 (hexanes/EtOAc, 1:4) afforded a diastereomeric mixture (2.5:1) of **7** (0.020 g, 80%).

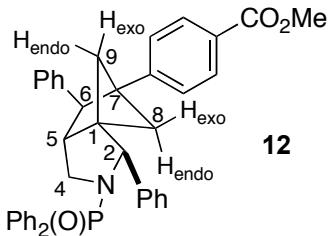


(4*S,5*R**,8*R**)-2-(4-Cyanophenyl)-6-(*N,P,P*-diphenylphosphinyl)-8-ethyl-5-phenyl-6-azaspiro[3.4]oct-1-ene (**8**).** A suspension of bicyclobutane **2b** (0.11 g, 0.24 mmol), crotyl bromide (0.12 mL, 1.2 mmol), Bu_4NHSO_4 (0.041 g, 0.12 mmol), powdered NaOH (0.10 g, 2.4 mmol) and K_2CO_3 (0.17 g, 1.2 mmol) in PhMe (10 mL) was vigorously stirred at rt for 4 h, and at 50 °C for an additional 14 h. The reaction mixture was diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc, 1:4) afforded **8** (0.063 g, 51%) as a colorless oil: IR (neat) 3060, 2960, 2925, 2873, 2225, 1612, 1558, 1497, 1454, 1439, 1299, 1194, 1109 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 7.95 (ddd, J = 11.8, 7.7, 1.9 Hz, 2 H), 7.62-7.56 (m, 4 H), 7.50-7.44 (m, 4 H), 7.39-7.36 (m, 2 H), 7.31-7.23 (m, 3 H), 7.15-7.06 (m, 4 H), 7.00 (s, 1 H, H_1), 4.51 (d, J = 11.6 Hz, 1 H, H_5), 3.64 (ddd, J = 11.0, 8.0, 3.0 Hz, 1 H, H_7), 3.26 (td, J = 12.3, 10.0 Hz, 1 H, H_7), 2.57 (ddd, J = 18.2, 10.4, 3.8 Hz, 1 H, H_8), 2.42 (d, J = 13.4 Hz, 1 H, H_3), 2.30 (d, J = 13.4 Hz, 1 H, H_3), 1.49-1.35 (m, 1 H, H_9), 1.30-1.18 (m, 1 H, H_9), 0.86 (t, J = 7.4 Hz, 3 H, H_{10}); ^{13}C NMR (75 MHz, $CDCl_3$) δ 143.68, 142.22, 138.00, 136.82, 133.28, 132.54, 132.41, 132.31, 132.20, 131.65, 131.44, 131.41, 128.66, 128.49, 127.94, 127.77, 127.27, 126.94, 125.18, 118.92 (CN), 110.98, 69.33 (C_5), 56.94 (d, J = 3.0 Hz, C_4), 51.49 (C_7), 44.14 (d, J = 5.3 Hz, C_8), 32.67 (C_3), 21.92 (C_9), 13.09 (C_{10}); MS (ES) m/z (rel. intensity) 1051 ($[2M+Na]^+$, 15), 537 ($[M+Na]^+$, 72), 515 ($[M+1]^+$, 100); HRMS (ES) calc for $C_{34}H_{32}N_2OP$ ($M+H$) 515.2252, found 515.2251.

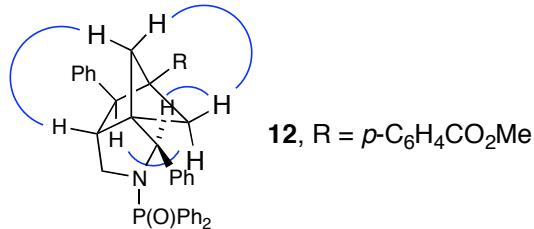
(4*S,5*R**)-6-(*N*-(*P,P*-Diphenylphosphinyl))-2-((4-methoxycarbonyl)phenyl)-8-methylene-5-phenyl-6-azaspiro[3.4]oct-1-ene (9).**


According to General Protocol D, a solution of bicyclobutane **2a** (0.32 g, 0.62 mmol), propargyl bromide (0.50 mL, 3.1 mmol, 80% in PhMe), and Bu₄NHSO₄ (0.11 g, 0.32 mmol) in PhMe (30 mL) was treated with 50% aq NaOH (30 mL). The reaction mixture was vigorously stirred at rt for 24 h, diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and evaporated. The residual oil was purified by chromatography on SiO₂ (hexanes/EtOAc, 1:4) to afford **9** (0.29 g, 87%) as a colorless oil: IR (neat) 3058, 2959, 1721, 1603, 1438, 1280, 1195, 1110 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 6.8, 1.7 Hz, 2 H), 7.92 (ddd, *J* = 11.7, 7.9, 1.7 Hz, 2 H), 7.71 (ddd, *J* = 11.8, 8.3, 1.4 Hz, 2 H), 7.52-7.44 (m, 4 H), 7.40-7.34 (m, 4 H), 7.30-7.20 (m, 3 H), 7.03-7.00 (m, 2 H), 5.77 (s, 1 H, H₁), 4.93 (d, *J* = 1.4 Hz, 2 H, H₉), 4.58 (d, *J* = 10.3 Hz, 1 H, H₅), 4.34 (ddt, *J* = 14.4, 12.1, 2.4 Hz, 1 H, H₇), 4.04 (dd, *J* = 14.3, 5.5 Hz, 1 H, H₇), 3.91 (s, 3 H, OCH₃), 3.28 (d, *J* = 12.6 Hz, 1 H, H₃), 2.92 (d, *J* = 12.6 Hz, 1 H, H₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.71 (CO), 150.76, 146.39, 142.72, 142.66, 137.88, 132.53, 132.49, 132.40, 132.37, 131.67, 130.82, 129.73, 129.57, 128.65, 128.49, 128.30, 128.21, 128.05, 128.00, 127.02, 126.56, 124.85, 105.56 (C₉), 69.91 (C₅), 57.59 (C₄), 52.03 (OCH₃), 50.71 (C₇), 46.42 (C₃); MS (EI) *m/z* (rel. intensity) 531 (M⁺, 27), 417 (6), 330 (65), 217 (21), 201 (100); HRMS (EI) calc for C₃₀H₃₄NO₃P 531.1963, found 531.1941.

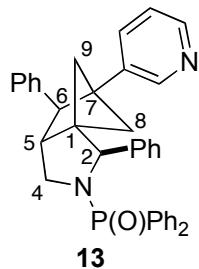
(4*S,5*R**,8*Z*)-6-(*N*-(*P,P*-Diphenylphosphinyl))-2-((4-methoxycarbonyl)phenyl)-5-phenyl-8-phenylmethylen-6-azaspiro[3.4]oct-1-ene (10).**


According to General Protocol D, a solution of bicyclobutane **2a** (0.050 g, 0.10 mmol), Bu₄NHSO₄ (0.017 g, 0.051 mmol), and 1-phenyl-3-bromopropyne (0.099 g, 0.51 mmol) in PhMe (5.0 mL) was treated with 50% aq NaOH (5.0 mL). The reaction mixture was vigorously stirred at rt for 36 h, diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and evaporated. The residual oil was purified by chromatography on SiO₂ (hexanes/EtOAc, 1:4) to afford **10** (0.030 g, 49%) as a colorless oil: IR (neat) 3059, 2950, 1720, 1666, 1603, 1494, 1455, 1438, 1410, 1310, 1281, 1194, 1111 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2 H), 7.89 (ddd, *J* = 11.8, 8.2, 1.5 Hz, 2 H), 7.73 (ddd, *J* = 11.8, 8.3, 1.3 Hz, 2 H), 7.54-7.38 (m, 7 H), 7.32-7.18 (m, 7

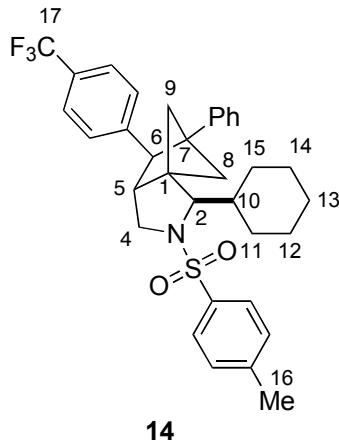
H), 7.11 (d, J = 7.8 Hz, 2 H), 6.95 (dd, J = 6.7, 2.8 Hz, 2 H), 6.33 (s, 1 H, H₁), 5.88 (s, 1 H, H₉), 4.65 (ddd, J = 14.7, 11.1, 2.7 Hz, 1 H, H₇), 4.55 (d, J = 9.8 Hz, 1 H, H₅), 4.39 (ddd, J = 15.1, 5.1, 1.9 Hz, 1 H, H₇), 3.92 (s, 3 H, OCH₃), 3.32 (d, J = 12.6 Hz, 1 H, H₃), 3.02 (d, J = 12.5 Hz, 1 H, H₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.73 (CO), 146.54, 143.57, 142.56, 137.82, 136.73, 133.10, 132.48, 132.35, 131.78, 131.38, 130.79, 129.78, 129.66, 128.73, 128.41, 128.32, 128.09, 127.07, 126.84, 126.56, 124.94, 121.32, 69.09 (C₅), 58.89 (C₄), 52.10 (OCH₃), 49.00 (C₇), 46.89 (C₃); MS (EI) *m/z* (rel. intensity) 607 (M⁺, 40), 407 (70), 307 (9), 217 (18), 201 (100); HRMS (EI) calc for C₂₈H₂₄NO₂ (M-C₁₂H₁₀OP) 406.1807, found 406.1814.


(4*S*^{*,5*R*^{*,8*Z*}})-5-Cyclohexyl-6-(*N*-tosyl)-2-phenyl-8-(triisopropylsilyl)methylene-6-azaspiro[3.4]oct-1-ene

(11). According to the General Protocol D, a solution of bicylobutane **2d** (0.068 g, 0.17 mmol), (3-bromoprop-1-ynyl)triisopropylsilane (0.24 g, 0.86 mmol) and Bu₄NHSO₄ (0.029 g, 0.086 mmol) in PhMe (5.0 mL) was treated with 50 % aq NaOH (5.0 mL). The reaction mixture was vigorously stirred at rt for 24 h, diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. Purification by chromatography on SiO₂ (hexanes/EtOAc, 4:1) afforded **11** (0.062 g, 62%) as a colorless foam: IR (neat), 1626, 1449, 1349, 1162 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 2 H), 7.36-7.30 (m, 5 H), 7.29 (m, 2 H), 6.12 (s, 1 H, H₁), 5.45 (app. t, J = 2.1 Hz, 1 H, H₉), 4.29 (dd, J = 16.0, 2.0 Hz, 1 H, H₇), 4.13 (dd, J = 16.0, 1.9 Hz, 1 H, H₇), 3.77 (d, J = 3.2 Hz, 1 H, H₅), 2.49 (s, 3 H, H₁₈), 1.96 (d, J = 12.2 Hz, 1 H, H₃), 1.83 (d, J = 12.2 Hz, 1 H, H₃), 1.77-1.68 (m, 7 H, H₁₀, H₁₁, H₁₅, H₁₂ or H₁₄), 1.85-0.91 (m, 25 H, H₁₄ or H₁₂, H₁₃, H₁₆, H₁₇); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 146.9, 143.4, 136.1, 133.6, 129.6, 128.4, 127.7, 125.3, 124.7, 112.7, 71.1 (C₅), 57.2 (C₄), 52.8 (C₇), 47.3 (C₃), 43.6 (C₁₀), 31.1, 28.2, 26.5 (x2), 26.2, 21.5 (C₁₉), 19.0 (C₁₇ or C₁₈), 18.8 (C₁₈ or C₁₇), 11.8 (C₁₆); MS (EI) *m/z* (rel. intensity) 589 (M⁺, 30), 506 (100), 434 (17); HRMS (EI) calc for C₃₆H₅₁NO₂SSi 589.3410, found 589.3397.


(2*S,5*R**,6*S**)-3-(*N*-(*P,P*-Diphenylphosphinyl))-7-((4-methoxycarbonyl)phenyl)-2,6-diphenyl-3-azatricyclo[5.1.1.0^{1,5}]nonane (12) from (*E*)-cinnamyl bromide.** According to General Protocol C, a solution of bicyclobutane **1a** (0.030 g, 0.061 mmol), (*E*)-cinnamyl bromide (0.069 g, 0.30 mmol) and Bu₄NHSO₄ (0.010 g, 0.030 mmol) in PhMe (3.0 mL) was treated with 50% aq NaOH (3.0 mL). The reaction mixture was vigorously stirred at rt for 2 h, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and evaporated. Purification by chromatography on SiO₂ (hexanes/EtOAc, 1:4) afforded **12** (0.034 g, 93%) as a colorless oil: IR (neat) 3059, 3027, 2949, 1720, 1611, 1495, 1451, 1438, 1310, 1280, 1196, 1111 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 10.5, 7.6 Hz, 2 H), 7.69 (d, *J* = 8.5 Hz, 2 H), 7.64 (dd, *J* = 11.5, 7.5 Hz, 2 H), 7.40-7.35 (m, 3 H), 7.21 (t, *J* = 7.7 Hz, 3 H), 7.16 (d, *J* = 8.0 Hz, 1 H), 7.11 (dd, *J* = 7.6, 2.8 Hz, 4 H), 6.95-6.94 (m, 3 H), 6.81 (d, *J* = 8.2 Hz, 2 H), 6.71 (s, 2 H), 4.50 (d, *J* = 9.8 Hz, 1 H, H₂), 3.75 (s, 3 H, OCH₃), 3.55 (t, *J* = 8.5 Hz, 1 H, H₄), 3.38 (q, *J* = 9.9 Hz, 1 H, H₄), 3.23 (d, *J* = 4.1 Hz, 1 H, H₆), 2.96 (bs, 1 H, H₅), 2.42 (dd, *J* = 9.3, 7.2 Hz, 1 H, H_{8endo}), 1.87 (d, *J* = 6.4 Hz, 1 H, H_{8exo}), 1.80 (d, *J* = 6.9 Hz, 1 H H_{9exo}), 1.68 (dd, *J* = 9.2, 7.4 Hz, 1 H, H_{9endo}); ¹³C NMR (75 MHz, CDCl₃) δ 167.14 (CO), 146.65, 141.60, 141.54, 140.93, 132.60, 132.48, 132.40, 132.28, 131.70, 129.41, 128.76, 128.60, 128.45, 128.23, 128.12, 128.04, 126.92, 126.47, 126.28, 126.06, 62.66 (C₂), 59.40 (C₇), 59.29 (d, *J* = 4.4 Hz, C₁), 54.21 (C₆), 52.07 (OCH₃), 51.34 (d, *J* = 6.0 Hz, C₅), 49.24 (C₄), 48.78 (C₈), 39.42 (C₉); MS (EI) *m/z* (rel. intensity) 609 (M⁺, 61), 532 (3), 408 (33), 344 (19), 333 (21), 320 (21), 306 (27), 230 (41), 201 (100); HRMS (EI) calc for C₄₀H₃₆NO₃P 609.2433, found 609.2432.

The relative configuration of **12** was assigned based on NOESY experiment, showing following nOe enhancements (copy of NOESY spectra of **12** is given at the end of Supporting Material):

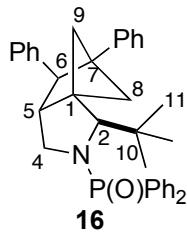


Synthesis of **12 from (*Z*)-cinnamyl bromide.** According to General Protocol C, a solution of bicyclobutane **2a** (0.036 g, 0.073 mmol), freshly prepared (*Z*)-cinnamyl bromide (0.071 g, 0.36 mmol) and Bu₄NHSO₄ (0.012 g, 0.036 mmol) in PhMe (3.0 mL) and 50% aq NaOH (3.0 mL) was vigorously stirred at rt for

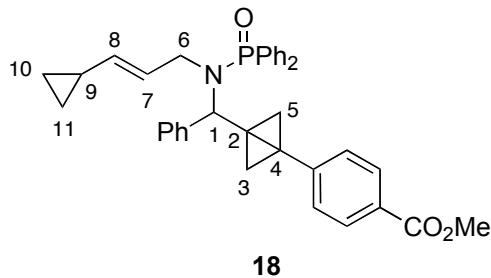
1 h. The reaction mixture was diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification of the residue by chromatography on SiO_2 (hexanes/EtOAc, 1:4) afforded **12** (0.023 g, 52%).

(2*S,5*R**,6*S**)-3-(*N*-(*P,P*-Diphenylphosphinyl))-2,6-diphenyl-7-(pyridin-3-yl)-3-azatricyclo[5.1.1.0^{1,5}]nonane (13).** According to General Protocol C, a solution of bicyclobutane **2c** (0.051 g, 0.12 mmol), (*E*)-cinnamyl bromide (0.012 g, 0.59 mmol) and Bu_4NHSO_4 (0.020 g, 0.058 mmol) in PhMe (5.0 mL) and 50 % aq NaOH (5.0 mL) was vigorously stirred at rt for 1 h, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification of the residue by chromatography on SiO_2 (hexanes/EtOAc/MeOH, 1:8:1) afforded **13** (0.021 g, 32%) as a colorless oil: IR (neat) 3057, 3028, 2974, 2880, 1601, 1495, 1481, 1451, 1439, 1416, 1350, 1300, 1264, 1234, 1197, 1121 cm^{-1} ; ¹H NMR (300 MHz, CDCl_3) δ 8.22 (bs, 1 H), 8.03 (bs 1 H), 7.93-7.86 (m, 2 H), 7.67-7.60 (m, 2 H), 7.37-7.33 (m, 3 H), 7.24-7.16 (m, 4 H), 7.13-7.06 (m, 4 H), 6.97-6.90 (m, 5 H), 6.46 (dd, J = 6.1, 3.1 Hz, 2 H), 4.51 (d, J = 9.9 Hz, 1 H, H₂), 3.55 (app t, J = 8.6 Hz, 1 H, H₄), 3.38 (q, J = 9.9 Hz, 1 H, H₄), 3.21 (d, J = 4.0 Hz, 1 H, H₆), 2.97 (bs, 1 H, H₅), 2.42 (t, J = 7.0 Hz, 1 H, H_{8endo}), 1.89 (d, J = 6.9 Hz, 1 H H_{8exo}), 1.80 (d, J = 7.0 Hz, 1 H, H_{9exo}), 1.70 (t, J = 7.1 Hz, 1 H, H_{9endo}); ¹³C NMR (75 MHz, CDCl_3) δ 147.89, 147.56, 141.38, 140.59, 133.66, 132.48, 132.36, 132.28, 132.16, 131.66, 131.56, 128.61, 128.45, 128.30, 128.12, 128.05, 127.98, 127.89, 126.83, 126.54, 125.96, 122.75, 62.53 (C₂), 59.54 (d, J = 4.4 Hz, C₁), 59.51, 57.25 (C₇), 54.03 (C₆), 51.23 (d, J = 6.2 Hz, C₅), 49.07 (C₄), 48.33 (C₈), 39.41 (C₉); MS (EI) *m/z* (rel. intensity) 552 (M⁺, 31), 461 (6), 434 (7), 351 (46), 320 (21), 232 (25), 201 (61), 91 (100); HRMS (EI) calc for $\text{C}_{37}\text{H}_{33}\text{N}_2\text{OP}$ 552.2331, found 552.2309.

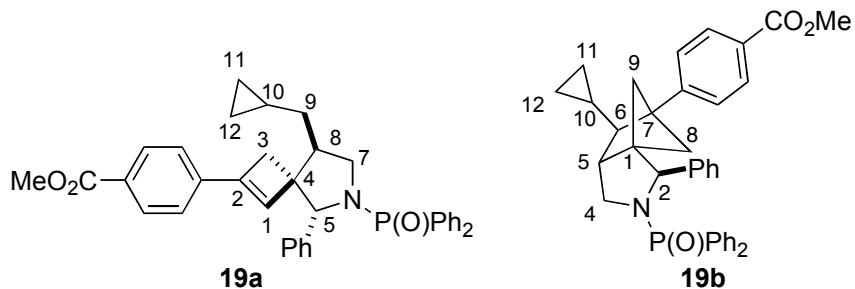
(2*R*^{*,5*R*^{*,6*S*^{*}})-3-(*N*-Tosyl)-2-cyclohexyl-7-phenyl-6-(4-trifluoromethylphenyl)-3-azatricyclo[5.1.1.0^{1,5}]nonane (14).}


According to the General Protocol D, bicyclobutane **2e** (0.038 g, 0.088 mmol), (*E*)-1-(3-bromoprop-1-enyl)-4-(trifluoromethyl)benzene (0.0087 g, 0.44 mol) and Bu_4NHSO_4 (0.015 g, 0.044 mmol) were dissolved in PhMe (4.0 mL) and treated with 50% aq NaOH (4.0 mL). The reaction mixture was vigorously stirred at rt for 2 h, diluted with water, and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc 1:4) afforded **15** (0.029 g, 59%) as a colorless oil: IR (neat) 2928, 2854, 1618, 1326, 1164 cm^{-1} ; ^1H NMR (300 MHz, C_6D_6) δ 7.95 (d, J = 8.0 Hz, 2 H), 7.22-7.17 (m, 2 H), 6.98-6.94 (m, 5 H), 6.76 (d, J = 8.0 Hz, 2 H), 6.61-6.58 (m, 2 H), 3.79 (t, J = 8.0 Hz, 1 H, H_4), 3.69 (d, J = 5.4 Hz, 1 H, H_2), 3.07 (t, J = 9.7 Hz, 1 H, H_4), 2.91 (d, J = 4.0 Hz, 1 H, H_6), 2.76-2.73 (m, 1 H, H_5), 2.1-1.7 (m, 4 H, H_8 , H_9), 1.99 (s, 3 H, CH_3), 1.46-1.25 (m, 7 H, H_{10} , H_{11} , H_{15} , H_{13}), 1.06-1.04 (m, 4 H, H_{12} , H_{14}); ^{13}C NMR (75 MHz, C_6D_6) δ 145.6, 143.0, 140.5, 135.9, 130.2, 129.5, 128.6, 128.5, 127.9, 126.7, 126.2, 125.2, 66.4 (C_2), 59.8 (C_7), 55.7, 53.2, 52.6, 51.1, 49.1, 42.9, 40.6, 30.9, 30.0, 27.0, 26.8, 21.1; MS (EI) m/z (rel. intensity) 579 (M^+ , 2), 496 (100), 424 (7); HRMS (EI) calc for $\text{C}_{34}\text{H}_{36}\text{NO}_2\text{FS}$ 579.2419, found 579.2418.

(2*S*^{*,5*R*^{*,6*S*^{*}})-3-(*N*-(*P,P*-Diphenylphosphinyl))-2,6,7-triphenyl-3-azatricyclo[5.1.1.0^{1,5}]nonane (15).}

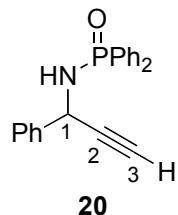

According to the General Protocol D, bicyclobutane **2e** (0.038 g, 0.088 mmol), (*E*)-cinnamyl bromide (0.0087 g, 0.44 mol), Bu_4NHSO_4 (0.015 g, 0.044 mmol) were dissolved in PhMe (4.0 mL) and treated with 50% aq NaOH (4.0 mL). The reaction mixture was vigorously stirred at rt for 2 h, diluted with water, and extracted (3x) with

EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc 1:4) afforded **15** (0.029 g, 59%) as a colorless oil: IR (neat) 1601, 1496, 1439, 1202, 1120, 1111 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 8.04-7.99 (m, 2 H), 7.81-7.75 (m, 2 H), 7.52-7.48 (m, 2 H), 7.39-7.22 (m, 9 H), 7.15-7.06 (m, 6 H), 6.90-6.89 (m, 4 H), 4.63 (d, J = 9.6 Hz, 1 H, H_2), 3.68 (app. t, J = 8.4 Hz, 1 H, H_4), 3.51 (app. q, J = 9.2 Hz, 1 H, H_4), 3.34 (bs, 1 H, H_6), 3.06 (bs, 1 H, H_5), 2.52 (dd, J = 8.9, 6.9 Hz, 1 H, $\text{H}_{8\text{endo}}$), 1.98 (d, J = 6.3 Hz, 1 H, $\text{H}_{8\text{exo}}$), 1.92 (d, J = 6.7 Hz, 1 H, $\text{H}_{9\text{exo}}$), 1.78 (dd, J = 9.2, 7.0 Hz, 1 H, $\text{H}_{9\text{endo}}$); ^{13}C NMR (75 MHz, CDCl_3) δ 141.61, 141.57, 141.29, 141.09, 132.43, 132.31, 132.25, 132.12, 131.60, 128.52, 128.36, 128.29, 128.26, 127.97, 127.78, 126.62, 126.05, 125.98, 125.92, 62.60 (C_2), 59.26 (C_7), 58.91 (d, J = 4.3 Hz, C_1), 53.79 (C_6), 51.30 (d, J = 6.4 Hz, C_5), 49.09 (C_4), 48.59 (C_8), 39.22 (C_9); MS (EI) m/z (rel. intensity) 551 (M^+ , 59), 434 (7), 350 (30), 306 (25), 230 (28), 201 (100); HRMS (EI) calc for $\text{C}_{38}\text{H}_{34}\text{NOP}$ 551.2378, found 551.2360.

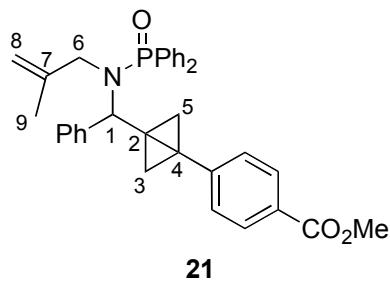


(2*R*^{*,5*R*^{*,6*S*^{*})-3-(*N*-(*P,P*-Diphenylphosphinyl))-2-*tert*-butyl-6,7-diphenyl-3-azatricyclo[5.1.1.0^{1,5}]nonane}}

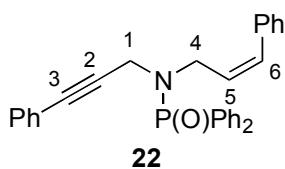
(16). Bicyclobutane **2f** (0.027 g, 0.065 mmol), (*E*)-cinnamyl bromide (0.064 g, 0.32 mmol) and Bu_4NHSO_4 (0.016 g, 0.032 mmol) were dissolved in PhMe (3.0 mL), followed by addition of 50% aq NaOH (3.0 mL). The reaction mixture was stirred at rt for 2 h, diluted with water, extracted (3x) with EtOAc and the combined organic layers were washed with water, brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexane/EtOAc, 1:4) afforded **16** (0.019 g, 54%) as a colorless oil: IR (neat) 1479, 1437, 1201, 1121, 1108 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.85-7.79 (m, 4 H), 7.57-7.46 (m, 6 H), 7.12-7.05 (m, 6 H), 6.95-6.93 (m, 2 H), 6.84-6.82 (m, 2 H), 3.81 (d, J = 8.6 Hz, 1 H, H_2), 3.46-3.42 (m, 1 H, H_4), 3.23-3.22 (m, 1 H, H_5), 3.08 (d, J = 4.1 Hz, 1 H, H_6), 3.04-2.94 (m, 1 H, H_4), 2.48 (dd, J = 9.3, 7.2 Hz, 1 H, $\text{H}_{8\text{endo}}$), 2.24 (d, J = 6.9 Hz, 1 H, $\text{H}_{8\text{exo}}$), 1.81 (dd, J = 9.5, 6.8 Hz, 1 H, $\text{H}_{9\text{endo}}$), 1.70 (d, J = 6.5 Hz, 1 H, $\text{H}_{9\text{exo}}$), 0.97 (s, 9 H, H_{11}); ^{13}C NMR (75 MHz, CDCl_3) δ 141.71, 141.22, 133.73, 132.60, 132.48, 132.34, 132.21, 131.51, 128.31, 128.27, 128.24, 128.14, 128.08, 127.95, 127.83, 127.70, 126.02, 125.97, 125.90, 67.69 (C_2), 59.36 (C_7), 56.38 (d, J = 4.3 Hz, C_1), 55.60 (C_6), 53.70 (d, J = 6.4 Hz, C_5), 51.05 (C_4), 50.11 (C_8), 41.15 (C_9), 36.57 (C_{10}), 28.41 (C_{11}); MS (EI) 475 (65), 280 (32), 201 (100); HRMS (EI) calc for $\text{C}_{32}\text{H}_{29}\text{NOP}$ ($\text{M}-\text{C}_4\text{H}_9$) 474.1987, found 474.2001.


N-((3-(4-Methoxycarbonylphenyl)bicyclo[1.1.0]but-1-yl)(phenyl)methyl)-N-(3-cyclopropylallyl)-P,P-diphenylphosphinamide (18). According to General Protocol C, a solution of bicyclobutane **2a** (0.078 g, 0.15 mmol), freshly prepared cyclopropylallyl bromide (0.130 g, 0.79 mmol) and Bu_4NHSO_4 (0.027 g, 0.080 mmol) in PhMe (7.0 mL) was treated with 50% aq NaOH (7.0 mL), and vigorously stirred at rt for 1 h. The reaction mixture was diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. The resulting oil was purified by chromatography on a short pad of SiO_2 (hexanes/EtOAc, 1:4) to afford crude, unstable amide **18** (0.062 g, 68%): ^1H NMR (300 MHz, CDCl_3) δ 8.08-7.93 (m, 6 H), 7.87-7.84 (m, 7 H), 7.54-7.53 (m, 3 H), 6.89-6.86 (m, 3 H), 5.63 (dd, J = 14.4, 6.7 Hz, 1 H, H_1), 4.69 (dd, J = 15.9, 8.9 Hz, 1 H, H_8), 4.61 (d, J = 9.0 Hz, 1 H, H_9), 4.02 (s, 3 H, OCH_3), 3.75-3.90 (m, 1 H, H_6), 3.57-3.50 (m, 1 H, H_6), 2.55 (d, J = 6.5 Hz, 1 H, $\text{H}_{3\text{exo}}$ or $\text{H}_{5\text{exo}}$), 1.87 (d, J = 6.5 Hz, 1 H, $\text{H}_{5\text{exo}}$ or $\text{H}_{3\text{exo}}$), 1.00 (s, 1 H, $\text{H}_{3\text{endo}}$ or $\text{H}_{5\text{endo}}$), 0.78-0.75 (m, 4 H, H_{10} , H_{11}), 0.72 (s, 1 H, $\text{H}_{5\text{endo}}$ or $\text{H}_{3\text{endo}}$), 0.31-0.30 (m, 1 H, H_9); ^{13}C NMR (75 MHz, C_6D_6) δ 166.75 (CO), 142.55, 138.99, 137.76, 134.16, 133.00, 132.89, 132.71, 132.59, 131.05, 129.49, 128.87, 128.32, 128.19, 128.00, 127.68, 127.51, 127.24, 125.84, 125.41, 62.02 (C_1), 51.40 (OCH_3), 49.79 (C_6), 37.60 (C_1 or C_5), 34.06 (C_5 or C_3), 29.66 (d, J = 3.8 Hz, C_1), 23.59 (C_4), 13.68 (C_9), 6.80 (C_{10} or C_{11}), 6.74 (C_{11} or C_{10}).

(4*S**,5*R**,8*R**)-8-Cyclopropyl-6-(*N*-(*P,P*-diphenylphosphinamido))-2-((4-methoxycarbonyl)phenyl)-5-phenyl-6-azaspiro[3.4]oct-1-ene (19a) and (2*S**,5*R**,8*R**)-6-Cyclopropyl-3-(*N*-(*P,P*-diphenylphosphinamido))-7-((4-methoxycarbonyl)phenyl)-2-phenyl-3-azatricyclo[5.1.1.0^{1,5}]nonane (19b). A solution of amide **18** (0.054 g, 0.094 mmol) in PhMe (5.0 mL) was stirred at rt for 12 h. The solvent was removed in vacuo and the residual oil was purified by chromatography on SiO₂ (hexanes/EtOAc, 1:4) to afford **19a** (0.018 g, 33%) and **19b** (0.017 g, 31%).


19a. Obtained as a colorless oil: IR (neat) 2919, 1720, 1604, 1438, 1279, 1196, 1109 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.99-7.91 (m, 3 H), 7.64-7.57 (m, 2 H), 7.51-7.42 (m, 4 H), 7.36-7.23 (m, 6 H), 7.16-7.08 (m, 4 H), 6.92 (s, 1 H, H_1), 4.51 (d, J = 11.3 Hz, 1 H, H_5), 3.91 (s, 3 H, OCH_3), 3.78-3-71 (m, 1 H, H_7), 3.33 (app q, J = 10.1 Hz, 1 H, H_7), 2.82-2.71 (m, 1 H, H_8), 2.42 (d, J = 13.4 Hz, 1 H, H_3), 2.30 (d, J = 13.5 Hz, 1 H, H_3), 1.22-1.19 (m, 2 H H_9), 0.57-0.53 (m, 1 H, H_{10}), 0.38-0.33 (m, 2 H, H_{11} or H_{12}), -0.06- -0.09 (m, 2 H, H_{12} or H_{11}); ^{13}C NMR (75 MHz, CDCl_3) δ 166.81 (CO), 143.94, 143.88, 143.04, 138.02, 135.12, 133.15, 132.53, 132.40, 132.29, 132.17, 131.62, 131.42, 130.54, 129.68, 129.10, 128.60, 128.43, 127.92, 127.75, 127.30, 126.82, 124.57, 69.27 (C_5), 56.62 (d, J = 3.3 Hz, C_4), 52.08 (OCH_3), 51.61 (C_7), 42.85 (d, J = 5.6 Hz, C_8), 33.75 (C_3), 32.62 (C_9), 9.95 (C_{10}), 4.95 (C_{11} or C_{12}), 4.22 (C_{12} or C_{11}); MS (EI) m/z (rel. intensity) 573 (M^+ , 52), 486 (27), 372 (73), 319 (19), 306 (56), 230 (31), 212 (48), 201 (100); HRMS (EI) calc for $\text{C}_{37}\text{H}_{36}\text{NO}_3\text{P}$ 573.2433, found 573.2393.

19b. Obtained as a colorless oil: IR (neat) 2949, 1721, 1610, 1438, 1278, 1179 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 8.03-7.96 (m, 2 H), 7.94-7.91 (m, 2 H), 7.75-7.44 (m, 3 H), 7.35-7.13 (m, 12 H), 4.50 (d, J = 9.7 Hz, 1 H, H_2), 3.90 (s, 3 H, OCH_3), 3.57 (td, J = 9.8, 2.0 Hz, 1 H, H_4), 3.24 (app q, J = 10.0 Hz, 1 H, H_4), 2.53-2.46 (m, 1 H, H_5), 2.27 (dd, J = 9.4, 6.8 Hz, 1 H, $\text{H}_{8\text{endo}}$), 1.82 (dd, J = 6.9, 1.5 Hz, 1 H, $\text{H}_{8\text{exo}}$), 1.79 (d, J = 6.9 Hz, $\text{H}_{9\text{exo}}$), 1.56 (dd, J = 9.5, 6.9 Hz, 1 H, $\text{H}_{9\text{endo}}$), 1.27 (dd, J = 9.6, 3.4 Hz, 1 H, H_6), 0.49-0.37 (m, 1 H, H_{10}), 0.28-0.19 (m, 1 H, H_{11} or H_{12}), 0.06--0.05 (m, 1 H, H_{12} or H_{11}), -0.14--0.22 (m, 1 H, H_{11} or H_{12}), -0.49--0.57 (m, 1 H, H_{12} or H_{11}); ^{13}C NMR (75 MHz, CDCl_3) δ 167.15 (CO), 147.83, 141.60, 141.54, 133.48, 132.47, 132.34, 132.27, 132.15, 131.58, 130.84, 129.25, 128.57, 128.40, 128.02, 127.94, 127.86, 127.81, 126.64, 126.12, 125.96, 62.58 (C_2), 59.24 (d, J = 4.4 Hz, C_1), 57.71 (C_7), 55.34 (C_6), 51.97 (OCH_3), 50.76 (C_5), 48.81 (C_4), 46.68 (C_8), 39.77 (C_9), 12.46 (C_{10}), 5.53 (C_{11} or C_{12}), 2.09 (C_{12} or C_{11}); MS (EI) m/z (rel. intensity) 573 (M^+ , 6), 436 (9), 372 (34), 320 (8), 306 (19), 218 (22), 201 (100); HRMS (EI) calc for $\text{C}_{37}\text{H}_{36}\text{NO}_3\text{P}$ 573.2433, found 573.2463



N-(1-Phenylprop-2-ynyl)-P,P-diphenylphosphinamide (20). A solution of *N*-benzylidene-*P,P*-diphenylphosphinamide (12 g, 39 mmol) in dry THF (100 mL) was cooled to 0 °C and treated with HCCMgBr (160 mL, 77 mmol, 0.5 M in THF). The reaction mixture was stirred at 0 °C for 30 min, slowly quenched with sat. NH_4Cl , and extracted (3x) with EtOAc . The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. The resulting solid was purified by chromatography on SiO_2 (hexanes/ EtOAc , 1:4) to afford **20** (12 g, 90%) as a colorless solid: Mp 152.0-153.1 °C (hexanes/ CH_2Cl_2); IR (KBr) 3292, 3159, 3056,

2858, 1625, 1491, 1452, 1436, 1186, 1125, 1109 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 8.15-8.09 (m, 2 H), 7.99-7.92 (m, 2 H), 7.72-7.72 (m, 2 H), 7.66-7.35 (m, 9 H), 5.22 (td J = 10.1, 2.2 Hz, 1 H, H_1), 3.61 (app t, J = 8.9 Hz, 1 H, NH), 2.64 (d, J = 2.4 Hz, 1 H, H_3); ^{13}C NMR (75 MHz, CDCl_3) δ 139.84, 139.78, 133.10, 132.80, 132.72, 132.67, 132.30, 132.22, 132.18, 132.05, 131.40, 131.00, 128.80, 128.76, 128.56, 128.19, 127.26, 83.53 (d, J = 6.0 Hz, C_2), 73.85 (C_3), 46.58 (C_1); MS (EI) 331 (M^+ , 93), 305 (50), 277 (8), 254 (12), 201 (100), 183 (19), 155 (21), 130 (67); HRMS (EI) calc for $\text{C}_{21}\text{H}_{18}\text{NOP}$ 331.1126, found 331.1129.

N-((3-(4-Methoxycarbonylphenyl)bicyclo[1.1.0]but-1-yl)(phenyl)methyl)-N-(2-methylallyl)-P,P-diphenylphosphinamide (21). According to General Protocol C, a solution of bicyclobutane **2a** (0.10 g, 0.20 mmol), 3-bromo-2-methylpropene (0.10 mL, 1.0 mmol) and Bu_4NHSO_4 (0.013 g, 0.10 mmol) in PhMe (10 mL) and 50% aq NaOH (10 mL) was vigorously stirred at rt for 1 h. The reaction mixture was diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na_2SO_4), and evaporated. Purification by chromatography on SiO_2 (hexanes/EtOAc, 1:4) afforded **19** (0.10 g, 90%) as a colorless oil: IR (neat) 3059, 2948, 1718, 1607, 1437, 1311, 1280, 1181, 1117 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3) δ 7.99-7.89 (m, 6 H), 7.67 (d, J = 8.3 Hz, 2 H), 7.43-7.42 (m, 3 H), 7.10 (d, J = 7.2 Hz, 2 H), 7.01 (t, J = 7.6 Hz, 2 H), 6.89 (d, J = 7.2 Hz, 2 H), 6.63 (d, J = 7.2 Hz, 2 H), 4.87 (d, J = 6.2 Hz, 2 H, H_8), 4.38 (d, J = 11.7 Hz, 1 H, H_1), 3.88 (s, 3 H, OCH_3), 3.53 (dd, J = 16.1, 10.8 Hz, 1 H, H_6), 3.27 (dd, J = 16.3, 10.5 Hz, 1 H, H_6), 2.27 (d, J = 6.0 Hz, 1 H, $\text{H}_{3\text{exo}}$ or $\text{H}_{5\text{exo}}$), 1.86 (d, J = 6.3 Hz, 1 H, $\text{H}_{5\text{exo}}$ or $\text{H}_{3\text{exo}}$), 1.57 (s, 3 H, H_9), 0.58 (s, 1 H, $\text{H}_{3\text{endo}}$ or $\text{H}_{5\text{endo}}$), 0.51 (s, 1 H, $\text{H}_{5\text{endo}}$ or $\text{H}_{3\text{endo}}$); ^{13}C NMR (75.4 MHz, CDCl_3) δ 167.32 (CO), 142.20, 141.87, 141.82, 137.19, 137.15, 134.66, 133.67, 132.81, 132.69, 132.42, 132.30, 129.12, 128.99, 128.38, 128.17, 127.86, 127.38, 126.49, 125.25, 113.54 (C_8), 63.10 (C_1), 53.12 (C_6), 52.02 (OCH_3), 37.47 (C_3 or C_5), 34.31 (C_5 or C_3), 28.86 (d, J = 4.8 Hz, C_2), 23.18 (C_9), 20.60 (C_4); MS (EI) m/z (rel. intensity) 547 (M^+ , 19), 346 (27), 319 (14), 306 (10), 272 (9), 230 (23), 215 (18), 201 (96), 183 (6), 118 (100); HRMS (EI) calc for $\text{C}_{35}\text{H}_{34}\text{NO}_3\text{P}$ 547.2276, found 547.2277.

N-Cinnamyl-N-(3-phenylprop-2-ynyl)-P,P-diphenylphosphinamide (22). To a solution of *N*-(3-phenylprop-2-ynyl)-*N*-diphenylphosphinamide⁸ (0.050 g, 0.15 mmol) in PhMe (5.0 mL) was added freshly prepared (*Z*)-cinnamyl bromide (0.15 g, 0.76 mmol) followed by Bu₄NHSO₄ (0.025 g, 0.076 mmol) and 50% aq NaOH (5.0 mL). The reaction mixture was vigorously stirred at rt for 1 h, diluted with water and extracted (3x) with EtOAc. The combined organic layers were washed with water and brine, dried (Na₂SO₄) and evaporated. The crude oil was purified by chromatography on SiO₂ (hexanes/EtOAc, 1:4) to afford **21** (0.046 g, 67%) as a colorless oil: IR (neat) 3056, 1598, 1490, 1439, 1357, 1203, 1122, 1109 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (dd, *J* = 7.7, 4.2 Hz, 6 H), 7.61-7.51 (m, 9 H), 7.40-7.25 (m, 5 H), 6.74 (d, *J* = 11.6 Hz, 1 H, H₆), 5.94 (td, *J* = 12.1, 5.9 Hz, 1 H, H₅), 4.18 (dd, *J* = 9.0, 7.7 Hz, 2 H, H₁), 4.08 (d, *J* = 9.7 Hz, 2 H, H₄); ¹³C NMR (75 MHz, CDCl₃) δ 136.30, 132.68, 132.44, 132.31, 132.11, 131.97, 131.93, 131.64, 130.40, 128.72, 128.65, 128.48, 128.14, 128.10, 128.06, 128.03, 126.92, 122.67, 85.06 (d, *J* = 6.7 Hz, C₂), 84.39 (C₃), 43.93 (d, *J* = 3.0 Hz, C₄), 36.30 (d, *J* = 5.3 Hz, C₁); MS (EI) *m/z* (rel. intensity) 447 (M⁺, 12), 446 (29), 332 (29), 246 (21), 230 (10), 217 (7), 210 (100); HRMS (EI) calc for C₃₀H₂₅NOP (M-H) 446.1674, found 446.1661.

References:

1. M. Banerjee, S. Roy, *Org. Lett.* **2004**, 6, 2137-2140.
2. S. C. Ward, S. A. Fleming, *J. Org. Chem.* **1994**, 59, 6476-6479.
3. A. B. Charette, C. Molinaro, C. Brochu, *J. Am. Chem. Soc.* **2001**, 123, 12168-12175.
4. A. Al-Dulayymi, Z. Li, M. Neuenschwander, *Helv. Chem. Acta* **2000**, 83, 571-582.
5. W. B. Jennings, C. J. Lovely, *Tetrahedron* **1991**, 47, 5561-5568.
6. A. A. Cantrill, A. N. Jarvis, H. M. I. Osborn, J. B. Sweeney, *Synlett* **1996**, 847-849.
7. F. Chemla, V. Hebbe, J.-F. Normant, *Synthesis* **2000**, 75-77.
8. Prepared by the reaction of Ph₂P(O)Cl with propargyl amine, followed by Sonogashira coupling with iodobenzene.

Current Data Parameters

NAME	MAN-2-168
EXPTNO	11
PROCNO	2

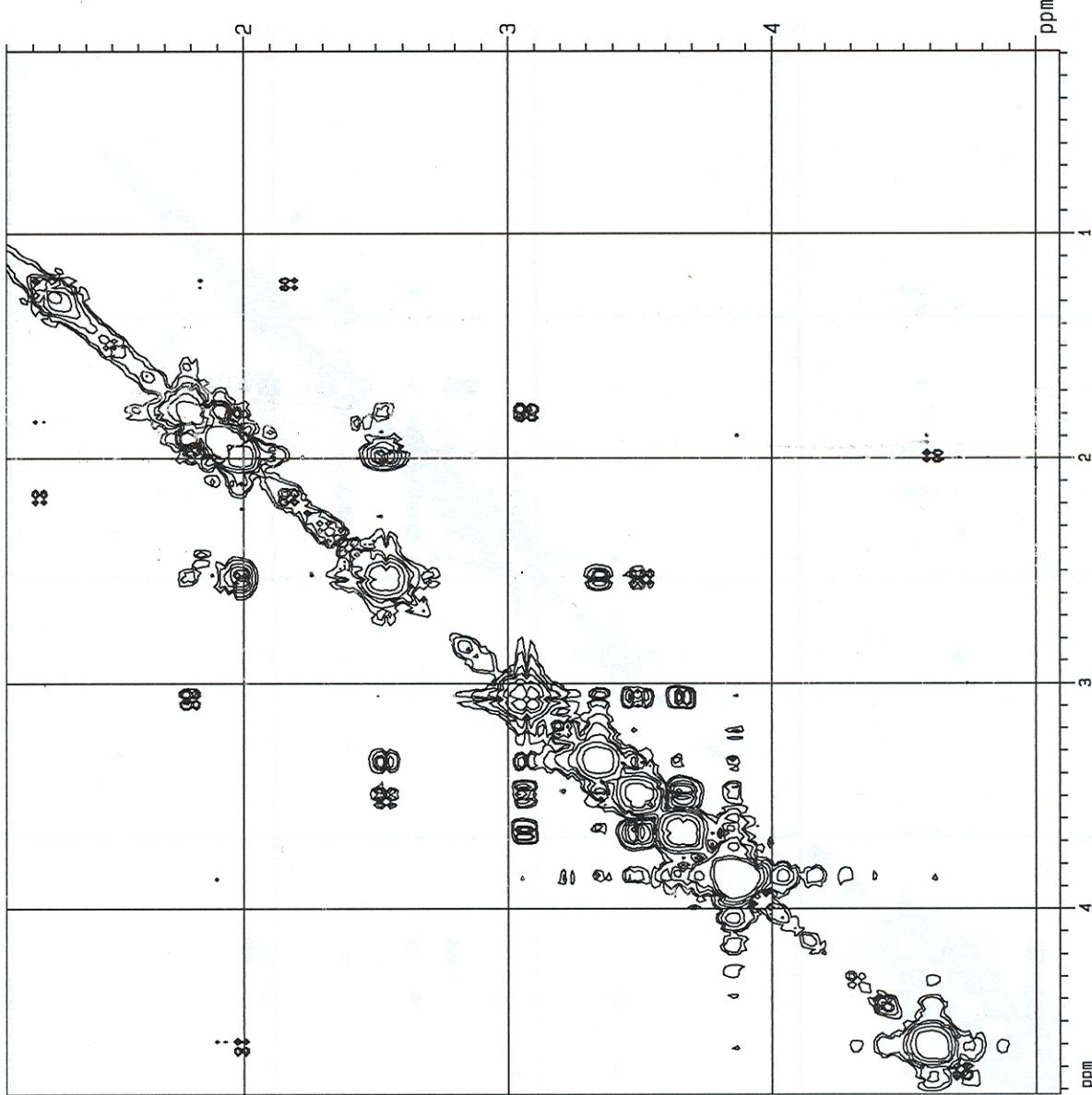
F2 - Acquisition Parameters

Date	500000
T1ex	13.53
INSTRUM	5 mm TXI 13C
PROBHD	3.912510 Hz
PULPROG	0.1278482 SEC
TD	1024
SOLVENT	CDCl3
NS	200
DS	15
SWH	4006.410 Hz
FINRES	3.912510 Hz
AQ	1.0000000 sec
RB	90.15
DW	124.800 usec
DE	6.00 usec
TE	280.0 K
D1	1.0000000 sec
P1	10.60 usec
DE	6.00 usec
SP01	500.1320005 MHz
NUC1	1H
PL1	0.00 dB

F1 - Acquisition parameters

ND0	2
TD	256
SF01	500.1322 MHz
F10HES	15.650061 Hz
SW	0.011 ppm

F2 - Processing parameters


SI	512
SF	500.1300150 MHz
NDW	SINE
SSB	0
LB	0.00 Hz
BB	0
PC	1.00

F1 - Processing parameters

SI	512
MC2	TPPI
SF	500.1300168 MHz
NDW	SINE
SSB	0
LB	0.00 Hz
BB	0

2D NMR plot parameters

CX2	15.00 cm
CX1	15.00 cm
F2PL0	4.823 ppm
F2L0	2411.88 Hz
F2PH1	0.191 ppm
F2H1	95.68 Hz
F1PL0	5.069 ppm
F1L0	2545.37 Hz
F1PH1	1.100 ppm
F1H1	549.98 Hz
F2PPCM	0.30875 ppm/cm
F2HZCM	154.41373 Hz/cm
F1PPCM	0.26598 ppm/cm
F1HZCM	133.02550 Hz/cm

