

Supporting Information © Wiley-VCH 2006

69451 Weinheim, Germany

Intermolecular Rhodium-Catalyzed Carbometallation-Heck-Type Reaction in Water

Takuya Kurahashi, Hiroshi Shinokubo,* and Atsuhiro Osuka

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan and PRESTO, Japan Science and Technology Agency (JST)

E-mail: hshino@kuchem.kyoto-u.ac.jp

Table of Contents

Instrumentation and Materials	S 1
General Procedures	S 2
Compound Data	S 3

Instrumentation and Materials

¹H NMR spectra were measured on a JEOL ECA-600 (600 MHz) and JEOL EX-400 (400 MHz) spectrometers. The chemical shifts of ¹H NMR are expressed in parts per million downfield relative to the internal tetramethylsilane ($\delta = 0$ ppm) or chloroform ($\delta =$ 7.26 ppm). Splitting patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; brs, broad singlet. ¹³C NMR spectra were measured on a JEOL ECA-600 (150 MHz) spectrometers with tetramethylsilane as an internal standard ($\delta = 0$ ppm) or chloroform-d $(\delta = 77.0 \text{ ppm})$. Chemical shift values are given in parts per million downfield relative to the internal standard. Infrared spectra (IR) were recorded on a Shimadzu FTIR-8400 spectrometer. GC-MS analyses were performed with a JEOL JMS-700 spectrometer by electron ionization at 70 eV. Elemental analyses were carried out at Elemental Analysis Center of Kyoto University. Melting points were determined using a Yanako Micro Melting Point Apparatus. TLC analyses were performed by means of Merck Kieselgel 60 F254 and column chromatography was carried out using Merck Kieselgel 60 (230–400 mesh). X-ray data were taken on a Rigaku. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Pure water was obtained with Millipore Direct-Q system. Degassed water was used for all reactions.

General Procedure

A mixture of phenylboronic acid (1a, 24 mg, 0.2 mmol), [RhOH(cod)]₂ (1.8 mg, 0.004 mmol), 5-decyne (2a, 14 mg, 0.1 mmol), and methyl acrylate (3a, 17 mg, 0.2 mmol) in water (1 mL) was sonicated for a few minutes to form a stable emersion. The emersion was stood for 12 h at ambient temperature (Figure S1). The resulting mixture was diluted with ether (10 mL). The aqueous layer was extracted with ether (twice). The combined organic layer was washed with brine, dried over anhydrous magnesium sulfate, and concentrated in vacuo. The crude product was purified by silica-gel chromatography (hexane/ether = 20:1) to give 6aaa as colorless oil (24 mg, 81% yield).

Figure S1

4-Butyl-5-phenylnona-2,4-dienoic acid methyl ester (6aaa)

Yield: 81%. Colorless oil.

TLC: R_f 0.23 (hexane/ether 20:1).

¹H NMR (400 MHz, CDCl₃) δ 0.86 (t, J = 6.8 Hz, 3H), 0.98 (t, J = 6.8 Hz, 3H), 1.28 (m,

4H), 1.47 (m, 4H), 2.38 (t, J = 8.0 Hz, 2H), 2.52 (t, J = 8.0 Hz, 2H), 3.66 (s, 3H), 5.85

(d, J = 16.1 Hz, 1H), 7.09-7.11 (m, 2H), 7.24-7.37 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 14.0, 14.1, 22.9, 23.2, 28.1, 30.5, 31.5, 35.3, 51.4, 115.8,

127.3, 128.1, 129.1, 133.0, 141.5, 145.4, 151.0, 168.2.

IR (neat) 3060, 2956, 1717, 1616, 1271, 1167, 700 cm⁻¹.

EIMS (70 eV) m/z 302 (M⁺+2, 6), 301 (M⁺+1, 12), 300 (M⁺, 63), 167 (100).

Anal. Calcd for C₂₀H₂₈O₂: C, 79.96; H, 9.39. Found: C, 79.73; H, 9.40.

4-Butyl-5-(p-tolyl)nona-2,4-dienoic acid methyl ester (6baa)

Yield: 66%. Colorless oil.

TLC: R_f 0.21 (hexane/ether 20:1).

¹H NMR (400 MHz, CDCl₃) δ 0.84 (t, J = 6.8 Hz, 3H), 0.97 (t, J = 6.8 Hz, 3H), 1.26 (m,

4H), 1.44 (m, 4H), 2.36 (s, 3H), 2.39 (t, J = 7.6 Hz, 2H), 2.50 (t, J = 7.6 Hz, 2H), 3.66 (s,

3H), 5.85 (d, J = 16.0 Hz, 1H), 6.98 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 16.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 13.9, 14.0, 21.2, 22.8, 23.1, 28.0, 30.5, 31.4, 35.2, 51.2, 115.4, 128.7, 129.0, 132.8, 136.9, 138.4, 145.6, 151.1, 168.2.

IR (neat) 2956, 1717, 1616, 1279, 1166, 822 cm⁻¹.

EIMS (70 eV) m/z 316 (M⁺+2, 3), 315 (M⁺+1, 22), 314 (M⁺, 98), 143 (100).

Anal. Calcd for C₂₁H₃₀O₂: C, 80.21; H, 9.62. Found: C, 80.33; H, 9.83.

4-Butyl-5-(4-methoxyphenyl)nona-2,4-dienoic acid methyl ester (6caa)

Yield: 50%. Colorless oil.

TLC: R_f 0.32 (hexane/ether 10 : 1).

¹H NMR (400 MHz, CDCl₃) δ 0.84 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 1.22 (m,

4H), 1.44 (m, 4H), 2.37 (t, J = 7.6 Hz, 2H), 2.49 (t, J = 7.6 Hz, 2H), 3.66 (s, 3H), 3.83 (s,

3H), 5.83 (d, J = 15.6 Hz, 1H), 6.87 (d, J = 11.2 Hz, 2H), 7.03 (d, J = 11.2 Hz, 2H),

7.30 (d, J = 15.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 13.9, 14.0, 22.8, 23.1, 28.1, 30.6, 31.3, 35.2, 51.3, 55.2, 113.4, 115.4, 130.3, 132.7, 133.6, 145.6, 150.3, 158.8, 168.3.

IR (neat) 2956, 1719, 1610, 1248, 1166, 834 cm⁻¹.

EIMS (70 eV) m/z 332 (M⁺+2, 5), 331 (M⁺+1, 25), 330 (M⁺, 100), 273 (31).

Anal. Calcd for C₂₁H₃₀O₃: C, 76.33; H, 9.15. Found: C, 76.48; H, 9.29.

4-Butyl-5-(4-trifluoromethylphenyl)nona-2,4-dienoic acid methyl ester (6daa)

Yield: 72%. Colorless oil.

TLC: R_f 0.22 (hexane/ether 20:1).

¹H NMR (400 MHz, CDCl₃) δ 0.85 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H), 1.27 (m, 4H), 1.45 (m, 4H), 2.41 (t, J = 7.2 Hz, 2H), 2.51 (t, J = 7.2 Hz, 2H), 3.67 (s, 3H), 5.89 (d, J = 16.0 Hz, 1H), 7.14 (d, J = 16.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 13.8, 14.0, 22.8, 23.1, 28.0, 30.3, 31.4, 35.0, 116.8, 124.1 (q, J = 263 Hz), 125.1, 129.3 (q, J = 31.5 Hz), 129.4, 133.9, 144.2, 145.3, 145.3, 148.9, 167.9.

¹⁹F NMR (564 MHz, CDCl₃) δ –63.4.

IR (neat) 2957, 1717, 1616, 1323, 1166, 845 cm⁻¹.

EIMS (70 eV) m/z 370 (M⁺+2, 28), 369 (M⁺+1, 24), 368 (M⁺, 98), 57 (100).

HRMS Calcd for C₂₁H₂₇FO₂: M⁺ 368.1963. Found: *m/z* 368.1965.

4-Butyl-5-naphthalen-2-yl-nona-2,4-dienoic acid methyl ester (6eaa)

Yield: 45%. Colorless oil.

TLC: R_f 0.11 (hexane/ether 20:1).

¹H NMR (400 MHz, CDCl₃) δ 0.78 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H), 1.23 (m, 4H), 1.47 (m, 4H), 2.42 (t, J = 8.4 Hz, 2H), 2.55 (t, J = 8.4 Hz, 2H), 3.55 (s, 3H), 5.83 (d, J = 15.6 Hz, 1H), 7.18–7.26 (m, 2H), 7.42–7.50 (m, 3H), 7.75–7.80 (m, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 13.9, 14.0, 22.8, 23.1, 28.1, 30.5, 31.5, 35.3, 51.3, 116.1, 125.9, 126.2, 127.2, 127.6, 127.7, 128.0, 128.0, 132.5, 133.0, 133.3, 138.9, 145.1, 150.8.

IR (neat) 2956, 1717, 1616, 1277, 1166, 750 cm⁻¹.

EIMS (70 eV) m/z 352 (M⁺+2, 10), 351 (M⁺+1, 41), 350 (M⁺, 100), 291 (89).

Anal. Calcd for C₂₄H₃₀O₂: C, 82.24; H, 8.63. Found: C, 81.95; H, 8.75.

5-Phenyl-4-propylocta-2,4-dienoic acid methyl ester (6aba)

Yield: 61%. Colorless oil.

TLC: R_f 0.21 (hexane/ether 20:1).

¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H), 1.31 (m,

2H), 1.55 (m, 2H), 2.41 (t, J = 5.6 Hz, 2H), 2.53 (t, J = 5.6 Hz, 2H), 3.67 (s, 3H), 5.87

(d, J = 16.0 Hz, 1H), 7.10-7.13 (m, 2H), 7.26-7.38 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 14.1, 14.3, 21.5, 22.4, 30.2, 37.4, 51.3, 115.9, 127.2, 128.0, 129.1, 132.6, 141.3, 145.2, 150.8, 168.1.

IR (neat) 3060, 2959, 1717, 1616, 1267, 1167, 701 cm⁻¹.

EIMS (70 eV) m/z 274 (M⁺+2, 2), 275 (M⁺+1, 19), 274 (M⁺, 77), 167 (100).

HRMS Calcd for $C_{18}H_{24}O_2$: M^+ 272.1776. Found: m/z 272.1772.

4-Pentyl-5-phenyldeca-2,4-dienoic acid methyl ester (6aca)

Yield: 53%. Colorless oil.

TLC: R_f 0.26 (hexane/ether 20:1).

¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H), 1.25 (m,

6H), 1.38 (m, 4H), 1.46 (m, 2H), 2.38 (t, J = 5.6 Hz, 2H), 2.50 (t, J = 5.6 Hz, 2H), 3.65

(s, 3H), 5.84 (d, J = 16.0 Hz, 1H), 7.09-7.10 (m, 2H), 7.26-7.36 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 13.9, 14.1, 22.4, 22.6, 27.9, 28.2, 29.0, 31.9, 32.2, 35.4,

 $51.3,\,115.7,\,127.2,\,128.0,\,128.0,\,129.1,\,132.9,\,141.4,\,145.3,\,150.9,\,168.1.$

IR (neat) 2955, 1717, 1616, 1271, 1165, 702 cm⁻¹.

EIMS (70 eV) m/z 330 (M⁺+2, 5), 329 (M⁺+1, 21), 328 (M⁺, 100), 155 (98).

Anal. Calcd for C₂₀H₂₈O₂: C, 80.44; H, 9.82. Found: C, 80.22; H, 9.68.

4-Hexyl-5-phenylundeca-2,4-dienoic acid methyl ester (6ada)

Yield: 57%. Colorless oil.

TLC: R_f 0.14 (hexane/ether 20 : 1).

¹H NMR (400 MHz, CDCl₃) δ 0.84 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H),

1.25-1.44 (m, 16H), 2.38 (t, J = 8.0 Hz, 2H), 2.50 (t, J = 8.0 Hz, 2H), 3.65 (s, 3H), 5.84

(d, J = 18.8 Hz, 1H), 7.07-7.10 (m, 2H), 7.23-7.36 (m, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 14.0, 14.1, 22.5, 22.7, 28.2, 28.3, 29.2, 29.4, 29.7, 31.6,

31.7, 35.4, 51.3, 115.7, 127.2, 128.0, 129.1, 133.0, 141.4, 145.3, 151.0, 168.2.

IR (neat) 2928, 1717, 1616, 1269, 1116, 701 cm⁻¹.

EIMS (70 eV) m/z 358 (M⁺+2, 8), 357 (M⁺+1, 19), 356 (M⁺, 63), 85 (100).

Anal. Calcd for C₂₄H₃₆O₂: C, 80.85; H, 10.18. Found: C, 81.06; H, 10.08.

4,5-Diphenyl-5-(*p*-tolyl)penta-2,4-dienoic acid methyl ester (6bea)

Yield: 31%. Colorless solid.

TLC: R_f 0.17 (hexane/ether 20:1).

Mp: 187.2 °C (hexane).

¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H), 3.65 (s, 3H), 5.62 (d, J = 16.0 Hz, 1H), 6.88–6.90 (m, 2H), 7.02–7.22 (m, 12H), 7.75 (d, J = 16.0 Hz, 1H).

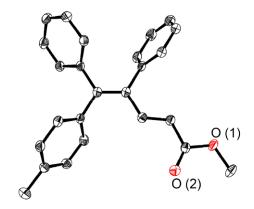
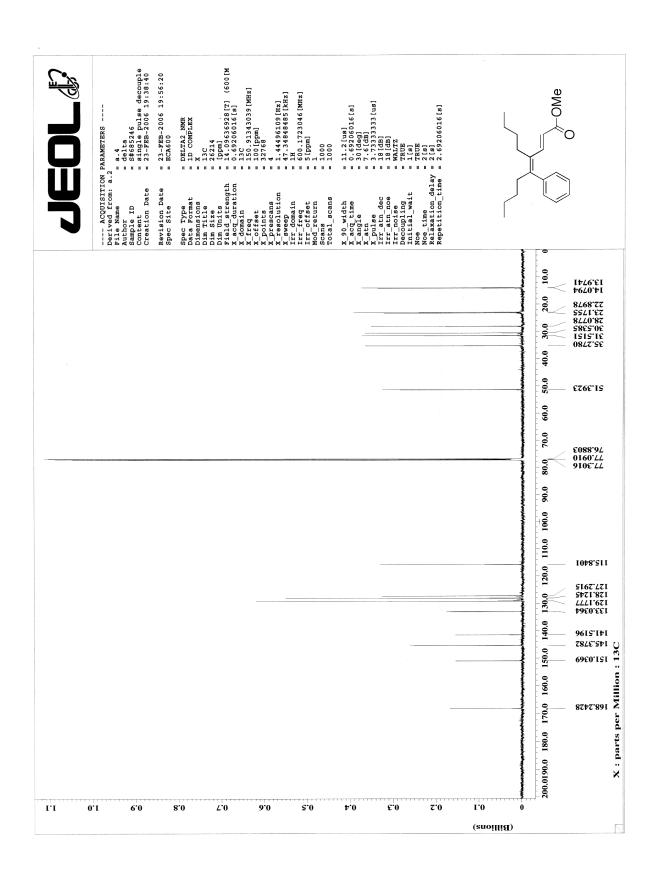
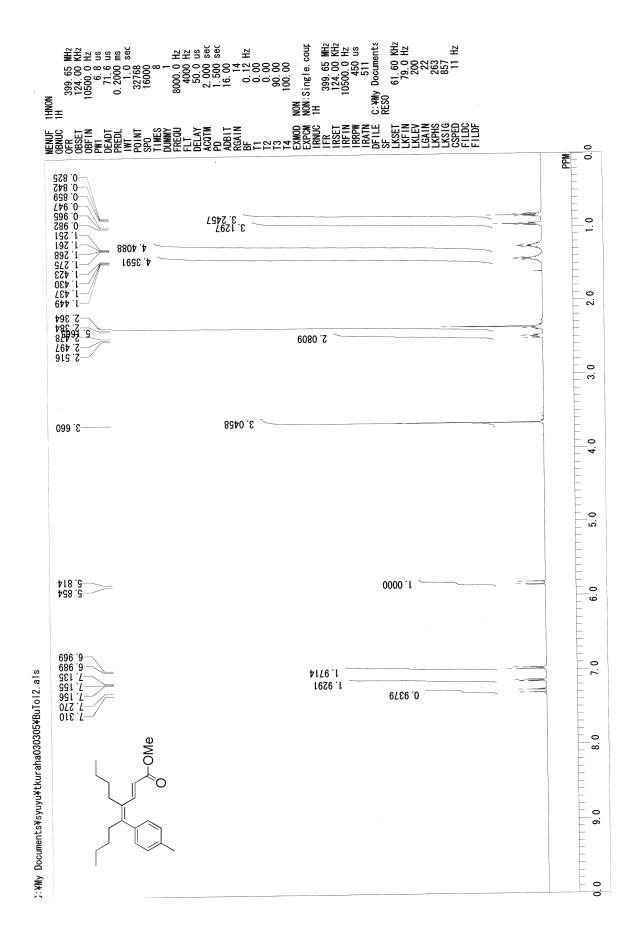
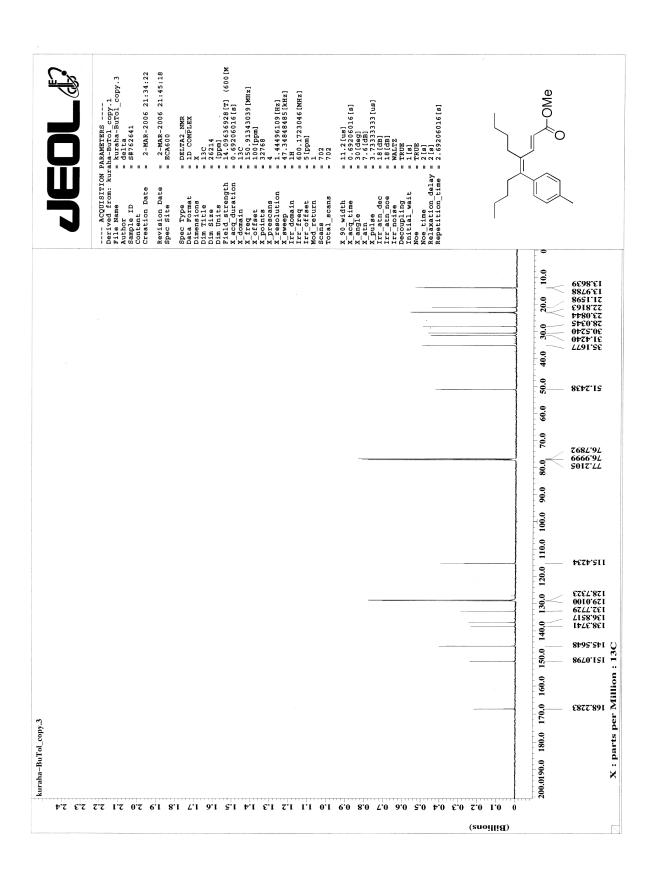
¹³C NMR (150 MHz, CDCl₃) δ 21.3, 51.4, 121.1, 127.0, 127.0, 127.3, 128.1, 128.8, 131.0, 131.1, 131.1, 136.6, 138.2, 138.4, 139.5, 142.2, 146.7, 149.9, 168.1.

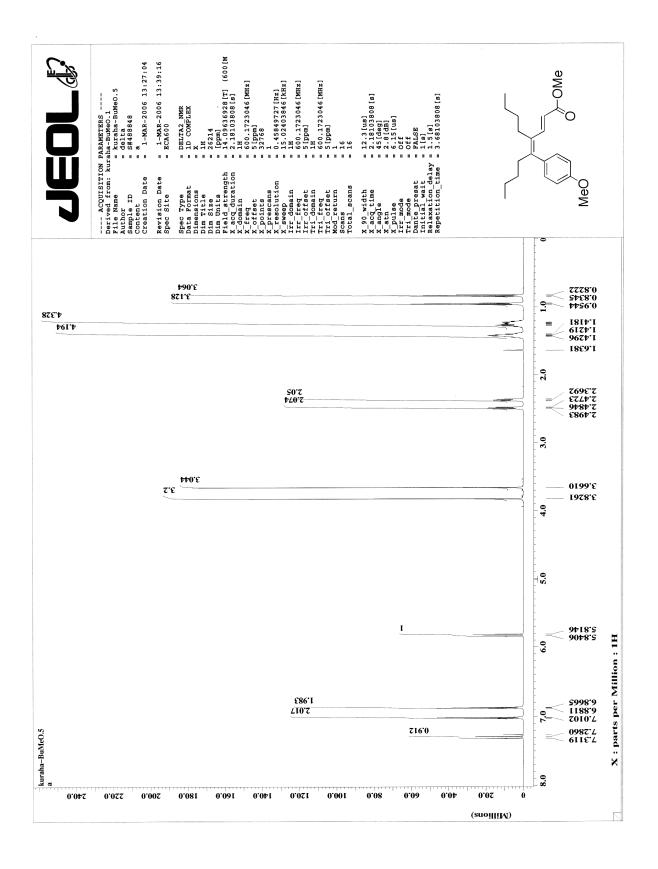
IR (neat) 2962, 1717, 1616, 1288, 1172, 698 cm⁻¹.

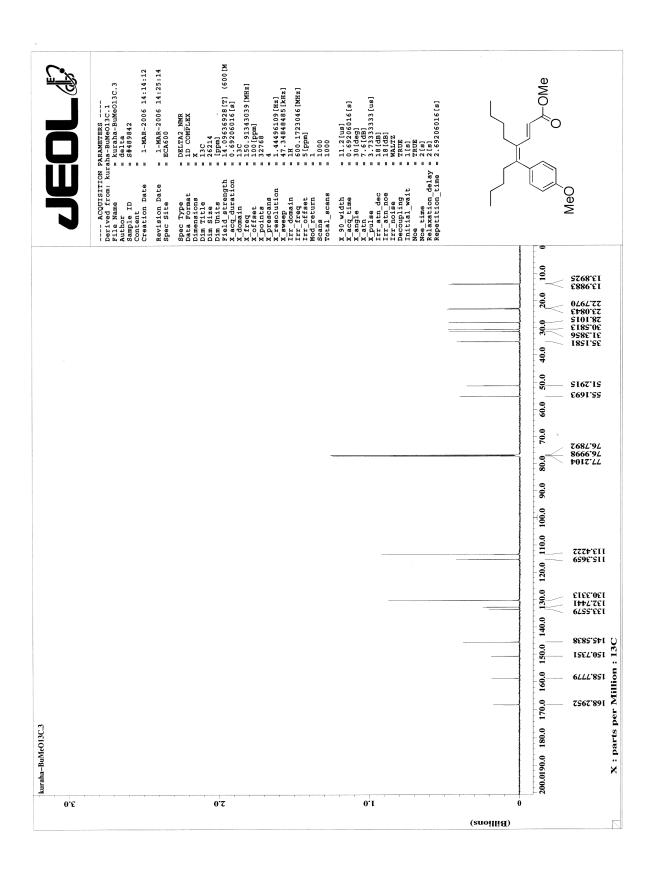
EIMS (70 eV) m/z 356 (M⁺+2, 8), 355 (M⁺+1, 19), 354 (M⁺, 84), 295 (100).

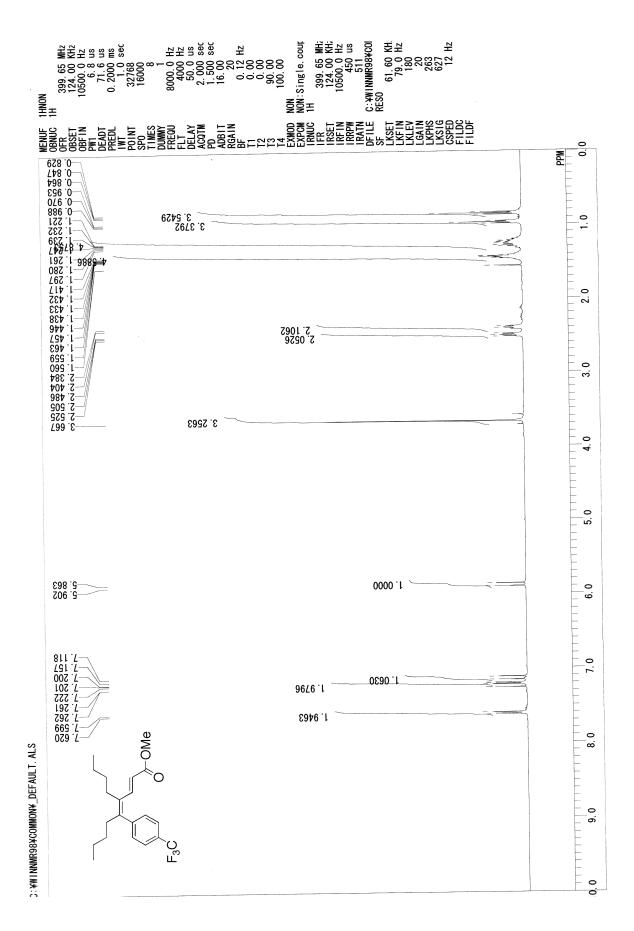
HRMS Calcd for C₂₅H₂₂O₂: M⁺ 354.1620. Found: *m/z* 354.1624.

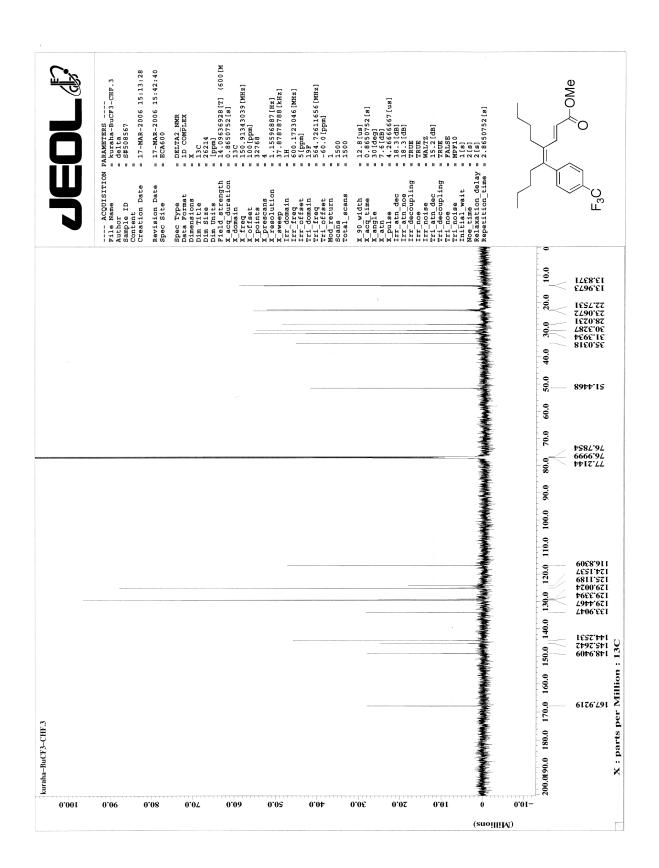
Crystallographic data for this structure has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-612527. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

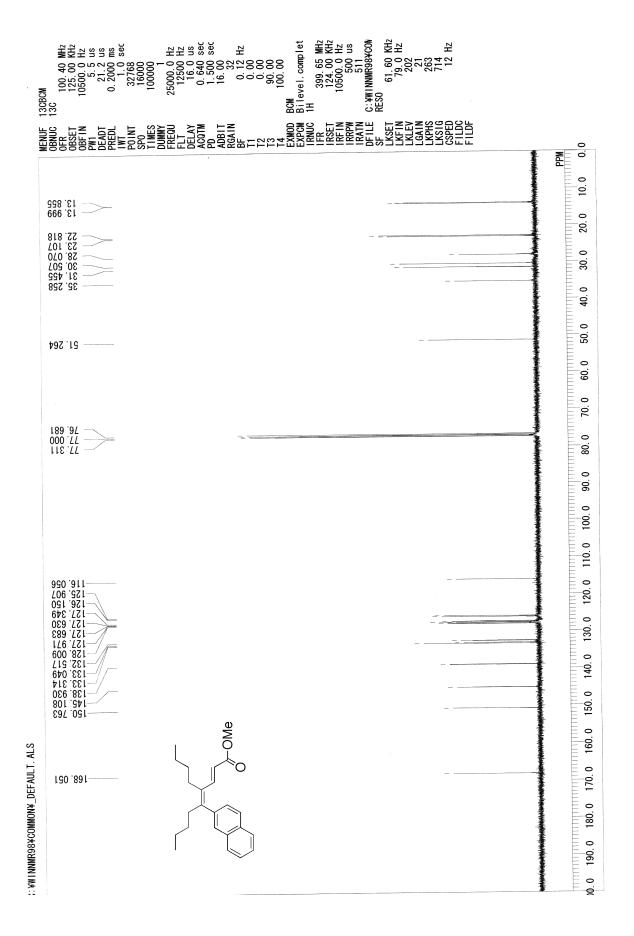





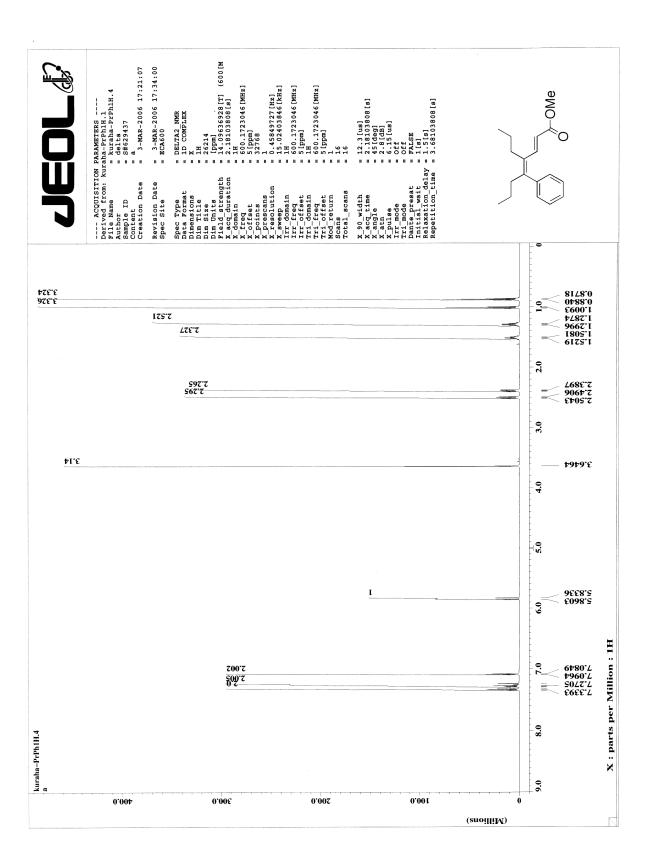

Figure S2. ORTEP Drawing of **6bea**. Hydrogen atoms are omitted for clarity.

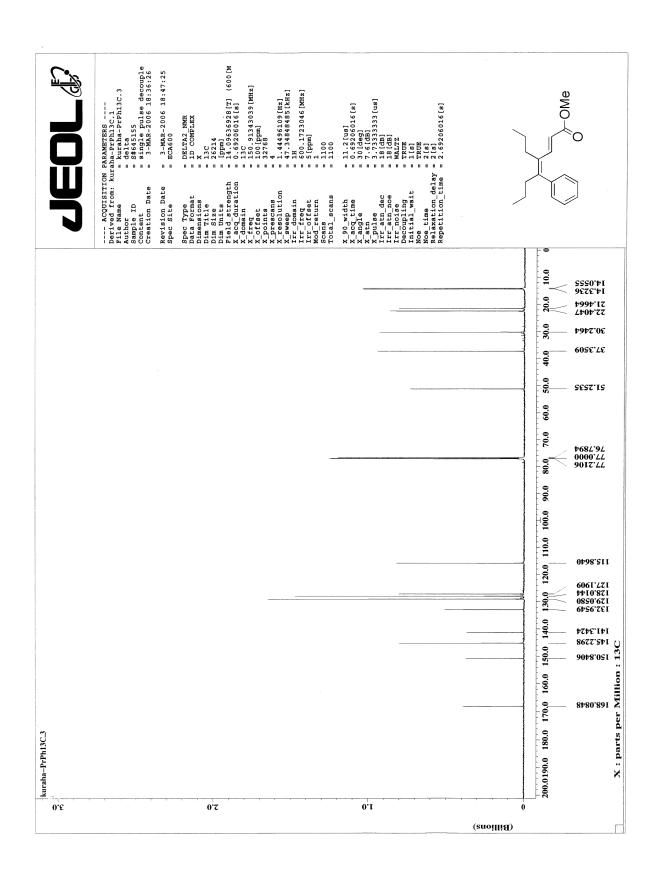

The thermal ellipsoids are 50% probability level.

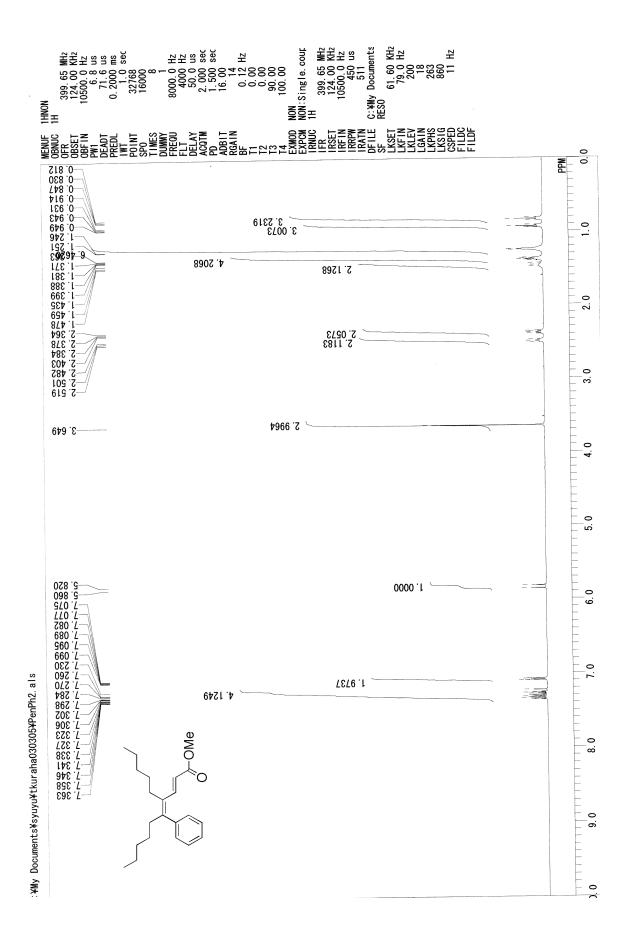


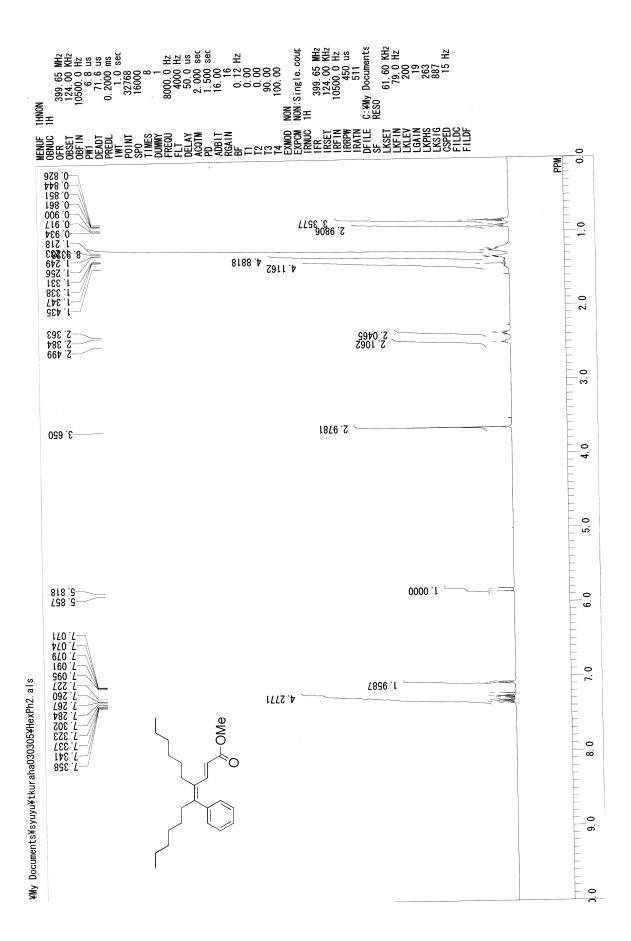


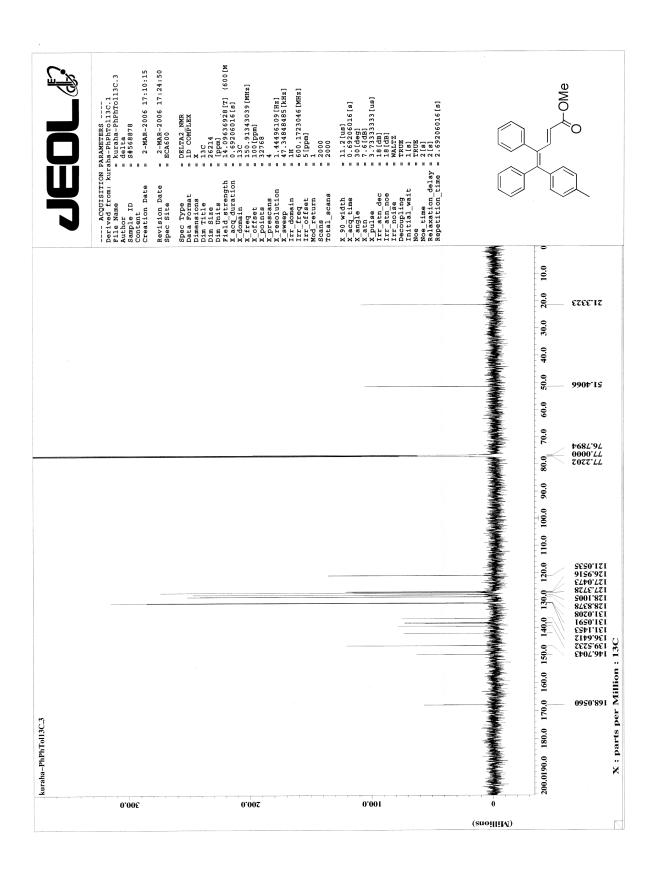












	_ <u>4</u>	X_acq_diration = 1.191080818] X_foragin = 1.191080818] X_foragin = 1.191080818] X_foffset = 5[ppm] = 2768 X_refect = 5[ppm] = 32768 X_rescolution = 0.4584727[Hz] X_rescolution = 0.4584727[Hz] X_rescolution = 0.4584727[Hz] X_rescolution = 0.4584727[Hz] X_rescolution = 1.191081 X_rescolution = 2.1810808181 X_rescolution = 2.1810808181 X_rescolution = 2.1810808181 X_rescolution = 2.181081 X_rescolution = 0.0ff X_res	OMe		
			1.0		
		214.5	5.0		
			3.0		
		SSEE	4.0		
			0.0		
268.8	£97.4	<u>940'7</u>	7.0 In HI		
Tol.3			8.0 7.0 Farts per Million : 1		
kuraha-PhPhTol.3	7 0077 0017 0007 0007 0007	A AACL COLL COLL COLL COLL COLL COLL COL	8.0°		
(anoilliM) 0.042 0.052 0.022 0.012 0.002 0.091 0.081 0.071 0.061 0.051 0.041 0.051 0.051 0.001 0.09 0.09 0.09 0.09 0.00 0.02 0.04 0.05 0.05 0.05 0.01 0					

