

Supporting Information © Wiley-VCH 2006

69451 Weinheim, Germany

Polyazido Pyrimidines: High Energy Compounds and Precursors to Carbon Nanotubes

Chengfeng Ye, ^a Haixiang Gao, ^a Jerry A. Boatz, ^b Gregory W. Drake, ^c Brendan Twamley, ^a and Jean'ne M. Shreeve ^a*

^aDepartment of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

^bSpace and Missile Propulsion Division, Air Force Research Laboratory, 10 East Saturn Blvd., Edwards AFB, California 93524

^cNASA Solid Propel1ants Branch ER22, Marshall Space Flight Center, Alabama 34812

Email: jshreeve@uidaho.edu

S2-S8 Synthesis and characterization of polyazides

S9-S10 Computation details

S11-S13 References

Caution! On the basis of the high positive heats of formation, all polyazido products must be handled with extreme care. Plastic spatulas, leather gloves and face shields should be used at all times, especially when handling compound 8 which decomposed violently when it was transferred at the 0.5 g scale. Scaling up (>2 mmol) the synthesis of 8 and 12 should not be attempted.

General Methods. ¹H and ¹³C NMR spectra were recorded on a 300 MHz nuclear magnetic resonance spectrometer operating at 300.13, and 75.48 MHz, respectively, using CDCl₃ as solvent unless otherwise indicated. Chemical shifts were reported relative to TMS. High resolution mass spectroscopy was carried out on a JEOL JMS - AX505HA mass spectrometer.

2,4,6-triazidopyrimidine (**5**). To a solution of trichloropyrimidine (5.0 g, 27 mmol) in 30 mL dry acetone was added NaN₃ (6.0 g, 92.3 mmol), the mixture was stirred at room temperature for 6 hours, 50 mL CH₂Cl₂ was added, the solid was filtered off was washed with CH₂Cl₂ (5 mL), The organic phase was combined and solvent was removed under reduced pressure, recrystallized from methanol or hexane. White solid, (5.0 g, 91%), m.p. 98 °C. ¹H NMRd5.96 (s, 1H), ¹³C NMR d93.9, 161.2, 164.6.

HO
$$\downarrow$$
 OH \downarrow O

5-Carboxyaldehyde-2,4,6-trichloropyrimidine (**6**). Barbituric acid (6.0 g) was added to a mixture of POCl₃ (15 mL) and N,N-dimethylformamide (3 mL). The solution was refluxed for 8 h, cooled to room temperature, poured into ice-water, and extracted with ethyl acetate three times (50 mL). The organic phase was combined and dried over Na₂SO₄. After evaporation of solvent, the residue was recrystallized from hexane (5.8 g, 59%) and stored in the refrigerator. ¹H NMRd10.39 (s), ¹³C NMR d122.9, 161.4, 163.9, 184.5.

5,5-Diazidomethyl-2,4,6-triazido-pyrimidine (**7**). 0.8 g 5-carboxyaldehyde-2,4,6-trichloropyrimidine (**6**) and NaN₃ (0.9 g) were placed in a 50 mL flask, 25 mL dry THF was added, and the mixture was stirred for 6 h at room temperature. The solid was filtered off and washed with 5 mL CH₂Cl₂. The filtrate was evaporated under vacuum, and then dissolved in 15 mL dry CH₂Cl₂. The insoluble material was filtered off. SnCl₂.2H₂O (0.2 g), and TMSN₃ (1.35 g) was added dropwise to the filtrate at 0 °C, and the mixture was stirred for 30 min until the aldehyde was consumed. The solid formed was removed by filtration and washed with CH₂Cl₂ (5mL). After removal of the solvent, the residue was purified by column chromatograph, colorless liquid (0.39 g, 35%). ¹H

NMRd 6.02(s), 13 C NMR d69.3, 102.2, 161.2, 162.6. MS (EI), 257 (M $^{+}$ -N₃), HRMS-FAB: $C_5H_2N_{17}$ (M+H) $^{+}$, Calcd 300.0679; Found 300.0665.

2,4,6-Trichloro-5-methyl-pyrimidine (8): ² To a solution containing 4.4 g 5-methyl-barbituric acid in 15 mL POCl₃, was added 2.0 mL N,N-dimethylaniline . The mixture was refluxed overnight, cooled to room temperature, poured into ice, and then extracted with CH_2Cl_2 . After removal of the solvent, the residue was purified by sublimation under vacuum (white solid, 5.3 g, 87%, M.P. 68-69 °C).

5-Methyl-2,4,6-triazido-pyrimidine (**9**): 2,4,6-Trichloro-5-methyl-pyrimidine (**8**) (0.4 g) and 0.6 g NaN₃ were placed in a 50 mL flask, and 25 mL THF was added followed by addition of 0.1 g TBAB. The mixture was stirred overnight at room temperature. The solid was filtered and washed with 5 mL THF. The organic phases were combined and the solvent removed. The residue was crystallized from methanol to give **9** (white solid, 0.35 g, 80%, M. P. 103 °C). ¹H NMR d1.92 (s); ¹³C NMR d 9.1, 104.5, 158.1, 162.2. HRMS Calcd for $C_5H_3N_{11}^+$ 217.0573; Found 217.0565.

5-Bromomethyl-2,4,6-trichloropyrimidine (10):³ 1.26 g of 5-methyl-2,4,6-

trichloropyrimidine (**8**) was dissolved in 10 mL of dry carbon tetrachloride and 1.3 g. of N-bromosuccinimide was added. Then 120 mg of AIBN was introduced. The solution was refluxed with stirring, and monitored by GC-MS. Nearly 36 hrs are necessary to complete the reaction. The solid was filtered and after evaporation of the carbon tetrachloride, the crude product (**10**) was purified by vacuum sublimation at 110 °C (M.P.132 °C; lit 133-134 °C; ³ 1.58 g, 90%). ¹H NMR d 4.61 (s); ¹³C NMR d 23.6, 127.7, 158.4, 162.6.

5-Azidomethyl-2-4-6-triazido-pyrimidine (**11**): A mixture of 5-bromomethyl-2,4,6-trichloropyrimidine (**10**) (0.2 g) and NaN₃ (0.4 g) in 15 mL THF was stirred at room temperature overnight. The solid was filtered and washed with 5 mL THF, the organic phase was combined and the solvent removed to leave a colorless oil (0.18 g, 99%). It solidified on standing in the refrigerator to give (**11**) (M.P. 22.5 °C). 1 H NMR d 4.18 (s), 13 C NMR d43.0, 102.4, 160.6, 163.5. HRMS C₅H₂N₁₄⁺, Calcd 258.0587; Found 258.0583.

4-Amino-3,5-diazidomethyl-1,2,4-triazole (**12**): 4-Amino-3,5-bis(chloromethyl)-4H-1,2,4-triazole (0.2 g), $^4\text{NaN}_3(0.25 \text{ g})$, and 50 mg TBAB were placed in a 50 mL flask, and 10 mL THF was added. The mixture was stirred overnight. The solid which formed was removed by filtration and washed with THF (5mL). After removal of the solvent, the residue was crystallized from chloroform, **12**, (white solid, M.P. 103 °C, 0.19g, 89%.) ^1H NMR (CD₃CN) d 4.55 (s, 4H), 5.34 (s, 2H), ^{13}C NMR (CD₃CN) d 44.2, 152.8. MS (EI), 194 (M⁺, 100), (152, M⁺-N₃). Calcd for C₄H₆N₁₀ C, 24.74; H, 3.11; N, 72.14; Found: C, 24.94; H, 3.01; N, 71.84.

4-Amino-3,5-diazidomethyl-1-H-1,2,4-triazolium perchlorate (**13**): 4-Amino-3,5-bis(azido)-4H-1,2,4-triazole (**12**) (0.15 g) and perchloric acid (0.13 g, 60%) were dissolved in methanol, and stirred for 4 h. After removing the solvent, the residue was dried under vacuum overnight to leave a solid (**13**) (M.P. 74 °C). ¹H NMR (DMSO-d₆) d 5.60 (s, 4H), ¹³C NMR (DMSO-d₆) d 43.0, 152.8. Calcd for C₄H₇ClN₁₀O₄ •H₂O, C, 15.37; H, 2.90; N, 44.80; Found C, 15.31; H, 2.40; N, 44.84.

CI
$$N_{A}$$
 N_{A} N

To a solution of 0.2 g (0.92 mmol) of 2,4,5,6-tetrachloropyrimidine in 10 mL dry acetone was added 0.3 g (4.6 mmol) NaN₃ and tetrabutylammonium bromide (15 mg), and the mixture was stirred 2 days. The solid was filtered and washed with 5 mL CH_2Cl_2 . The combined filtrate was subjected to evaporation and the residue was purified by chromatography (hexane: $CH_2Cl_2 = 8:2$).

5-Chloro-2,4,6-triazido-pyrimidine (**15**): white solid (M.P. 90 °C, 55%). ¹³C NMR d 101.5, 158.1, 160.8. HRMS Calcd for C₄H₁₁Cl 237.0027; Found 237.0018. **6-Amino-5-chloro-2,4-diazido-pyrimidine** (**16**), white solid (M.P.124 °C, 21%). ¹H NMR (DMSO-d₆) d 3.54 (s, 2H); ¹³C NMR (DMSO-d₆) d 94.0, 156.7, 157.9, 161.8. Calcd for C₄H₂ClN₉ C 22.71, H 0.95, N 59.58; Found C 22.52, H 0.80, N 59.17.

$$CI \xrightarrow{N} CI \xrightarrow{N_3} N_3 \xrightarrow{N_3} N_3 \xrightarrow{N_3} N_3$$

$$17$$

2,2',4,4'-Tetrazido-5,5'-bispyrimidine (**17**): A solution of 2,2',4,4'-tetrachloro-5,5'-bipyrimidine (0. 2 g)⁵ and NaN₃ (0.25 g) in 20 mL THF was stirred at room temperature overnight. The solid was filtered and washed with 5 mL CH₂Cl₂. The combined filtrate was subjected to evaporation and the residue was recrystallized from methanol/chloroform to give needle crystals (0.19 g., 88%; M.P. 160 °C). ¹H-NMR: d 8.36 (s); ¹³C NMR d 111.6, 160.2, 161.7, 161.8. HRMS Calcd for C₈H₂N₁₆ 322.0648; Found 322.0646.

HO NOH
$$\frac{i) N_2 H_4}{ii) POCl_3}$$
 CI NOCI NOTINE NOTINE

2,2',4,4'6-Pentachloro-5,6'-bispyrimidine (18): To a refluxing solution of barbituric acid (2.56 g) in water (80 mL), was added hydrazine hydrate (N₂H₄•H₂O) (0.5 g) in 10 mL water. After 5 min, a white precipitate formed, and the suspension was stirred for 40 min. The solid was collected by filtration, washed with water (20 mL) and dried in vacuum (0.5 g) which was subjected to chlorination according to the procedure for compound **8**. The crude product was recrystallized from hexane (0.41 g, M.P. 137 °C). ¹H-NMR: d7.45 (s) ¹³C NMR d 121.1, 127.2, 160.4, 161.45, 161.51, 162.2, 163.8. Calcd for C₈HCl₅N₄ C, 29.08; H, 0.31; N, 16.96; Found: C 29.18, H 0.26, N 16.91.

CCDC-612109 contains the supplementary crystallographic data. ⁶

Computation details:

The isodesmic (i.e., bond-conserving) reactions⁷ shown below (Scheme 1), where n = 0,1,2,3, were used to compute the heats of formation. The density functional theory methods in the GAMESS ⁸ quantum chemistry code were used to calculate the isodesmic reaction enthalpies, using the form of the hybrid B3LYP functional ⁹ containing the VWN5 correlation functional ¹⁰, and the 6-311G(d,p) basis set.¹¹ The reaction enthalpies thus obtained were combined with experimental heats of formation of the smaller "reference" molecules in the reaction to obtain theoretical heats of formation for **7**, **9**, **11**, and **14**, following procedures described in more detail elsewhere (Table 1).¹² In those instances in which experimental heats of formation for the reference compounds are lacking, these values were computed using the Gaussian-2[G2] method¹³ or its G2(MP2) variant¹⁴ in the Gaussian03 program suite.¹⁵

$$N_3$$
 N_3
 N_3

Scheme 1. Isodesmic reactions used for calculation of polyazides.

Table 1. Heats of formation of isodesmic reference compounds.

Compd	$?_{\rm f}H^0_{298} ({\rm kJ \ mol}^{-1})$
CH ₄	-74.87 ^[a]
CH_3N_3	296.5 ^[b]
CH ₃ CH ₃	-83.8 ^[c]
$CH_3CH_2N_3$	266.9 ^[d]
$CH_3CH(N_3)_2$	603.8 ^[d]
$CH_3C(N_3)_3$	927.2 ^[d]
pyrimidine	195.8 ^[e]
s-triazine	226.0 ^[f]
1,2,4,5-tetrazine	489.9 ^[g]

[[]a] Ref. 16; [b] This work, obtained using G2 method; [c] Ref. 17; [d] This work, obtained using G2(MP2) method; [e] Ref 18; [f] ref19; [g] ref 20.

References:

- H. Fenniri, P. Mathivanan, K. L. Vidale, D. M.Sherman, K. Hallenga, K. V. Wood, J. G. Stowell, *J. Am. Chem. Soc.*, **2001**, *123*, 3854-3855.
- C. Gueremy, F. Audiau, C. Renault, J. Benavides, A.Uzan, G. Le Fur, J. Med. Chem., 1986, 29, 1394-1398.
- (a) H. Gershon, R. Braun, A. Scala, R. Rodin, J. Med. Chem., 1964, 7, 808-811. (b) H.
 Gershon, K. Dittmer, R. Braun, J. Org. Chem. 1961, 26,1874-1877.
- 4. J. M. Alonso, M. R. Martin, J. De Mendoza, T. Torres, J. Elguero, *Heterocycles* 1987, 26, 989-100.
- M. J. Krische, J.-M. Lehn, N. Kyritsakas, J. Fischer, K. Wegelius, N. Elina, J. Maja,
 K. Rissanen, Helv. Chim. Acta 1998, 81,1921-1930.
- 6. CCDC-612109 contains the supplementary crystallographic data for this paper.
 These data can be obtained free of charge from the Cambridge Crystallographic Data
 Centre via www.ccdc.cam.ac.uk/data_request/cif.
- W. J. Hehre, R. Ditchfield, L. Radom, J. A. Pople, J. Am. Chem. Soc. 1970, 92, 4796-4801.
- 8. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.* **1993**, *14*, 1347-1363.
- (a) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648-5652; (b) P. J. Stephens, F. J. Devlin,
 C. F. Chablowski, M. J. Frisch, *J. Phys. Chem.* 1994, 98, 11623-11627; (c) R. H.
 Hertwig, W. Koch, *Chem. Phys. Lett.* 1997, 268, 345-351.
- 10. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.

- 11. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 1980, 72, 650-654.
- for example, M. W. Schmidt, M. S. Gordon, J. A. Boatz, J. Phys. Chem. A. 2005, 109, 7285-7295.
- (a) L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, *J. Chem. Phys.* 1991,
 94, 7221-7230; (b) L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, *J. Chem. Phys.* 1997, 106, 1063-1079.
- 14. L. A. Curtiss, K. Raghavachari, J. A. Pople, J. Chem. Phys. 1993, 98, 1293-1298.
- Gaussian O3, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Akrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- 16. M.W. Chase, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, **1998**, 1-1951.

- 17. D. A. Pittam, G. Pilcher, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229.
- 18. P. M. Nabavian, R. Sabbah, R.Chastel, M. Laffitte, J. Chim. Phys., Phys-Chim. Biologique, 1977, 74, 115-126.
- 19. S.G. Lias, J.E. Bartmess, J.F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, *J. Phys. Chem. Ref. Data, Suppl. No.1*, **1988**.
- 20. M.-F Cheng, H-O. Ho, C.-S. Lam, W.-K Li, J. Serb. Chem. Soc. 2002, 67, 257-262.