

Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

Supporting Information

© Wiley-VCH 2006

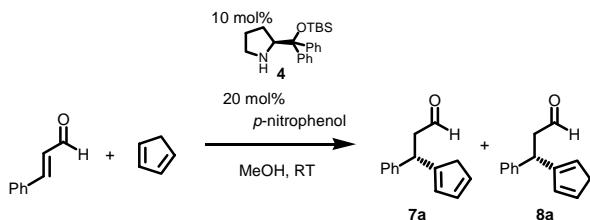
69451 Weinheim, Germany

Supporting Information I

Enantioselective Ene Reaction of Cyclopentadiene and α,β -Enals Catalyzed by Diphenylprolinol Silyl Ether

Hiroaki Gotoh, Ryouhei Masui, Hiroshi Ogino, Mitsuru Shouji, Yujiro Hayashi

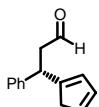
Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan


Contents

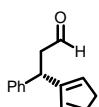
Supporting Information I

I. General Procedure	S1
II. Typical procedure for an Ene reaction.	S2
III. Intramolecular Diels-Alder Reaction	S9
IV. Determination of the absolute stereochemistry	S10
Supporting Information II	
V. ^1H NMR, ^{13}C NMR and IR spectra	S13

I. General Procedure. All reactions were carried out under argon and monitored by thin-layer chromatography using Merck 60 F₂₅₄ precoated silica gel plates (0.25 mm thickness). Specific rotations were measured using a JASCO P-1020 polarimeter. FTIR spectra were recorded on a Horiba FT-720 spectrometer. ^1H and ^{13}C NMR spectra were recorded on Brucker DPX 400 and Brucker AV 600 instruments. High-resolution mass spectral analyses (HRMS) were carried out using JEOL JMS-SX 102A. Preparative thin layer chromatography was performed using Wakogel B-5F purchased from Wako Pure Chemical Industries, Tokyo, Japan. Flash chromatography was performed using silica gel 60N (spherical, neutral) or 60N (crused, neutral) of Kanto Chemical Co. Int., Tokyo, Japan.


Typical procedure of enantioselective Ene reaction of cyclopentadiene and α,β -enal catalyzed by compound 4.(Table 1, entry 12)

To a solution of catalyst **4** (146.3 mg, 0.40 mmol) and *p*-nitrophenol (110.7 mg, 0.80 mmol) in MeOH (8.0 ml) was added (*E*)-cinnamaldehyde (500 μ l, 4.0 mmol) at room temperature. The solution was stirred for 1 minute before the addition of cyclopentadiene (0.98 ml, 12 mmol). After stirring the reaction mixture for 20 h at room temperature, excess cyclopentadiene was azeotropically removed with benzene from the reaction mixture. The residue was purified by silica gel column chromatography (AcOEt/hexane=1/20) to afford ene products **7a** and **8a** (667.2 mg, 84%). The ratio of **7a** and **8a** was determined by 400 MHz 1 H-NMR

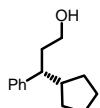

As isomers **7a** and **8a** were separated by HPLC with a OJ-H column (at 254 nm 2-propanol:hexane = 1:200, 1.0 mL/min; **7a** tr = 15.7 min, **8a** tr = 18.0 min), small amount of **7a** and **8a** was isolated and analyzed.

(*R*)-3-(cyclopenta-1,3-dienyl)-3-phenylpropanal (7a)

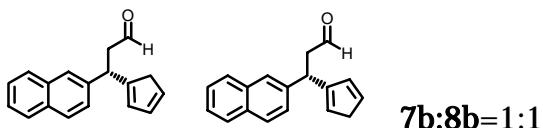
1 H NMR (CDCl_3) δ 2.77 (1H, dd, J =15.6, 0.8 Hz), 2.83 (1H, dd, J =15.6, 0.8 Hz), 2.93 (1H, ddd, J =10.8, 5.2, 1.2 Hz), 3.06 (J =10.8, 5.2, 1.2 Hz), 4.45 (1H, t, J =5.2 Hz), 6.26-6.29 (2H, m), 6.40-6.42 (1H, m), 7.17-7.23 (3H, m), 7.27-7.32 (2H, m), 9.72 (1H, t, J =1.2 Hz); 13 C NMR (CDCl_3) δ 41.4, 42.5, 49.2, 126.8, 127.5, 128.7, 131.9, 132.2, 143.3, 150.3, 201.5.

(*R*)-3-(cyclopenta-1,4-dienyl)-3-phenylpropanal (8a)

1 H NMR (CDCl_3) δ 2.93 (1H, ddd, J =11.2, 4.8, 1.2 Hz), 3.00 (2H, s), 3.06 (1H, ddd, J =11.2, 5.2, 1.6 Hz), 4.32 (1H, t, J =5.2 Hz), 6.09-6.12 (1H, m), 6.30-6.33 (1H, m), 6.40-6.42 (1H, m), 7.20-7.23 (3H, m), 7.28-7.32 (2H, m), 9.73 (1H, t, J =1.2 Hz); 13 C NMR (CDCl_3) δ 40.5, 41.3, 48.8, 126.7, 126.8, 127.9, 128.7, 133.6, 134.6, 142.4, 148.2, 201.7.

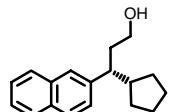

Typical procedure of the determination of enantiomeric excess of Ene product 7 and 8 (Table 1, entry 5)

To a MeOH solution (0.65 ml) of the **7a** and **8a** (12.8 mg, 0.065 mmol) was added NaBH₄ (7.3 mg, 0.194 mmol) at 0 °C and stirred for 20 min at that temperature. The reaction mixture was quenched with pH 7.0 phosphate buffer solution. The organic materials were extracted with AcOEt and dried over anhydrous Na₂SO₄, the extracts were concentrated under reduced pressure which was used in the next reaction without further purification.


To a solution of this crude mixture in AcOEt (0.65 ml) was added 10% Pd/C (3.2 mg) at room temperature and stirred for overnight under H₂ atmosphere. The reaction mixture was filtered through a pad of Celite and concentrated in vacuo. The residue was purified by preparative thin-layer chromatography (AcOEt/hexane=1/3) to afford (*R*)-3-cyclopentyl-3-phenylpropan-1-ol (13.2 mg, quant).

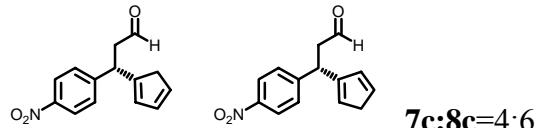
(*R*)-3-cyclopentyl-3-phenylpropan-1-ol

¹H NMR (CDCl₃) δ 0.98-1.11 (1H, m), 1.24-1.77 (1H, m), 1.86 (1H, quint, *J*=5.6 Hz), 1.95-2.20 (3H, m), 2.44-2.53 (1H, m), 3.39-3.56 (2H, m), 7.19-7.26 (3H, m), 7.34 (2H, t, *J*=7.2 Hz); ¹³C NMR (CDCl₃) δ 24.9, 25.2, 31.5, 31.7, 38.1, 46.6, 48.8, 61.3, 126.0, 127.9, 128.2, 144.5; IR (neat) ν 3325, 2950, 2868, 1495, 1451, 1046, 764, 701 cm⁻¹; HRMS (ESI): [M+Na]⁺ calculated for C₁₄H₂₀ONa: 227.1406, found 227.1411; [α]_D³¹ 17.1 (*c*=0.82, CHCl₃), 92% ee; The enantiomeric excess was determined by HPLC with a AS-H column at 254 nm (2-propanol:hexane = 1:200), 1.0 mL/min; major enantiomer tr = 13.4 min, minor enantiomer tr = 11.5 min.

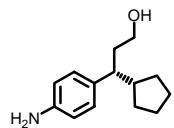

(*R*)-3-(cyclopenta-1,3-dienyl)-3-(naphthalen-2-yl)propanal (7b) and
(*R*)-3-(cyclopenta-1,4-dienyl)-3-(naphthalen-2-yl)propanal (8b)

¹H NMR (CDCl₃) δ 2.74-2.91 (1H, m), 2.99-3.08 (2H, m), 3.13 (1H, ddd, *J*=16.8, 7.6, 2.0 Hz), 4.46-4.55 (1H, m), 6.14-6.19 (0.5H, m), 6.26-6.31 (0.5H, m), 6.31-6.36 (1H,

m), 6.39-6.46 (1H, m), 7.28-7.36 (1H, m), 7.40-7.50 (2H, m), 7.65 (1H, d, $J=10.8$ Hz), 7.74-7.84 (3H, m), 9.74-9.79 (1H, m); ^{13}C NMR (CDCl_3) δ 40.7, 41.3, 41.6, 42.6, 48.7, 49.1, 125.70, 125.71, 125.9, 126.0, 126.14, 126.16, 126.19, 126.32, 127.6, 127.7, 128.46, 128.53, 201.2, 201.4; IR (neat) ν 3056, 1722, 1362, 897, 821, 749 cm^{-1} .

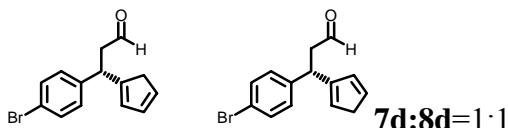

(R)-3-cyclopentyl-3-(naphthalen-2-yl)propan-1-ol

^1H NMR (CDCl_3) δ 0.93-1.15 (2H, m), 1.17-1.74 (4H, m), 1.82-2.24 (4H, m), 2.50-2.68 (1H, m), 3.30-3.55 (2H, m), 7.30-7.37 (1H, m), 7.38-7.49 (2H, m), 7.56 (1H, bs), 7.71-7.85 (3H, m); ^{13}C NMR (CDCl_3) δ 24.9, 25.3, 31.6, 31.8, 38.0, 46.6, 48.9, 61.4, 125.2, 125.9, 126.0, 126.6, 127.5, 127.6, 128.0, 132.3, 133.5, 142.5; IR (neat) ν 3331, 2949, 2867, 1507, 1450, 1046, 853, 818, 746, 477 cm^{-1} ; HRMS (ESI): $[\text{M}+\text{Na}]^+$ calculated for $\text{C}_{18}\text{H}_{22}\text{O}_1\text{Na}_1$: 277.1563, found 277.1555. ; $[\alpha]_D^{20}$ 6.8 ($c=0.78$, MeOH), 93% ee; The enantiomeric excess was determined by HPLC with a AS-H column at 279 nm (2-propanol:hexane = 1:200), 1.0 mL/min; major enantiomer tr = 17.1 min, minor enantiomer tr = 19.9 min.


(R)-3-(cyclopenta-1,3-dienyl)-3-(4-nitrophenyl)propanal (7c) and

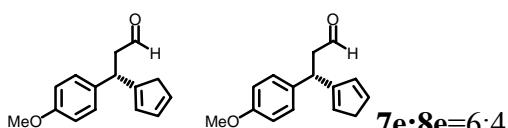
(R)-3-(cyclopenta-1,4-dienyl)-3-(4-nitrophenyl)propanal (8c)

^1H NMR (CDCl_3) δ 2.68-2.89 (0.8H, m), 2.94-3.05 (2.2H, m), 3.15 (1H, dd, $J=17.2$, 7.2 Hz), 4.42-4.51 (1H, m), 6.24-6.29 (0.6H, m), 6.29-6.35 (0.8H, m), 6.40-6.48 (1H, m), 7.39 (2H, d, $J=8.8$ Hz), 8.16 (2H, d, $J=8.4$ Hz), 9.73-9.77 (1H, m); ^{13}C NMR (CDCl_3) δ 40.0, 40.8, 41.4, 42.5, 48.5, 48.9, 125.70, 123.88, 123.95, 127.6, 128.49, 128.55, 128.8, 131.9, 132.6, 132.8, 135.3, 146.8, 148.3, 150.1, 150.9, 199.7, 199.8; IR (neat) ν 2849, 2729, 1724, 1596, 1518, 1518, 1347 cm^{-1} .

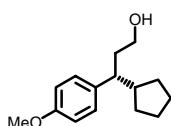

(R)-3-(4-aminophenyl)-3-cyclopentylpropan-1-ol

^1H NMR (CDCl_3) δ 0.91-1.08 (1H, m), 1.12-1.30 (2H, m), 1.31-1.79 (5H, m), 1.82-2.10 (3H, m), 2.24-2.37 (1H, m), 3.33-3.54 (2H, m), 6.62 (2H, d, $J=8.4$ Hz), 6.94 (2H, d, $J=8.4$ Hz); ^{13}C NMR (CDCl_3) δ 24.9, 25.3, 29.7, 31.5, 31.6, 38.2, 46.8, 48.0, 61.6,

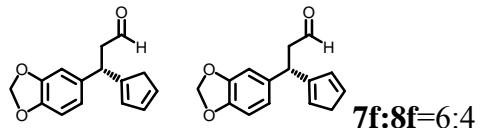
115.3, 128.7, 135.1, 144.3; IR (neat) ν 3347, 2949, 2867, 1621, 1515, 1265, 1045, 828, 757, 533 cm^{-1} ; HRMS (ESI): $[\text{M}+\text{Na}]^+$ calculated for $\text{C}_{14}\text{H}_{21}\text{O}_1\text{N}_1\text{Na}_1$: 242.1515, found 242.1511. ; $[\alpha]_D^{20}$ 13.5 (c=1.17, MeOH), 90% *ee*; The enantiomeric excess was determined by HPLC with a AS-H column at 261 nm (2-propanol:hexane=1:100), 1.0 mL/min; major enantiomer tr = 9.4 min, minor enantiomer tr = 13.8 min.


(R)-3-(4-bromophenyl)-3-(cyclopenta-1,3-dienyl)propanal (7d) and
(R)-3-(4-bromophenyl)-3-(cyclopenta-1,4-dienyl)propanal (8d)

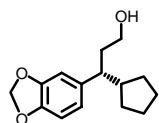
^1H NMR (CDCl_3) δ 2.69-2.86 (1H, m), 2.90 (1H, ddt, $J_d=16.8$, 7.2 Hz, $J_t=2.0$ Hz), 2.98-3.02 (1H, m), 3.05 (1H, dd, $J=16.8$, 7.6 Hz), 4.25-4.35 (1H, m), 6.08-6.11 (0.5H, m), 6.24-6.31 (1.5H, m), 6.39-6.45 (1H, m), 7.08 (2H, t, $J=8.8$ Hz), 7.41 (2H, d, $J=8.4$ Hz), 9.70-9.75 (1H, m); ^{13}C NMR (CDCl_3) δ 39.9, 40.7, 41.3, 42.5, 48.7, 49.1, 120.5, 120.6, 127.0, 127.8, 129.4, 129.6, 131.77, 131.81, 131.85, 132.3, 134.8, 141.5, 142.4, 147.7, 149.6, 200.7, 200.9; IR (neat) ν 1723, 1488, 1403, 1366, 1010, 897, 827, 684 cm^{-1} .


Enantiomeric excess of compounds 7d and 8e were determined by HPLC analysis after the conversion to 3-cyclopentyl-3-phenylpropan-1-ol.

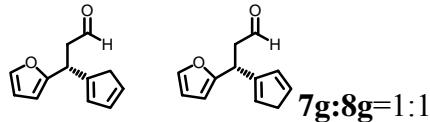
(R)-3-(cyclopenta-1,3-dienyl)-3-(4-methoxyphenyl)propanal (7e) and
(R)-3-(cyclopenta-1,4-dienyl)-3-(4-methoxyphenyl)propanal (8e)


^1H NMR (CDCl_3) δ 2.74-2.87 (1.2H, m), 2.85-2.94 (1H, m), 2.98-3.02 (0.8H, m), 2.98-3.07 (1H, m), 3.78 (3H, s), 4.24-4.33 (1H, m), 6.07-6.10 (0.4H, m), 6.23-6.29 (1.2H, m), 6.30-6.34 (0.4H, m), 6.38-6.43 (1H, m), 6.81-6.87 (2H, m), 7.08-7.16 (2H, m), 9.69-9.73 (1H, m); ^{13}C NMR (CDCl_3) δ 39.8, 40.7, 41.2, 42.5, 49.0, 49.4, 55.2, 114.1, 126.4, 127.2, 128.5, 128.8, 131.86, 131.95, 133.6, 134.4, 135.4, 148.6, 150.7, 158.4, 201.5, 201.7; IR (neat) ν 1722, 1610, 1512, 1250, 118, 1035, 834 cm^{-1} .

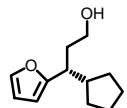
(R)-3-cyclopentyl-3-(4-methoxyphenyl)propan-1-ol


¹H NMR (CDCl₃) δ 0.90-1.05 (1H, m), 1.08-1.81 (7H, m), 1.86-2.12 (3H, m), 2.32-2.42 (1H, m), 3.33-3.51 (2H, m), 3.79 (3H, s), 6.82 (2H, d, *J* = 8.4 Hz), 7.07 (2H, d, *J* = 8.4 Hz); ¹³C NMR (CDCl₃) δ 24.9, 25.3, 31.5, 31.7, 38.2, 46.8, 47.9, 55.2, 61.4, 113.7, 128.8, 137.1, 157.8; IR (neat) ν 3347, 2950, 2867, 1610, 1513, 1455, 1301, 1246, 1178, 828 cm⁻¹; HRMS (ESI): [M+Na]⁺calculated for C₁₅H₂₂O₂Na₁: 257.1512, found 257.1508.; [α]_D²⁰ 10.6 (c=1.49, CH₃OH), 94% *ee*; The enantiomeric excess was determined by HPLC with a AS-H column at 220 nm (2-propanol:hexane = 1:100), 1.0 mL/min; major enantiomer tr = 18.0 min, minor enantiomer tr = 23.4 min.

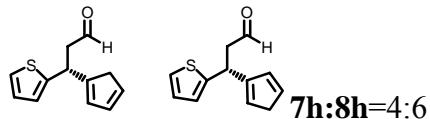
(R)-3-(benzo[d][1,3]dioxol-5-yl)-3-(cyclopenta-1,3-dienyl)propanal (7f) and (R)-3-(benzo[d][1,3]dioxol-5-yl)-3-(cyclopenta-1,4-dienyl)propanal (8f)


¹H NMR (CDCl₃) δ 2.78-2.82 (1.2H, m), 2.83-2.92 (1H, m), 2.96-3.05 (1H, m), 2.99-3.01 (0.8H, m), 4.20-4.30 (1H, m), 5.92 (2H, s), 6.08-6.11 (0.4H, m), 6.24-6.27 (0.6H, m), 6.26-6.33 (1H, m), 6.39-6.43 (1H, m), 6.64-6.75 (3H, m), 9.70-9.73 (1H, m); ¹³C NMR (CDCl₃) δ 40.2, 41.1, 41.2, 42.5, 48.9, 49.3, 100.9, 107.9, 108.15, 108.26, 120.6, 120.9, 126.5, 127.3, 128.3, 131.8, 132.0, 133.5, 134.5, 136.3, 137.2, 146.26, 146.30, 147.9, 148.3, 150.3, 201.2, 201.4; IR (neat) ν 2894, 1716, 1505, 1440, 1363, 1247, 1038, 932, 813 cm⁻¹.

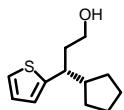
(R)-3-(benzo[d][1,3]dioxol-5-yl)-3-cyclopentylpropan-1-ol


¹H NMR (CDCl₃) δ 0.90–1.06 (1H, m), 1.10-1.80 (7H, m), 1.82-2.12 (3H, m), 2.29-2.40 (1H, m), 3.32-3.52 (2H, m), 5.91 (2H, s), 6.59 (1H, dd, *J* = 7.6, 1.6 Hz), 6.66 (1H, d, *J*=1.2 Hz), 6.70 (1H, d, *J*=7.6 Hz); ¹³C NMR (CDCl₃) δ 24.9, 25.3, 31.5, 31.7, 38.2, 46.8, 48.5, 61.3, 100.8, 107.7, 108.0, 121.0, 139.0, 145.5, 147.6; IR (neat) ν 3336, 2950, 2869, 1504, 1488, 1440, 1244, 1040, 938, 810 cm⁻¹; HRMS (ESI): [M+Na]⁺calculated for C₁₅H₂₀O₃Na₁: 271.1305 found 271.1295. ; [α]_D²⁰ 9.4 (c=1.75, MeOH), 93% *ee*; The enantiomeric excess was determined by HPLC with a AS-H column at 285 nm (2-propanol:hexane = 1:50), 1.0 mL/min; major enantiomer tr = 15.0 min, minor enantiomer tr = 20.8 min.

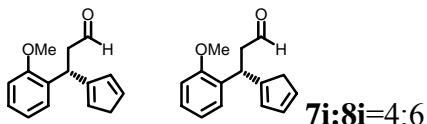
(R)-3-(cyclopenta-1,3-dienyl)-3-(furan-2-yl)propanal (7g) and
(R)-3-(cyclopenta-1,4-dienyl)-3-(furan-2-yl)propanal (8g)


¹H NMR (CDCl₃) δ 2.89-2.97 (2H, m), 2.99-3.07 (2H, m), 4.41-4.51 (1H, m), 6.03 (1H, dd, *J*=5.2, 4.0 Hz), 6.12-6.16 (0.5H, m), 6.26-6.34 (2H, m), 6.39-6.44 (0.5H, m), 6.44-6.47 (1H, m), 9.72-9.77 (1H, m); ¹³C NMR (CDCl₃) δ 34.2, 34.8, 41.3, 42.1, 46.5, 47.1, 105.5, 105.9, 110.2, 127.8, 128.4, 131.9, 132.1, 132.9, 134.5, 141.5, 141.6, 145.7, 147.3, 155.3, 155.8, 200.7, 200.8; IR (neat) ν 2898, 2830, 2728, 1725, 1505, 1363, 1011, 898, 736 cm⁻¹.

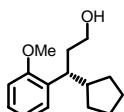
(R)-3-cyclopentyl-3-(furan-2-yl)propan-1-ol


¹H NMR (CDCl₃) δ 1.08-1.70 (7H, m), 1.78-2.12 (4H, m), 2.61-2.71 (1H, m), 3.41-3.50 (1H, m), 3.52-3.61 (1H, m), 6.00 (1H, d, *J*=2.8 Hz), 6.25-6.29 (1H, m), 7.29-7.32 (1H, m); ¹³C NMR (CDCl₃) δ 25.0, 25.3, 30.8, 31.2, 36.1, 41.2, 44.4, 61.3, 105.6, 109.8, 140.8, 158.0; IR (neat) ν 3336, 2951, 2869, 1506, 1148, 1046, 1007, 729, 600 cm⁻¹; HRMS (ESI): [M+Na]⁺ calculated for C₁₂H₁₈O₂Na₁: 217.1199 found 217.1193.; [α]_D²⁰ 10.3 (c=1.08, MeOH), 90% ee; The enantiomeric excess was determined by HPLC with a AS-H column at 211 nm (2-propanol:hexane = 1:100), 1.0 mL/min; major enantiomer tr= 11.1 min, minor enantiomer tr = 12.0 min.

(R)-3-(cyclopenta-1,3-dienyl)-3-(thiophen-2-yl)propanal (7h) and
(R)-3-(cyclopenta-1,4-dienyl)-3-(thiophen-2-yl)propanal (8h)

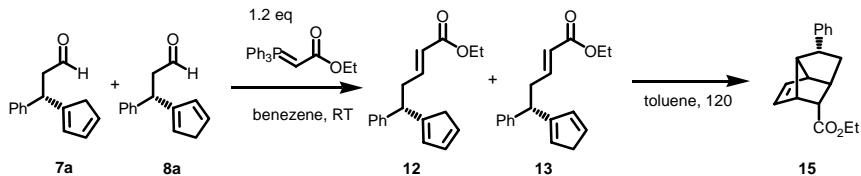

¹H NMR (CDCl₃) δ 2.90-2.93 (0.8H, m), 2.99-3.06 (3.2H, m), 4.61-4.71 (1H, m), 6.14-6.18 (0.6H, m), 6.29-6.33 (0.8H, m), 6.39-6.47 (1.6H, m), 6.84 (1H, dd, *J*=8.0, 3.2 Hz), 6.92 (1H, dt, *J*_d=5.2 Hz, *J*_t=3.2 Hz), 7.13-7.18 (1H, m), 9.73-9.76 (1H, m); ¹³C NMR (CDCl₃) δ 35.7, 36.4, 41.3, 50.0, 123.95, 124.0, 124.1, 124.4, 126.8, 127.1, 127.9, 128.3, 131.8, 132.2, 132.9, 134.7, 146.2, 147.3, 147.8, 149.5, 200.6, 200.8; IR (neat) ν 2924, 2726, 1724, 1363, 898, 698 cm⁻¹.

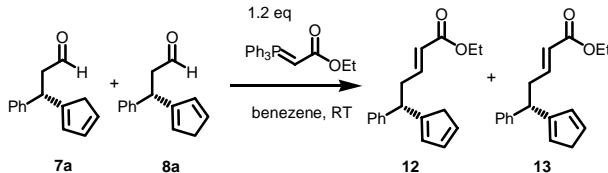
(R)-3-cyclopentyl-3-(thiophen-2-yl)propan-1-ol


¹H NMR (CDCl₃) δ 1.08-1.30 (3H, m), 1.41-1.66 (4H, m), 1.69-1.81 (1H, m), 1.85-1.95 (1H, m), 1.95-2.05 (1H, m), 1.95-2.05 (1H, m), 2.06-2.16 (1H, m), 2.79-2.88 (1H, m), 3.42-3.52 (1H, m), 3.53-3.62 (1H, m), 6.79 (1H, d, *J*=2.8 Hz), 6.91 (1H, dd, *J*=4.8, 3.6 Hz), 7.14 (1H, d, *J*=5.2 Hz); ¹³C NMR (CDCl₃) δ 24.9, 25.4, 31.35, 31.38, 39.2, 43.7, 47.6, 61.1, 122.9, 124.1, 126.3, 148.9; IR (neat) ν 3333, 2950, 2862, 1044, 691 cm⁻¹; HRMS (ESI): [M+Na]⁺ calculated for C₁₂H₁₈OSNa: 233.0971, found 233.0977; [α]_D²⁰ 3.9 (*c*=1.3, MeOH), 78% *ee*; The enantiomeric excess was determined by HPLC with a AS-H column at 244 nm (2-propanol:hexane = 1:100), 1.0 mL/min; major enantiomer tr = 11.7 min, minor enantiomer tr = 13.7 min.

(R)-3-(cyclopenta-1,4-dienyl)-3-(2-methoxyphenyl)propanal (7i) and
(R)-3-(cyclopenta-1,3-dienyl)-3-(2-methoxyphenyl)propanal (8i)

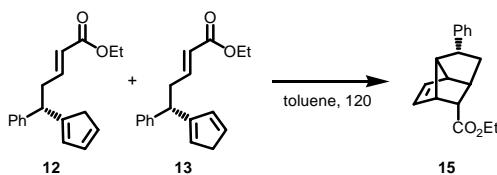
¹H NMR (CDCl₃) δ 2.82-2.86 (0.8H, m), 2.82-2.90 (1H, m), 2.91-3.01 (1H, m), 3.00-3.03 (1.2H, m), 3.85 (1.2H, s), 3.86 (1.8H, s), 4.73-4.84 (1H, m), 6.09-6.13 (0.6H, m), 6.25-6.29 (0.8H, m), 6.30-6.34 (0.6H, m), 6.39-6.44 (1H, m), 6.85-6.91 (2H, m), 6.98-7.03 (1H, m), 7.16-7.23 (1H, m), 9.68-9.72 (1H, m); ¹³C NMR (CDCl₃) δ 33.4, 34.1, 41.2, 42.8, 47.8, 48.3, 55.3, 110.56, 110.62, 120.68, 120.74, 127.1, 127.65, 127.72, 127.8, 128.2, 128.4, 130.5, 131.5, 131.6, 131.9, 134.0, 134.1, 147.9, 150.0, 156.4, 156.6, 202.1, 202.4; IR (neat) ν 2935, 1723, 1493, 1464, 1245, 1028, 755 cm⁻¹.


(R)-3-cyclopentyl-3-(2-methoxyphenyl)propan-1-ol


¹H NMR (CDCl₃) δ 0.88-1.01 (1H, m), 1.20-1.33 (1H, m), 1.35-1.73 (5H, m), 1.90-2.05 (2H, m), 2.06-2.22 (2H, m), 3.01 (1H, t, *J*=10.0 Hz), 3.25 (1H, dt, *J*_d=4.8 Hz, *J*_t=10.0 Hz), 3.39-3.47 (1H, m), 3.82 (3H, s), 6.87 (1H, d, *J*=8.4 Hz), 6.94 (1H, t, *J*=7.6 Hz), 7.12-7.19 (2H, m); ¹³C NMR (CDCl₃) δ 24.9, 25.4, 31.72, 31.79, 38.2, 39.7, 38.2, 39.7, 45.4, 55.6, 61.0, 110.6, 121.1, 126.7, 128.0, 133.2, 157.3; IR (neat) ν 3359, 2950, 1492, 1241, 1031, 753 cm⁻¹; HRMS (ESI): [M+Na]⁺ calculated for C₁₅H₂₂O₂Na: 257.1521, found 257.1504; [α]_D²¹ 5.9 (*c*=0.67, MeOH), 95% *ee*; The enantiomeric excess was

determined by HPLC with a OD-H column at 220 nm (2-propanol:hexane = 1:200), 1.0 mL/min; major enantiomer t_r = 34.4 min, minor enantiomer t_r = 26.1 min.

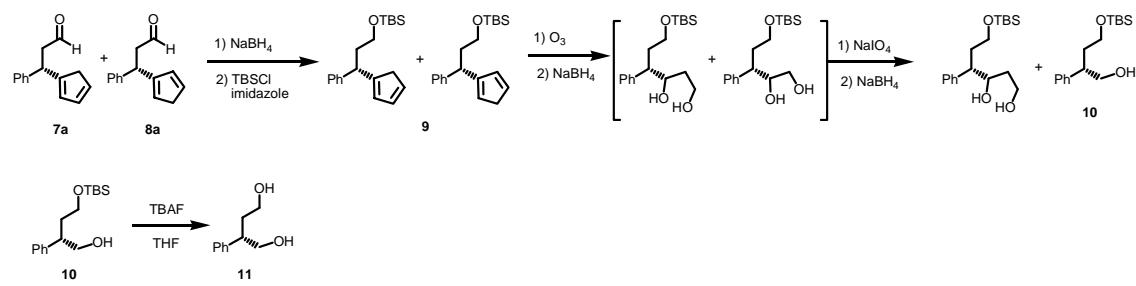
The procedure of intramolecular Diels-Alder reaction of compound **12 and **13** derived from **7a** and **8a**.**



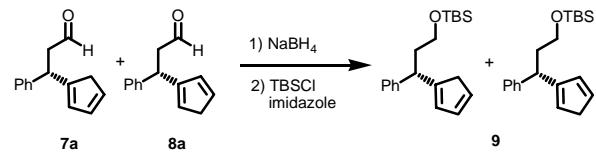
(*R,2E*)-ethyl-5-(cyclopenta-1,4-dienyl)-5-phenylpent-2-enoate (12**) and (*R,2E*)-ethyl-5-(cyclopenta-1,3-dienyl)-5-phenylpent-2-enoate (**13**)**

To a solution benzene solution (1.6 ml) of aldehyde **7a** and **8a** (110.9 mg, 0.56 mmol) was added ethyl (triphenylphosphoranylidene) acetate (234 mg, 0.67 mmol) at room temperature and the reaction mixture was stirred for 1 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (AcOEt/hexane=1/6) to afford **12** and **13** (106.6 mg, 71%). **12:13=1:1** ^1H NMR (CDCl_3) δ 1.30 (3H, t, J =7.2 Hz), 2.74-2.83 (1H, m), 2.84 (1H, s), 2.88-2.99 (1H, m), 3.04 (1H, s), 5.85 (1H, d, J =15.6 Hz), 6.18 (0.5H, s), 6.31-6.41 (1.5 H, s), 6.42-6.50 (1H, m), 6.93 (1H, dt, J_d =7.2 Hz, J_t =14.7 Hz), 7.17-7.28 (3H, m), 7.29-7.37 (2H, m); ^{13}C NMR (CDCl_3) δ 14.1, 37.7, 38.1, 41.1, 42.3, 45.5, 46.4, 60.0, 122.5, 122.6, 126.40, 122.41, 127.1, 127.5, 127.7, 127.8, 128.38, 128.4, 131.6, 131.9, 133.6, 134.0, 142.8, 143.7, 147.0, 148.6, 150.7, 166.2, 166.3; IR (neat) ν 2980, 1717, 1654, 1494, 1453, 1367, 1270, 1202, 1039, 702 cm^{-1} ; HRMS (ESI): $[\text{M}+\text{Na}]^+$ calculated for $\text{C}_{18}\text{H}_{20}\text{O}_2\text{Na}$: 291.1356, found 291.1356.

Compound of **15**



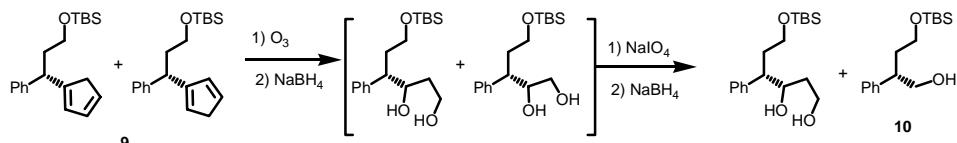
A mixture of **12** and **13** (88.0 mg, 0.328 mmol) and catalytic amount of hydroquinone (3.6 mg, 0.0328 mmol) were dissolved in anhydrous toluene (0.66 ml). The solution was refluxed at 120 °C for 5h. The reaction mixture was concentrated under reduced


pressure. The residue was purified by preparative thin-layer chromatography (AcOEt/hexane=1/6) to afford compound **15** (60.1 mg, 68%).

¹H NMR (CDCl₃) δ 1.24 (3H, t, *J*=7.2 Hz), 1.83 (1H, ddd, *J*=11.2, 7.6, 2.8 Hz), 2.34 (1H, dd, *J*=12.0, 8.0 Hz), 2.39 (1H, d, *J*=2.0 Hz), 2.43 (1H, s), 2.64 (1H, d, *J*=4.8 Hz), 2.76 (1H, t, *J*=8.0 Hz), 3.00-3.09 (2H, m), 4.08 (2H, q, *J*=7.2 Hz), 5.92 (1H, dd, *J*=5.6, 2.8 Hz), 6.11 (1H, dd, *J*=5.6, 3.2 Hz), 7.14-7.22 (3H, m), 7.26-7.31 (2H, m); ¹³C NMR (CDCl₃) δ 14.3, 39.1, 41.0, 44.6, 49.3, 49.9, 51.9, 60.0, 69.5, 125.8, 126.9, 128.4, 133.2, 133.9, 146.3, 173.5; IR (neat) ν 3027, 1734, 1495, 1449, 1205, 1043, 700 cm⁻¹; HRMS (ESI): [M+Na]⁺ calculated for C₁₈H₂₀O₂Na: 291.1356, found 227.1362; [α]_D²¹ -112.3 (*c*=0.81, CHCl₃).

Determination of the absolute stereochemistry of **7a** and **8a**:

Compound of **9**


To a solution MeOH (1.7 ml) of the **7a** and **8a** (165.8 mg, 0.84 mmol) was added NaBH₄ (378.3 mg, 2.5 mmol) at 0 °C. After stirring for 20 min at that temperature, the reaction mixture was quenched with pH 7.0 phosphate buffer. The organic materials were extracted with AcOEt and dried over anhydrous Na₂SO₄, then concentrated under reduced pressure which was used in the next reaction without further purification.

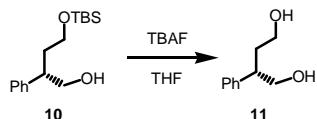
To a DMF solution (1.7 ml) of alchol and imidazole (284.6 mg, 4.2 mmol) was added TBSCl (378.3 mg, 4.2 mmol) at 0 °C and stirred for 2 h. The reaction mixture was quenched with pH 7.0 phosphate buffer and diluted with AcOEt. The organic phase was washed with saturated aqueous NaCl and dried over anhydrous Na₂SO₄, then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (AcOEt/hexane=1/20) to afford **9** (208.3 mg, 79%, 2 steps).

¹H NMR (CDCl₃) δ 0.01 (6H, s), 0.91 (9H, s), 1.99-2.10 (1H, m), 2.18-2.30 (1H, m), 3.46-3.62 (2H, m), 3.85-3.93 (1H, m), 6.09-6.12 (6H, m), 6.23-6.30 (0.8H, m),

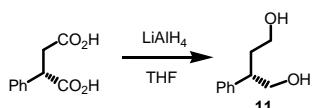
6.36-6.40 (1.2H, m), 6.41-6.45 (0.4H, m), 7.15-7.31 (6H, m); ^{13}C NMR (CDCl_3) δ -5.4, 18.3, 26.0, 37.8, 38.3, 41.1, 42.3, 42.4, 43.3, 61.0, 125.9, 126.07, 126.10, 126.41, 127.9, 128.1, 128.29, 128.32, 131.3, 132.0, 133.7, 134.1, 143.9, 144.7, 149.8, 152.4; IR (neat) ν 3061, 3028, 2928, 2857, 1471, 1254, 1102, 834, 834, 775 cm^{-1}

Compound of **10**

To a MeOH solution (2.0 ml) of diene (26.1 mg, 0.083 mmol) was treated with a oxygen-ozone stream for 10 minutes at -78 °C. An argon stream was then bubbled through the cold solution and NaBH_4 (62.9 mg, 1.65 mmol) was added. The mixture was allowed to warm slowly to room temperature and stirred overnight. The reaction was quenched with pH 7.0 phosphate buffer solution and the organic materials were extracted with AcOEt and the combined organic extracts were dried over anhydrous Na_2SO_4 , then concentrated under reduced pressure which was used in the next reaction without further purification.

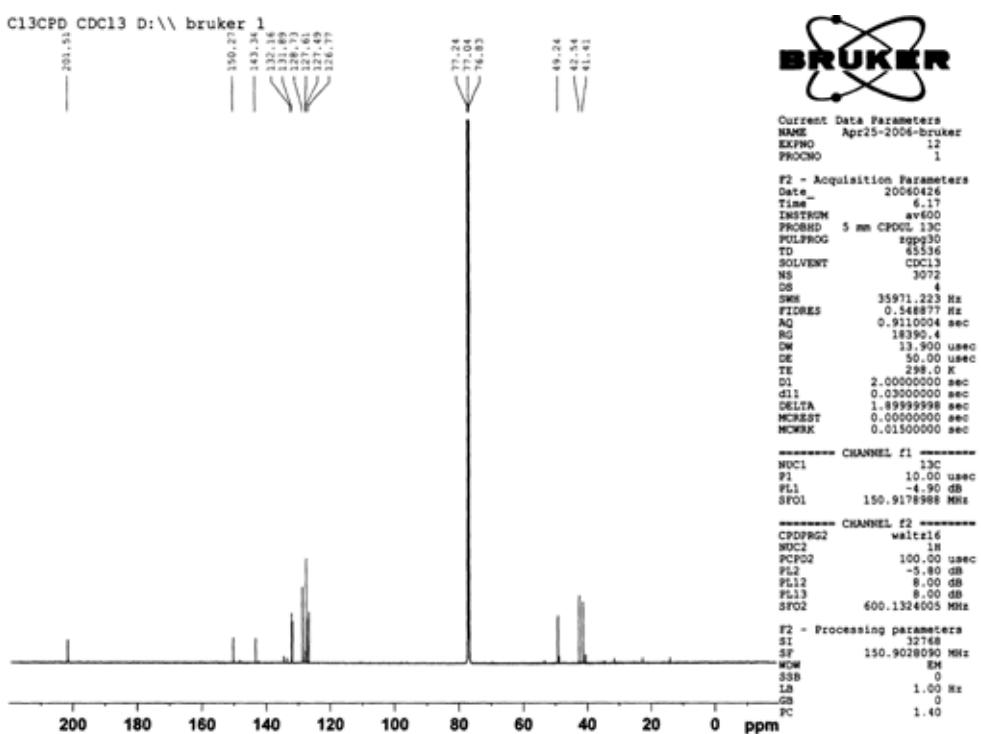
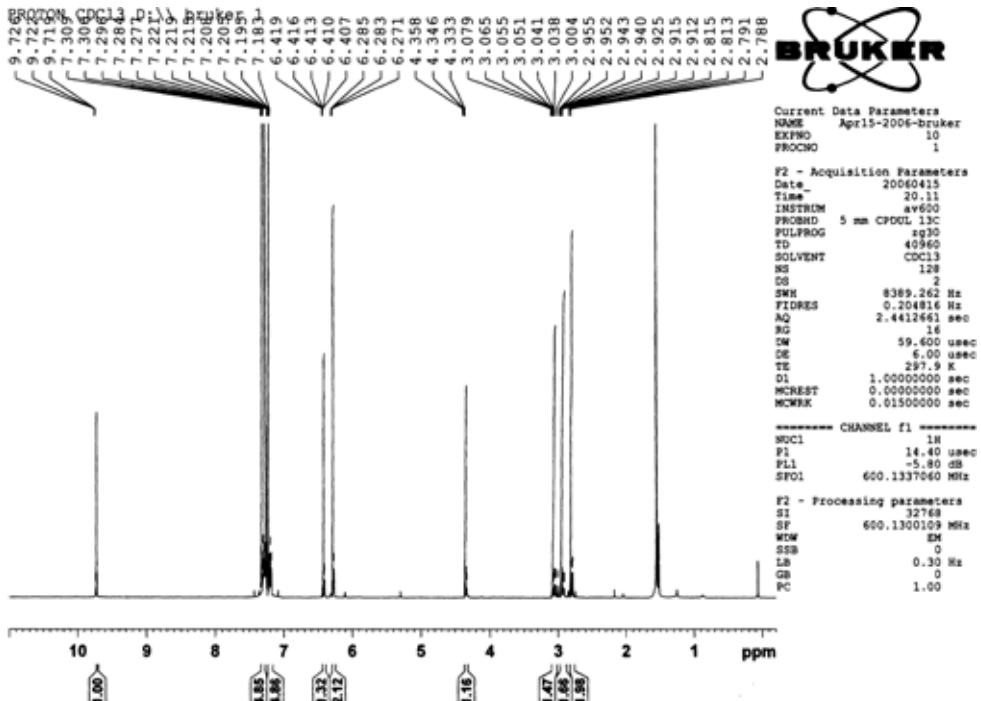
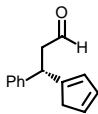

To a CH_2Cl_2 solution (0.5 ml) of the diol and silica gel (20 mg) was added NaIO_4 at 0 °C and the reaction mixture was stirred for 1 h at that temperature. The reaction mixture was quenched with saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3$ and the organic materials were extracted with AcOEt and the combined organic extracts were dried over anhydrous Na_2SO_4 , then concentrated under reduced pressure which was used in the next reaction without further purification.

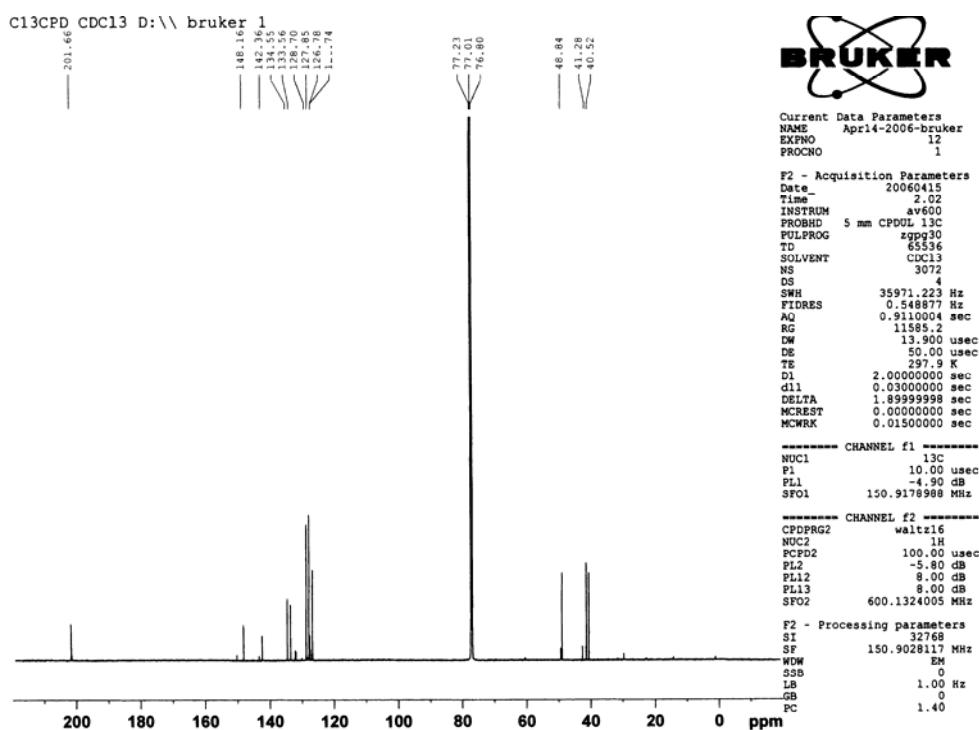
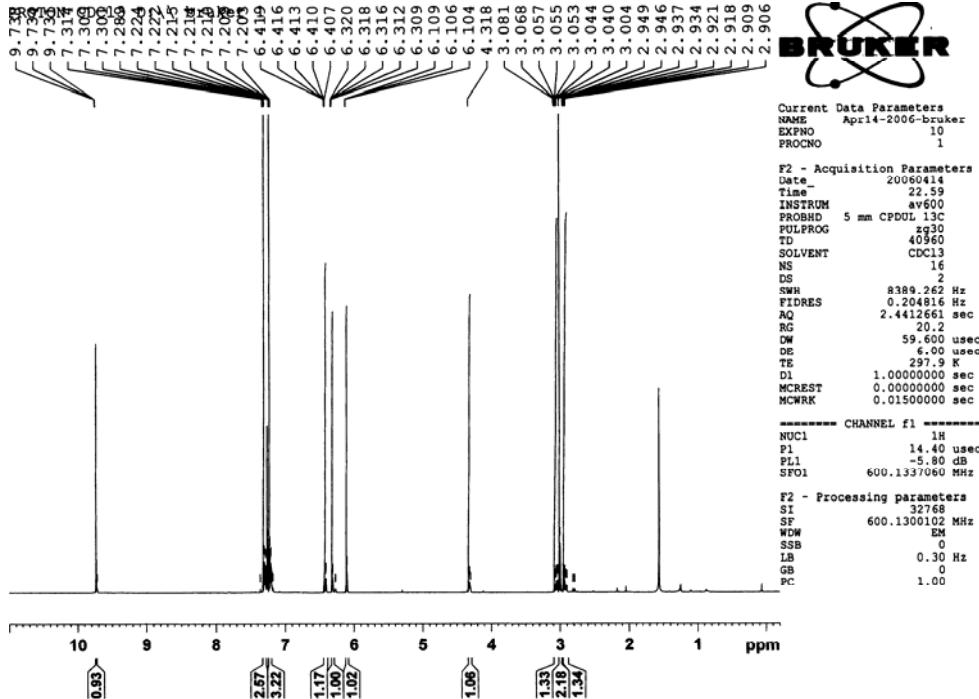
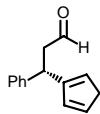
To a MeOH solution (1.7 ml) of aldehyde and diol was added NaBH_4 (9.4 mg, 0.25 mmol) at 0 °C and the reaction mixture was stirred for 20 min at that temperature. The reaction mixture was quenched with pH 7.0 phosphate buffer. The organic materials were extracted with AcOEt and dried over anhydrous Na_2SO_4 . The residue was purified by silica gel column chromatography ($\text{AcOEt}/\text{hexane}=1/3$) to afford alchol **10** (2.6 mg, 11%, 4 steps) and 1,3-diol (4.2 mg, 16%, 4 steps).

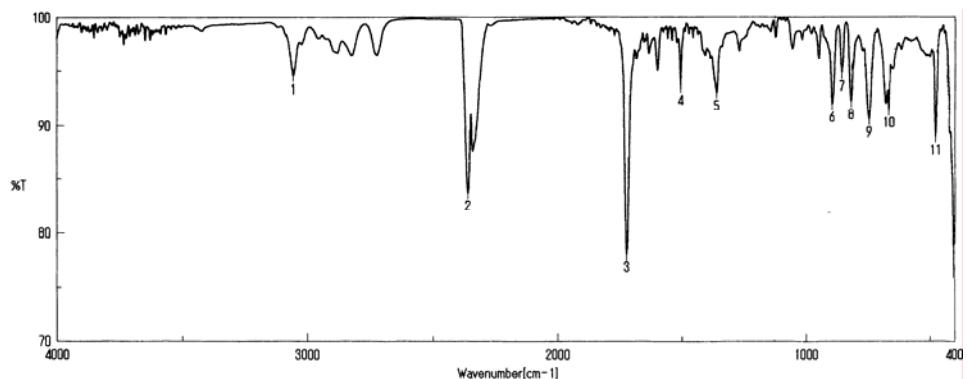

^1H NMR (CDCl_3) δ 0.02 (3H, s), 0.03 (3H, s), 0.89 (9H, s), 1.80-1.90 (1H, m), 1.91-2.01 (1H, m), 2.27 (1H, t, $J=6.4$ Hz), 2.96 (1H, quint, $J=6.8$ Hz), 3.55 (1H, ddd, $J=10.0, 8.4, 5.2$ Hz), 3.67 (1H, quint, $J=5.2$ Hz), 3.76 (1H, sex, $J=3.2$ Hz), 7.20-7.25 (3H, m), 7.30-7.36 (2H, m); ^{13}C NMR (CDCl_3) δ -5.47, -5.44, 18.2, 25.9, 36.1, 46.1, 61.5, 67.6, 126.7, 127.9, 128.6, 142.7; IR (neat) ν 3373, 2928, 2852, 1464, 1255, 1095, 835, 775, 700 cm^{-1} ; HRMS (ESI): $[\text{M}+\text{Na}]^+$ calculated for $\text{C}_{18}\text{H}_{20}\text{O}_2\text{Na}$: 291.1356,

found 227.1362.

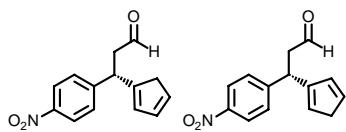
(S)-2-phenylbutane-1,4-diol (11)




To a THF solution (200 μ l) of alcohol **10** (2.6 mg, 0.093 mmol) was added 1.0M THF solution of TBAF (18.5 μ l, 0.0185 mmol) at 0 $^{\circ}$ C and the reaction mixture was stirred for 1 h at that temperature. The reaction mixture was quenched with pH 7.0 phosphate buffer. The organic materials were extracted with CHCl_3 and dried over anhydrous Na_2SO_4 , then concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (AcOEt) to afford (S)-2-phenylbutane-1,4-diol **11** (1.5 mg, quant).


To a THF solution (0.27 ml) of LiAlH₄ (30.8 mg, 0.81 mmol) was added THF solution (0.81 ml) of (S)-phenylsuccinic acid (52.6 mg, 0.27 mmol) at 0 $^{\circ}$ C and the temperature of the reaction mixture was raised to room temperature gradually. After refluxing the reaction mixture for 5h, saturated Na_2SO_4 solution was added to the reaction mixture at 0 $^{\circ}$ C. After filtration of the inorganic materials, volatile materials were removed under reduced pressure and the residue was purified by thin-layer chromatography (AcOEt) to afford (S)-2-phenylbutane-1,4-diol **11** (33.8 mg, 75%).

¹H NMR (CDCl_3) δ 1.85-1.95 (1H, m), 1.98-2.08 (1H, m), 2.97 (1H, quint, J =7.2 Hz), 3.55-3.64 (1H, m), 3.70 (1H, quint, J =5.6 Hz), 3.79 (2H, d, J =6.4 Hz), 7.21-7.27 (3H, m), 7.34 (2H, t, J =7.6 Hz); ¹³C NMR (CDCl_3) δ 35.8, 45.9, 60.9, 67.4, 126.7, 127.8, 128.7, 142.4; IR (neat) ν 3349, 2935, 2880, 1495, 1454, 1050, 762, 702 cm^{-1} ; HRMS (ESI): $[\text{M}+\text{Na}]^+$ calculated for $\text{C}_{18}\text{H}_{20}\text{O}_2\text{Na}$: 291.1356, found 227.1362; $[\alpha]_D^{31}$ 27.5 (c =0.225, CHCl_3), prepared by the reduction of (S)-phenylsuccinic acid; The enantiomeric excess was determined by HPLC with a IA column at 220 nm (2-propanol:hexane = 1:40), 1.0 mL/min; major enantiomer tr = 51.6 min, minor enantiomer tr = 53.6 min.

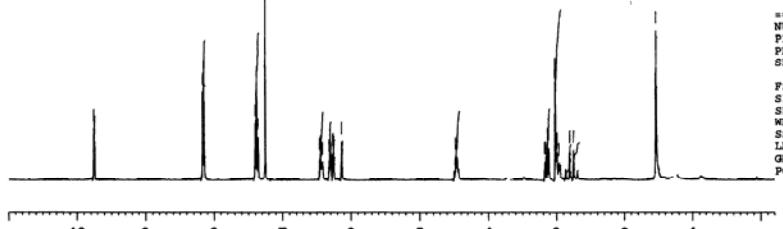


積算回数
ゼロフィーリング
ゲイン
測定
測定者
ファイル名
サンプル名
コメント

64
ON
1
106/06/05 17:45
Memory#7
コメント

分解
アボダイゼーション
スキャンスピード
4 cm⁻¹
Cosine
2 mm/sec

1: 3055.66, 94.5863	2: 2360.44, 83.7862	3: 1722.12, 78.0472	4: 1507.10, 93.6061
5: 1362.46, 93.0823	6: 896.74, 92.0330	7: 858.17, 94.8593	8: 820.56, 92.2810
9: 749.21, 90.6279	10: 669.18, 91.5156	11: 478.26, 89.0013	

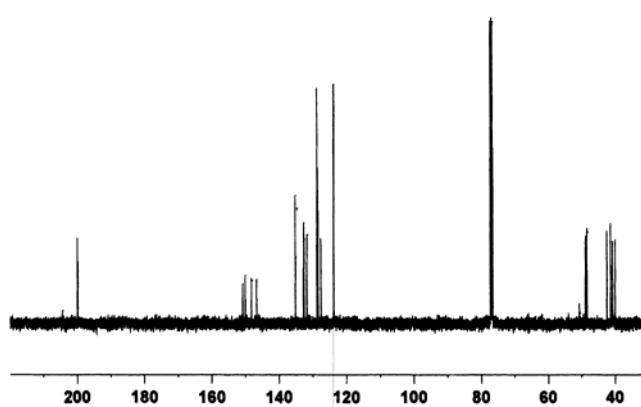


Current Data Parameters
NAME Jun05-2006
EXPNO 47
PROCNO 1

```

P2 - Acquisition Parameters
Date_ 20060605
Time_ 17.29
INSTRUM dpx400
PROBWD 5 mm BBO 13C-1
PULPROG 2930
TD 32768
SOLVENT CDCl3
NS 8
DS 0
SWH 8223.685 Hz
FIDRES 0.250947 Hz
AQ 1.9923444 sec
RG 60.000
DW 60.000
DE 6.00 used
TE 303.2 K
D1 1.0000000 sec
MCBREST 0.0000000 sec
MCWRK 0.0150000 sec

```

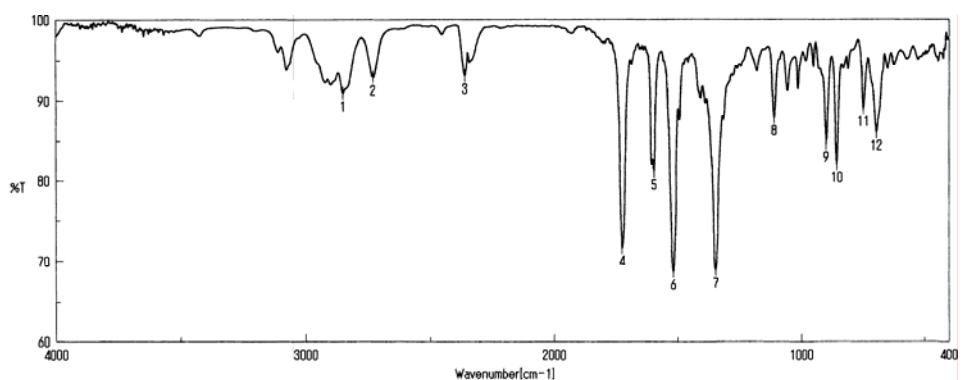


BRUKER

```

Current Data Parameters
NAME      Jun04-2006
EXPNO    53
PROCNO  1

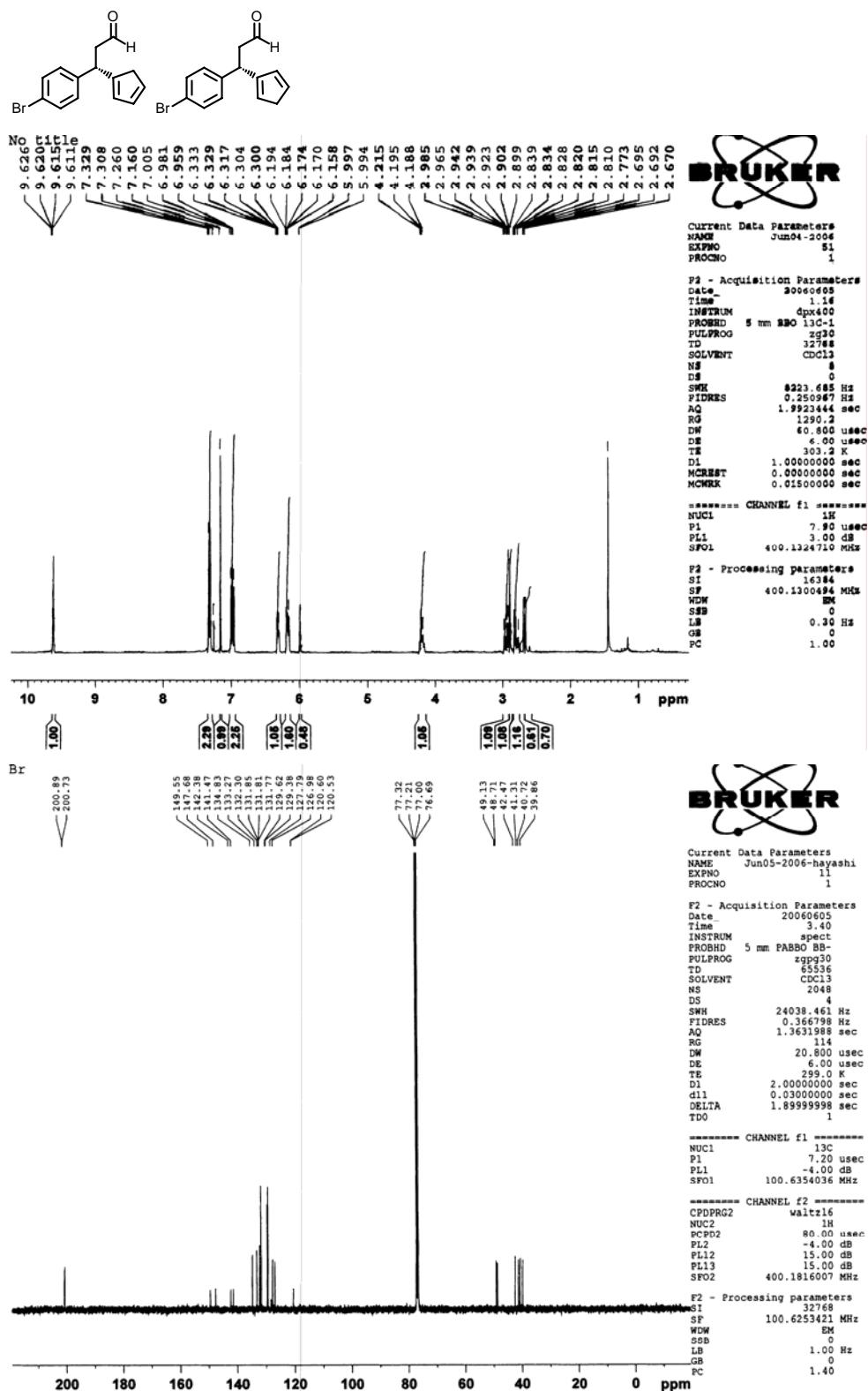
P2 - Acquisition Parameters
Date_      200605
Time_     1.24
INSTRUM  dpx5
PROBHD  5 mm BBC 13C-1
PULPROG  zgpp30
TD        65536
SOLVENT   CDC13
NS        99
DLY      2
SWH      31847.113 Hz
TDRES    0.48500 ms
AQ        1.028695 sec
RG        3449.1
DW        15.700 usec
DE        6.00 usec
TE        303.2
DL        2.0000000 sec
d11      0.0000000 sec
DWSDTA  1.0000000 sec
MCWRITE  0.0000000 sec
MCWRITE  0.0150000 sec

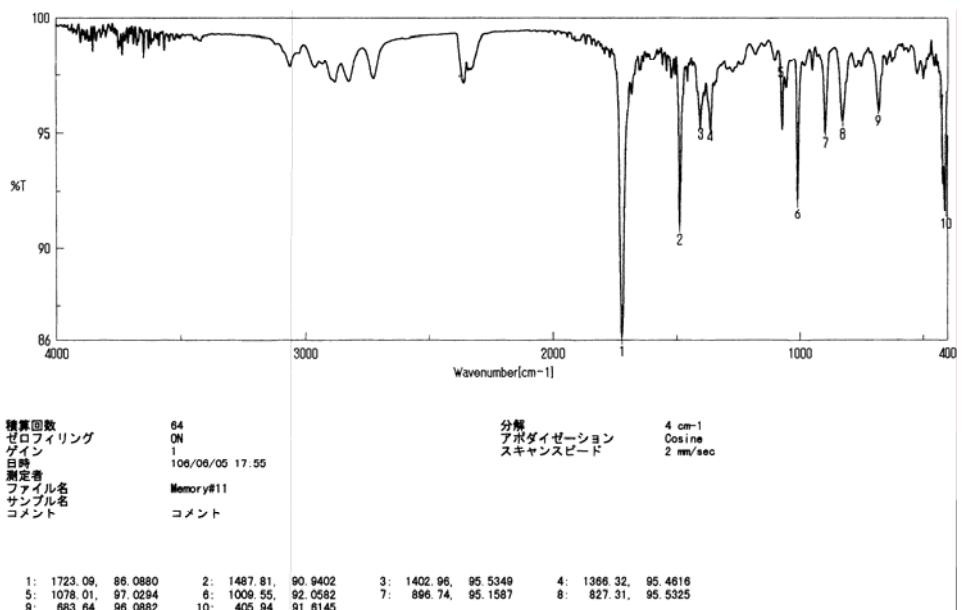
```

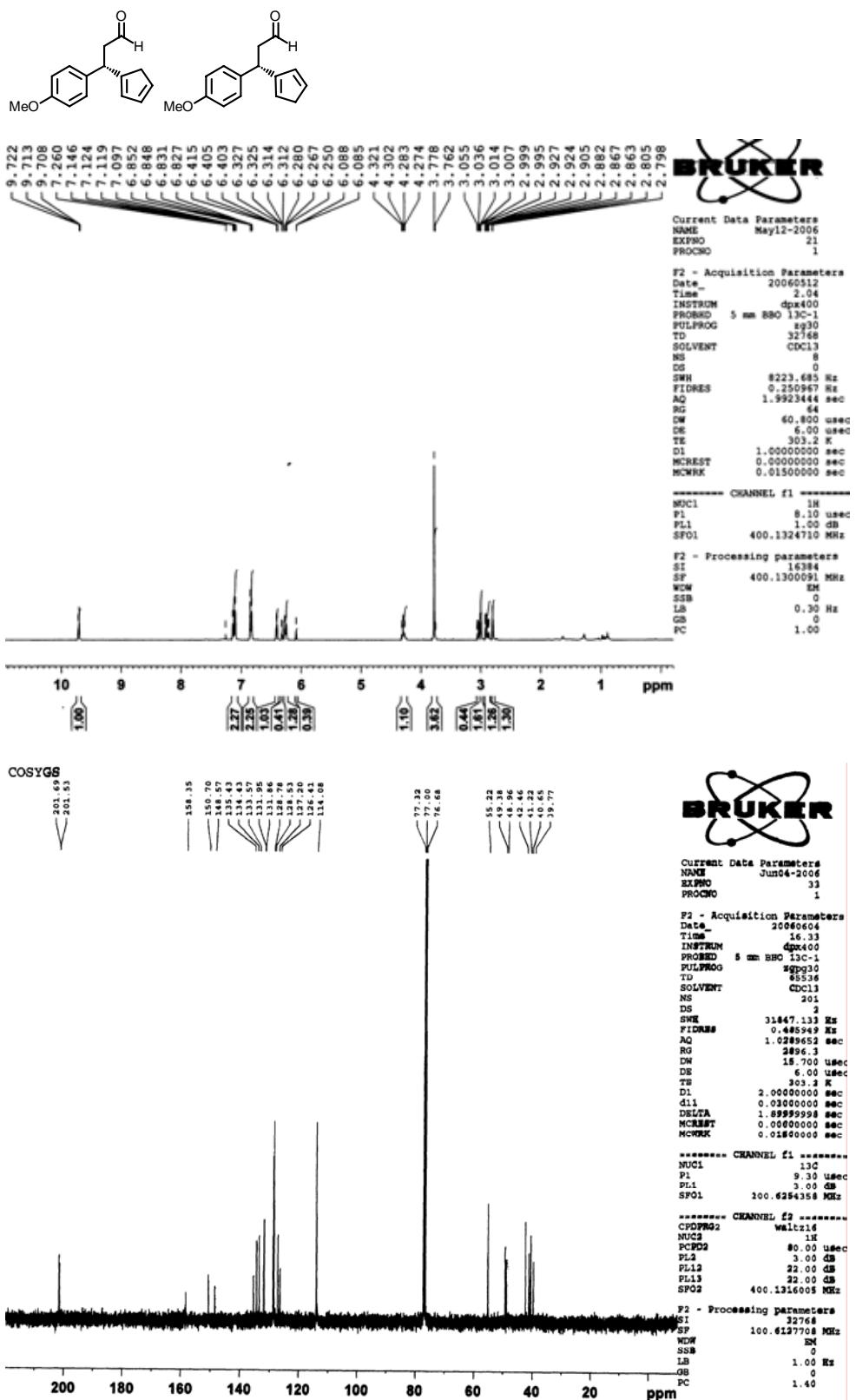


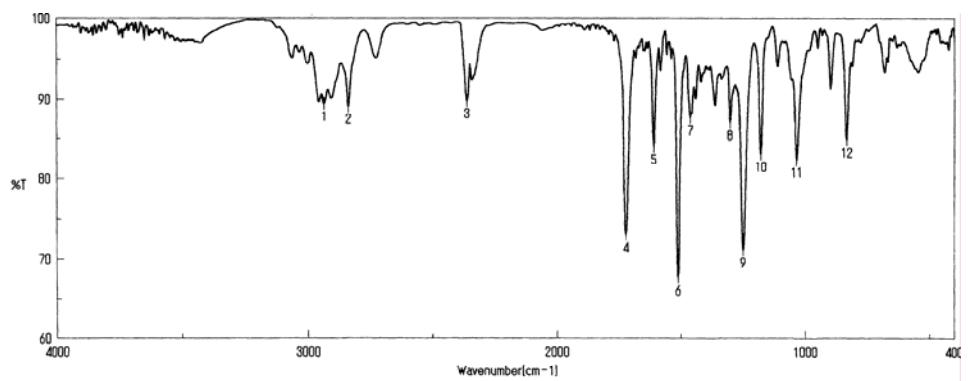
***** CHANNEL f1 *****
NUC1 13C
P1 9.30 usec
PL1 3.00 dB
SFO1 100.6254358 MHz

```
***** CHANNEL f2 *****
CPDPG2          waltz16
NUC2           1H
PCPD2          80.00 used
PL2            3.00 dB
PL12           22.00 dB
PL13           22.00 dB
SPG2          400.1316005 MHz

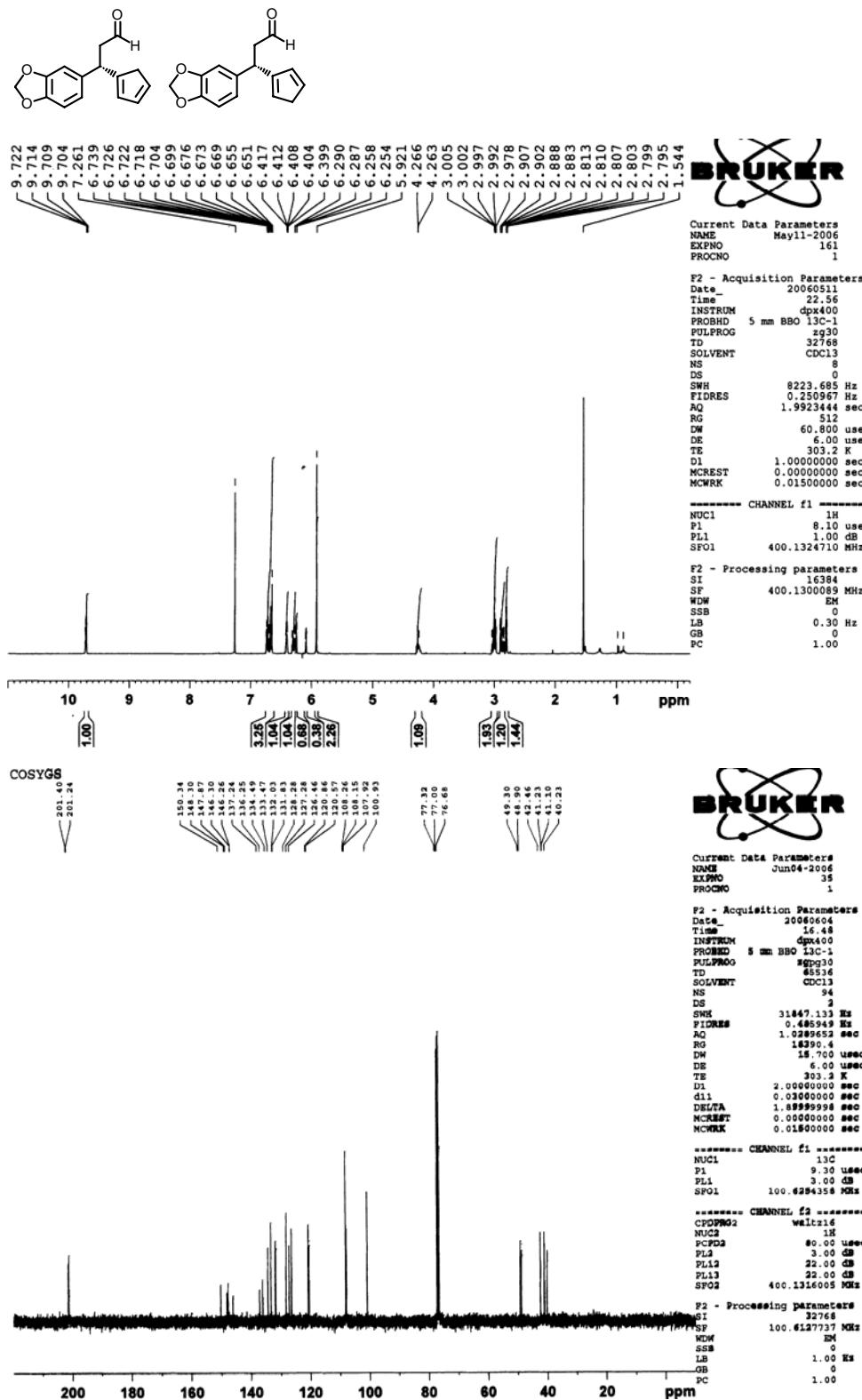

F2 - Processing parameters
SI            32768
SF           100.4122722 MHz
```

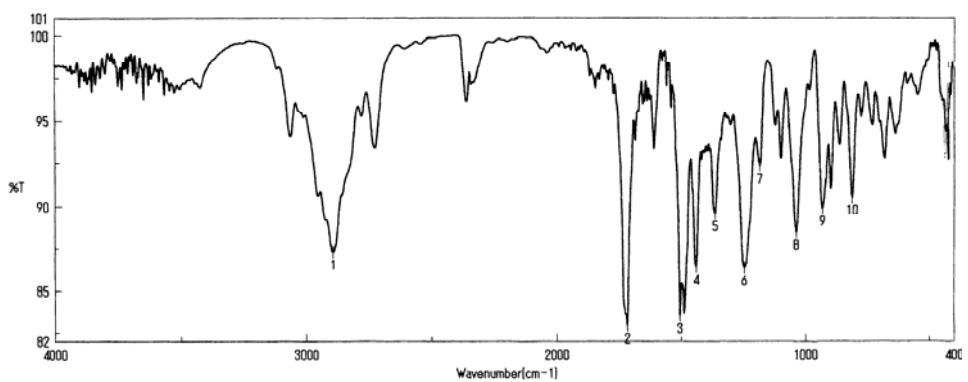

NDW	EM
SSB	0
LB	1.00 Ks
GB	0
PC	1.00




積算回数 64
 ピローフィリング ON
 ゲイン 1
 日時 106/06/05 17:50
 測定者 分解
 ファイル名 Memory#9
 サンプル名 スキヤンスピード
 コメント 2 mm/sec

1: 2849.31, 90.9183 2: 2728.78, 92.8622 3: 2360.44, 93.0537 4: 1724.05, 71.7288
 5: 1595.81, 81.1228 6: 1517.70, 88.7247 7: 1347.03, 88.9244 8: 1110.80, 87.8479
 9: 899.63, 84.5857 10: 857.20, 82.0983 11: 748.25, 88.9763 12: 696.18, 86.0036

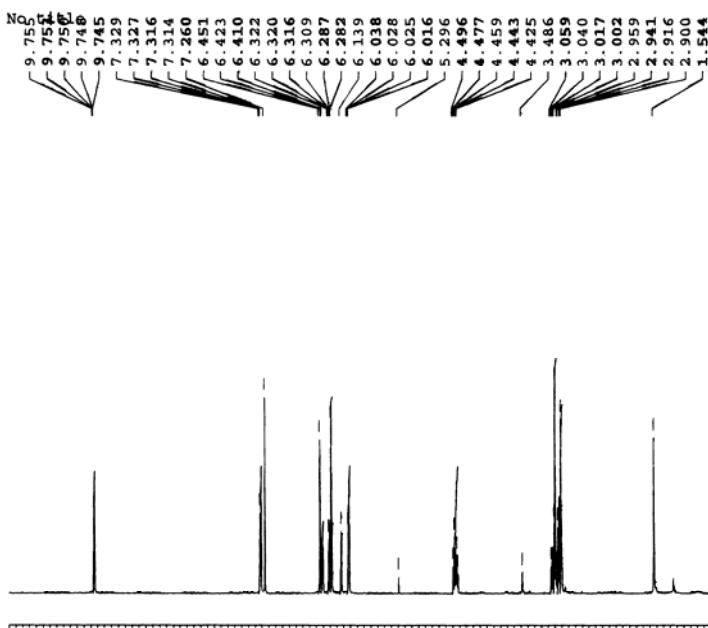
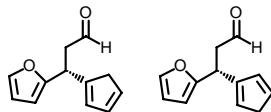

積算回数
ゼロフーリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント


64
ON
1
106/06/04 18:04
Memory#7
コメント

分解
アボダイゼーション
スキャンスピード

4 cm⁻¹
Cosine
2 mm/sec

1: 2933.20, 89.4142	2: 2835.81, 89.0515	3: 2360.44, 89.8009	4: 1722.12, 73.0924
5: 1610.27, 84.0748	6: 1511.92, 67.6439	7: 1463.71, 87.6429	8: 1302.68, 87.0827
9: 1249.65, 71.1996	10: 1178.29, 83.1631	11: 1034.62, 82.4139	12: 834.06, 84.9379

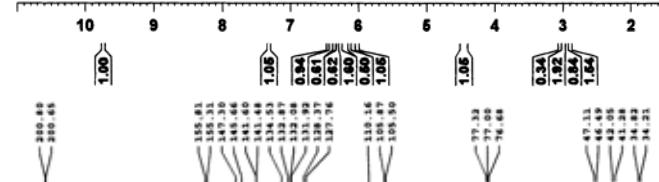



積算回数: 64
 ローパッティング: ON
 ゲイン: 1
 日時: 106/06/04 18:13
 測定者:
 ファイル名: Memory#9
 サンプル名:
 コメント:

分解: 4 cm⁻¹
 アボダイゼーション: Cosine
 スキャンスピード: 2 mm/sec

1: 2893.66, 87.2858 2: 1716.34, 82.9289 3: 1505.17, 83.5287 4: 1439.60, 86.3940
 5: 1363.43, 89.5735 6: 1246.75, 86.3675 7: 1185.04, 92.3393 8: 1038.48, 88.4689
 9: 932.41, 89.8966 10: 812.85, 90.5461

Current Data Parameters
NAME Jun04-2006
EXPNO 44
PROCNO 1


```

F2 - Acquisition Parameters
Date_ 20060404
Time_ 21.57
INSTRUM dpx400
PROBOD 5 mm BBO 13-1
PULPROG zg30
TD 32768
SOLVENT CDCl3
NS 1
SWH 8
DS 0
SF 8223.465 Hz
FIDRES 0.250967 Hz
AQ 1.9923444 sec
RG 512
DW 60.00 usec
DE 6.00 usec
TM 30.0 sec
D1 1.00000000 sec
MCREST 0.00000000 sec
MCINCR 0.01500000 sec

```

```
===== CHANNEL f1 =====
NUCL          1H
P1            8.10 usec
PLI           1.00 dB
SFO1          400.132471 MHz

P2 - Processing parameters
SI            16384
SF           400.1300097 MHz
WDM          100
SSB            0
LS            0.30 Hz
GS            0
DC            0.00
```


BRUKER

Current Date Parameters
NAME Jun01-2006
EXPIRE 24
RECORDS 1

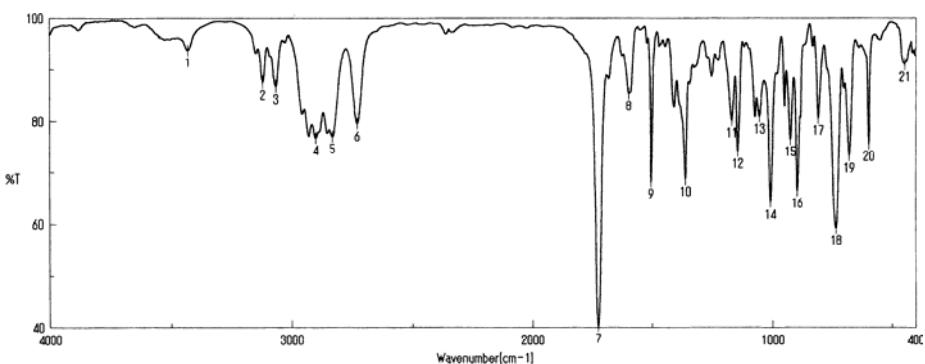
```

P2 - Acquisition Parameters
Date_      20060601
TIME       2.07
INSTRUM   5 mm BBO 13c-1
PROBODIM  0
PROBPGM  0
TD        65536
SOLVENT    CDCl3
NS        135
DS         2
SW0      31847.133 Hz
FIDRES   0.468594 Hz
AQ        1.0398453 sec
RG        200.0
DM        15.700 sec
DE        6.00 usec
TE        303.2 K
D1        2.0000000 sec
d1        0.03000000 sec
DELTAT    1.8999998 sec
NUCMBR   0.0000000 sec

```

```
***** CHANNEL fi *****
```

```
***** CHANNEL f9 *****
CPCP902          waltz16
NUC2              1K
PCPD3            80.00 usec
PL2              3.00 dB
PLL2            20.00 dB
PL1.1            25.00 dB
```

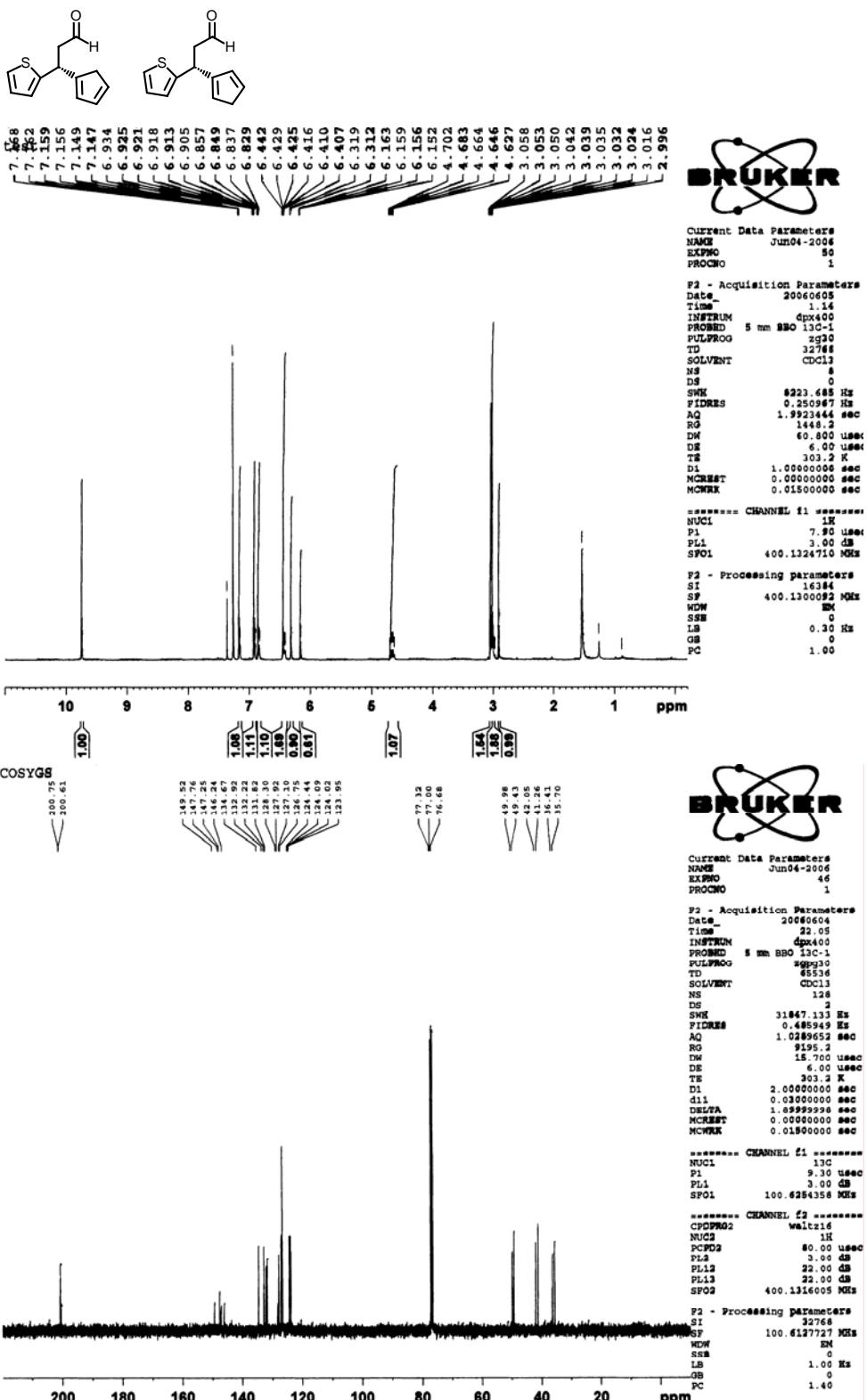

SP03 400,1316005 3032

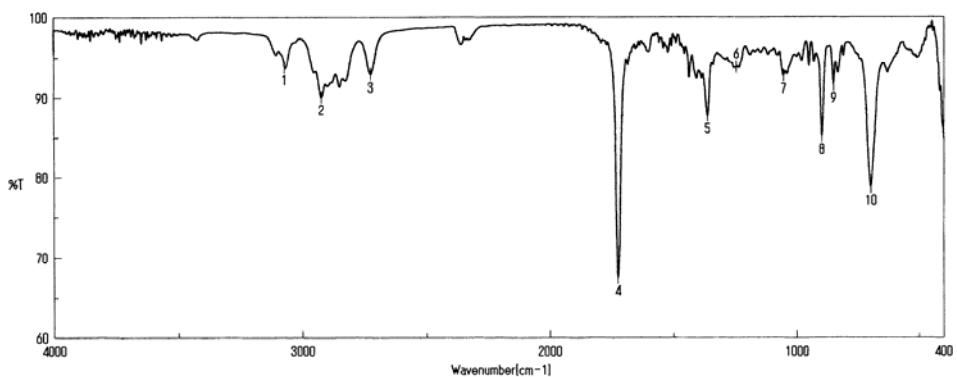
```

P2 - Processing parameters
SI      32768
SF      100.6127347 MHz
WDM    0M
SSB      0
LB      1.00 dB
GS      0
SC      1.40

```

30

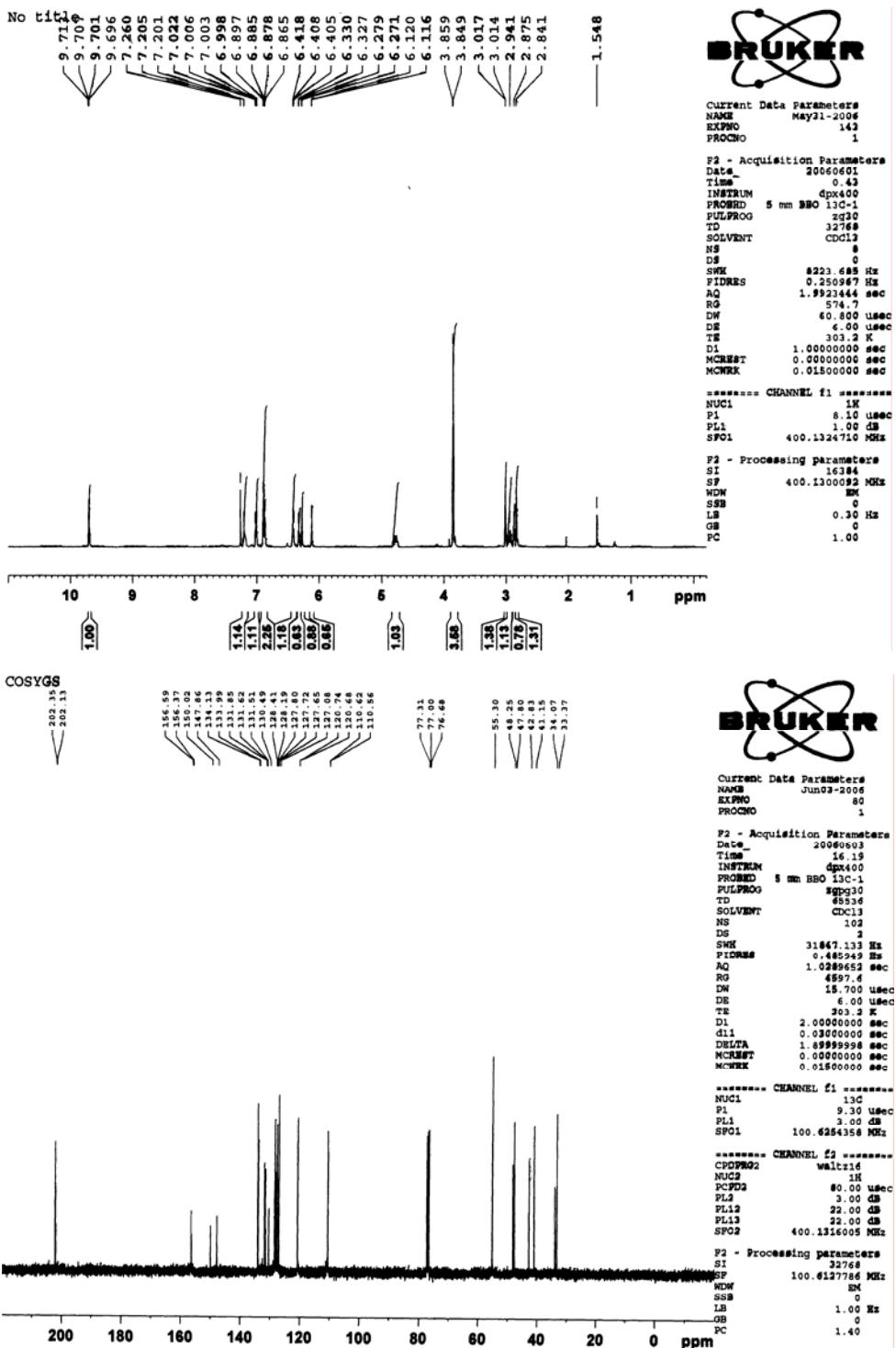
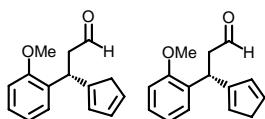

積算回数
ゼロフーリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント

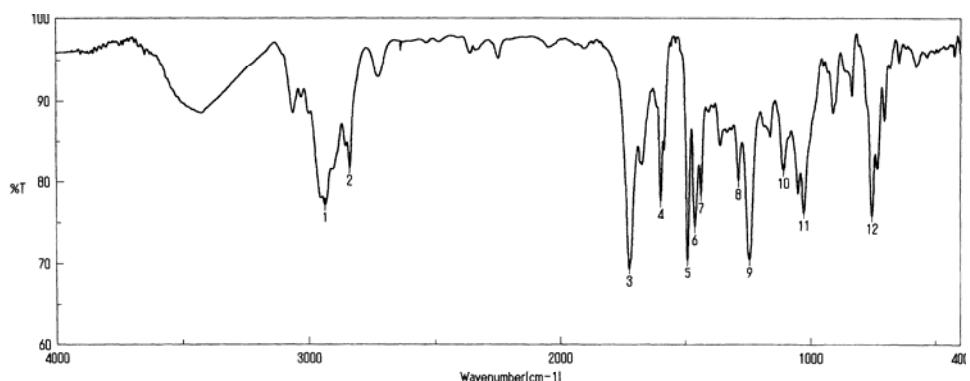

64
ON
2
106/06/04 17:41
Memory#3
コメント

分解
アボダイゼーション
スキヤンスピード

4 cm⁻¹
Cosine
2 mm/sec

1: 3428.81, 93.8049	2: 3118.33, 87.6964	3: 3063.37, 86.8861	4: 2898.49, 76.7962
5: 2830.03, 77.1467	6: 2727.82, 79.5958	7: 1725.01, 40.2654	8: 1597.73, 85.5471
9: 1505.17, 68.4271	10: 1363.43, 68.9081	11: 1171.54, 80.2374	12: 1146.47, 74.2316
13: 1056.80, 81.0338	14: 1010.52, 64.3482	15: 926.63, 76.5870	16: 897.70, 66.6319
17: 810.92, 80.7484	18: 735.71, 59.3070	19: 680.75, 73.3646	20: 598.79, 75.7114

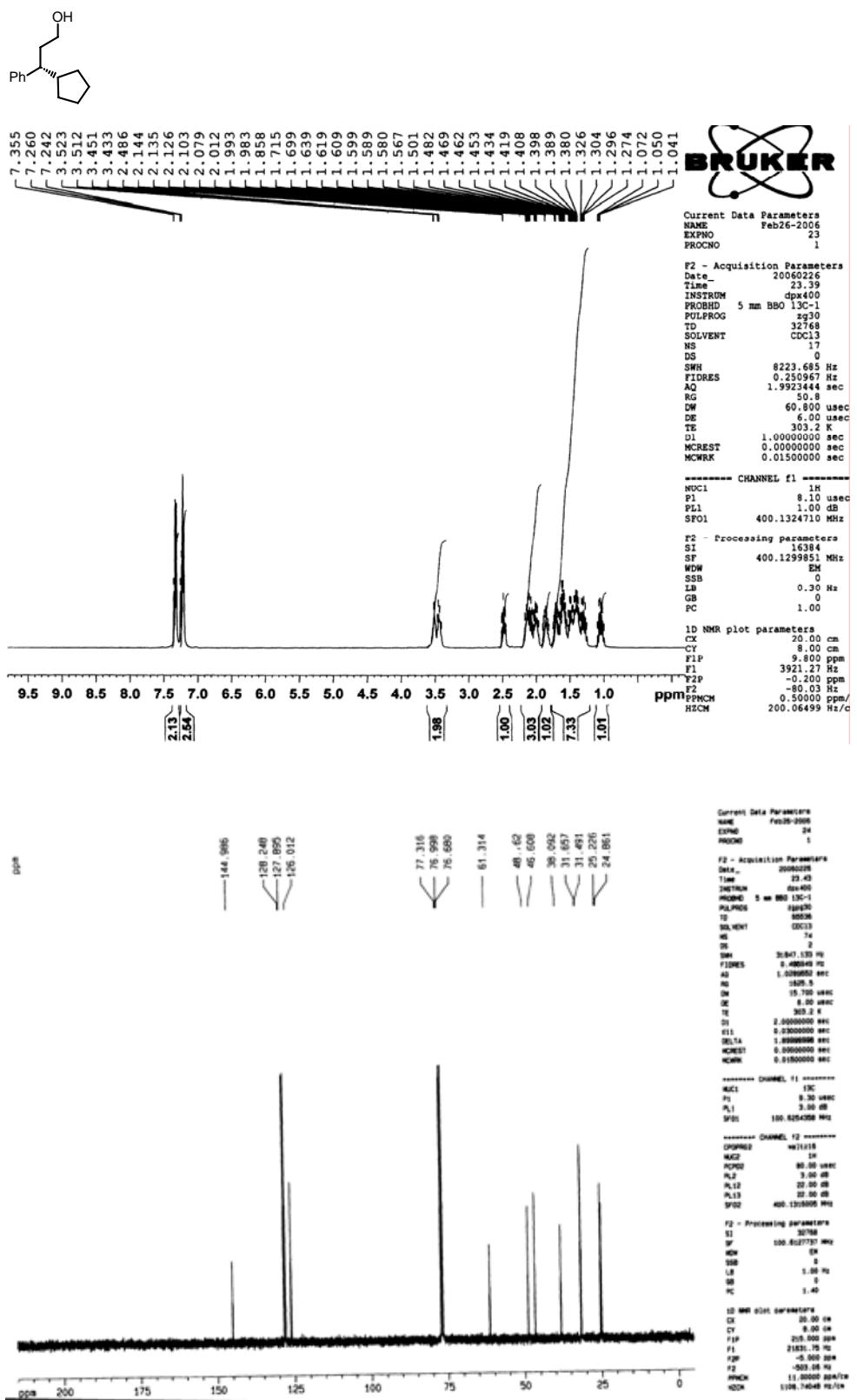


積算回数
ゼロフイリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント

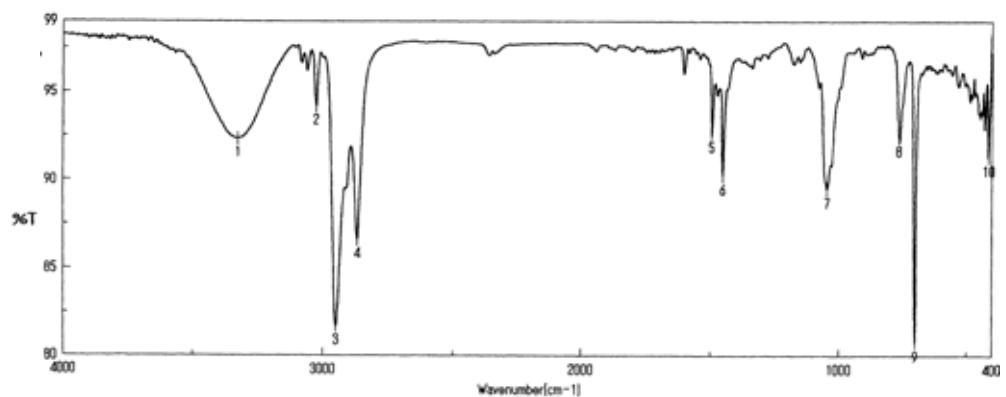

64
ON
1
106/06/05 18:04
Memory#14
コメント

分解
アボダイゼーション
スキャンスピード

4 cm⁻¹
Cosine
2 mm/sec

1: 3071.08, 93.7784 2: 2923.58, 90.0950 3: 2725.89, 92.8870 4: 1724.05, 67.5877
5: 1363.43, 87.7724 6: 1245.78, 93.8000 7: 1054.87, 92.7518 8: 897.70, 85.2231
9: 850.45, 91.6369 10: 698.11, 78.8559

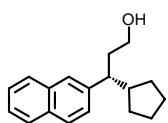

積算回数
 ゼロフィーリング
 ゲイン
 日時
 測定者
 ファイル名
 サンプル名
 コメント


64
 ON
 2
 106/06/04 17:51
 Memory#6
 コメント

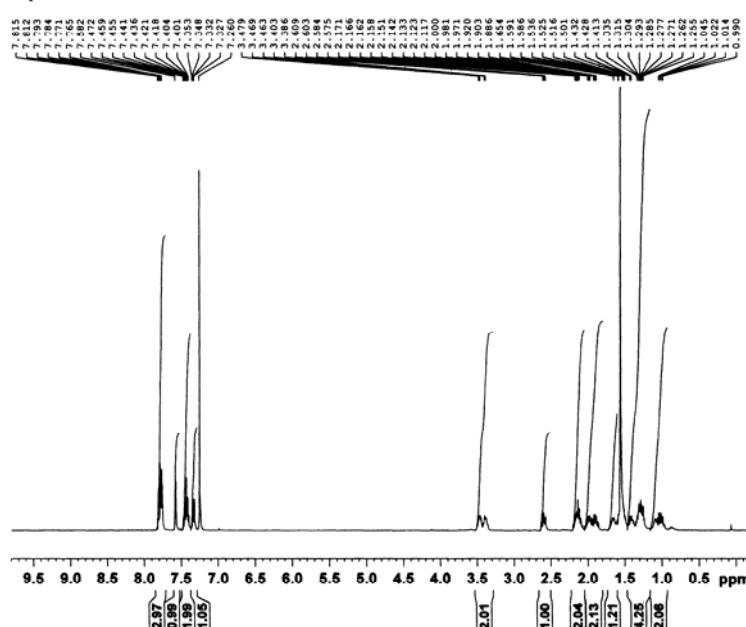
分解
 アボダイゼーション
 スキャンスピード

4 cm⁻¹
 Cosine
 2 mm/sec

1: 2935.13, 77.2679 2: 2837.74, 81.7965 3: 1723.09, 69.4235 4: 1599.66, 77.7602
 5: 1492.63, 70.4966 6: 1483.71, 74.5607 7: 1438.64, 78.4804 8: 1290.14, 80.1883
 9: 1244.63, 70.5501 10: 1109.63, 81.5259 11: 1027.87, 76.3142 12: 754.99, 75.9544


積算回数
 ゼロフイリング
 ゲイン
 日時
 測定者
 ファイル名
 サンプル名
 コメント

16
 ON
 1
 106/02/27 19:59
 060227.jws

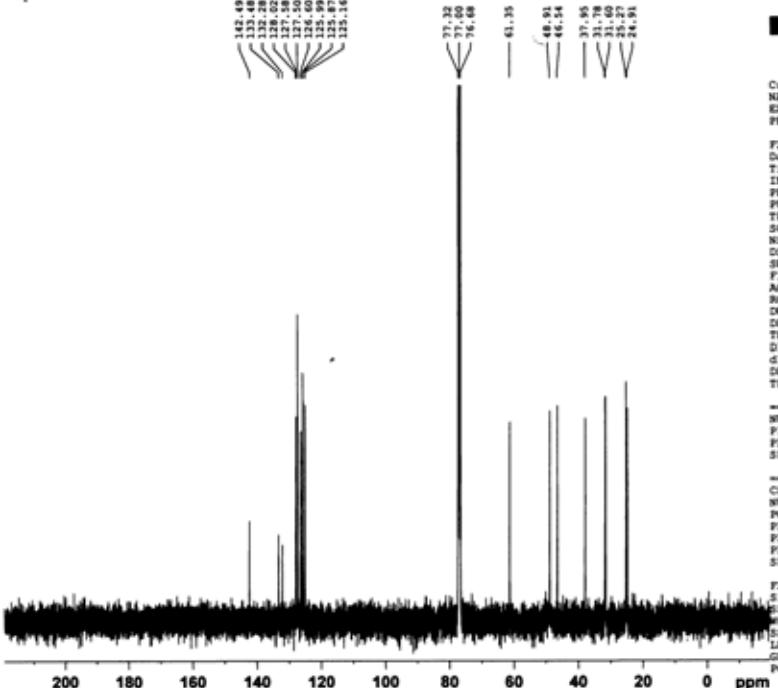

分解
 アボダイゼーション
 スキャンスピード

4 cm⁻¹
 Cosine
 2 mm/sec

1: 3324.68, 92.3137	2: 3025.76, 94.1611	3: 2949.59, 81.6935	4: 2867.63, 86.6293
5: 1494.56, 92.6645	6: 1451.17, 90.2589	7: 1046.19, 89.4997	8: 763.67, 92.4321
9: 701.00, 80.7626	10: 411.73, 91.3079		

naph

BRUKER


Current Data Parameters
NAME Jun03-2006-hayashi
EXPNO 20
PROCNO 1

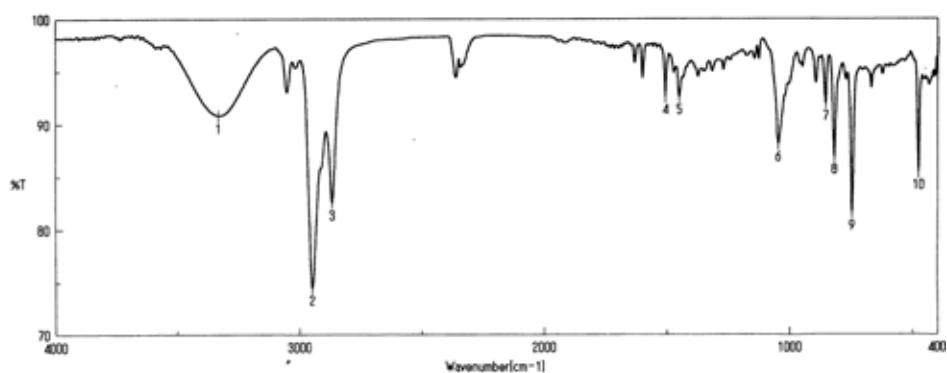
F2 - Acquisition Parameters
Date 20060603
Time 3.13
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 16
DS 2
SWH 8223.685 Hz
FIDRES 0.125483 Hz
AQ 3.98400 sec
RG 256
DW 60.000 usec
DE 6.00 usec
TE 297.3 K
D1 1.0000000 sec
TDO 1

----- CHANNEL f1 -----
NUC1 1H
F1 12.00 usec
PL1 -4.00 dB
SF01 400.1824713 MHz

F2 - Processing Parameters
SI 32768
SF 400.1800078 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

naph

BRUKER

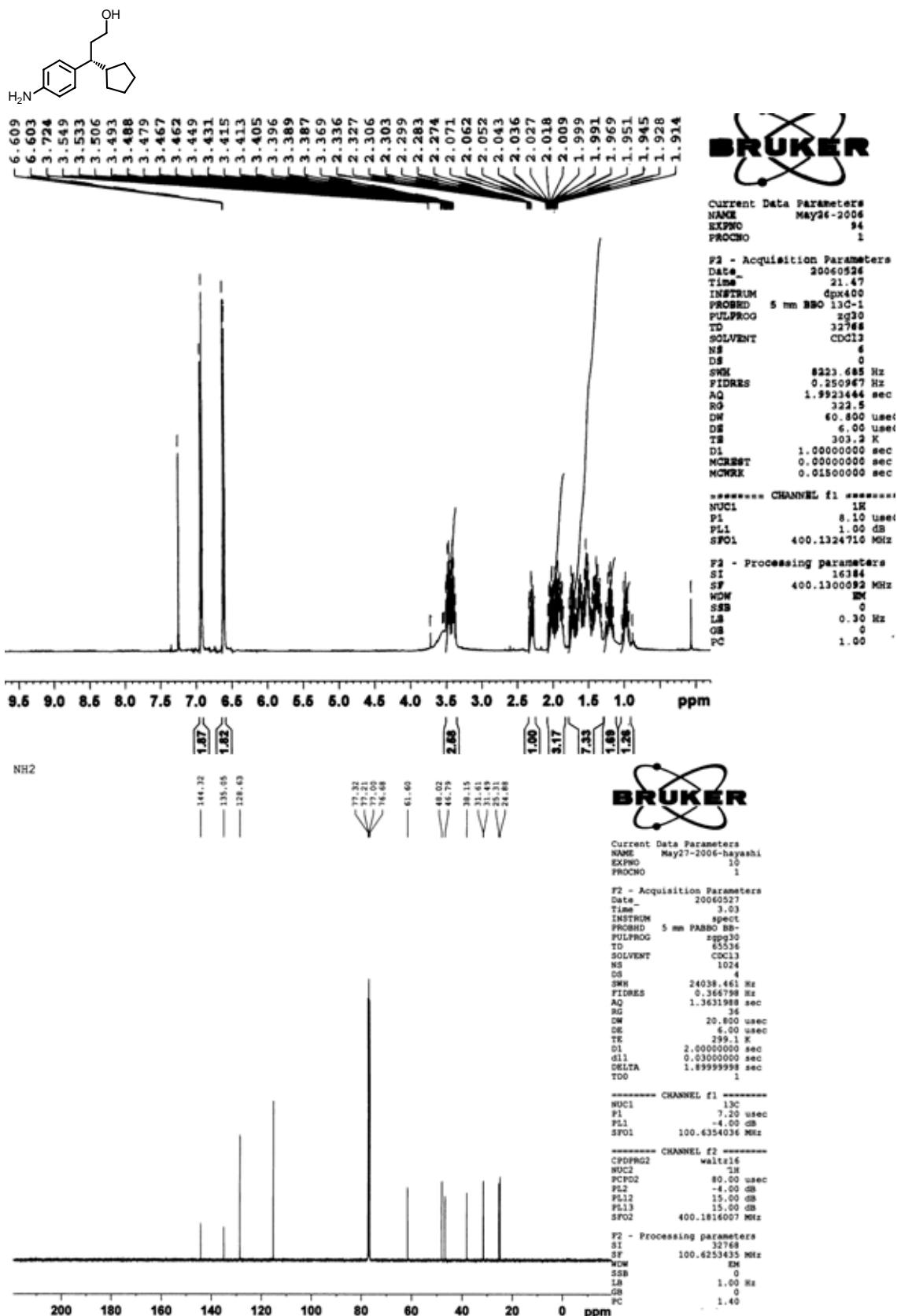

Current Data Parameters
NAME Jun03-2006-hayashi
EXPNO 10
PROCNO 1

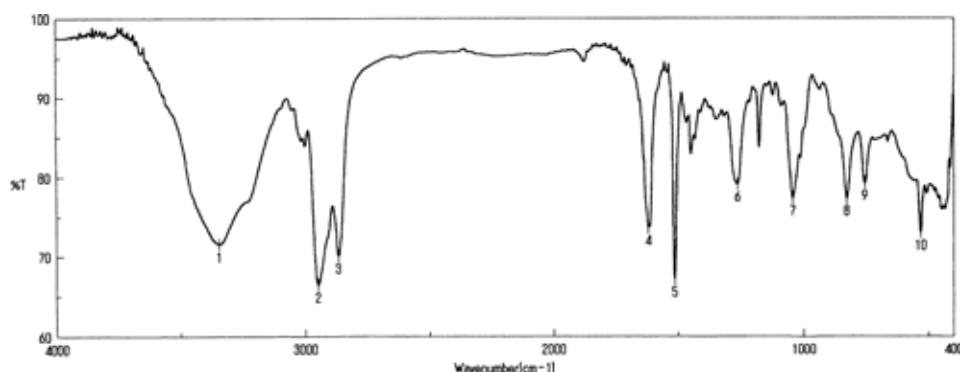
F2 - Acquisition Parameters
Date 20060609
Time 3.07
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 1624
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 32
DW 20,800 usec
DE 6.00 usec
TE 298.8 K
D1 2.0000000 sec
SF1 0.0000000 sec
DELTA 1.0999998 sec
TDO 1

----- CHANNEL f1 -----
NUC1 13C
F1 7.20 usec
PL1 -4.00 dB
SF01 100.6354036 MHz

----- CHANNEL f2 -----
CPDPG2 waltz16
NUC2 1H
PL2 80.00 usec
PL1 15.00 dB
PL12 15.00 dB
PL13 15.00 dB
SF02 400.1816007 MHz

F2 - Processing parameters
SI 32768
SF 100.6253442 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

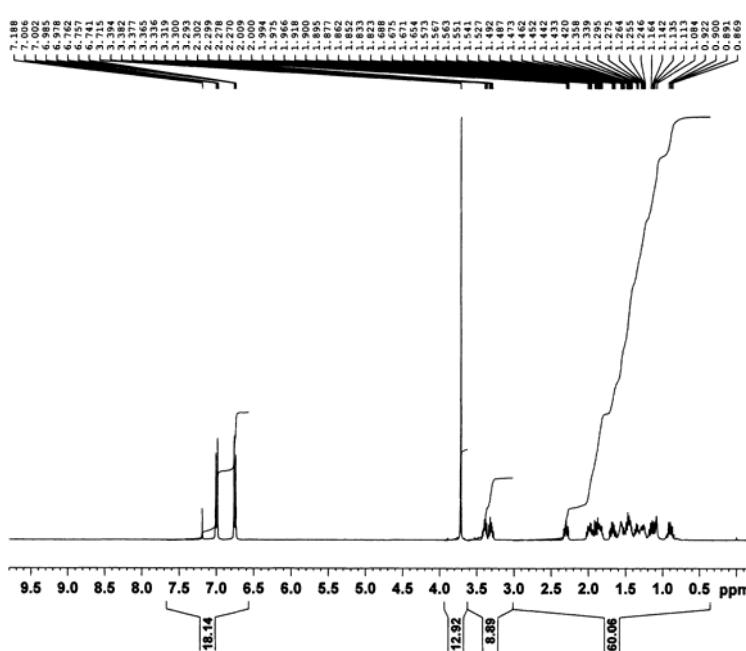
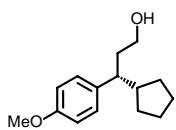

積算回数
プロファイル
サンプル
日時
測定者
ファイル名
サンプル名
コメント


64
ON
1
106/06/08 18:50
Memory#7
コメント

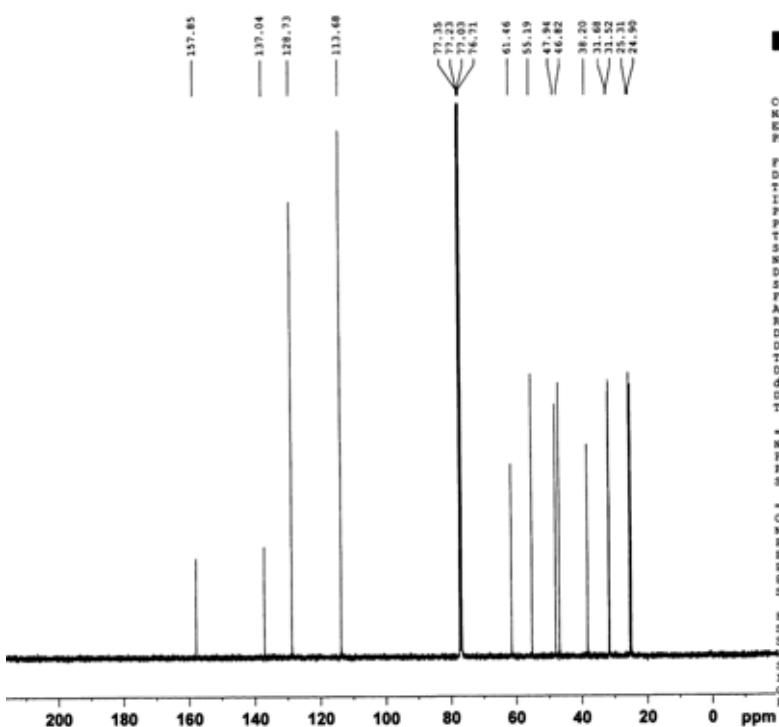
分解
アボダイゼーション
スキャンスピード

4 cm⁻¹
Cosine
2 mm/sec

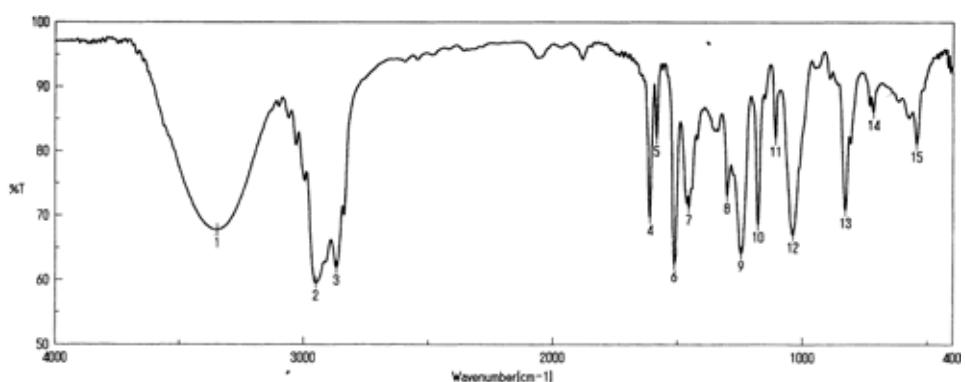
1: 3301.43, 90.8226 2: 2948.63, 74.4865 3: 2866.67, 82.6063 4: 1507.10, 82.8255
5: 1450.21, 82.6310 6: 1048.18, 88.1499 7: 833.35, 82.0060 8: 817.67, 86.9653
9: 748.32, 81.6560 10: 477.30, 85.4647

積算回数: 64
 ゼロフィーリング: ON
 ゲイン: 1
 日時: 106/06/06 21:33
 測定者:
 ファイル名: Memory#3
 サンプル名:
 コメント:

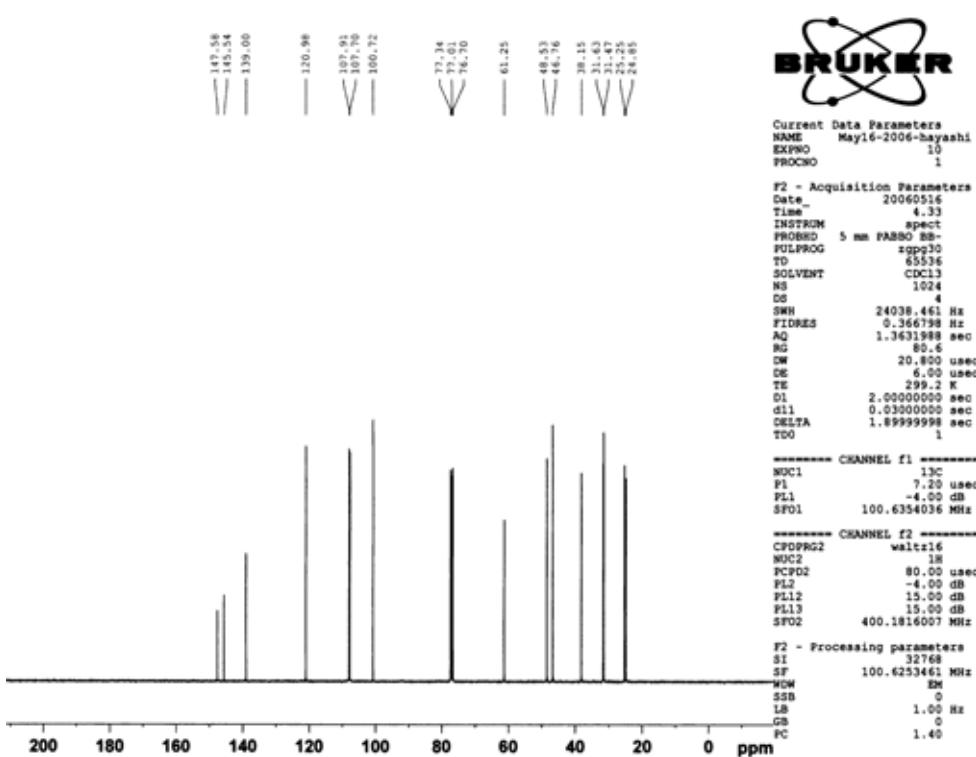
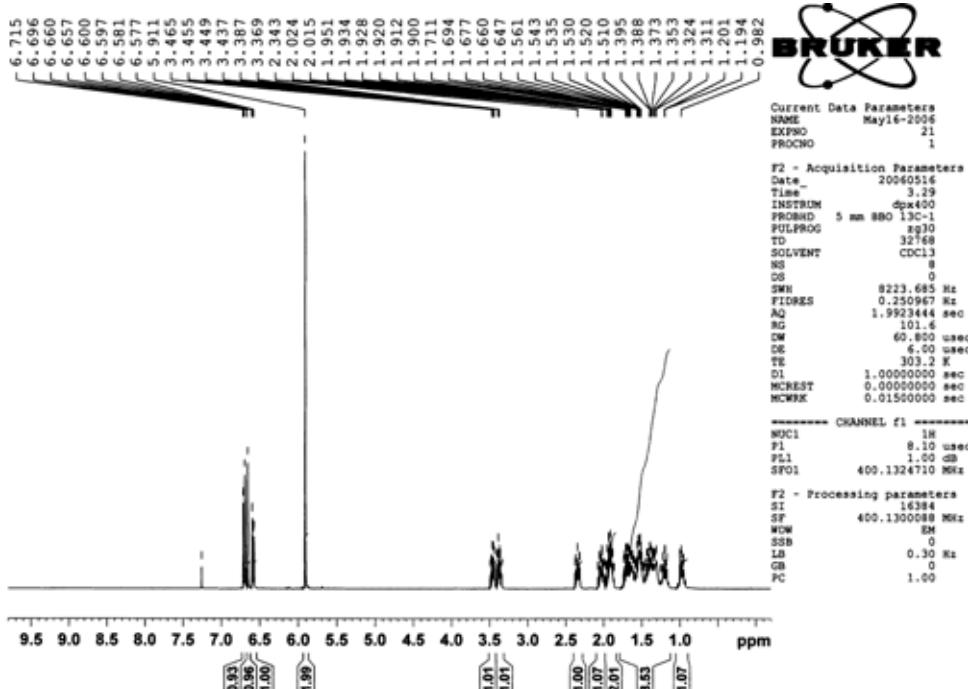
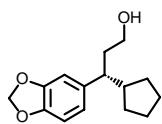

分解:
 アボダイゼーション
 スキヤンスピード: 2 mm/sec

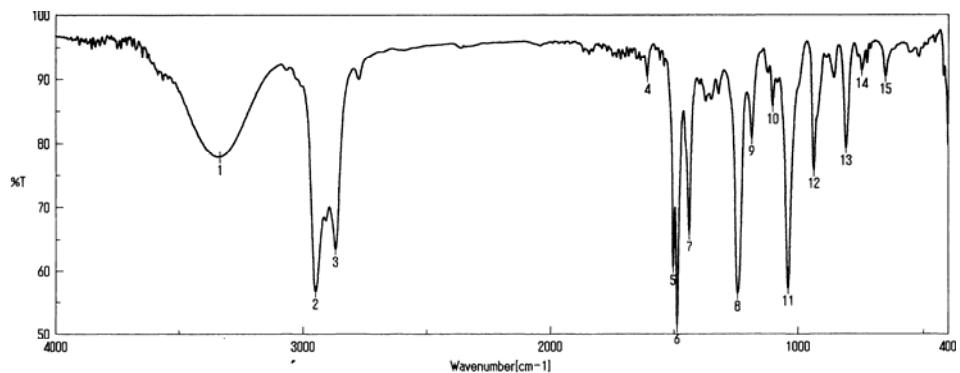
1: 3346, 85, 71, 5465 2: 2948, 83, 66, 4421 3: 2866, 67, 70, 0567 4: 1620, 88, 73, 6116
 5: 1514, 81, 67, 1321 6: 1286, 07, 79, 1264 7: 1045, 23, 77, 3456 8: 828, 28, 77, 3457
 9: 756, 92, 79, 2563 10: 533, 22, 72, 0660


BRUKER

Current Data Parameters
 NAME Apr22-2006-hayashi
 EXPNO 20
 PROCNO 1
 F1 - Acquisition Parameters
 Data 20060422
 Time 4.28
 INSTRUM spect
 PROBHD 5 mm PABBO BB-
 PULPROG zgpg30
 TD 65336
 SOLVENT CDCl3
 NS 16
 DS 1
 SWH 8223.685 Hz
 FIDRES 0.125483 Hz
 AQ 3.9846387 sec
 RG 101
 TM 6.00 usec
 DE 6.00 usec
 TE 298.1 K
 D1 1.0000000 sec
 TDO 1
 F2 - Processing parameters
 Data 20060422
 SF 400.1800362 MHz
 WDW EM
 SSB 0
 LB 0.0 Hz
 GB 0
 PC 1.00

BRUKER

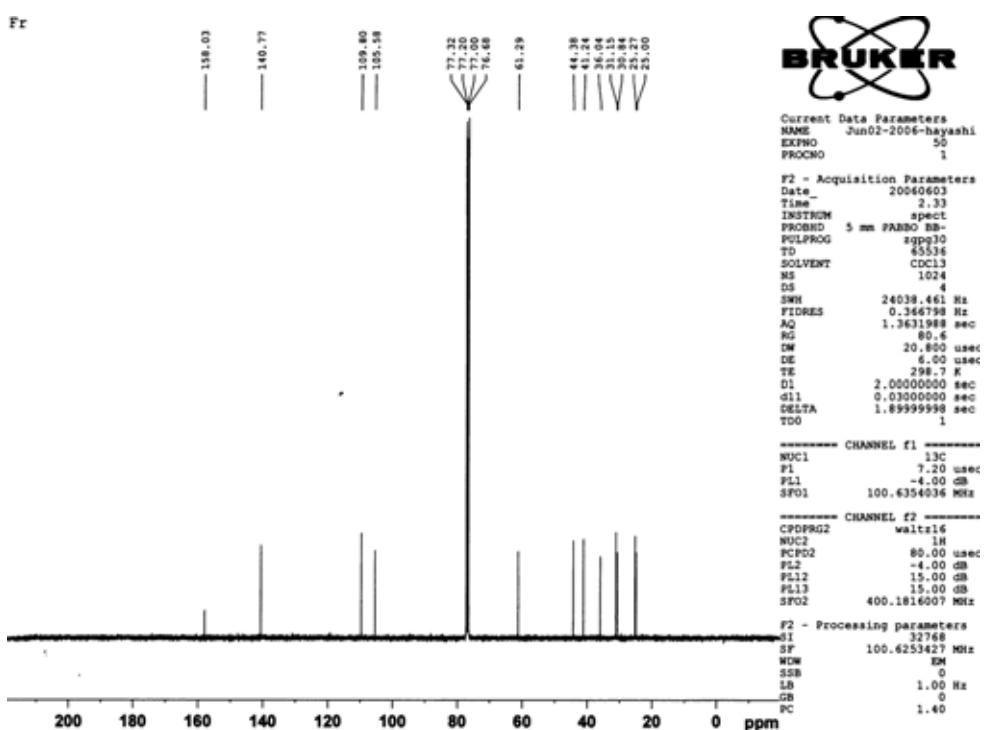
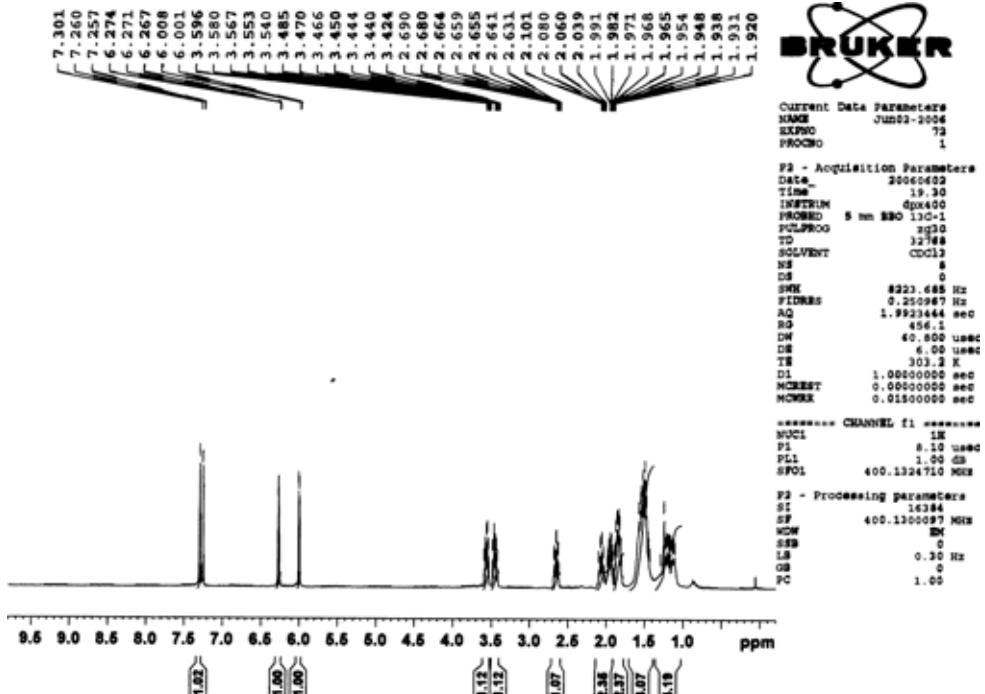
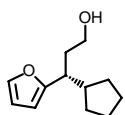



Current Data Parameters
 NAME Apr22-2006-hayashi
 EXPNO 30
 PROCNO 1
 F1 - Acquisition Parameters
 Data 20060422
 Time 4.25
 INSTRUM spect
 PROBHD 5 mm PABBO BB-
 PULPROG zgpg30
 TD 4096
 SOLVENT CDCl3
 NS 1024
 DS 4
 SWH 24038.461 Hz
 FIDRES 0.366798 Hz
 AQ 1.3631988 sec
 RG 801
 TM 20.00 usec
 DE 6.00 usec
 TE 299.0 K
 D1 2.0000000 sec
 d11 0.03000000 sec
 DELTA 1.6999998 sec
 TDO 1
 F2 - Processing parameters
 CDP99G2 waltz16
 N1C 1H
 P1 7.20 usec
 P1L1 -4.00 dB
 P1L2 15.00 dB
 P1L3 15.00 dB
 SFO1 100.4354036 MHz
 F2 - Processing parameters
 SF 32768
 SF 100.6233410 MHz
 SW EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40

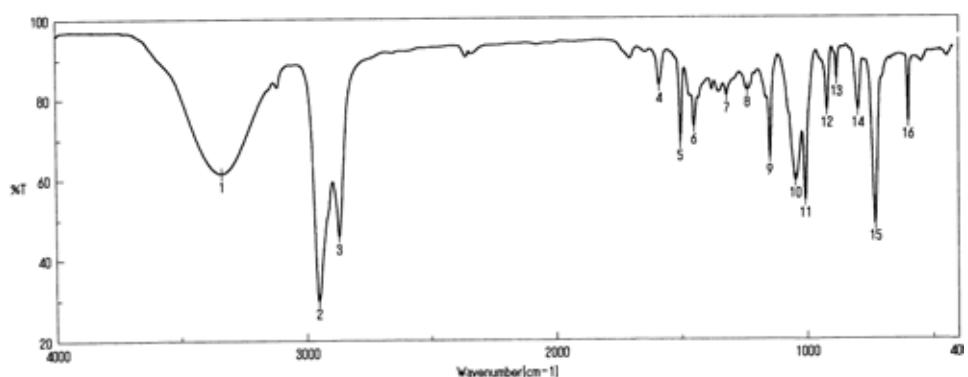


検査回数: 64
 セロフィリング: ON
 ゲイン: 1
 日時: 106/06/06 11:21
 調定者:
 ファイル名: p-methoxy-alcohol.JNG
 サンプル名:
 コメント:

分解: 4 cm⁻¹
 アボダイゼーション: Cosine
 スキャンスピード: 2 mm/sec

1: 3348.85, 87.7183 2: 2949.59, 59.5339 3: 2866.67, 61.9228 4: 1610.27, 69.7818
 5: 1583.27, 82.0163 6: 1512.88, 62.5209 7: 1455.03, 71.3403 8: 1301.72, 73.1381
 9: 1245.79, 64.1867 10: 1178.29, 68.7188 11: 1108.87, 81.9926 12: 1038.48, 67.0484
 13: 828.28, 70.9132 14: 717.39, 86.0763 15: 543.83, 81.1705



構算回数 64
 ゼロフーリング ON
 ゲイン 1
 日時 106/06/06 11:28
 測定者
 ファイル名 acetal-methylol.JWS
 サンプル名
 コメント

分解 4 cm⁻¹
 アボダイゼーション Cosine
 スキヤンスピード 2 mm/sec

1: 3336.25, 77.8507 2: 2949.59, 56.6799 3: 2868.59, 63.4192 4: 1606.34, 90.5055
 5: 1504.20, 60.5530 6: 1487.81, 51.2385 7: 1439.80, 65.8965 8: 1243.86, 56.3838
 9: 1187.94, 80.8198 10: 1104.05, 85.8007 11: 1040.41, 57.2000 12: 938.20, 75.8035
 13: 809.98, 79.3509 14: 748.25, 91.3845 15: 653.75, 90.5115

積算回数

64

ゼロフーリング

ON

ゲイン

2

日時

106/06/08 18:45

測定者

Memory#5

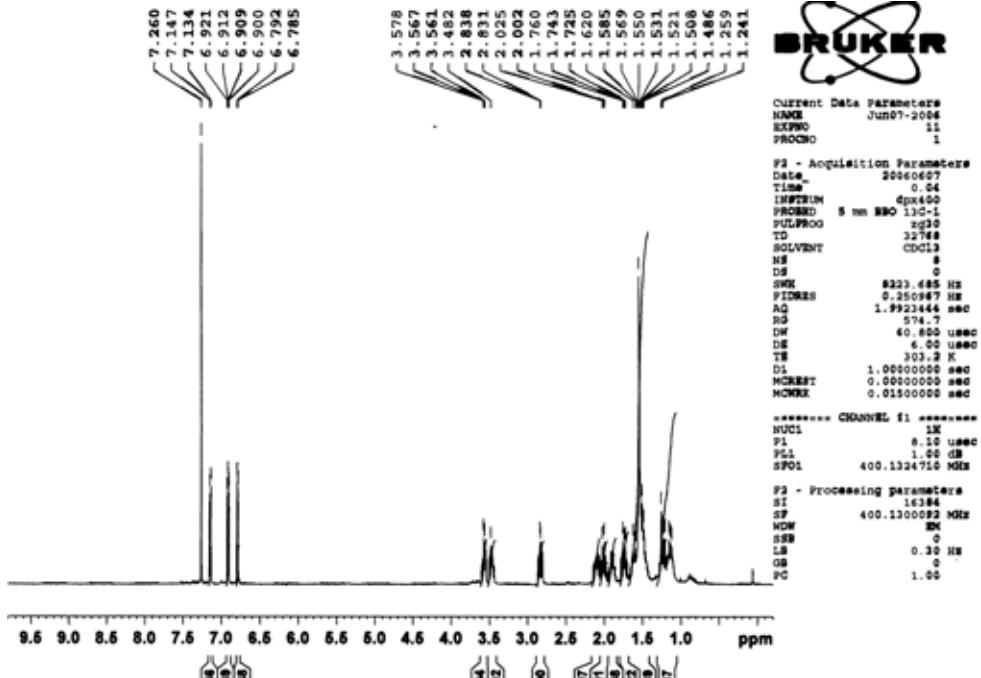
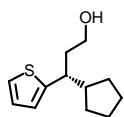
ファイル名

サンプル名

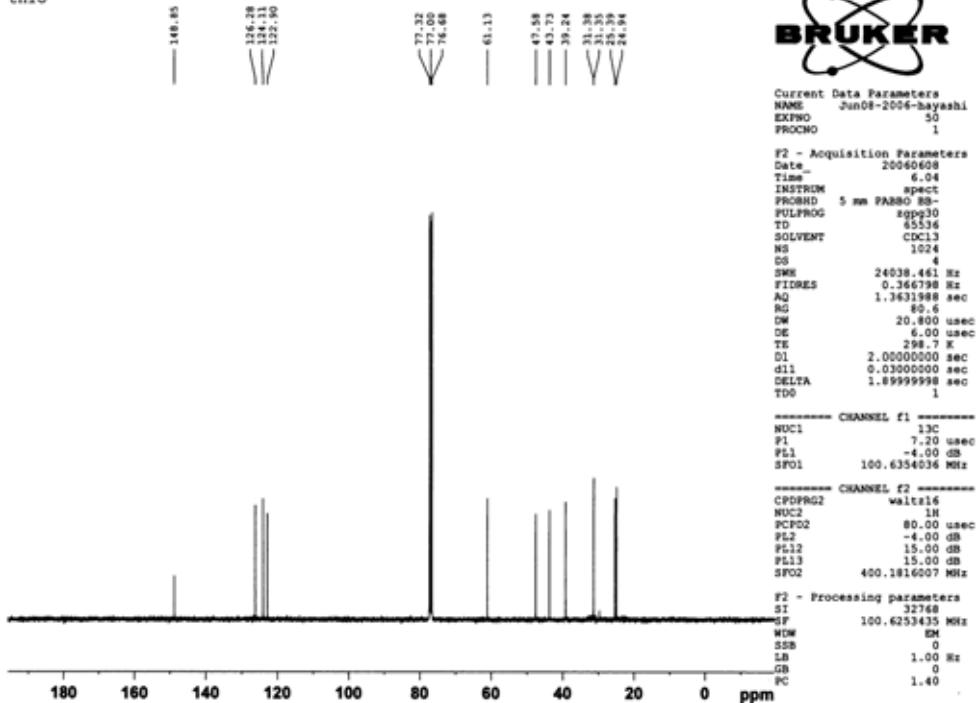
コメント

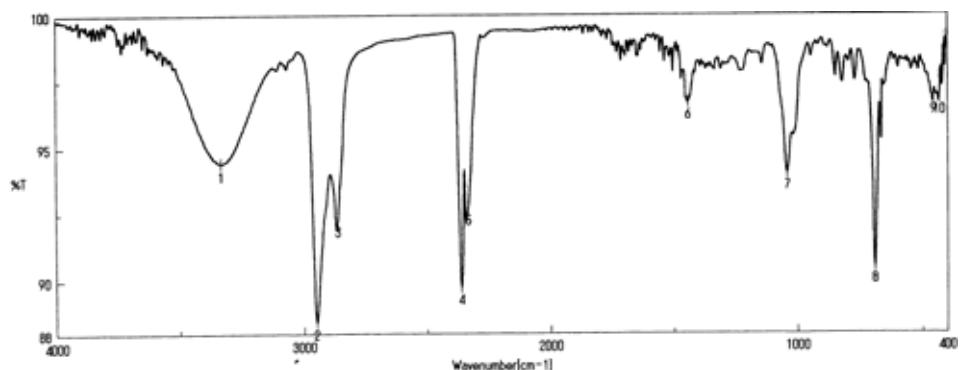
分解

4 cm⁻¹



アボダイゼーション

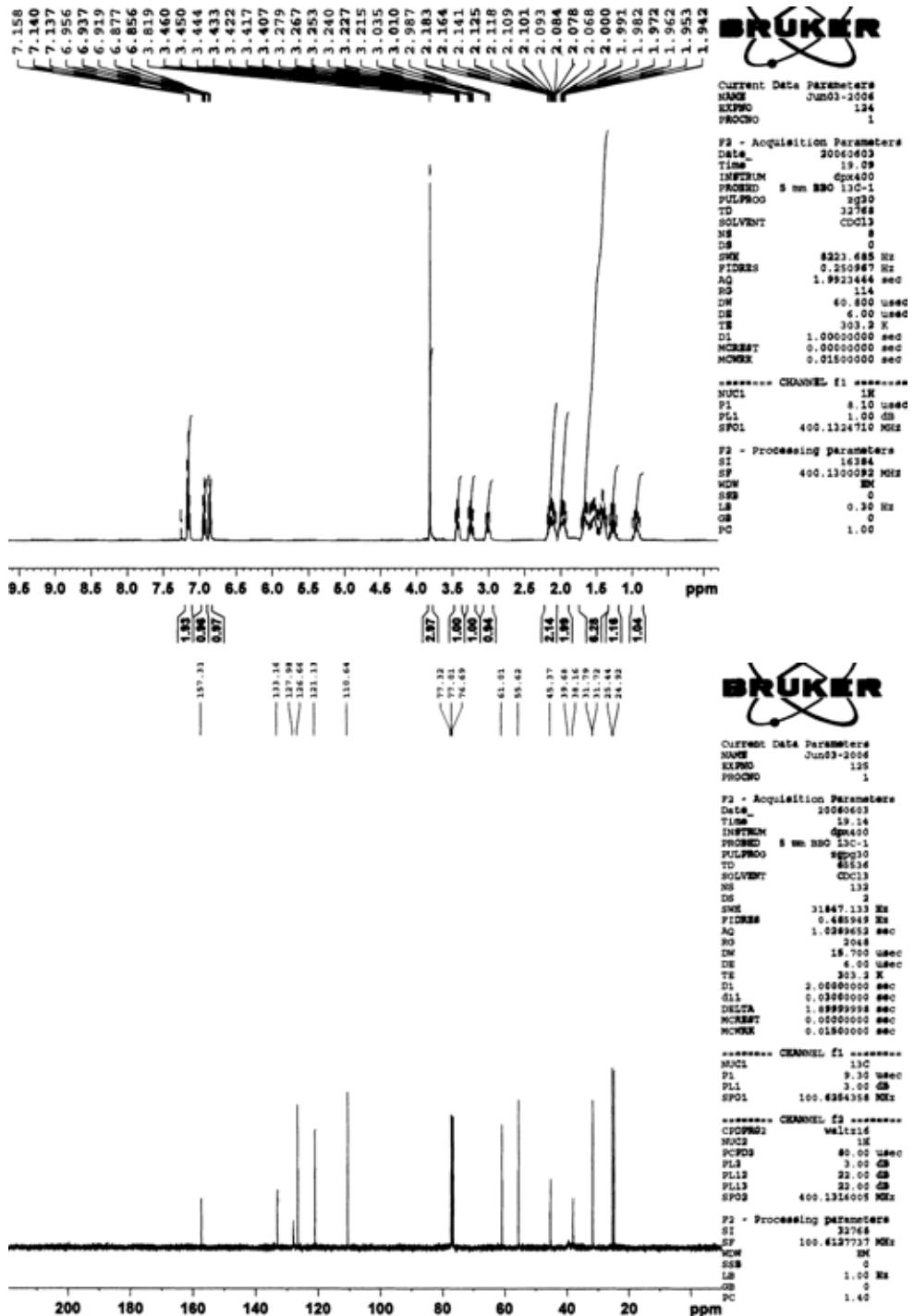
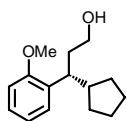
Cosine

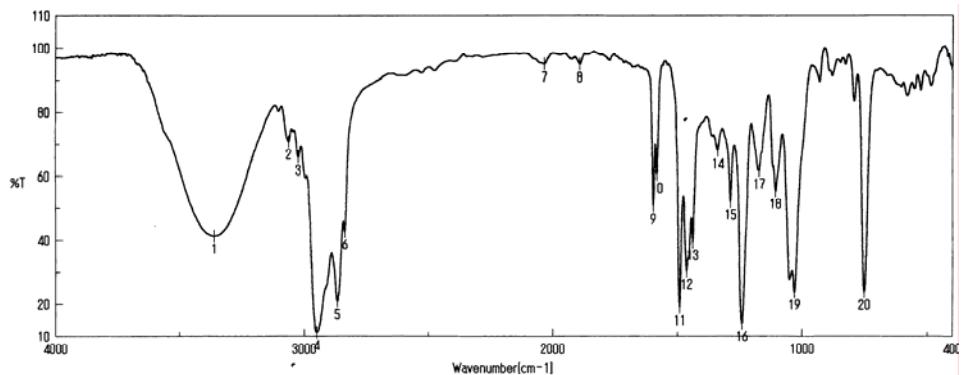

スキャンスピード


2 mm/sec

1: 3336.25, 61.4962	2: 2950.55, 29.6914	3: 2868.59, 45.7573	4: 1591.95, 83.1248
5: 1506.13, 68.7658	6: 1451.17, 72.8584	7: 1321.98, 80.5411	8: 1239.04, 81.9923
9: 1148.40, 65.1142	10: 1046.19, 58.3493	11: 1006.66, 54.4198	12: 921.81, 76.8394
13: 884.20, 84.6250	14: 798.39, 76.8660	15: 728.96, 48.5778	16: 599.75, 74.0091

this

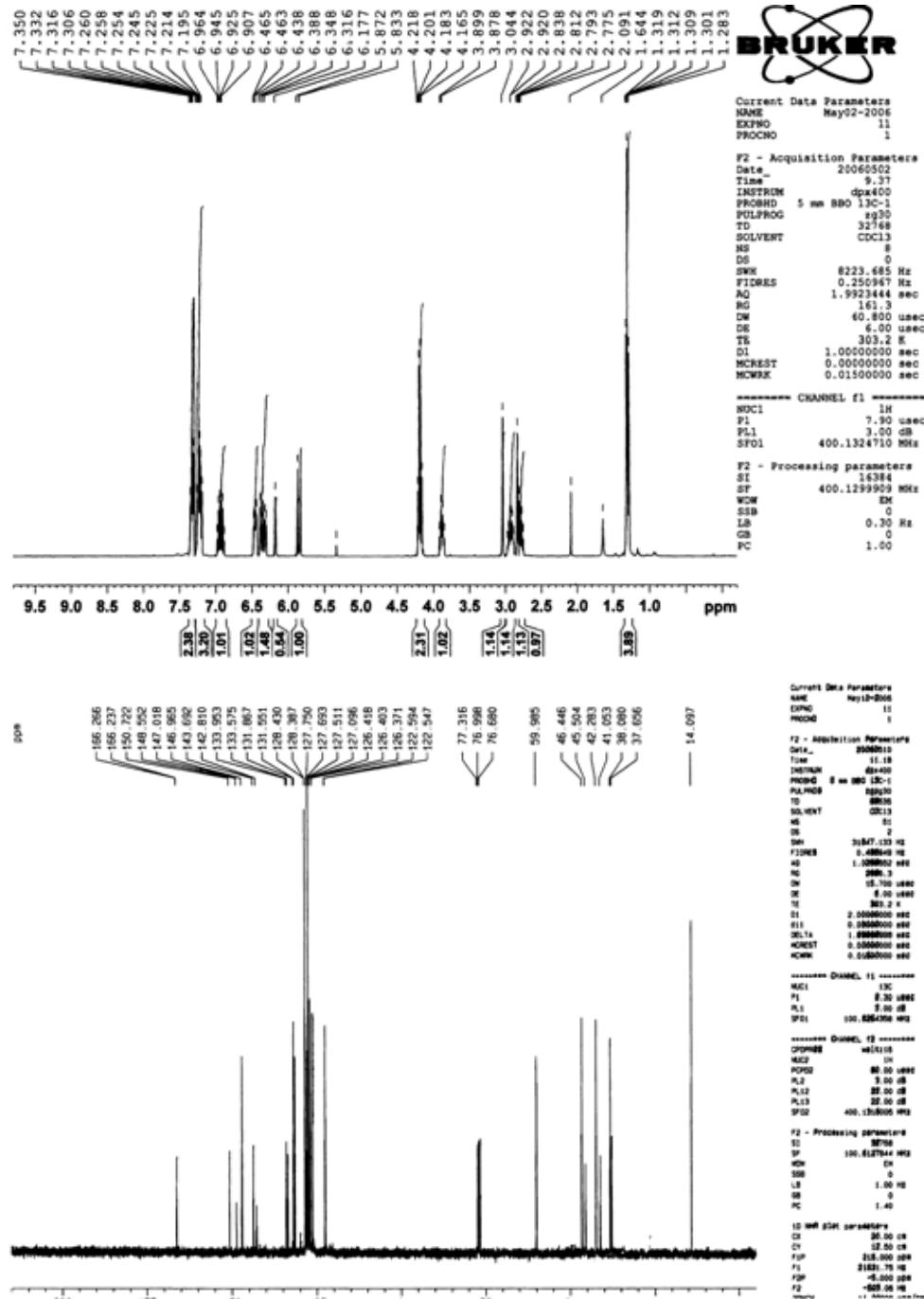
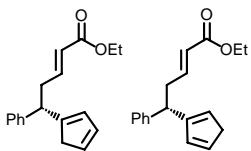



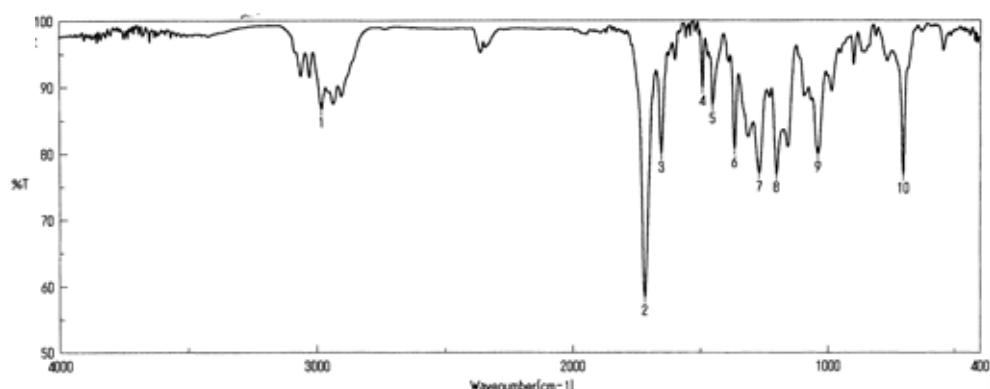


積算回数: 64
 ゼロフィーリング: ON
 ゲイン: 1
 日時: 106/06/06 18:38
 測定者:
 ファイル名: Memory#3
 サンプル名:
 コメント:

分解: アボダイゼーション
 4 cm⁻¹
 Cosine
 スキヤンスピード: 2 mm/sec

1: 3333.35, 94.4149 2: 2949.59, 98.4557 3: 2861.84, 92.3280 4: 2360.44, 89.2489
 5: 2332.48, 92.7525 6: 1445.39, 96.7155 7: 1044.26, 94.0439 8: 691.38, 90.5190
 9: 456.08, 98.8768 10: 432.94, 98.8578

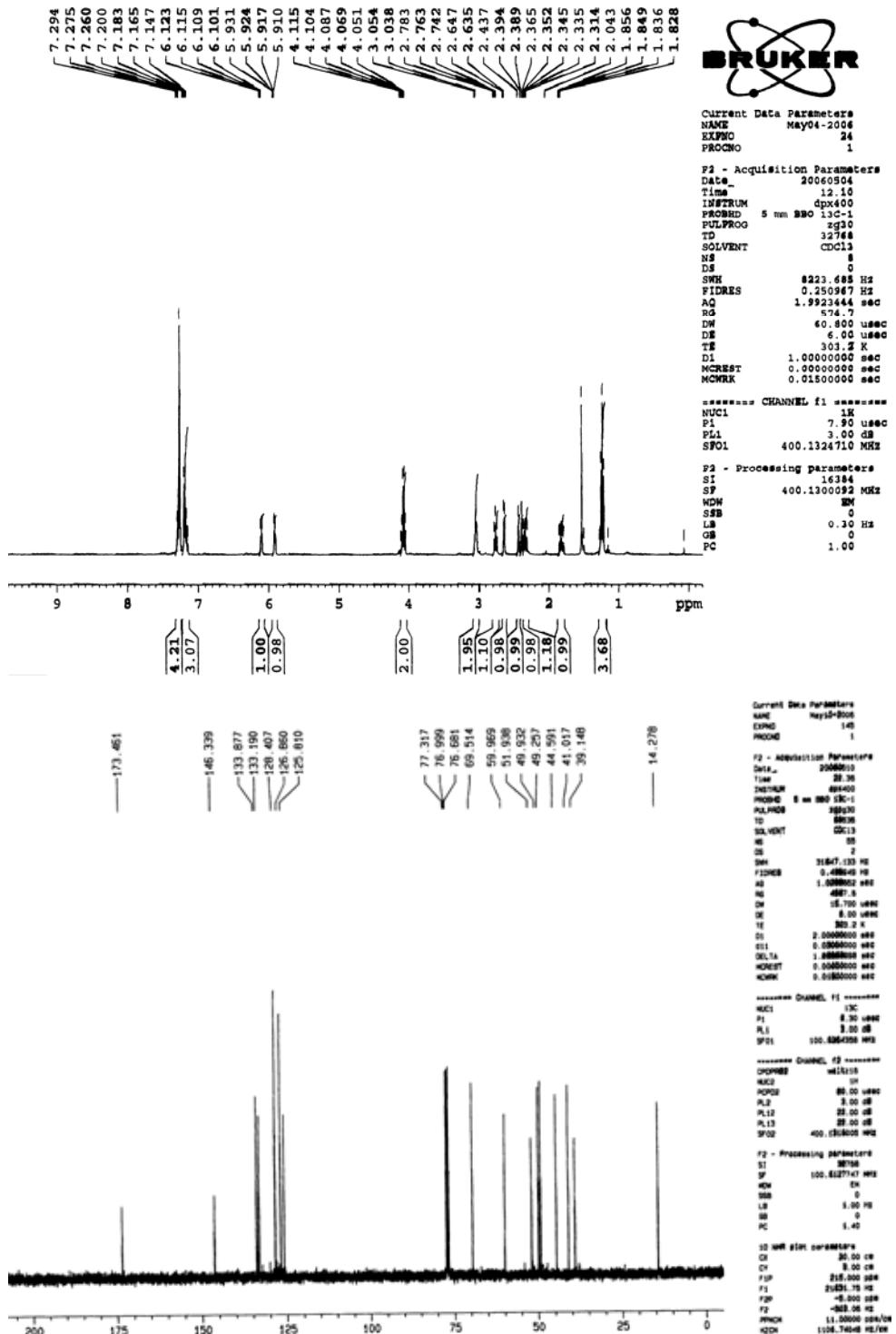
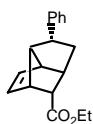


積算回数
ゼロフイリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント

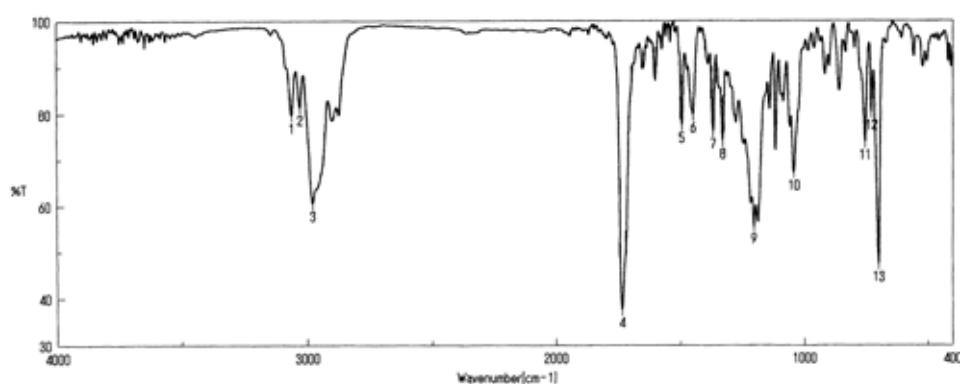

64
ON
1
106/06/03 21:22
Memory#3
コメント

分解
アボダイゼーション
スキヤンスピード

4 cm⁻¹
Cosine
2 mm/sec

1: 3359.39, 41.2141	2: 3063.37, 70.7495	3: 3024.80, 65.8531	4: 2949.59, 11.1838
5: 2866.67, 20.7983	6: 2835.81, 42.6232	7: 2635.50, 95.1167	8: 1883.75, 95.0614
9: 1598.70, 50.6321	10: 1584.24, 60.4474	11: 1491.67, 18.9517	12: 1463.71, 30.3044
13: 1438.64, 39.2689	14: 1339.32, 67.9604	15: 1288.22, 52.0222	16: 1240.97, 14.0066
17: 1172.51, 61.7338	18: 1106.84, 55.4850	19: 1030.77, 23.7958	20: 753.07, 23.8334



積算回数 64
ゼロフィーリング ON
ゲイン 1
日時 106/05/11 17:18
測定者 Memory#3
ファイル名 Memory#3
サンプル名 コメント
コメント

分解 4 cm⁻¹
アボダイゼーション
スキャンスピード Cosine
2 mm/sec

1: 2980.45, 86.7556 2: 1717.30, 58.4681 3: 1653.66, 80.0203 4: 1493.60, 89.9690
5: 1453.10, 87.3342 6: 1367.28, 80.7208 7: 1269.90, 77.1021 8: 1202.40, 76.9490
9: 1039.44, 80.0829 10: 761.96, 76.8674

積算回数

64

ゼロフィーリング

ON

ゲイン

1

日時

106/05/11 17:33

測定者

Memory#7

ファイル名

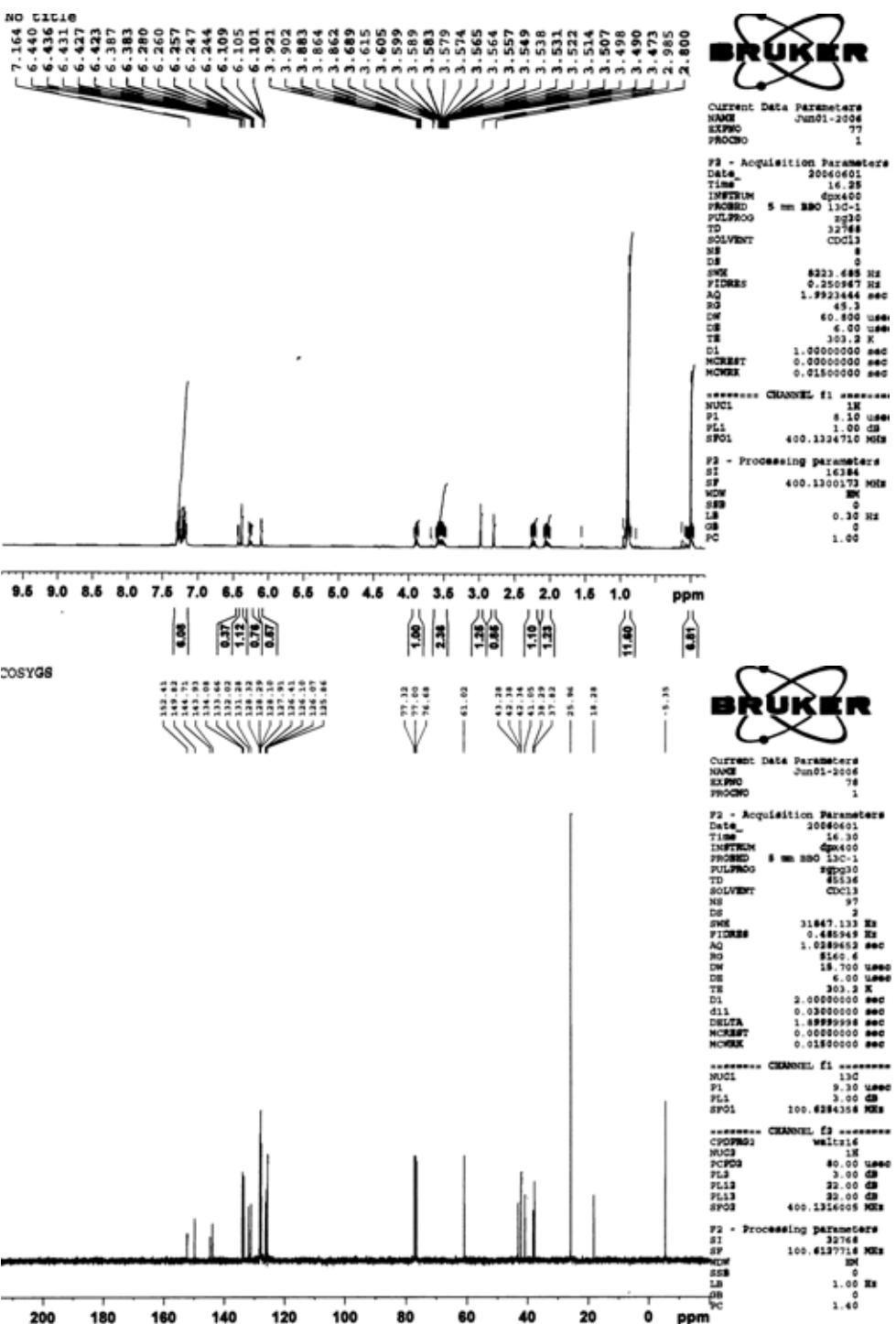
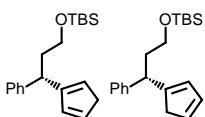
コメント

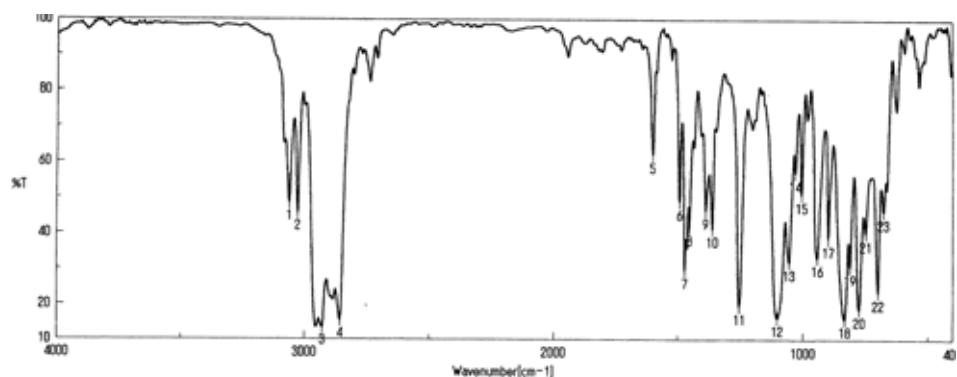
サンプル名

コメント

分解

4 cm⁻¹

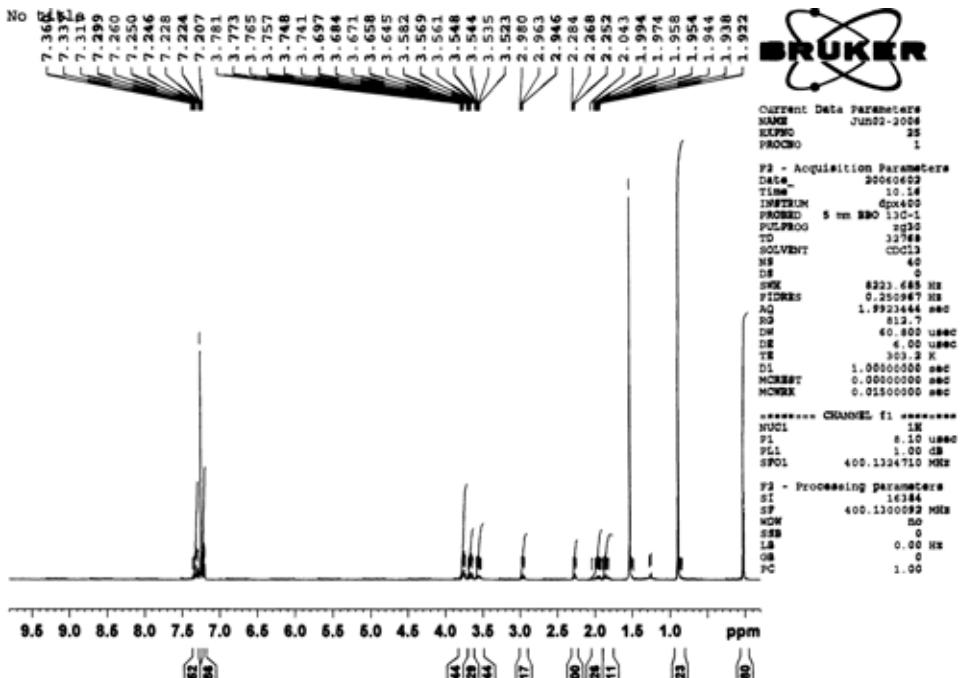
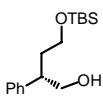


アボダイゼーション


Cosine

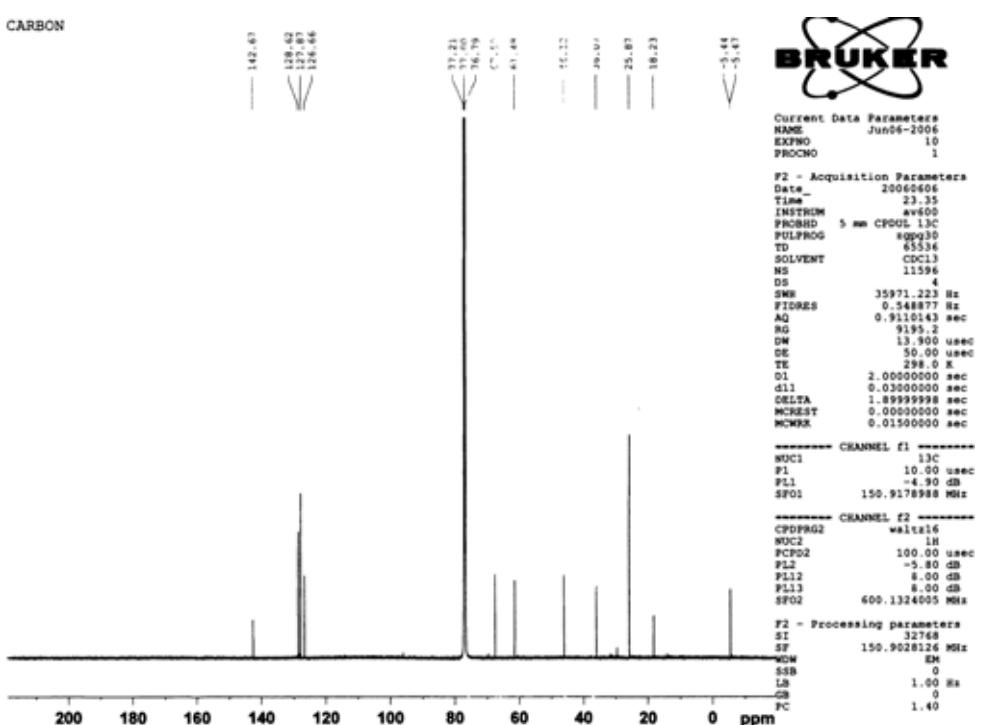
スキャンスピード

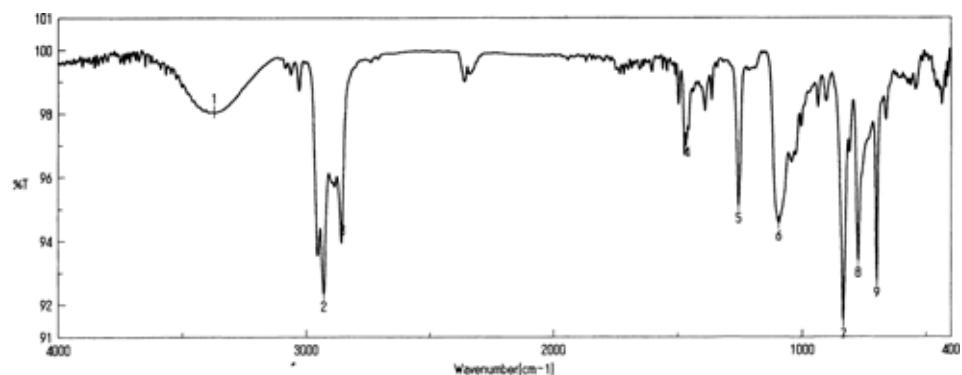
2 mm/sec

1: 3061.44, 2: 3026.73, 3: 2977.55, 4: 2933.69, 5: 1494.56, 6: 1449.24, 7: 1368.25, 8: 1329.68, 9: 1205.29, 10: 1043.30, 11: 754.99, 12: 728.00, 13: 700.03, 14: 47.4988



積算回数
ゼロフィリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント

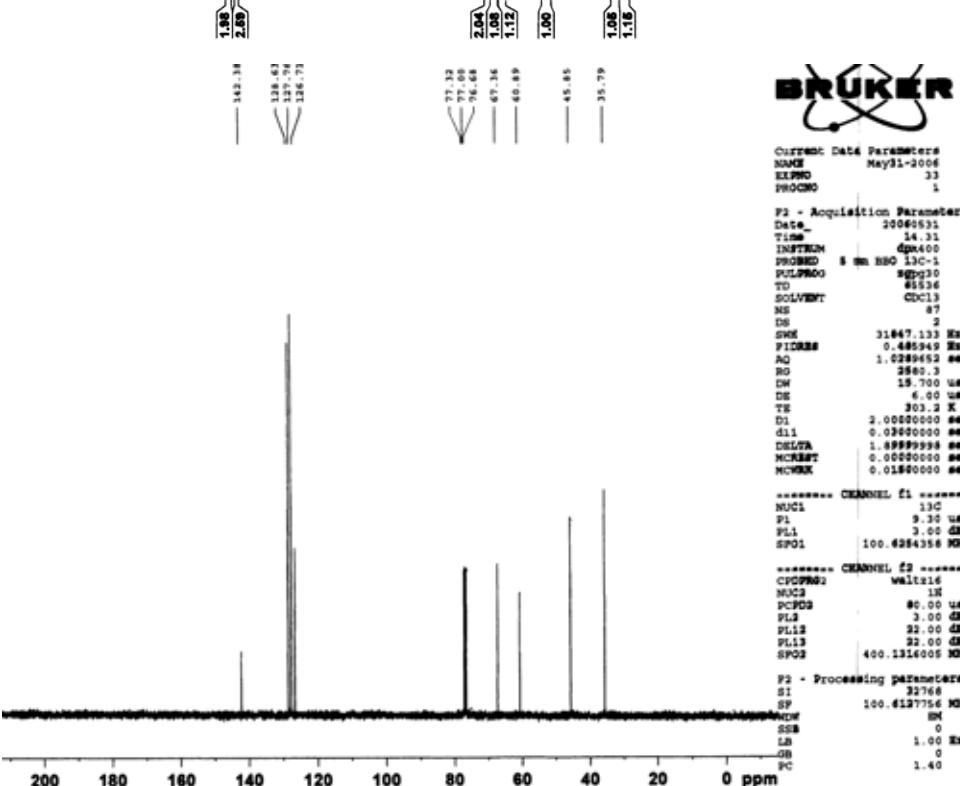
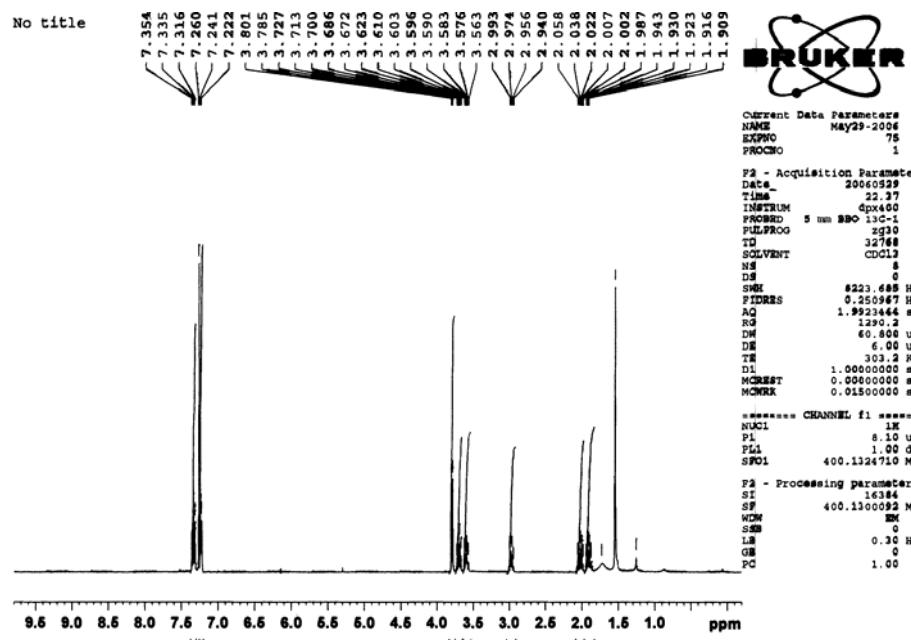
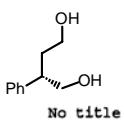
64
ON
2
106/06/09 13:01
Memory#3
コメント

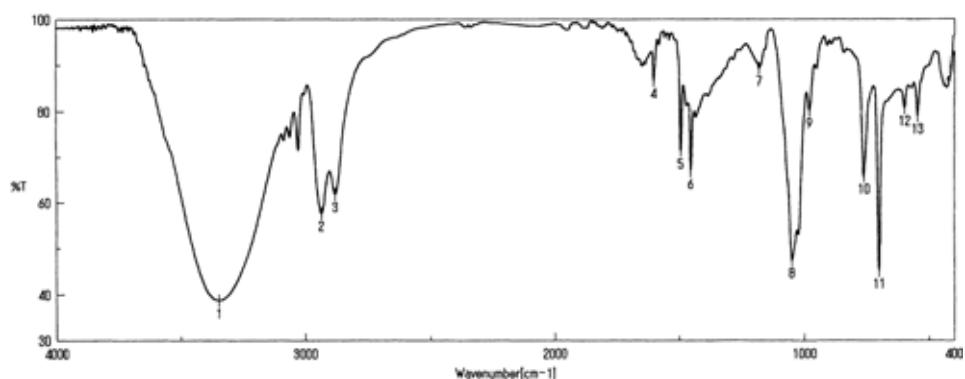

分光
アボダイゼーション
スキヤンスピード


4 cm⁻¹
Cosine
2 mm/sec

1: 3061.44, 48.4905	2: 3007.69, 45.7574	3: 2928.28, 13.4594	4: 2857.02, 15.5034
5: 1600.63, 61.9727	6: 1492.63, 48.8873	7: 1471.42, 29.5783	8: 1453.10, 41.6640
9: 1387.53, 46.3923	10: 1361.50, 41.2039	11: 1254.47, 19.5002	12: 1102.12, 16.2121
13: 1054.87, 31.9316	14: 1030.77, 57.0724	15: 1005.70, 50.9246	16: 943.02, 33.2457
17: 898.67, 38.5098	18: 834.06, 15.9336	19: 811.88, 30.6844	20: 775.24, 18.6666

638001



測定回数: 64
 ゼロフィーリング: ON
 ゲイン: 2
 日時: 106/06/07 10:01
 測定者:
 ファイル名: Memory#3
 サンプル名:
 コメント:

分解: 4 cm⁻¹
 アボダイゼーション: Cosine
 スキャンスピード: 2 mm/sec

1: 3372.89, 98.0510 2: 2928.38, 92.3399 3: 2852.20, 94.7578 4: 1483.71, 97.1895
 5: 1255.43, 95.1286 6: 1095.37, 94.5620 7: 835.03, 91.4998 8: 775.24, 93.4104
 9: 700.03, 92.7750

積算回数
 ゼロフィリング
 ゲイン
 日時
 測定者
 ファイル名
 サンプル名
 コメント

64
 ON
 1
 106/05/30 15:25
 Memory#3
 コメント

分解
 アボダイゼーション
 スキヤンスピード

4 cm⁻¹
 Cosine
 2 mm/sec

1: 3348.78, 38.6738	2: 2935.13, 57.6422	3: 2764.02, 81.8405	4: 1602.56, 86.7387
5: 1494.56, 71.3257	6: 1454.06, 66.9060	7: 1182.15, 89.4288	8: 1050.05, 47.4565
9: 980.63, 80.2070	10: 761.74, 65.7838	11: 701.98, 45.1391	12: 599.75, 80.7290
13: 547.66, 78.9904			