

Supporting Information © Wiley-VCH 2006

69451 Weinheim, Germany

Cationic Polyhydrido Rare Earth Metal Complexes. Synthesis, Structure, and Catalysis for *cis*-1,4-Selective Polymerization of 1,3-Cyclohexadiene

Xiaofang Li, Jens Baldamus, Masayoshi Nishiura, Olivier Tardif, Zhaomin Hou*

Organometallic Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198 Japan and PRESTO, Japan Science and Technology Agency (JST), Japan

Experimental Section:

General Methods. All manipulations of air and moisture-sensitive compounds were performed under a dry nitrogen atmosphere by use of standard Schlenk techniques or an Mbraun glovebox. Argon (Takachiho Chemical Industrial Co., Ltd.) was purified by being passed through a Dryclean column (4 A molecular sieves, Nikka Seiko Co.) and a Gasclean CC-XR column (Nikka Seiko Co.). Anhydrous THF, hexane, benzene, and toluene were refluxed and distilled from sodium/benzophenone under dry nitrogen, and degassed by the freeze-pump-thaw cycles, and dried over fresh Na chips in the glovebox. 1,3-cyclohexadiene (CHD) was purchased from TCI, dried over CaH₂, vacuum-transferred, and degassed by two freeze-pump-thaw cycles. [Ph₃C][B(C₆F₅)₄], [PhMe₂NH][B(C₆F₅)₄], and B(C₆F₅)₃ were purchased from Tosoh Finechem Corporation and used without purification. LnCl₃(M = Y, Tm, Dy, Ho, Er, Gd, Lu) were purchased from Strem. LiCH₂SiMe₃ (1.0 M solution in pentane) and C₅Me₄H(SiMe₃) were purchased from Aldrich, and used as received. (C₅Me₄SiMe₃)Ln(CH₂SiMe₃)₂(THF), (C₅Me₄SiMe₃)₄Y₄H₈ and (C₅Me₄SiMe₃)₄Ln₄H₈(THF) were synthesized as reported previously. Deuterated solvents chlorobenzene-d₅ (99 atom% D) and benzene-d₆ (99.6 atom% D), chloroform-d₁ (99.8 atom% D) and 1,1,2,2,-tetrachloroethane-d₂ (99.6 atom% D) were obtained from Cambridge Isotope.

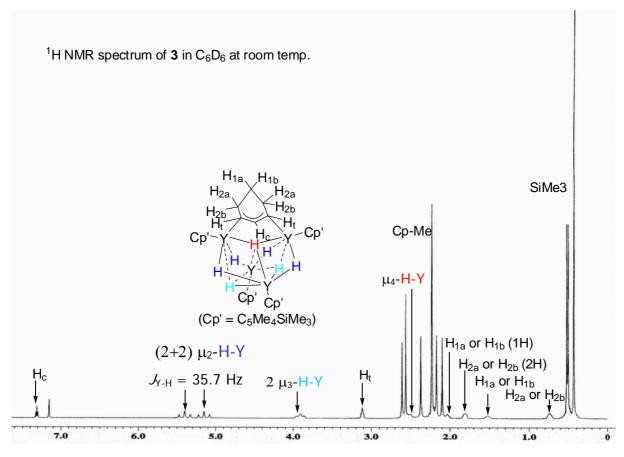
Samples of rare earth metal complexes for NMR spectroscopic measurements were prepared in the glovebox using J. Young valve NMR tubes. NMR (¹H, ¹¹B, ¹³C{¹H}, ¹⁹F, ¹⁹Si) spectra were recorded on a JNM-EX 270 or a JNM-Alpha 600 spectrometer. Elemental analyses were performed by Chemical Analysis Team, D&S Center in RIKEN. The NMR data of poly(CHD) were obtained on a JEOL JNM-EX 270 (FT, 300 MHz for ¹H; 75.5 MHz for ¹³C{¹H}) spectrometer at 120 °C with 1,1,2,2-C₂D₂Cl₄ as solvent. The molecular weight and the molecular weight distributions of the polymer samples were determined at 140 °C by high temperature gel permeation chromatography (HT-GPC) on a HLC-8121GPC/HT apparatus (Tosoh Corporation). 1,2-Dichlorobenzene (DCB) was employed as the eluent at a flow rate of 1.0 mL/min. The calibration was made by polystyrene standard EasiCal PS-1 (PL Ltd). The DSC measurements were performed on a Perkin-Elmer Pyris Diamond Differential Scanning Calorimeter at a rate of 20 °C/min.

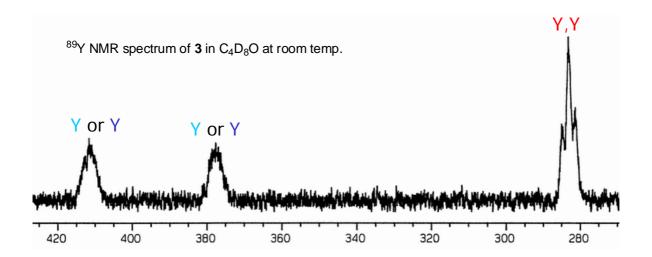
($C_5Me_4SiMe_3$)₄ Y_4H_8 (1a). ^[5] A benzene solution (2 mL) of $Y_4(C_5Me_4SiMe_3)_4H_7\{C_6H_5CH(CH_3)\}$ (0.040 g, 0.03 mmol), which was prepared by reaction of $Y_4(C_5Me_4SiMe_3)_4H_8(THF)$ with 1 equiv of styrene (see supporting information in ref. 2), in a 50-mL Schlenk flask equipped with a J. Young valve was frozen in liquid nitrogen, pumped, and backfilled with H_2 . The mixture was allowed to warm to room temperature and stirred for 2 days. For complete conversion, a second charge of H_2 was carried out in an identical way and the solution mixture was then further stirred for 2 days. Removal of the volatiles under reduced pressure afforded 1a quantitatively (0.036 g, 0.03 mmol). A single crystal suitable for X-ray analysis was grown in a concentrated hexane solution at room temperature. IR (nujol): v = 1405, 1324, 1260, 1244, 1130, 918, 838, 756, 684, 630 cm⁻¹; H NMR (300 MHz, C_6D_6 , 22 °C): $\delta = 0.48$ (s, 36H, $C_5Me_4SiMe_3$), 2.20 (s, 24H, C_5Me_4), 2.37 (s, 24H, C_5Me_4), 5.26 (m, 8H, YH); 13 C NMR (75 MHz, C_6D_6 , 22 °C): $\delta = 2.45$ (s, 12C, $C_5Me_4SiMe_3$), 11.89 (s, 8C, C_5Me_4), 14.54 (s, 8C, C_5Me_4), 117.66 (s, 4C, $ipso-C_5Me_4$), 126.34 (s, 8C, C_5Me_4), 129.20 (s, 8C, C_5Me_4). Anal. Calcd for $C_{48}H_{92}Si_4Y_4$: C, 50.70; H, 8.15. Found: C, 50.05; H, 8.01.

(C₅Me₄SiMe₃)₄Y₄H₈(THF) (1b). [1,2] A toluene solution of (C₅Me₄SiMe₃)Y(CH₂SiMe₃)₂(THF) (0.79 g, 1.50 mmol) in a 300-mL Schlenk flask equipped with a J. Young valve was frozen in liquid nitrogen, pumped, and refilled with H₂. The mixture was allowed to warm to room temperature and stirred for 2 h. For complete conversion, a second charge of H₂ was carried out in an identical way and the solution mixture was then further stirred for 2 h. After removal of the solvent under vacuum, the resulting pale yellow residue was extracted with hexane and filtered in the glove box. Slow evaporation of the solvent under reduced pressure precipitated 1b as a pale yellow crystalline powder (1.38 g, 1.14 mmol, 76 % yield). A single crystal suitable for X-ray analysis was grown in a concentrated hexane solution at room temperature. IR (nujol): v = 1405, 1340, 1322, 1260, 1244, 1130, 848, 838, 756, 684, 630 cm⁻¹; ¹H NMR (270 MHz, C₆D₆, 22 °C): $\delta = 0.53$ (s, 36H, C₅Me₄SiMe₃), 1.40 (br, 4H, THF), 2.25 (s, 24H, C₅Me₄), 2.33 (s, 24H, C₅Me₄), 3.61 (br, 4H, THF), 4.32 (quintet, $J_{Y-H} = 15.26$ Hz, 8H, YH); ¹H NMR (270 MHz, C₄D₈O, 22 °C): $\delta = 0.29$ (s, 36H, C₅Me₄SiMe₃), 2.05 (s, 24H, C₅Me₄), 2.16 (s, 24H, C₅Me₄), 3.75 (quintet, $J_{Y-H} = 14.26$ Hz, 8H, YH); ¹³C NMR (75 MHz, C₆D₆, 22 °C): $\delta = 3.13$ (s, 12C, C₅Me₄SiMe₃), 12.67 (s, 8C, C₅Me₄), 15.44 (s, 8C, C₅Me₄), 25.22 (s, 2C, THF), 70.71 (s, 2C, THF), 114.77 (s, 4C, ipso-C₅Me₄), 124.48 (s, 8C, C₅Me₄), 127.07 (s, 8C, C₅Me₄), 113.62 (s, 4C, ipso-C₅Me₄), 14.10 (s, 8C, C₅Me₄), 16.04 (s, 8C, C₅Me₄), 113.62 (s, 4C, ipso-C₅Me₄), 16.04 (s, 8C, C₅Me₄), 113.62 (s, 4C, ipso-C₅Me₄),

 $C_5\text{Me}_4$), 123.15 (s, 8C, $C_5\text{Me}_4$), 127.39 (s, 8C, $C_5\text{Me}_4$); ⁸⁹Y NMR (19 MHz, C_4D_8O , 22 °C): δ = 380 (br); Anal. Calcd for $C_{52}H_{100}\text{OSi}_4\text{Y}_4$: C, 51.65; H, 8.33. Found: C 49.61; H, 8.33.

(C₅Me₄SiMe₃)₄Y₄H₈(THF)₂ (1c). Recrystallization of 1b in a saturated THF solution afforded colorless crystals of 1c. IR (nujol): v = 1350, 1300, 1250, 1205, 840, 754, 684, 650 cm⁻¹; ¹H NMR (270 MHz, C₆D₆, 22 °C): $\delta = 0.53$ (s, 36H, C₅Me₄Si*Me*₃), 1.42 (br, 8H, THF), 2.25 (s, 24H, C₅Me₄), 2.33 (s, 24H, C₅Me₄), 3.59 (br, 8H, THF), 4.25 (quintet, $J_{Y-H} = 15.18$ Hz, 8H, YH); ¹³C NMR (75 MHz, C₆D₆, 22 °C): $\delta = 3.15$ (s, 12C, C₅Me₄Si*Me*₃), 12.71 (s, 8C, C₅*Me*₄), 15.50 (s, 8C, C₅*Me*₄), 25.49(s, 4C, THF), 69.72(s, 4C, THF), 114.52 (s, 4C, *ipso-C*₅Me₄), 124.29 (s, 8C, *C*₅Me₄), 126.93 (s, 8C, *C*₅Me₄); Anal. Calcd for C₅₂H₁₀₀O₂Si₄Y₄: C, 52.49; H, 8.50. Found: C, 44.14–47.00; H, 8.24–8.16.


[(C₅Me₄SiMe₃)₄Y₄H₇][B(C₆F₅)₄] (2a). A mixture of Y₄(C₅Me₄SiMe₃)₄H₈ (0.058 g, 0.053 mmol) and [Ph₃C][B(C₆F₅)₄] (0.049 g, 0.053 mmol) in 10 mL chlorobenzene was stirred for 6 h. After the solvent was removed in vacuum, the resulting colorless residue was washed with hexane. Drying under vacuum and recrystallization in chlorobenzene/hexane gave colorless crystals (0.064 g, 64 %). IR (nujol): v = 1641, 1514, 1409, 1321, 1226, 1180, 1126, 1105, 1088, 1059, 980, 883, 837, 773, 756, 683, 662, 630, 610, 572 cm⁻¹; ¹H NMR (300 MHz, C₆D₆, 25 °C, TMS): $\delta = 0.34$ (s, 36H, C₅Me₄SiMe₃), 1.96 (s, 24H, C₅Me₄), 2.18 (s, 24H, C₅Me₄), 4.62 (br, 7H, YH). ¹H NMR (300 MHz, C₆D₅Cl, 25 °C, TMS): $\delta = 0.35$ (s, 36H, C₅Me₄SiMe₃), 1.97 (s, 24H, C₅Me₄), 2.25 (s, 24H, C₅Me₄), 4.62 (br, 7H, YH). ¹³C{ ¹H } NMR (75.5 MHz, C₆D₅Cl, 25 °C, TMS) $\delta = 2.9$ (s, 12C, C₅Me₄SiMe₃), 11.6 (s, 8C, C₅Me₄), 15.0 (s, 8C, C₅Me₄), 120.5 (s, 4C, *ipso-C₅*Me₄), 128.3 (s, 8C, *C*₅Me₄), 131.6 (s, 8C, C₅Me₄). ¹¹B NMR (192.6 MHz, C₆D₅Cl, 25 °C, BF₃·Et₂O) $\delta = -16.5$ (s, 1B, B(C₆F₅)₄). ¹⁹F NMR (564.7 MHz, C₆D₅Cl, 25 °C, CCl₃F) $\delta = -166.57$ (br, 8F, *meta*-B(C₆F₅)₄), -162.90 (br, 4F, *para*-B(C₆F₅)₄), -131.76 (br, 8F, *ortho*-B(C₆F₅)₄). ²⁹Si NMR (119.2 MHz, C₆D₅Cl, 25 °C, TMS) $\delta = -8.0$ (C₅Me₄SiMe₃). ¹H NMR (300 MHz, C₆D₅Cl, -40 °C, TMS): $\delta = 0.37$ (s, 36H, C₅Me₄SiMe₃), 1.41 (br, 1H, YH), 1.95 (br s, 24H, C₅Me₄), 2.27 (br s, 24H, C₅Me₄), 3.32 (br m, 2H, YH), 5.30 (t, 4H, J_{Y-H} = 36.0 Hz, YH); ¹¹B NMR (192.6 MHz, C₆D₅Cl, -40 °C, BF₃·Et₂O) $\delta = -16.4$ (s, 1B, B(C₆F₅)₄), -131.64 (br, 8F, *ortho*-B(C₆F₅)₄). Elemental analysis of [(C₅Me₄SiMe₃)₄Y₄H₇][B(C₆F₅)₄]-hexane calcd. (%) for C₇₈H₁₀₅B₁F₂₀Si₄Y₄: C 49.27, H 5.57; found: C 49.62, H 5.28.


[(C₅Me₄SiMe₃)₄Y₄H₇(THF)][B(C₆F₅)₄] (2b). A mixture of (C₅Me₄SiMe₃)₄Y₄H₈(THF) (0.060 g, 0.050 mmol) and [Ph₃C][B(C₆F₅)₄] (0.046 g, 0.050 mmol) in 10 mL chlorobenzene was stirred for 6 h to give a colorless solution. After the solvent was removed in vacuum the resulting colorless residue was washed with hexane. Drying under vacuum gave a white powder (0.088 g, 93 %). ¹H NMR (300 MHz, C₆D₅Cl, 25 °C, TMS): δ = 0.30 (s, 9H, C₅Me₄SiMe₃), 0.34 (s, 9H, C₅Me₄SiMe₃), 0.37 (s, 18H, C₅Me₄SiMe₃), 1.45 (br, 1H, YH), 1.81 (s, 6H, C₅Me₄), 1.85 (br, 4H, β-CH₂-THF), 2.01 (s, 6H, C₅Me₄), 2.05 (s, 6H, C₅Me₄), 2.08 (s, 6H, C₅Me₄), 2.16 (s, 6H, C₅Me₄), 2.23 (s, 6H, C₅Me₄), 2.27 (s, 6H, C₅Me₄), 2.39 (s, 6H, C₅Me₄), 3.24 (q, 1H, J_{Y-H} = 21.0 Hz, YH), 3.53 (q, 1H, J_{Y-H} = 25.2 Hz, YH), 3.81 (br, 4H, α-CH₂-THF), 4.98 (t, 2H, J_{Y-H} = 37.5 Hz, YH), 5.40 (t, 2H, J_{Y-H} = 36.9 Hz, YH). ¹³C{¹H} NMR (75.5 MHz, C₆D₅Cl, 25 °C, TMS) δ = 1.8 (s, 6C, C₅Me₄SiMe₃), 1.9 (s, 3C, C₅Me₄SiMe₃), 5.3 (s, 3C, C₅Me₄SiMe₃), 11.8 (s, 4C, C₅Me₄), 11.9 (s, 2C, C₅Me₄), 12.1 (s, 2C, C₅Me₄), 15.0 (s, 6C, C₅Me₄), 15.6 (s, 2C, C₅Me₄), 25.1 (s, 2C, C₅Me₄), 17.9 (s, 2C, C₅Me₄), 11.9 (s, 2C, C₅Me₄), 121.8 (s, 2C, C₅Me₄), 125.6 (s, 2C, C₅Me₄), 126.7 (s, 2C, C₅Me₄), 127.2 (s, 4C, C₅Me₄), 127.8 (s, 2C, C₅Me₄), 131.1 (s, 2C, C₅Me₄), 131.5 (s, 2C, C₅Me₄), 132.2 (s, 2C, C₅Me₄). ¹¹B NMR (192.6 MHz, C₆D₅Cl, 25 °C, BF₃·Et₂O) δ = -16.5 (s, 1B, B(C₆F₅)₄). ¹⁹F NMR (564.7 MHz, C₆D₅Cl, 25 °C, CCl₃F) δ = -166.78 (br, 8F, meta-B(C₆F₅)₄), -162.97 (t, 4F, J_{F-F} = 10.4 Hz, para-B(C₆F₅)₄), -132.19 (br, 8F, ortho-B(C₆F₅)₄). ¹⁹S NMR (119.2 MHz, C₆D₅Cl, 25 °C, TMS) δ = -9.5 (br, 2Si, C₅Me₄SiMe₃), -8.6 (s, 1Si, C₅Me₄SiMe₃).

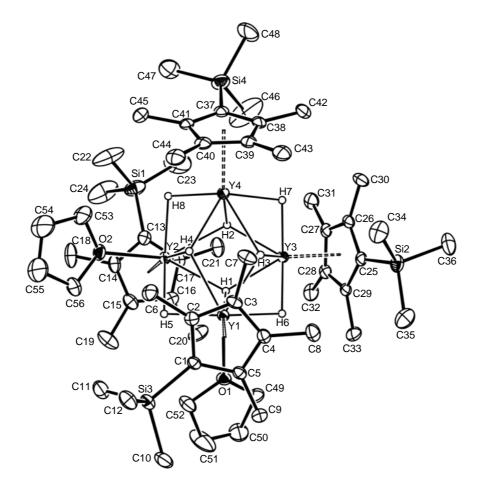
 $[(C_5Me_4SiMe_3)_4Y_4H_7(THF)_2][B(C_6F_5)_4]$ (2c). a) To a benzene solution (3 mL) of $[(C_5Me_4SiMe_3)_4Y_4H_7][B(C_6F_5)_4]$ (2a) (0.035 g, 0.018 mmol) 2 equiv of THF (0.003 g, 0.019 mmol) were added at room temperature. After stirring for 15 min and drying under vacuum a white powder 2c (0.037 g, 100 %) was obtained. b) A mixture of (C₅Me₄SiMe₃)₄Y₄H₈(THF)₂ (0.056 g, 0.044 mmol) and [Ph₃C][B(C₆F₅)₄] (0.040 g, 0.044 mmol) in 10 mL chlorobenzene was stirred for 6 h to give a colorless solution. After the solvent was removed in vacuum the resulting colorless residue was washed with hexane. Drying under vacuum gave a white powder (0.078 g, 91 %). Single crystals suitable for X-ray analysis were grown in chlorobenzene/benzene at room temperature. IR (nujol): v = 1641, 1513, 1409, 1323, 1275, 1267, 1246, 1172, 1130, 1105, 1086, 1058, 1032, 1003, 980, 884, 837, 773, 756, 682, 662, 631, 610, 602, 572 cm⁻¹; ¹H NMR (300 MHz, C₆D₅Cl, 25 °C, TMS): $\delta = 0.34$ (s, 18H, C₅Me₄SiMe₃), 0.40 (s, 18H, C₅Me₄SiMe₃), 1.95 (br, 8H, β -CH₂-THF), 1.99 (s, 12H, C₅Me₄), 2.14 (s, 12H, C_5Me_4), 2.15 (s, 12H, C_5Me_4), 2.35 (s, 12H, C_5Me_4), 2.83 (br, 1H, YH), 3.14 (m, 2H, YH), 3.99 (br, 8H, α -C H_2 -THF), 5.41 (d of d, 4H, $J_{Y-H} = 39.6$, 36.8 Hz, YH). ¹³C{¹H} NMR (75.5 MHz, C₆D₅Cl, 25 °C, TMS) $\delta = 1.5$ (s, 6C, C₅Me₄SiMe₃), 2.4 THF), 71.0 (s, 4C, α -CH₂-THF), 118.4 (s, 2C, ipso-C₅Me₄), 119.0 (s, 2C, ipso-C₅Me₄), 124.9 (s, 4C, C₅Me₄), 127.0 (s, 4C, C_5 Me₄), 130.2 (s, 4C, C_5 Me₄), 130.6 (s, 4C, C_5 Me₄). ¹¹B NMR (192.6 MHz, C_6 D₅Cl, 25 °C, BF₃·Et₂O) δ = -16.6 (s, 1 B, $B(C_6F_5)_4$). ¹⁹F NMR (564.7 MHz, C_6D_5Cl , 25 °C, CCl_3F) $\delta = -166.83$ (t, 8F, meta-B(C_6F_5)₄, $J_{F-F} = 19.8$ Hz), -163.02 (t, 4F, para-B(C₆F₅)₄, J_{F-F} = 19.8 Hz), -132.24 (br, 8F, ortho-B(C₆F₅)₄); ²⁹Si NMR (119.2 MHz, C₆D₅Cl, 25 °C, TMS) δ = -11.9 (C₅Me₄SiMe₃), -11.0 (C₅Me₄SiMe₃). Elemental analysis calcd. (%) for C₈₀H₁₀₇B₁O₂F₂₀Si₄Y₄: C 49.04, H 5.50; found: C 49.31, H 5.31.

 $(C_5Me_4SiMe_3)_4Y_4H_7(C_6H_9)$ (3). 1,3-cyclohexadiene (0.040 g, 0.50 mmol) was added to a benzene solution of **1b** (0.605 g, 0.50 mmol), and the resulting yellow solution was stirred for 1 h. After all volatiles were removed under vacuum, the residue

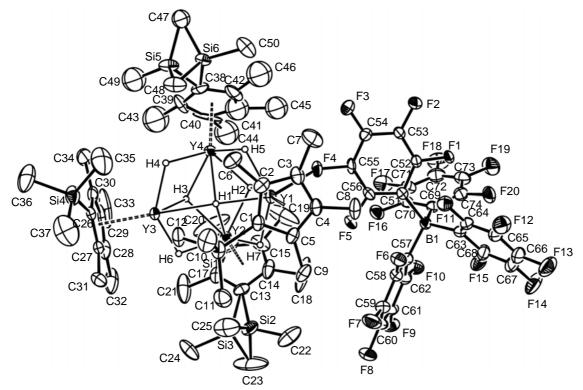
was dissolved in hexane (20 mL) and the solution volume was reduced, and decanted to precipitate 3 (0.584 g, 0.48 mmol, 96 % yield) as a yellow powder. Yellow single crystals suitable for X-ray analysis were grown in a concentrated hexane solution at -30 °C. IR (nujol): v = 1520, 1400, 1330, 1250, 1135, 895, 846, 722, 680 cm⁻¹; ¹H NMR (400 MHz, C₆D₆, 22 °C): δ = 0.44 (s, 18H, C₅Me₄SiMe₃), 0.51 (s, 9H, C₅Me₄SiMe₃), 0.53 (s, 9H, C₅Me₄SiMe₃), 0.74 (m, 2H, YCHCHHCH₂-), 1.52 (m, 1H, YCHCH₂CHH-), 1.81 (m, 2H, YCHCHHCH₂), 2.03 (m, 1H, YCHCH₂CHH-), 2.10 (s, 6H, C₅Me₄), 2.17 (s, 6H, C₅Me₄), $YCHCH_2CH_2-$), 3.91 (m, 2H, YH), 5.15 (t, $J_{Y-H}=35.7$ Hz, 2H, YH), 5.40 (t, $J_{Y-H}=35.7$ Hz, 2H, YH), 7.31 ppm (t, $J_{H-H}=7.10$ Hz, 1H, $HCYCHCH_2CH_2$ -); ¹³C NMR (150 MHz, C₆D₆, 22 °C): δ = 1.91 (s, 3C, C₅Me₄SiMe₃), 2.03 (s, 3C, C₅Me₄SiMe₃), 2.68 $(s, 6C, C_5Me_4SiMe_3), 11.94 (s, 2C, C_5Me_4), 12.21 (s, 2C, C_5Me_4), 12.43 (s, 2C, C_5Me_4), 12.62 (s, 2C, C_5Me_4), 15.09 (s, 2C, C_5Me_4), 12.63 (s, 2C, C_5Me_4), 12.64 (s, 2C, C_5Me_4), 12.65 (s, 2C, C_5Me_4), 12.6$ C_5Me_4), 15.85 (s, 2C, C_5Me_4), 15.97 (s, 2C, C_5Me_4), 16.18 (s, 2C, C_5Me_4), 20.77 (s, 1C, YCHCH₂CH₂-), 21.38 (s, 2C, $YCHCH_2CH_2-$), 67.79 (d, 2C, $J_{Y-C} = 9.5$ Hz, $YCHCH_2CH_2-$), 114.96 (s, 2C, $ipso-C_5Me_4$), 117.34 (s, 1C, $ipso-C_5Me_4$), 117.37(s, 1C, $ipso-C_5Me_4$), 124.28(s, 2C, C_5Me_4), 124.68 (s, 2C, C_5Me_4), 124.76 (s, 2C, C_5Me_4), 125.00 (s, 2C, C_5Me_4), 126.32 (s, 2C, C_5Me_4), 127.09 (s, 2C, C_5Me_4), 129.34 (s, 2C, C_5Me_4), 129.72 (s, 2C, C_5Me_4), 165.07 (s, 1C, HCYCHCH₂CH₂-); ¹H NMR 1H, YCHCH₂CHH-), 1.73 (m, 2H, YCHCHHCH₂-), 1.99 (m, 1H, YCHCH₂CHH-), 2.04 (s, 6H, C₅Me₄), 2.10 (s, 6H, C₅Me₄), $2.14 \text{ (m, 1H, YH)}, 2.15 \text{ (s, 6H, } C_5Me_4), 2.19 \text{ (s, 12H, } C_5Me_4), 2.21 \text{ (s, 6H, } C_5Me_4), 2.37 \text{ (s, 6H, } C_5Me_4), 2.43 \text{ (s, 6H, } C_5Me_4), 2.43$ $2.89 \text{ (m, 2H, YC}/H_2\text{CH}_2\text{-}), 3.75 \text{ (m, 2H, YH)}, 4.82 \text{ (t, } J_{\text{Y-H}} = 35.2 \text{ Hz, 2H, YH)}, 5.04 \text{ (t, } J_{\text{Y-H}} = 35.2 \text{ Hz, 2H, YH)}, 7.05 \text{ (t, } J_{\text{H-H}}$ $_{\rm H} = 8.3$ Hz, 1H, HCYCHCH₂CH₂-); 13 C NMR (150 MHz, C₄D₈O, 22 °C): $\delta = 2.39$ (s, 3C, C₅Me₄Si Me_3), 2.56 (s, 3C, $C_5Me4SiMe_3$), 2.77 (s, 6C, $C_5Me_4SiMe_3$), 12.47 (s, 2C, C_5Me_4), 12.74 (s, 2C, C_5Me_4), 12.76 (s, 2C, C_5Me_4), 12.92 (s, 2C, C_5Me_4), 15.24 (s, 2C, C_5Me_4), 16.03 (s, 2C, C_5Me_4), 16.11 (s, 2C, C_5Me_4), 16.46 (s, 2C, C_5Me_4), 21.29 (s, 1C, YCHCH₂CH₂-), 21.96 (s, 2C, YCHCH₂CH₂-), 67.19 (s, 2C, YCHCH₂CH₂-), 114.68 (s, 2C, $ipso-C_5Me_4$), 116.94 (s, 2C, $ipso-C_5Me_4$), 124.30 (s, 2C, C_5 Me₄), 124.60 (s, 2C, C_5 Me₄), 124.65 (s, 2C, C_5 Me₄), 124.96 (s, 2C, C_5 Me₄), 126.48 (s, 2C, C_5 Me₄), 127.10 (s, 2C, $C_5\text{Me}_4$), 129.30 (s, 2C, $C_5\text{Me}_4$), 129.75 (s, 2C, $C_5\text{Me}_4$), 165.91 (s, 1C, HCYCHCH₂CH₂-); ⁸⁹Y NMR (19 MHz, C₄D₈O, 22 °C): δ = 282.6 (br, 2Y), 376.6 (m, 1Y), 410.01 (m, 1Y). Anal. Calcd for $C_{54}H_{100}Si_4Y_4$: C, 53.28; H, 8.28. Found: C, 51.30; H, 8.22. Scanned ¹H and ⁸⁹Y NMR spectra of **3** are given below.

[(C₅Me₄SiMe₃)Y]₄(μ-D)₇(μ-C₆H₈D) (3-d): 3-d was prepared analogously to 3 by reaction of (C₅Me₄SiMe₃)₄Y₄D₈(THF) with CHD. IR (nujol): v = 1500, 1330, 1250, 930, 895, 846, 752 cm⁻¹; ¹H NMR (300 MHz, C₆D₆, 22 °C): $\delta = 0.43$ (s, 18H, C₅Me₄SiMe₃), 0.51 (s, 9H, C₅Me₄SiMe₃), 0.53 (s, 9H, C₅Me₄SiMe₃), 0.70 (m, xH, YCHCHDCH₂), 1.51 (m, 1H, YCHCDHCHH), 1.79 (m, xH, YCHCDHCH₂), 2.03 (m, 1H, YCHCDHCHH-), 2.10 (s, 6H, C₅Me₄), 2.18 (s, 6H, C₅Me₄), 2.23 (s, 6H, C₅Me₄), 2.24 (s, 12H, C₅Me₄), 2.38 (s, 6H, C₅Me₄), 2.57 (s, 6H, C₅Me₄), 2.61 (s, 6H, C₅Me₄), 3.12 (m, 2H, YCHCDHCH₂-), 7.31 ppm (t, $J_{H-H} = 7.34$ Hz, 1H, HCYCHCDHCH₂-); ¹³C NMR (75 MHz, C₆D₆, 22 °C): $\delta = 1.93$ (s, 3C, C₅Me₄SiMe₃), 2.04 (s, 3C, C₅Me₄SiMe₃), 2.70 (s, 6C, C₅Me₄SiMe₃), 11.93 (s, 2C, C₅Me₄), 12.21 (s, 2C, C₅Me₄), 12.44 (s, 2C, C₅Me₄), 12.60 (s, 2C, C₅Me₄), 15.08 (s, 2C, C₅Me₄), 15.85 (s, 2C, C₅Me₄), 15.99 (s, 2C, C₅Me₄), 16.19 (s, 2C, C₅Me₄), 20.64 (s, 1C, YCHCDHCH₂-), 21.34 (s, 2C, YCHCDHCH₂-), 67.63 (m, 2C, YCHCDHCH₂-), 114.79 (s, 2C, ipso-C₅Me₄), 117.15 (s, 2C, ipso-C₅Me₄), 124.07 (s, 2C, C₅Me₄), 124.46 (s, 2C, C₅Me₄), 124.53 (s, 2C, C₅Me₄), 124.77 (s, 2C, C₅Me₄), 126.14 (s, 2C, C₅Me₄), 126.89 (s, 2C, C₅Me₄), 129.13 (s, 2C, C₅Me₄), 129.51 (s, 2C, C₅Me₄), 165.07 (s, 1C, HCYCHCH₂CH₂-); ²H NMR (61 MHz, C₆H₆, 22 °C): $\delta = 0.3-0.9$ and 1.6–1.9 (vbr, 1D, C₆H₉D), 2.51 (br s, 1D, YD), 3.91 (br m, 2D, YD), 5.15 (t, $J_{Y\cdot D} = 5.25$ Hz, 2D, YD), 5.41 ppm (t, $J_{Y\cdot D} = 5.21$ Hz, 2D, YD). A scanned ²H NMR spectrum of **3-d** is given below.

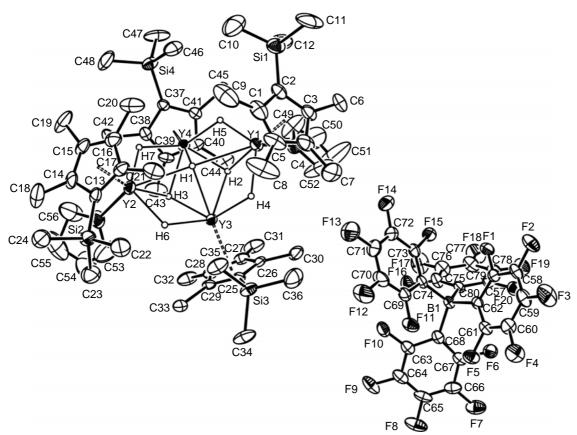
 ^2H NMR spectrum of **3-d** in C_6H_6 at room temp.

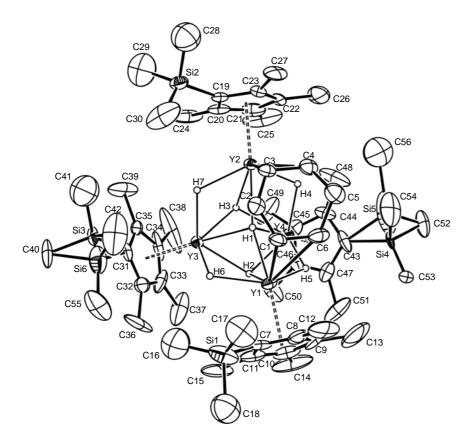

$$\begin{array}{c} \text{Cp'} \\ \text{Cp'$$

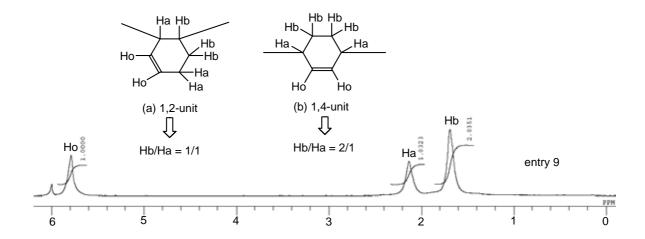
A typical procedure for the regio- and stereoselective polymerization of 1,3-cyclohexadiene by use of an *in-situ* generated cationic polyhydrido rare earth metal species (Table 2, entry 3): In the glove box, a toluene solution (1 mL) of


[Ph₃C][B(C_6F_5)₄] (0.037 g, 0.040 mmol) was added to a toluene solution (1 mL) of ($C_5Me_4SiMe_3$)₄Y₄H₈(THF) (0.048 g, 0.040 mmol) in a 10-mL flask. The mixture was stirred at room temperature for 5 min, and then 1,3-cyclohexadiene (0.80 g, 0.010 mol) was added under vigorous stirring. The polymerization solution became heterogeneous at rt as a orange precipitate formed after 5 h. After 15 h, the flask was taken outside of the glove box and methanol was added to terminate the polymerization. The mixture was poured into methanol (200 mL, containing 1 % butylhydroxytoluene (BHT)) to precipitate the polymer product. The white polymer powder was collected by filtration, and dried *in vacuo* at 60 °C to a constant weight (0.40 g, 50%). The product obtained is soluble in dichlorobenzene and 1,1,2,2-tetrachloroethane at 120 °C.

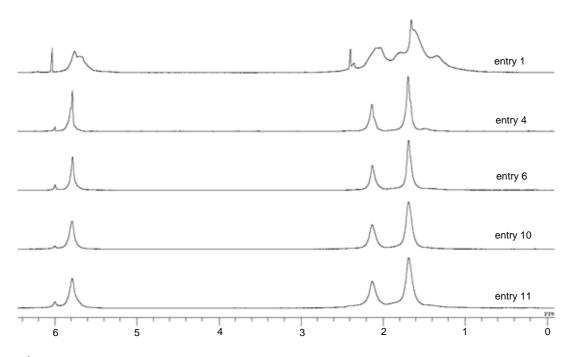
X-Ray Crystallographic Study. A crystal was sealed in a thin-walled glass capillary under a microscope in the glove box. Data collections were performed at -100 °C on a Bruker SMART APEX diffractometer with a CCD area detector using graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71069 \text{ Å}$). The determination of crystal class and unit cell was carried out by SMART program package. [5] The raw frame data were processed using SAINT [6] and SADABS [7] to yield the reflection data file. The structures were solved by using SHELXTL program. [8] Refinements were performed on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The analytical scattering factors for neutral atoms were used throughout the analysis. The hydrido atoms were located by difference Fourier syntheses and their coordinates and isotropic parameters were refined. Other hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. In 2a disorder was found for the Cp' ligands connected to Y2 and Y4. The silyl and carbon atoms in the SiMe₃ groups (Si2, Si3, Si5, Si6, C22, C24, C49, C50) were treated with 50% occupancy. The hexane molecule was refined isotropically. The residual electron densities were of no chemical significance. In 2c disorder was found for the lattice solvent. The disordered benzene molecule was separated in two parts (C81A-C86A and C81B-C86B) and was treated with 50 % occupancy. The residual electron densities were of no chemical significance. In 3 disorder was found for the Cp' ligands coordinated to Y3 and Y4. The silyl and carbon atoms in the SiMe₃ groups (Si3, Si4, Si5, Si6, C40, C42, C52, C54) were treated with 50% occupancy. The residual electron densities were of no chemical significance. CCDC-617797 (1c), -617794 (2a), -617795 (2c), -617796 (3) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44)-1223-336033; or deposit@ccdc.cam.ac.uk)

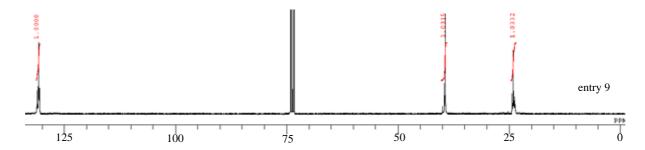

- [1] O. Tardif, M. Nishiura, Z. Hou, *Organometallics* **2003**, 22, 1171–1173.
- [2] D. Cui, O. Tardif, Z. Hou, J. Am. Chem. Soc. 2004, 126, 1312–1313.
- [3] O. Tardif, D. Hashizume, Z. Hou, J. Am. Chem. Soc. 2004, 126, 8080–8081.
- [4] D. Cui, M. Nishiura, Z. Hou, *Macromolecule* **2005**, *38*, 4089–4095.
- [5] Y. Luo, J. Baldamus, O. Tardif, Z. Hou, Organometallics 2005, 24, 4362–4366.
- [6] SMART Software Users Guide, version 4.21; Bruker AXS, Inc.: Madison, WI, 1997.
- [7] SAINT+, Version 6.02; Bruker AXS, Inc.: Madison, WI 1999.
- [8] Sheldrick, G. M. SADABS; Bruker AXS, Inc.: Madison, WI, 1998.
- [9] Sheldrick, G. M. SHELXTL, Version 5.1; BUKER AXS, INC.: Madison, WI, 1998.

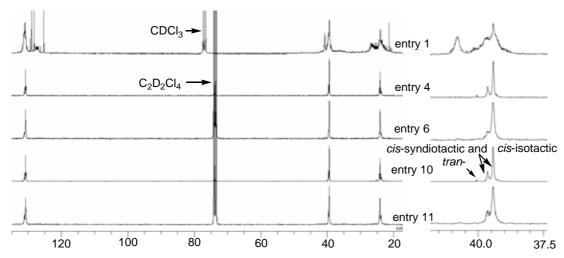

SFigure 1. ORTEP drawing of 1c.

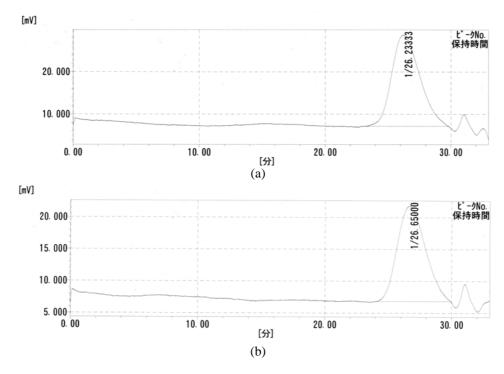

SFigure 2. ORTEP drawing of 2a.

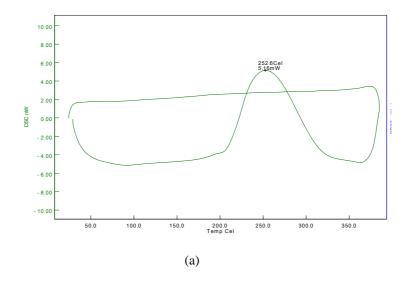
SFigure 3. ORTEP drawing of 2c.

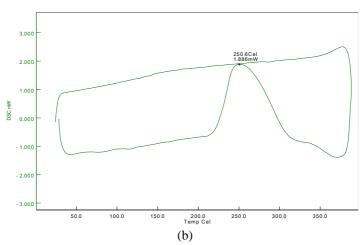

SFigure 4. ORTEP drawing of 3.


SFigure 5. ¹H NMR spectrum of the *cis*-1,4-linked poly(CHD) (Table 2, entry 9) (Only one single peak at ca. 1.7 ppm could be observed, as expected for the *cis*-1,4-polymer).


SFigure 6. ¹H NMR spectrum of poly(CHD) (Table 2, entry 8) (Peaks at ca. 1.35 and 1.75 ppm are expected for the trans planomers).


SFigure 7. ¹H NMR spectra of poly(CHD)s in Table 2.


SFigure 8. ¹³C NMR spectrum of the *cis*-1,4-linked poly(CHD) (Table 2, entry 9).



SFigure 9. ¹³C NMR spectra of poly(CHD)s obtained in Table 2.

SFigure 10. GPC curves of the cis-1,4-linked poly(CHD)s in Table 2: (a) entry 3; (b) entry 9.

SFigure 11. DSC curves of the *cis*-1,4-linked poly(CHD)s in Table 2: (a) entry 3; (b) entry 9 (The DSC traces of the poly(CHD)s showed an endothermic peak around 250 °C for the first heating, however, it is difficult to find endothermic peak for the second heating, probably due to degradation in the melt).