Supporting Information © Wiley-VCH 2006 69451 Weinheim, Germany ## Carbohydrate-induced Peptide Conformation in Glycopeptides of the Recognition Region of LI-Cadherin** #### A. Kuhn and H. Kunz ## 1. Justification of conformational analysis based NMR spectra of compounds dissolved in DMSO-d₆ by comparison of NOE contacts using either D₂O or DMSO-d₆ as the solvent Of course, the natural solvent for peptides and proteins in mammals is H_2O . For recording NMR-experiments it is usually substituted partly or completely by D_2O . Because in the case of diluted NMR samples of compounds **19-25**, good results concerning line width and intensity could only be obtained in pure DMSO- d_6 , it was checked for a sufficiently water-soluble model glycopeptide whether NOE contacts measured in DMSO- d_6 would match with those measured in D_2O . In this way, NMR spectra of the glycopeptide Ac-AALDS(GalNAc)QGAI-OH, similar to compound $\bf 20$, were recorded at room temperature using DMSO-d₆, D₂O and in a mixture of D₂O/DMSO-d₆ (30:70) as the solvent. Slight differences of the chemical shifts were found with an average deviation of no more than 0.15 ppm compared to those measured in DMSO-d₆ (table 1). Intensities of NH dependent NOE-contacts measured in samples containing D₂O were weak or invisible, NOE-contacts not dependent of exchangeable protons similar to those measured in DMSO-d₆ (table 2). Because of the qualitatively consistent NOE contacts in different solvents in the case of this glycopeptide, DMSO-d₆ was chosen as solvent for NMR measurements for peptide $\bf 19$ and glycopeptides $\bf 20-25$. Table 1: Selected chemical shifts of Ac-AALDS(GalNAc)QGAI-OH | Amino Acid | Proton | Chemical Shift | | | |------------|--------|----------------|---|---------------------| | | | D_2O | DMSO-d ₆ /D ₂ O 70:30 | DMSO-d ₆ | | A^1-A^3 | На | 4,2-4,3 | 4,1 | 4,08-4,24 | | D | Ha | 4,61 | 4,35 | 4,48 | | G | Ha | 3,80 | 3,71 | 3,69 | | I | Ha | 4,07 | 3,85 | 3,79 | | L | Ha | 4,20 | 4,13 | 4,26 | | Q | Ha | 4,30 | 4,07 | 4,18 | | S | Ha | 4,49 | 4,37 | 4,56 | Table 2: Isolated NOE-contacts | NOE Proton Contacts | | | Intensities | | | | |---------------------|----------------|-----------|---|---------------------|--|--| | NOE FIOLO | n Contacts | D_2O | DMSO-d ₆ /D ₂ O 70:30 | DMSO-d ₆ | | | | H 3 | - Lδ | weak | weak | weak | | | | H 2 | - Lδ | very weak | very weak | very weak | | | | H 1 | - Qa | weak | weak | medium | | | | H 1 | - Sa | weak | weak | weak | | | | H 1 | - Ga | very weak | very weak | very weak | | | | G a | - Sa | weak | medium | medium | | | | Ga | - Sβ | medium | strong | strong | | | | Ιγ | - Lδ | weak | medium | medium | | | | A NH | - NH <u>Ac</u> | - | - | weak | | | ### 1.1 Complete ¹H-NMR data of model glycopeptide Ac-AALDS(GalNAc)QGAI-OH 400 MHz-¹H-NMR (D₂O), δ[ppm]: 4.88 (d, 1H, H1, 3J = 3.5 Hz); 4.61 (t, 1H, α-CH Asp, 3J = 3.1 Hz); 4.49 (m, 1H, α-CH Ser); 4.42-4.20 (m, 5H, α-CH Gln (4.3), 3*α-CH Ala (4.3-4.2), α-CH Leu (4.2)); 4.16 (dd, 1H, H2, ${}^3J_{2,1}$ = 3.5 Hz, ${}^3J_{2,3}$ = 11.0 Hz); 4.07 (d, 1H, α-CH Ile); 4.02-3.68 (m, 9H, α-CH₂ Gly (3.8), β-CH₂ Ser_{a/b} (3.9, 3.8), H3 (3.89), H4 (4.02), H5 (3.85), H6 (3.72)); 2.75-2.65 (m, 2H, β-CH₂ Asp); 2.38 (t, 2H, γ-CH₂ Gln, 3J = 7.0 Hz); 2.01 (m, 4H, β-CH_aH_b Gln, CH₃ NHAc); 1.90 (m, 4H, β-CH_aH_b Gln, CH₃ GalNHAc); 1.86-1.80 (m, 1H, β-CH Ile); 1.68-1.55 (m, 3H, β-CH₂ Leu, γ-CH Leu); 1.41-1.33 (m, 10H, γ-CH_aH_b Ile, 3*β-CH₃ Ala); 1.18-1.08 (m, 1H, γ-CH_aH_b Ile); 0.93-0.83 (m, 12H, 2*δ-CH₃ Leu, γ-CH₃ Ile, δ-CH₃ Ile). 400 MHz-¹H-NMR (DMSO-d₆/D₂O 70:30), δ[ppm]: 8.23 (m, 1H, NH Gln); 4.59 (d, 1H, H1, 3J = 3.4 Hz); 4.39-4.33 (m, 2H, α-CH Asp (4.35), α-CH Ser(4.37)); 4.35-4.00 (m, 6H, H2 (4.16), 3*α-CH Ala (4.1), α-CH Leu (4.13), α-CH Gln (4.07)); 3.85 (d, 1H, α-CH Ile, 3J = 5.1 Hz); 3.74-3.43 (m, 9H, α-CH₂ Gly (3.71), H3 (3.70), H4 (3.61), H5 (3.61), β-CH₂ Ser (3.47), H6 (3.46)); 2.41 (m, 2H, β-CH₂ Asp); 2.12 (t, 2H, γ-CH₂ Gln, 3J = 7.4 Hz); 1.95-1.80 (m, 8H, β-CH_aH_b Gln (1.91), CH₃ NH_{AC} (1.84), β-CH_aH_b Gln (1.82), CH₃ GalNH_{AC} (1.81)); 1.68-1.60 (m, 1H, β-CH Ile); 1.55-1.41 (m, 3H, γ-CH Leu (1.51), β-CH₂ Leu (1.43)); 1.35-1.12 (m, 10H, γ-CH_aH_b Ile (1.3), 3*β-CH₃ Ala (1.2)); 0.93 (m, 1H, γ-CH_aH_b Ile); 0.79-0.68 (m, 12H, 2*δ-CH₃ Leu (0.74), δ-CH₃ Ile (0.72), γ-CH₃ Ile (0.70)). 400 MHz-¹H-NMR (DMSO-d₆), δ[ppm]: 8.71 (d, 1H, NH Ile, ${}^{3}J$ = 8.2 Hz); 8.68-8.10 (m, 7H, NH Ala (8.6, 8.45 ${}^{3}J$ = 7.4 Hz), NH Asp (8.43), NH Ser (8.35), NH Leu, NH Gly, NH GalN $\underline{\mathbf{H}}$ Ac); 7.79 (d, 1H, NH Ala, ${}^{3}J$ = 8.2 Hz); 7.50 (s_b, 1H, NH ε-Gln); 6.71 (s_b, 1H, NH ε-Gln); 4.62 (d, 1H, H1, ${}^{3}J$ = 3.1 Hz); 4.56 (m, 1H, α-CH Ser); 4.48 (m, 1H, α-CH Asp (4.35)); 4.35-4.00 (m, 6H, H2 (4.26), 3*α-CH Ala (4.24, 4,08), α-CH Leu (4.26), α-CH Gln (4.18)); 3.74-3.43 (m, 10H, α-CH Ile (3.79), H3 (3.71), α-CH₂ Gly (3.69), H5 (3.63), H4 (3.62), β-C $\underline{\mathbf{H}}$ _aH_b Ser (3.51), H6 (3.48), β-CH_aH_b Ser (3.42)); 2.40 (m, 2H, β-CH₂ Asp); 2.08 (t, 2H, γ-CH₂ Gln, ${}^{3}J$ = 7.4 Hz); 1.95-1.80 (m, 8H, β-CH₂ Gln (1.92), CH₃ NH $\underline{\mathbf{Ac}}$ (1.84), CH₃ GalNH $\underline{\mathbf{Ac}}$ (1.81)); 1.72-1.55 (m, 2H, β-CH Ile (1.70), γ-CH Leu (1.58)); 1.55-1.41 (m, 2H, β-CH₂ Leu (1.45), γ-C $\underline{\mathbf{H}}$ _aH_b Ile (1.44)); 1.35-1.02 (m, 10H, 3*β-CH₃ Ala (1.22, 1.15), γ-CH_aH_b Ile (1.07)); 0.89-0.70 (m, 12H, 2*δ-CH₃ Leu (0.85, 0.79), δ-CH₃ Ile (0.79), γ-CH₃ Ile (0.74)). ## 2. NOE/ROE proton contacts used for MM2-calculations of peptide 19 and glycopeptides 20-25 in DMSO-d₆ at 298 K. NOESY and ROESY NMR spectra were recorded using mixing times of 300 ms in all cases. For discussion of the NOE/ROE NMR spectra and conformational analysis amino acids were numbered from N- to C-terminus of LI-cadherin peptide sequence \mathbf{I} in the following way: $L^1 A^2 A^3 L^4 D^5 S^6 Q^7 G^8 A^9 I^{10} V^{11}$. ¹H signals of the saccharide portions were indicated as: N-acetyl-D-galactosamine (no apostrophe); D-galactose ('); N-acetyl-neuraminic acid (''). Proton-proton distances were calculated from NOESY and ROESY intensities according to the formula $V = k/r^6$. Constant "k" was derived from the known distance between co-axial protons within a monosaccharide residue. The available software *Chem3D* V 9.0 used in this work does not fully support ensemble calculations. Therefore, random structures of molecules **19-25** were generated by the *molecular dynamics* procedure in *Chem3D* V 9.0. For each molecule eight to ten different random structures were created and subjected to MM2 energy minimization calculations based on proton-proton distances obtained from the NOE/ROE intensities (formula, se above). The following upper limits of these intensity-derived distances of the related protons were assigned: | intensity | strong | medium | weak | very weak | |---------------------------|--------|--------|-------|-----------| | distance
(upper limit) | 3.0 Å | 3.6 Å | 4.3 Å | 5.0 Å | These upper limits were used in MM2 energy minimization calculations the following way: At first, two or three NOE restraints were included in the calculations, the resulting values fixed and the next two or three NOE restraints included. Subsequently, for refinement about a fifth of all restraints were allowed to vary, the newly obtained values were fixed again, and new restraints were varied. This was repeated until the distances did not change any more. In the last step, about 60 % and finally all fixations were removed, and the final structure was calculated by energy minimization. The calculations led to nearly identical results regarding the turn region. In most cases, only few NOE-contacts between saccharide and peptide were found. The relative position of the saccharide obviously shows greatest variation in these compounds | NOE Proton Contacts of 19 | | | ROE/NOE intensity | |---------------------------|---|--------------------|-------------------| | $A^2 \alpha$ | - | $L^4 \beta$ | medium | | $A^2 \alpha$ | | | strong | | | | A^9 NH | very weak | | | | A^9 NH | weak | | $L^4 \alpha$ | | A ⁹ NH | strong | | $L^4 \gamma$ | | A^9 NH | strong | | $D^5 NH$ | - | A^9 NH | medium | | $Q^7 \alpha$ | - | $V^{11} \alpha$ | strong | | $A^9 \alpha$ | - | I ¹⁰ NH | medium | | | otor
of 2 | Contacts
0 | ROE/NOE intensity | |-----------------|--------------|----------------|-------------------| | $V^{11} \alpha$ | | | weak | | $I^{10}\alpha$ | - | $L^4 \beta$ | strong | | S^6NH | - | $G^8 \alpha$ | weak | | $S^6 \alpha$ | | | medium | | | | A^9 NH | weak | | G^8 NH | - | A^9 NH | weak | | G^8 NH | - | $I^{10}\alpha$ | very weak | | | | | | | | otor
of 2 | Contacts | ROE/NOE intensity | |----------------------|--------------|------------------------|-------------------| | $I_{10}^{10}\beta$ | - | L ⁴ NH | strong | | $I^{10}\beta$ | | V^{11} NH | strong | | $I^{10}\beta$ | - | NHCOCH ₃ | very weak | | $Q^7 \alpha$ | | H 4 | medium | | I^{10} NH | - | G ⁸ NH | very weak | | $I^{10}\gamma^{CH3}$ | - | $L^4\gamma$ | weak | | $V^{11}NH$ | - | $L^4 \dot{\beta}$ | medium | | $D^5 \alpha$ | - | $NHCO\underline{CH}_3$ | very weak | | H 3 | - | H 1' | weak | | H 3 | - | H 3' | weak | | H 3 | - | H 5' | weak | | | | | | | | otor | Contacts | ROE/NOE intensity | |--------------------|------|------------------------|-------------------| | A^3 NH | - | $L^1\alpha$ | very weak | | $S^6 \beta$ | | | medium | | I^{10} NH | - | $A^2 \alpha$ | weak | | I^{10} NH | - | $A^3 \alpha$ | medium | | V^{11} NH | - | $A^2 \alpha$ | weak | | V^{11} NH | - | $A^3 \alpha$ | medium | | V^{11} NH | | | medium | | V ¹¹ NH | - | $I^{10} \alpha$ | medium | | $A^9 \alpha$ | - | $N\underline{H}COCH_3$ | weak | | | otor
of 2 | | ROE/NOE intensity | |-------------------|--------------|----------------------|-------------------| | $L^4 \alpha$ | - | $I^{10}\gamma^{CH3}$ | medium | | $L^4\gamma$ | - | $I^{10}\gamma^{CH3}$ | weak | | $D^5 \beta$ | - | $I^{10}\delta$ | very weak | | $Q^7 \gamma$ | - | $I^{10}\alpha$ | very weak | | $Q^7 NH^{\omega}$ | - | NHCOCH ₃ | weak | | $Q^7 \alpha$ | - | $I^{10}\gamma^{CH3}$ | weak | | $Q^7 NH$ | - | $I^{10}\alpha$ | very weak | | G^8 NH | - | $A^9 \beta$ | weak | | G^8 NH | - | H 5 | weak | | A ⁹ NH | - | N <u>H</u> COCH₃ | very weak | | NOE Prot | on
f 2 | | ROE/NOE intensity | |-----------------------------|-----------|-----------------|-------------------| | L ⁴ NH | - | $V^{11} \alpha$ | weak | | $Q^7 \alpha$ | - | $S^6 \beta$ | weak | | $Q^7 \alpha$ | - | $I^{10}\beta$ | very weak | | $I^{10}\gamma^{CH2}$ | - | $L^4 \beta$ | very weak | | $I^{10}\delta$ | - | $A^9 \beta$ | weak | | $I^{10}\gamma^{CH3}$ | - | $A^3 \alpha$ | weak | | $I^{10}\gamma^{CH3}$ | - | $L^4 \beta$ | very weak | | $I^{10}\gamma^{CH3}$ | - | $Q^7 \alpha$ | very weak | | NHCOCH ₃ | - | $A^9 \beta$ | strong | | NHCO <u>CH</u> 3 | - | $D^5 \alpha$ | very weak | | NHCO <u>CH</u> ₃ | - | H 5'' | weak | | | otor | Contacts | ROE/NOE intensity | |-------------------|------|----------------------|-------------------| | G ⁸ NH | | | medium | | | | $I^{10}\gamma^{CH2}$ | weak | | $L^4 \beta$ | | | strong | | $L^4 \gamma$ | - | $I^{10}\delta$ | medium | The structures of (glycol)peptides **19** - **25** shown in Figure 2 in this publication are those ones fitting all NOE restrictions and having lowest energy. ### 3. Complete ¹H-NMR data of compounds 19 - 25 Denomination of the saccharide portions: N-acetyl-D-galactosamine (no apostrophe); D-galactose ('); N-acetyl-neuraminic acid (''). **19**: L-Leucyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-L-valin 400 MHz-¹H-NMR (DMSO-d₆), δ[ppm]: 8.66 (d, 1H, NH Ala¹, 3J = 7.4 Hz); 8.24 (d, 1H, NH Asp, 3J = 7.4 Hz); 8.12-8.04 (m, 5H, NH Leu^ω (8.10), NH Leu² (8.10), NH Gly (8.06), NH Gln (8.06)); 7.93-7.84 (m, 4H, NH Ala² (7.91), NH Val (7.88), NH Ile (7.86), NH Ala³ (7.86)); 7.71 (d, 1H, NH Ser, 3J = 7.4 Hz); 7.24 (s_b, 1H, NH_aH_b ε-Gln); 6.77 (s_b, 1H, NH_aH_b ε-Gln); 4.55 (dd, 1H, α-CH Asp, 3J_a = 7.4 Hz, 3J_b = 13.3 Hz); 4.40-4.18 (m, 7H, α-CH Ala¹ (4.38), α-CH Ala² (4.35), α-CH Leu² (4.28), α-CH Ala³ (4.28), α-CH Ser (4.25), α-CH Ile (4.23), α-CH Gln (4.20)); 4.11 (dd, 1H, α-CH Val, 3J_a = 5.5 Hz, 3J_b = 8.2 Hz); 3.77 (m, 1H, α-CH ω-Leu); 3.72+3.67 (2*d, 2H, α-CH_aH_b Gly, $^3J_{a,b}$ = 5.7 Hz); 3.62-3.48 (m, 2H, β-CH_aH_b Ser (3.60), β-CH_aH_b Ser (3.50)); 2.72 (dd, 1H, β-CH_aH_b Asp, $^3J_{a,b}$ = 5.9 Hz, $^3J_{a,a}$ = 16.4 Hz); 2.51 (m, 1H, β-CH_aH_b Asp); 2.10 (t, 2H, γ-CH₂ Gln, 3J = 6.9 Hz); 2.05-1.90 (m, 2H, β-CH Val (2.03), β-CH_aH_b Gln (1.92)); 1.77-1.41 (m, 9H, β-CH_aH_b Gln (1.75), β-CH Ile (1.71), γ-CH ω-Leu (1.63), γ-CH Leu² (1.57), β-CH₂ ω-Leu (1.51), β-CH₂ Leu² (1.43), γ-CH_aH_b Ile (1.43)); 1.25-1.15 (m, 9H, β-CH₃ Ala¹ (1.23), β-CH₃ Ala³ (1.19), β-CH₃ Ala² (1.17)); 1.07 (m, 1H, γ-CH_aH_b Ile); 0.91-0.77 (m, 24H, 4*δ-CH₃ Leu, 2*γ-CH₃ Val (0.87, 0.85), γ-CH₃ Ile (0.83), δ-CH₃ Ile (0.79)). **20**: L-Leucyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-O-(2-acetamido-2-deoxyα-D-galactopyranosyl)-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-L-valin 400 MHz-¹H-NMR (DMSO-d₆), δ [ppm]: 8.65 (d, 1H, NH Ala³, ³J = 7.4 Hz); 8.24 (d, 1H, NH Asp, ${}^{3}J = 7.0 \text{ Hz}$); 8.18-7.85 (m, 10H, NH Gly (8.16), ω -NH₂ Leu (8.10), NH Ala² (8.09), NH Gln (7.98), NH Ala¹ (7.95), NH Ser (7.91), NH Ile, Leu, Val (7.87)); 7.33-7.24 (m, 2H, NH GalNHAc (7.31), NH_aH_b ϵ -Gln (7.26)); 6.78 (s_b, 1H, NH_aH_b ϵ -Gln); 4.60 (d, 1H, H1, ${}^{3}J_{1,2}$ = 3.1 Hz); 4.54 (dd, 1H, α -CH Asp, ${}^{3}J_{\alpha,\beta a} = 7.4$ Hz, ${}^{3}J_{\alpha,\beta b} = 1\overline{3}.3$ Hz); 4.44-3.40 (m, 19H, α -CH Ser (4.42), α -CH Ala³ (4.37), α -CH Ala¹ (4.34), α -CH Leu (4.29), α -CH Ala² (4.26), α -CH Ile (4.21), α-CH Gln (4.20), α-CH Val (4.10), H2 (4.05), α-C \underline{H}_aH_b Gly (3.80), α-CH ω-Leu (3.76), H5 (3.70), β -CH_aH_b Ser (3.62), α -CH_aH_b Gly (3.60), H4 (3.57), H3 (3.57), β -CH_aH_b Ser (3.50), H6a (3.50), H6b (3.42)); 2.71 (m, 1H, β -C \underline{H}_a H_b Asp); 2.52 (m, 1H, β -C \underline{H}_a H_b Asp); 2.12-2.00 (m, 3H, γ -CH₂ Gln (2.10), β -CH Val (2.02)); 1.92-1.40 (m, 12H, β -CH_aH_b Gln (1.88), CH₃ NHAc (1.85), β-CH_aH_b Gln (1.76), β-CH Ile (1.71), γ-CH ω-Leu (1.62), γ-CH Leu (1.56), β-CH₂ ω-Leu (1.49), γ -CH_aH_b Ile (1.43) β-CH₂ Leu (1.42)); 1.23-1.13 (m, 9H, β -CH₃³ Ala (1.21), β -CH₃² Ala (1.18), β -CH₃¹ Ala (1.15)); 1.04 (m, 1H, γ -CH_aH_b Ile); 0.90-0.77 (m, 24H, $4*\delta$ -CH₃ Leu, $2*\gamma$ -CH₃ Val (0.85), γ -CH₃ Ile (0.82), δ -CH₃ Ile (0.79)). **21**: L-Leucyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-*O*-(2-acetamido-2-desoxy- $3-O-[\beta-D-galactopyranosyl]-\alpha-D-galactopyranosyl)-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-$ L-valin 400 MHz-¹H-NMR (DMSO-d₆), δ[ppm]: 8.66 (d, 1H, NH Ala³, $^{3}J = 7.4$ Hz); 8.30-8.22 (m, 2H, NH Asp (8.28), NH Gly (8.24)); 8.14 (d, 1H, NH Ala^{1/2}, ${}^{3}J = 7.4$ Hz); 8.09 (m, 1H, NH Leu¹); 8.01 (m, 2H, NH Ser, NH Gln); 7.95 (d, 1H, NH Ile, ${}^{3}J = 7.4$ Hz); 7.92-7.87 (m, 3H, NH Val (7.90), NH Leu² (7.89), NH Ala^{1/2}); 7.47 (d, 1H, NH GalNHAc, $^{3}J = 8.61$ Hz); 7.30 $(s_b, 1H, N_{H_a}H_b \epsilon - Gln); 6.82 (s_b, 1H, N_{H_a}H_b \epsilon - Gln); 4.69 (d, 1H, H1, <math>^3J_{1,2} = 3.1 \text{ Hz}); 4.57-4.20$ (m, 10H, α -CH Asp (4.55), α -CH Ser (4.45), α -CH Ala^{1,3} (4.38), α -CH Ile (4.35), α -CH Leu² (4.33), α -CH Ala² (4.31), H1'(4.30), H2 (4.24), α -CH Gln (4.22)); 4.12 (dd, 1H, α -CH Val, $^{3}J_{a} = 5.9 \text{ Hz}, ^{3}J_{b} = 8.2 \text{ Hz}); 3.94 \text{ (m, 1H, H4)}; 3.85-3.25 \text{ (m, 15H, } \alpha - \text{CH}_{a}H_{b} \text{Gly (3.83), \text{Gly (3.83), } \alpha - \text{Gly (3.83), } \alpha - \text{Gly$ Leu¹ (3.78), H3 (3.70), β -CH_aH_b Ser (3.69), H5 (3.62), H4'(3.62), α -CH_aH_b Gly (3.62), $H6'/H6_a$ (3.52), β - $CH_a\underline{H}_b$ Ser (3.51), $H6'/H6_b$ (3.44), H5'(3.35), H2'(3.34), H3'(3.27)); 2.72 (dd, 1H, β -C \underline{H}_a H_b Asp, ${}^3J_{a,b} = 5.1$ Hz, ${}^3J_{a,b} = 17.2$ Hz); 2.54 (m, 1H, β -C \underline{H}_a H_b Asp); 2.14-2.02 (m, 3H, γ -CH₂ Gln (2.12), β -CH Val (2.04)); 1.92-1.41 (m, 13H, β -CH_aH_b Gln (1.90), NHAc (1.81), β -CH_aH_b Gln (1.77), β -CH Ile(1.72), γ -CH Leu¹ (1.64), γ -CH Leu² (1.59), β -CH₂ Leu¹ (1.52), γ -C \underline{H}_aH_b Ile (1.45), β -C \underline{H}_2 Leu² (1.43)); 1.24-1.15 (m, 9H, β -C \underline{H}_3 Ala (3: 1.22, 2: 1.18, 1.24) **22**: L-Leucyl-L-alanyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-O-{2-acetamido-2-desoxy-3-O-[4-O-acetyl-3-O-(5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosyl)-β-D-galactopyranosyl]-α-D-galactopyranosyl}-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-L-valin 400 MHz- 1 H-NMR (DMSO- 1 d₆), δ[ppm]: 8.64 (d, 1H, NH Ala A , 3 J = 7.4 Hz); 8.37 (d, 1H, NH Asp, 3 J = 8.2 Hz); 8.21-7.80 (m, 11H, NH: Gly (8.19), NeuNHAc (8.19), Gln (8.11), Val (8.09), Ala B (8.08), Leu 1 (NH₂, 8.05), Ala C (7.89), Leu 4 (7.89), Ser (7.88), GalNHAc (7.88), Ile (7,82)); 7.24+7.11+6.96 (s, 3-6H, NH₃+ ε-Gln, Leu 1); 4.62-3.92 (m, 14H, H1 (4.60), α-CH 1: 1.17)); 1.05 (m, 1H, γ -CH_aH_b Ile); 0.92-0.78 (m, 24H, 4* δ -CH₃ Leu, 2* γ -CH₃ Val (0.87), γ-CH₃ Ile (0.83), δ-CH₃ Ile (0.80)). Asp (4.56), H1' (4.50), α-CH Ala^A (4.38), α-CH Ala^C (4.33), H3' (4.30), α-CH Leu⁴ (4.29), α-CH Ala^B (4.26), α-CH Ile (4.23), α-CH Gln (4.14), α-CH Val (4.13), α-CH Ser (4.11), H2 (4.10), H3 (3.90)); 3.81-3.50 (14H, m, α-CH Leu¹ (3.79), β-C $\underline{H}_{\underline{A}}$ H_B Ser (3.74), α-CH₂ Gly (3.70+3.64), H6'' (3.67), H4, H4', H5, H9a''(3.60), H4'' (3.55), H5'', H6, H6', β-CH_AH_B Ser (3.50), H9b'' (3.40), H5'(3.35), H2', H7"', H8'' (3.30)); 2.81-2.50 (m, 3H, β-CH₂ Asp (2.79-2.66), H3_{eq}'' (2.50)); 2.10-2.01 (m, 3H, γ-CH₂ Gln (2.08), β-CH Val (2.03)); 1.90-1.70 (m, 14H, 4'OAc (1.88), β-C $\underline{H}_{\underline{a}}$ H_b Gln (1.85), NH \underline{A} c Gal (1.84), NH \underline{A} c Neu (1.76), β-CH Ile (1.72)); 1.70-1.40 (m, 9H, β-CH_a $\underline{H}_{\underline{b}}$ Gln (1.69), γ-CH Leu¹ (1.62), γ-CH Leu⁴ (1.58), H3_{ax}'' (1.50), β-CH₂ Leu¹ (1.48), γ-C $\underline{H}_{\underline{a}}$ H_b Ile (1.43), β-CH₂ Leu⁴ (1.42)); 1.24-1.14 (m, 9H, β-CH₃ Ala^A (1.22), β-CH₃ Ala^B (1.18), β-CH₃ Ala^C (1.16)); 1.05 (m, 1H, γ-CH_a $\underline{H}_{\underline{b}}$ Ile); 0.89-0.78 (m, 24H, 4*δ-CH₃ Leu, 2*γ-CH₃ Val (0.87+0.86), γ-CH₃ Ile (0.83), δ-CH₃ Ile (0.80)). 23: L-Leucyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-O-{2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-[benzyl-(5-acetamido-3,5-dideoxy- α -D-glycero-D-galacto-2-nonulopyranosyl)onat]- α -D-galactopyranosyl}-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-L-valin 400 MHz-¹H-NMR (DMSO-d₆), δ[ppm]: 8.64 (d, 1H, NH Ala¹, $^{3}J = 7.4$ Hz); 8.23 (d, 1H, NH Asp, ${}^{3}J = 7.1 \text{ Hz}$); 8.16 (m, 1H, NH Gly); 8.11-8.06 (m, 3H, NH Ala³ (8.09), NH Leu^{\omega} (8.08)); 7.99-7.85 (m, 7H, NH Gln (7.97), NH Ser (7.96), NH Ala² (7.95), NH Ac Neu (7.94), NH Ile (7.89), NH Leu² (7.87), NH Val (7.87)); 7.28-7.24 (m, 2H, NH_aH_b ϵ -Gln, NHAc Gal); 6.78 (s_b, 1H, NH_aH_b ϵ -Gln); 4.61 (d, 1H, H1, ${}^{3}J_{1,2} = 3.1$ Hz); 4.56 (dd, 1H, α -CH Asp, $^{3}J_{a} = 7.4 \text{ Hz}, ^{3}J_{b} = 13.3 \text{ Hz}); 4.45-4.21 \text{ (m, 7H, }\alpha\text{-CH Ser (4.43), }\alpha\text{-CH Ala}^{1} \text{ (4.38), }\alpha\text{-CH}$ Ala² (4.34), α -CH Leu² (4.31), α -CH Ala³ (4.28), α -CH Gln (4.24), α -CH Ile (4.23)); 4.13-4.04 (m, 2H, α -CH Val (4.11), H2 (4.06)); 3.84 (d, 1H, α -CH_aH_b Gly, ${}^{3}J_{a,b} = 6.3$ Hz); 3.80-3.49 (m, 12H, α -CH ω -Leu (3.78), β -C \underline{H}_a H_b Ser (3.65), H5 (3.64), H4 (3.63), H6a (3.61), H9a'' (3.61), H8'' (3.61), α -CH_aH_b Gly (3.58), H3 (3.56), H5'' (3.55), H4'' (3.52), β -CH_a $\underline{H_b}$ Ser (3.51)); 3.40-3.36 (m, 3H, H6b, H9b'', H7''); 3.27 (m, 1H, H6''); 2.72 (dd, 1H, β-CH_aH_b Asp, ${}^{3}J_{a,b} = 4.9 \text{ Hz}$, ${}^{3}J_{a,a} = 16.6 \text{ Hz}$); 2.57-2.47 (m, 2H, β-CH_aH_b Asp (2.55), H3_{eq}" (2.49)); 2.13-2.00 (m, 3H, γ -CH₂ Gln (2.11), β -CH Val (2.02)); 1.90-1.84 (m, 4H, β -CH_aH_b Gln (1.88), NHAc Neu (1.86)); 1.77-1.41 (m, 13H, β -CH_aH_b Gln (1.75), NHAc Gal (1.74), β-CH Ile (1.71), γ-CH ω-Leu (1.64), γ-CH Leu² (1.57), H3_{ax} (1.55), β-CH₂ ω-Leu (1.52), β-CH₂ Leu² (1.43), γ-CH₃H_b Ile (1.43)); 1.24-1.15 (m, 9H, β-CH₃ Ala¹ (1.22), β-CH₃ Ala³ (1.18), β -CH₃ Ala² (1.16)); 1.05 (m, 1H, γ -CH_aH_b Ile); 0.92-0.77 (m, 24H, 4* δ -CH₃ Leu, $2*\gamma$ -CH₃ Val (0.86, 0.85), γ -CH₃ Ile (0.82), δ -CH₃ Ile (0.79)). **24**: L-Leucyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-O-(2-acetamido-4-O-acetyl-2-deoxy-3-O-β-D-galactopyranosyl-6-O-[benzyl-(5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosyl)onat]-α-D-galactopyranosyl)-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-L-valin 400 MHz-¹H-NMR (DMSO-d₆), δ[ppm]: 8.66 (d, 1H, NH Ala^I, ${}^{3}J$ = 7.4 Hz); 8.30-8.23 (m, 2H, NH Asp (8.28), NH Gly (8.25)); 8.19-8.02 (m, 4H, NH Ser (8.17), NH Ala^{III} (8.14), NH Leu¹ (8.10), Neu<u>NH</u>Ac (8.04)); 7.96-7.87 (m, 5H, Ala^{III} (7.94), NH Leu⁴ (7.88), NH Ile, Gln (7.01), NH Val (7.80)); 7.57 (d, 1H, CalNHA a. ${}^{3}L$ (8.24 Hz); 7.28 (a. 1H, NH Hz) (6.15); 6.56 Leu (8.10), Neu<u>NH</u>Ac (8.04)); 7.96-7.87 (m, 5H, Ala (7.94), NH Leu (7.88), NH IIe, GII (7.91), NH Val (7.89)); 7.57 (d, 1H, Gal<u>NH</u>Ac, ${}^{3}J = 8.2$ Hz); 7.28 (s_b, 1H, N<u>H</u>_aH_b ϵ -Gln); 6.81 (s_b, 1H, NH_a<u>H</u>_b ϵ -Gln); 5.30 (s_b, 1H, H4); 4.79 (d, 1H, H1, ${}^{3}J_{1,2} = 2.7$ Hz); 4.56-4.17 (m, 10H, α -CH Asp (4.54), α -CH Ser (4.46), α -CH Ala^{II} (4.39), α -CH Ala^{III} (4.37), α -CH Leu⁴ (4.36), α -CH Ala^{III} (4.32), H1' (4.29), α -CH IIe (4.24), α -CH Gln (4.23), H2 (4.19)); 4.12 (dd, 1H, α -CH Val, ${}^{3}J_{a,b} = 5.9$ Hz, ${}^{3}J_{aNH} = 8.2$ Hz); 3.99-3.75 (m, 5H, H3'(3.97), H3 (3.95), α -C<u>Ha</u>_aH_b Gly (3.85), α-CH Leu¹ (3.78), β-C \underline{H}_aH_b Ser (3.77)); 3.65-3.43 (m, 11H, H9a'' (3.63), α-CH_a \underline{H}_b Gly (3.61), H4'(3.61), H5 (3.60), H6a/H6a'/H4'' (3.55), H5''(3.50), β-CH_a \underline{H}_b Ser (3.49), H6b/H6b' (3.45)); 3.41-3.22 (m, 6H, H9b'' (3.39), H5'/H7'' (3.32), H6'' (3.30), H8'' (3.25), H2'(3.24)); 2.70 (m, 1H, β-C \underline{H}_aH_b Asp); 2.56-2.47 (m, 2H, β-CH_a \underline{H}_b Asp (2.54), H3_{eq}'' (2.49)); 2.13-1.68 (m, 15H, γ-CH₂ Gln (2.11), β-CH Val (2.03), H4:OAc (2.01), β-C \underline{H}_aH_b Gln (1.90), NH \underline{A} c Neu (1.87), NH \underline{A} c Gal (1.83), β-CH_a \underline{H}_b Gln (1.77), β-CH Ile (1.70)); 1.66-1.42 (m, 8H, γ-CH Leu¹ (1.64), γ-CH Leu⁴ (1.59), β-CH₂ Leu¹ (1.51), H3_{ax}'' (1.48), γ-C \underline{H}_aH_b Ile (1.46), β-CH₂ Leu⁴ (1.44)); 1.24-1.15 (m, 9H, β-CH₃ Ala^{II} (1.22), β-CH₃ Ala^{III} (1.18), β-CH₃ Ala^{II} (1.17)); 1.07 (m, 1H, γ-CH_a \underline{H}_b Ile); 0.94-0.78 (m, 24H, 4*δ-CH₃ Leu (0.90-0.86, 0.82), 2*γ-CH₃ Val (0.87-0.86), γ-CH₃ Ile (0.84), δ-CH₃ Ile (0.80)). 25: L-Leucyl-L-alanyl-L-alanyl-L-leucyl-L-asparagyl-L-seryl-O-{2-acetamido-2-desoxy-3-*O*-[4-*O*-acetyl-3-*O*-(5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosyl)β-D-galactopyranosyl]-6-*O*-(5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosyl)-α-D-galactopyranosyl}-L-glutaminyl-glycyl-L-alanyl-L-isoleucyl-L-valin H: α-GalNAc, H': β-Gal-4OAc, H'': $(2\rightarrow 3)$ -α-NeuNAc, H''': $(2\rightarrow 6)$ -α-NeuNAc 400 MHz-¹H-NMR (DMSO-d₆), δ[ppm]: 9.41 (s, 1H (bis zu 4H möglich), COOH); 8.67 (d, 1H, NH Ala^A, ³J = 7.8 Hz); 8.22-8.10 (m, 7H, NH: 2*NeuNHAc (8.20+8.05), Gly (8.18), Asp (8.15), Leu¹ (NH₂, 8.12), Gln (8.12)); 9.94-7.83 (m, 7H, NH: Ala^{B,C} (7.92), Leu⁴ (7.91), Ser (7.91), GalNHAc (7.91/7.85), Val (7.90), Ile (7.85)); 6.83+6.67 (s, 3-6H, NH₃⁺ ϵ -Gln, Leu¹); 4.84 (m, 1H, H4'); 4.63-4.56 (m, 3H, H1' (4.61), H1 (4.59), α-CH Asp (4.59)); 4.40-4.09 (m, 9H, α -CH Ala^A (4.38), α -CH Ala^C (4.36), α -CH Leu⁴ (4.30), α -CH Ala^B (4.30), α -CH Ile (4.23), α -CH Ser (4.21), H2 (4.21), α -CH Gln (4.14), α -CH Val (4.11)); 3.97-3.29 (m, 25H, H3' (3.95), α -CH₂ Gly (3.83+3.68), H5 (3.83), α -CH Leu¹ (3.78), H4 (3.72), H2' (3.70), H4''' (3.68), β-CH₂ Ser (3.68-3.66), H3 (3.66), H6 (3.64+3.61), H5''+H5''' (3.59+3.48), H4" (3.56), H6" (3.47), H6" (3.67), H9"+H9" (3.46+3.42), H6"+H6" (3.35+3.30); H7"+H7" (3.34), H5' (3.31)); 3.19 (m, 2H, H8", H8"); 2.75-2.47 (m, 4H, β -CH₂ Asp (2.73+2.58), $H3_{eq}$ "+ $H3_{eq}$ "" (2.50)); 2.20-1.83 (m, 16H, 4'OAc (2.18), γ -CH₂ Gln (2.11), NHAc Gal (2.07), β-CH Val (2.03), 2*NHAc Neu (1.87), β-CH_aH_b Gln (1.85)); 1.82-1.42 (m, 11H, $H3_{ax}$ " (1.80), β-CH Ile (1.72), β-CH_aH_b Gln (1.70), γ-CH Leu¹ (1.66), γ-CH Leu⁴ (1.58), β -CH₂ Leu¹ (1.52), $H3_{ax}$ (1.50), γ -C $\underline{H}_{\underline{a}}$ H_b Ile (1.46), β -CH₂ Leu⁴ (1.44)); 1.24-1.15 (m, 9H, β -CH₃ Ala^A (1.22), β -CH₃ Ala^B (1.18), β -CH₃ Ala^C (1.17)); 1.07 (m, 1H, γ -CH_aH_b Ile); 0.90-0.78 (m, 24H, $4*\delta$ -CH₃ Leu, $2*\gamma$ -CH₃ Val (0.88+0.87), γ -CH₃ Ile (0.83), δ -CH₃ Ile (0.80)).