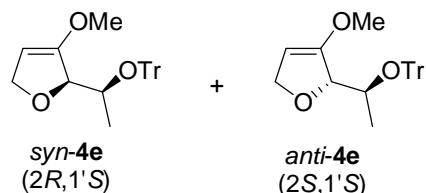


Angewandte Chemie

Eine Zeitschrift der Gesellschaft Deutscher Chemiker

Supporting Information

© Wiley-VCH 2006


69451 Weinheim, Germany

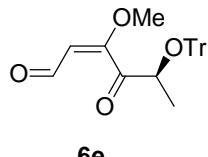
**Oxidative Cleavage of 3-Alkoxy-2,5-dihydrofurans and its Application
to the *de Novo* Synthesis of Rare Monosaccharides Exemplified by L-
Cymarose**

*Malte Brasholz and Hans-Ulrich Reissig**

*Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin,
Germany. E-mail: hans.reissig@chemie.fu-berlin.de; Fax:+49-30-83855367*

(2*R*,1'S)-3-Methoxy-2-(1-trityloxyethyl)-2,5-dihydrofuran and (2*S*,1'S)-3-Methoxy-2-(1-trityloxyethyl)-2,5-dihydrofuran *syn/anti*-(4e)

Methoxyallene (7.00 mL, 5.88 g, 83.9 mmol) was dissolved in Et₂O (150 mL), precooled to -45 °C. A solution of *n*-BuLi (2.50 M in hexanes, 31.0 mL, 77.5 mmol) was slowly added and the mixture was stirred for 20 min. The mixture was cooled to -78 °C and a solution of aldehyde **13**^[1] (7.71 g, 24.4 mmol) in Et₂O (100 mL) was added over 10 min with the aid of a double-tip needle. The mixture was stirred at -78 °C for 5 h. Then, H₂O (100 mL) was added and the mixture was warmed to r.t. The layers were separated and the aqueous layer was extracted with Et₂O (3 × 100 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated to dryness. The crude product was dried at 0.1 mbar to provide 9.91 g (quant.) of the allene adduct as an orange oil. ¹H-NMR showed a *syn/anti*-ratio of 30:70. Tentative assignment of the diastereomers was based on the Felkin-Anh transition state model.

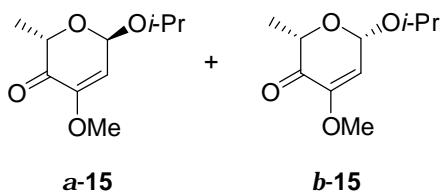

syn-adduct: $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 0.91$ (d, $J = 6.3$ Hz, 3 H, 1-H), 2.57 (d, $J = 7.2$ Hz, 1 H, OH), 3.28 (s, 3 H, OMe), 3.60 (m_c, 1 H, 2-H), 3.95 (m_c, 1 H, 3-H), 5.53-5.55 (br. m, 2 H, 6-H), 7.20-7.31, 7.47-7.53 (2 m, 15 H, Ph) ppm. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 15.2$ (q, C-1), 56.0 (q, OMe), 71.2 (d, C-3), 72.0 (d, C-2), 86.7 (s, CPh₃), 92.4 (t, C-6), 127.01, 127.6, 129.0 (3 d, Ph), 134.3 (s, C-4), 145.0 (s, Ph), 198.4 (s, C-5) ppm. *anti*-adduct: $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 1.02$ (d, $J = 6.3$ Hz, 3 H, 1-H), 2.25 (d, $J = 5.0$ Hz, 1 H, OH), 3.28 (s, 3 H, OMe), 3.55 (m_c, 1 H, 3-H), 3.83 (dq, $J = 3.6, 6.3$ Hz, 1 H, 2-H), 5.52 (br. t, $J = 2.9$ Hz, 2 H, 6-H), 7.20-7.31, 7.47-7.53 (2 m, 15 H, Ph) ppm. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 15.6$ (q, C-1), 55.9 (q, OMe), 71.5 (d, C-3), 74.5 (d, C-2), 87.1 (s, CPh₃), 92.6 (t, C-6), 127.02, 127.7, 128.9 (3 d, Ph), 134.4 (s, C-4), 144.8 (s, Ph), 197.9 (s, C-5) ppm.

The crude adduct (9.91 g, max. 24.4 mmol) was dissolved in DMSO (100 mL), with careful exclusion of oxygen. The solution was warmed to 60 °C and a solution of KO*t*-Bu (1.42 g, 12.7 mmol) in DMSO (20 mL) was slowly added, whereupon the mixture turned black. After 90 min at 60 °C, the mixture was cooled to r.t. and NaHCO₃-solution (sat. aq., 100 mL) and H₂O (50 mL) were added with vigorous stirring. The mixture was extracted with CH₂Cl₂ (4 × 200 mL). The combined organic layers were washed with H₂O and brine, dried with MgSO₄, filtered and concentrated. Column chromatography (silica gel, EtOAc/hexane = 1:10) provided 8.09 g (86% over 2 steps) *syn/anti*-**4e** as sticky orange oil. $^1\text{H-NMR}$ of the purified product showed unaltered *d.r.* A sample of the product was subjected to HPLC separation for analysis.

syn-4e: Yellow sticky oil, $[\alpha]_D^{22} = -20.1$ (c = 1.41, CHCl₃). $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 0.82$ (d, $J = 6.4$ Hz, 3 H, 2'-H), 3.59 (dq, $J = 2.8, 6.4$ Hz, 1 H, 1'-H), 3.62 (s, 3 H, OMe), 4.25 (m_c, 1 H, 2-H), 4.59-4.63 (m, 1 H, 4-H), 4.69-4.74 (m, 2 H, 5-H), 7.19-7.33, 7.50-7.53 (2 m, 15 H, Ph) ppm. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 16.6$ (q, C-2'), 57.3 (q, OMe), 70.7 (d, C-1'), 73.4 (t, C-5), 84.2 (d, C-2), 86.3 (s, CPh₃), 91.4 (d, C-4), 127.5, 127.9, 129.1 (3 d, Ph), 145.3 (s, Ph), 156.5 (s, C-3) ppm. **anti-4e:** Yellow sticky oil, $[\alpha]_D^{22} = +25.0$ (c = 1.99, CHCl₃). $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 0.81$ (d, $J = 6.5$ Hz, 3 H, 2'-H), 3.51 (s, 3 H, OMe), 3.84 (dq, $J = 1.8, 6.5$ Hz, 1 H, 1'-H), 4.17 (ddd, $J = 1.8,$

3.4, 6.5 Hz, 1 H, 2-H), 4.54 (q, J = 1.8 Hz, 1 H, 4-H), 4.59-4.65 (m, 2 H, 5-H), 7.19-7.30, 7.52-7.55 (2 m, 15 H, Ph) ppm. ^{13}C -NMR (126 MHz, CDCl_3): δ = 14.4 (q, C-2'), 57.4 (q, OMe), 71.3 (d, C-1'), 73.7 (t, C-5), 84.5 (d, C-2), 86.9 (s, CPh_3), 90.9 (d, C-4), 126.8, 127.6, 129.2 (3 d, Ph), 145.1 (s, Ph), 156.3 (s, C-3) ppm. *syn/anti-4e*: IR (film): ν = 3090-2850 cm^{-1} (=C-H, -C-H), 1660, 1600 (C=C). MS (FAB+): m/z (%) = 409 ($[\text{M} + \text{Na}]^+$, 3), 243 ($[\text{CPh}_3]^+$, 100). Anal. calc. for $\text{C}_{26}\text{H}_{26}\text{O}_3$ (386.5): C 80.80, H 6.78, found: C 80.80, H 6.90.

(5S)-3-Methoxy-4-oxo-5-trityloxyhex-2-enal (6e)

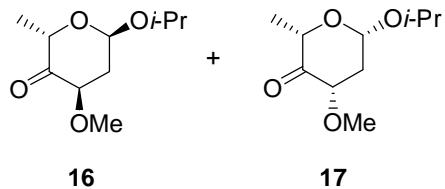


H_2O (8.00 mL) was suspended in a solution of *syn/anti-4e* (9.14 g, 23.6 mmol) in CH_2Cl_2 (130 mL). Then, DDQ (10.7 g, 47.1 mmol) was added in one portion and the mixture was vigorously stirred at r.t. for 2 h. NaHCO_3 -solution (sat. aq., 100 mL) and H_2O (50 mL) were added and the mixture was further stirred for 10 min. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 \times 100 mL). The combined organic layers were dried with MgSO_4 , filtered and concentrated. Column chromatography (silica gel, EtOAc/hexane = 1:3 : 1:2) provided **6e** as a sticky yellow resin, that was extensively dried at 0.1 mbar to afford 7.85 g (83%) of a yellow amorphous solid. Chiral phase HPLC analysis of this material, compared to a racemic reference sample, revealed *e.r.* > 99:1 (conditions: Chiralpak AD column, Daicel Chemical Industries Ltd., hexane/*i*-PrOH = 100:0 : 98:2 over 40 min, flow 1 mL/min, 18 bar. Retention time: (*R*)-enantiomer 23.1 min, (*S*)-enantiomer 33.6 min. Detection: UV, λ = 254 nm).

m.p. 119-121 $^{\circ}\text{C}$. $[\alpha]_D^{22} = -122.7$ (c = 1.51, CHCl_3). ^1H -NMR (500 MHz, CDCl_3): δ = 1.41 (d, J = 6.7 Hz, 3 H, 6-H), 3.58 (s, 3 H, OMe), 4.80 (q, J = 6.7 Hz, 1 H, 5-H), 5.20 (d, J = 7.0 Hz, 1 H, 2-H), 7.20-7.29, 7.44-7.47 (2 m, 15 H, Ph), 9.45 (d, J = 7.0 Hz,

1 H, 1-H) ppm. ^{13}C -NMR (126 MHz, CDCl_3): δ = 19.2 (q, C-6), 55.9 (q, OMe), 72.1 (d, C-5), 87.9 (s, $\underline{\text{CPh}_3}$), 109.8 (d, C-2), 127.4, 128.0, 129.0 (3 d, Ph) 143.9 (s, Ph), 164.6 (s, C-3), 191.6 (s, C-4), 197.6 (s, C-1) ppm. IR (KBr): ν = 3090-2900 cm^{-1} (=C-H, -C-H), 1660 (C=O). MS (EI, 80 eV, 140 °C): m/z (%) = 400 ($[\text{M}]^+$, < 1), 243 ($[\text{CPh}_3]^+$, 100), 165 (39). Anal. calc. for $\text{C}_{26}\text{H}_{24}\text{O}_4$ (400.5): C 77.98, H 6.04, found: C 77.80, H 5.80.

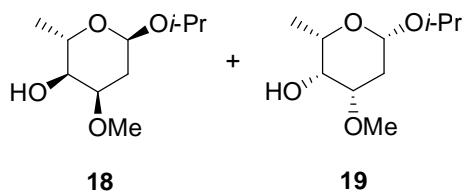
(2S,6R)-6-Isopropoxy-4-methoxy-2-methyl-6H-pyran-3-one and (2S,6S)-6-Isopropoxy-4-methoxy-2-methyl-6H-pyran-3-one a/b-(15)



Ketoaldehyde **6e** (7.86 g, 19.6 mmol) and HC(Oi-Pr)_3 (7.41 g, 38.9 mmol) were dissolved in CH_2Cl_2 (50 mL). A solution of iodine (1.52 g, 5.99 mmol) in *i*-PrOH (100 mL) was added and the mixture was heated to 60 °C for 2.5 h (no argon). After cooling to r.t., NaOH-solution (2.50 M aq., 6 mL) was added and stirring was continued for 10 min. The mixture was poured into a solution of $\text{Na}_2\text{S}_2\text{O}_3$ (sat. aq., 100 mL) mixed with NaHCO_3 -solution (sat. aq., 100 mL), and washed. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (4 × 150 mL). The combined organic layers were dried with MgSO_4 , filtered and concentrated. Column chromatography (silica gel, EtOAc/hexane = 1:3) provided 3.52 g (90%) **a/b-15** as a yellowish liquid which solidified to a wax upon storage in the refrigerator. Due to its volatility, the product was cooled in an ice-bath when dried in vacuo. ^1H -NMR of the crude and purified products showed an **a/b**-ratio of 83:17. A sample of the product was subjected to HPLC separation which provided only **a-15** in anomerically pure form.

a-15: Colorless solid, m.p. 47 °C. $[\alpha]_D^{22} = -42.4$ ($c = 0.25$, CHCl_3). ^1H -NMR (500 MHz, CDCl_3): δ = 1.23, 1.27 (2 d, J = 6.2 Hz, 2 × 3 H, *i*-Pr), 1.41 (d, J = 6.8 Hz, 3 H, CH_3), 3.64 (s, 3 H, OMe), 4.03 (hept., J = 6.2 Hz, 1 H, *i*-Pr), 4.66 (q, J = 6.8 Hz, 1 H, 2-H), 5.46

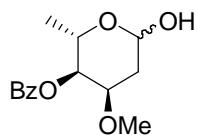
(d, $J = 4.2$ Hz, 1 H, 6-H), 5.70 (d, $J = 4.2$ Hz, 1 H, 5-H) ppm. ^{13}C -NMR (126 MHz, CDCl_3): $\delta = 15.4$ (q, CH_3), 21.9, 23.2 (2 q, *i*-Pr), 54.9 (q, OMe), 70.49 (d, C-2), 70.54 (d, *i*-Pr), 93.0 (d, C-6), 111.1 (d, C-5), 149.7 (s, C-4), 192.8 (s, C-3) ppm. **b-15**: ^1H -NMR (500 MHz, CDCl_3): $\delta = 1.24$, 1.29 (2 d, $J = 6.2$ Hz, 2×3 H, *i*-Pr), 1.50 (d, $J = 6.7$ Hz, 3 H, CH_3), 3.65 (s, 3 H, OMe), 4.14 (hept., $J = 6.2$ Hz, 1 H, *i*-Pr), 4.18 (dq, $J = 1.1$, 6.7 Hz, 1 H, 2-H), 5.54 (dd, $J = 1.1$, 2.0 Hz, 1 H, 6-H), 5.75 (d, $J = 2.0$ Hz, 1 H, 5-H) ppm. ^{13}C -NMR (126 MHz, CDCl_3): $\delta = 17.0$ (q, CH_3), 21.7, 23.5 (2 q, *i*-Pr), 55.0 (q, OMe), 70.6 (d, *i*-Pr), 74.8 (d, C-2), 95.0 (d, C-6), 114.3 (d, C-5), 150.2 (s, C-4), 192.8 (s, C-3) ppm. **a/b-15**: IR (film): $\nu = 3070$ -2840 cm^{-1} (=C-H, -C-H), 1710 (C=O). MS (EI, 80 eV, 30 °C): m/z (%) = 200 ($[\text{M}]^+$, 19), 158 (19), 141 ($[\text{M} - \text{C}_3\text{H}_7\text{O}]^+$, 100), 114 (46), 71 (38), 57 (39). HRMS (EI, 80 eV, 30 °C): m/z calc. for $\text{C}_{10}\text{H}_{16}\text{O}_4$: 200.1049, found: 200.1052.


(2*S*,4*R*,6*R*)-6-Isopropoxy-4-methoxy-2-methyldihydropyran-3-one (16) and (2*S*,4*S*,6*S*)-6-Isopropoxy-4-methoxy-2-methyldihydropyran-3-one (17)

Rhodium on Al_2O_3 (5 weight-%, 637 mg, 0.31 mmol) was suspended in EtOAc (30 mL), under an atmosphere of argon. Then, the catalyst was saturated with hydrogen, *via* a cannula, over 30 min. A solution of **a/b-15** (611 mg, 3.05 mmol) in EtOAc (15 mL) was added and stirring was continued at r.t. and 1 bar hydrogen pressure for 4.5 h. The suspension was filtered through a pad of celite with the aid of EtOAc and the filtrate was concentrated. ^1H -NMR of the crude product mixture showed two diastereomers (*d.r.* > 95:5 each). Column chromatography (silica gel, $\text{EtOAc}/\text{hexane} = 1:2$) provided 414 mg (67%) of a mixture of **16** and **17**, as a colorless solid (ratio 81:19 by ^1H -NMR). Due to its volatility, the product mixture was cooled in an ice-bath when dried in *vacuo*. A sample of the product was subjected to HPLC separation which provided only **16** in pure form.

16: Yellowish solid, m.p. 44 °C. $[\alpha]_D^{22} = -252.1$ (c = 0.36, CHCl_3). $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 1.16, 1.20$ (2 d, $J = 6.2$ Hz, 2×3 H, *i*-Pr), 1.33 (d, $J = 7.0$ Hz, 3 H, CH_3), 1.80 (ddd, $J = 6.6, 13.1, 13.6$ Hz, 1 H, 5-H), 2.68 (ddd, $J = 6.6, 6.7, 13.6$ Hz, 1 H, 5-H), 3.47 (s, 3 H, OMe), 3.94 (hept., $J = 6.2$ Hz, 1 H, *i*-Pr), 4.09 (ddd, $J = 0.7, 6.7, 13.1$ Hz, 1 H, 4-H), 4.39 (q, $J = 7.0$ Hz, 1 H, 2-H), 5.19 (t, $J = 6.6$ Hz, 1 H, 6-H) ppm. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 15.7$ (q, CH_3), 21.6, 23.5 (2 q, *i*-Pr), 34.1 (t, C-5), 58.2 (q, OMe), 69.2 (d, *i*-Pr), 71.3 (d, C-2), 77.2 (d, C-4), 94.73 (d, C-6), 211.5 (s, C-3) ppm. **17:** $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 1.18, 1.23$ (2 d, $J = 6.2$ Hz, 2×3 H, *i*-Pr), 1.25 (d, $J = 6.5$ Hz, 3 H, CH_3), 2.06 (dt, $J = 3.6, 12.4$ Hz, 1 H, 5-H), 2.47 (ddd, $J = 1.5, 6.6, 12.4$ Hz, 1 H, 5-H), 3.48 (s, 3 H, OMe), 3.95 (hept., $J = 6.2$ Hz, 1 H, *i*-Pr), 4.22 (dd, $J = 6.6, 12.4$ Hz, 1 H, 4-H), 4.34 (q, $J = 6.5$ Hz, 1 H, 2-H), 5.10 (br. d, $J = 3.6$ Hz, 1 H, 6-H) ppm. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 13.8$ (q, CH_3), 24.6, 23.2 (2 q, *i*-Pr), 40.0 (t, C-5), 58.3 (q, OMe), 69.3 (d, *i*-Pr), 70.1 (d, C-2), 78.3 (d, C-4), 94.67 (d, C-6), 205.8 (s, C-3) ppm. **16** and **17:** IR (KBr): $\nu = 2980\text{-}2830 \text{ cm}^{-1}$ (C-H), 1740 (C=O). MS (EI, 80 eV, 80 °C): m/z (%) = 202 ([M]⁺, 2), 174 ([M - CO]⁺, 3), 159 ([M - C₃H₇]⁺, 2), 143 ([M - C₃H₇O]⁺, 27), 130 (46), 103 (44), 87 (65), 72 (65), 59 ([C₃H₇O]⁺, 100), 43 (81). HRMS (EI, 80 eV, 80 °C): m/z calc. for C₁₀H₁₈O₄: 202.1205, found: 202.1212.

Isopropyl *a*-L-cymaropyranoside (**18**) and Isopropyl *b*-L-diginopyranoside (**19**)

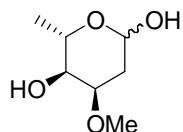


L-Selectride[®] (1.00 M in THF, 9.00 mL, 9.00 mmol) was added at -78 °C to a solution of ketones **16** and **17** (ratio 81:19, 886 mg, 4.38 mmol) in THF (12 mL). The mixture was stirred at -78 °C for 6 h. NH₄Cl-solution (sat. aq., 10 mL) was added and the mixture was warmed to r.t., then it was diluted with H₂O (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were

dried with MgSO_4 , filtered and concentrated. $^1\text{H-NMR}$ of the crude product mixture showed two diastereomers (*d.r.* > 95:5 each). Column chromatography (silica gel, $\text{EtOAc/hexane} = 1:1$) provided 732 mg of **18** (R_F ca. 0.30) as a colorless liquid and 79 mg of **19** (R_F ca. 0.20) as a colorless liquid (combined yield 91%). Due to their volatility, the products were cooled in an ice-bath when dried in *vacuo*.

18: $[\alpha]_D^{22} = -189.0$ ($c = 0.46, \text{CHCl}_3$). $^1\text{H-NMR}$ (500 MHz, CDCl_3): $\delta = 1.09, 1.17$ (2 d, $J = 6.2$ Hz, 2×3 H, *i*-Pr), 1.22 (d, $J = 6.4$ Hz, 3 H, CH_3), 1.70 (ddd, $J = 3.6, 4.6, 14.7$ Hz, 1 H, 2-H), 2.17 (ddd, $J = 1.8, 3.7, 14.7$ Hz, 1 H, 2-H), 2.58 (d, $J = 9.5$ Hz, 1 H, OH), 3.25 (dt, $J = 3.6, 9.5$ Hz, 1 H, 4-H), 3.38 (s, 3 H, OMe), 3.57 (dt, $J = 3.6, 3.7$ Hz, 1 H, 3-H), 3.81 (hept., $J = 6.2$ Hz, 1 H, *i*-Pr), 3.93 (dq, $J = 6.4, 9.5$ Hz, 1 H, 5-H), 4.83 (dd, $J = 1.8, 4.6$ Hz, 1 H, 1-H) ppm, in carbohydrate numbering. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 17.8$ (q, CH_3), $21.5, 23.4$ (2 q, *i*-Pr), 31.3 (t, C-2), 56.1 (q, OMe), 64.9 (d, C-5), 68.8 (d, *i*-Pr), 72.3 (d, C-4), 74.9 (d, C-3), 94.0 (d, C-1) ppm. **19**: $[\alpha]_D^{22} = -125.4$ ($c = 0.41, \text{CHCl}_3$). $^1\text{H-NMR}$ (500 MHz, CDCl_3): Line broadening of ring-proton signals occurs at room temperature. $\delta = 1.11, 1.16$ (2 d, $J = 6.2$ Hz, 2×3 H, *i*-Pr), 1.27 (d, $J = 6.6$ Hz, 3 H, CH_3), 1.80 - 1.84 (m, 2 H, 2-H), 2.13 (br. s, 1 H, OH), 3.37 (s, 3 H, OMe), 3.60 - 3.65 (m, 1 H, 3-H), 3.75 - 3.78 (br. m, 1 H, 4-H), 3.86 (hept., $J = 6.2$ Hz, 1 H, *i*-Pr), 3.90 (br. dq, $J = 0.7, 6.6$ Hz, 1 H, 5-H), 5.00 - 5.02 (br. m, 1 H, 1-H) ppm. $^{13}\text{C-NMR}$ (126 MHz, CDCl_3): $\delta = 16.8$ (q, CH_3), $21.3, 23.3$ (2 q, *i*-Pr), 30.0 (t, C-2), 55.5 (q, OMe), 65.3 (d, C-5), 67.7 (d, C-4), 68.3 (d, *i*-Pr), 74.7 (d, C-3), 95.2 (d, C-1) ppm. **18**: IR (film): $\nu = 3470 \text{ cm}^{-1}$ (OH), 2970 - 2830 (C-H). MS (FAB+): m/z (%) = 227 ($[\text{M} + \text{Na}]^+$, 7). Anal. calc. for $\text{C}_{10}\text{H}_{20}\text{O}_4$ (204.2): C 58.80, H 9.87, found: C 57.93, H 10.09 (due to the volatility of the product, repeated attempts to obtain more accurate combustion data were unsuccessful).

4-O-Benzoyl-L-cymaropyranose (20)


20

Alcohol **18** (56 mg, 274 μ mol) was dissolved in CH_2Cl_2 (3 mL) and pyridine (1 mL). DMAP (5 mg, 45 μ mol) and benzoyl chloride (70 μ L, 85 mg, 603 μ mol) were added at 0 °C and the mixture was stirred at r.t. for 24 h. The mixture was poured into NaHCO_3 -solution (sat. aq., 5 mL) and washed. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 \times 7 mL). The combined organic layers were dried with MgSO_4 , filtered and evaporated to dryness. The crude product thus obtained was dissolved in THF (3 mL) and HCl (2 N aq., 0.20 mL) was added at r.t. After 20 h, another portion of HCl (2 N aq., 0.20 mL) was added. After 44 h, the mixture was poured into NaHCO_3 -solution (sat. aq., 10 mL) and washed. The layers were separated and the aqueous layer was extracted with EtOAc (3 \times 10 mL). The combined organic layers were dried with MgSO_4 , filtered and concentrated. The crude product mixture was filtered through a pad of NaHCO_3 absorbed on silica, with the aid of EtOAc (removal of benzoic acid). Thereafter, column chromatography (silica gel, EtOAc/hexane = 1:2 ? 1:1) provided 42 mg (58%) of **20** as a colorless, very sticky oil. $^1\text{H-NMR}$ (CD_3OD) showed an **a/b**-ratio of 17:83. Additionally, 15 mg of material were isolated which could be identified with *O*-benzoylated **18** (colorless oil, 18%).

$[\alpha]_D^{22} = -39.2$ ($c = 0.13$, H_2O , equilibrated). **a-20**: $^1\text{H-NMR}$ (500 MHz, CD_3OD): $\delta = 1.24$ (d, $J = 7.2$ Hz, 3 H, CH_3), 1.98 (dt, $J = 3.3, 14.0$ Hz, 1 H, 2-H), 2.14 (ddd, $J = 3.3, 4.5, 14.0$ Hz, 1 H, 2-H), 3.42 (s, 3 H, OMe), 3.93 (dt, $J = 3.3, 4.5$ Hz, 1 H, 3-H), 4.45 (quint., $J = 7.2$ Hz, 1 H, 5-H), 4.93 (dd, $J = 3.3, 7.2$ Hz, 1 H, 4-H), 5.14 (t, $J = 3.3$ Hz, 1 H, 1-H), 7.47-7.52, 7.60-7.64, 8.05-8.08 (3 m, 5 H, Ph) ppm. $^{13}\text{C-NMR}$ (126 MHz, CD_3OD): $\delta = 17.7$ (q, CH_3), 34.8 (t, C-2), 58.5 (q, OMe), 65.5 (d, C-5), 75.2 (d, C-4), 76.2 (d, C-3), 92.0 (d, C-1), 129.7, 130.7, 131.1 (3 d, Ph), 134.49 (s, Ph), 167.22 (s, CO)

ppm. **b-20**: $^1\text{H-NMR}$ (500 MHz, CD_3OD): δ = 1.21 (d, J = 6.3 Hz, 3 H, CH_3), 1.68 (ddd, J = 3.2, 9.6, 13.9 Hz, 1 H, 2-H), 2.23 (ddd, J = 2.1, 3.2, 13.9 Hz, 1 H, 2-H), 3.40 (s, 3 H, OMe), 3.92 (dt, J = 3.0, 3.2 Hz, 1 H, 3-H), 4.18 (dq, J = 6.3, 9.8 Hz, 1 H, 5-H), 4.73 (dd, J = 3.0, 9.8 Hz, 1 H, 4-H), 5.09 (dd, J = 2.1, 9.6 Hz, 1 H, 1-H), 7.47-7.52, 7.60-7.64, 8.02-8.05 (3 m, 5 H, Ph) ppm. $^{13}\text{C-NMR}$ (126 MHz, CD_3OD): δ = 18.5 (q, CH_3), 37.4 (t, C-2), 58.7 (q, OMe), 69.2 (d, C-5), 76.6 (d, C-3), 77.0 (d, C-4), 93.1 (d, C-1), 129.7, 130.6, 131.1 (3 d, Ph), 134.53 (s, Ph), 167.23 (s, CO) ppm. IR (film): 3060-2830 cm^{-1} (=C-H, -C-H), 1720 (C=O), 1600, 1580 (C=C). MS (EI, 80 eV, 70 °C): m/z (%) = 266 ($[\text{M}]^+$, < 1), 190 (5), 105 ($[\text{C}_7\text{H}_5\text{O}]^+$, 100), 77 ($[\text{C}_6\text{H}_5]^+$, 36). HRMS (EI, 80 eV, 70 °C): m/z calc. for $\text{C}_{14}\text{H}_{17}\text{O}_4$, $[\text{M} - \text{OH}]^+$: 249.1127, found: 249.1125.

L-Cymarose (21)

21

Acetal **18** (61 mg, 298 μmol) was dissolved in THF (2 mL) and HCl (2 N aq., 0.30 mL) was added. After 23 h at r.t., the mixture was diluted with THF (8 mL) and Dowex Marathon A2 resin (OH^- -form, 520 mg) was added. After 2 h of stirring, NaOH solution (5 N aq., 0.20 mL) was added and stirring was continued for another 2 h. The mixture was further diluted with THF (5 mL) and MgSO_4 was directly added, followed by filtration. The filtrate was concentrated and column chromatography (silica gel, 100% EtOAc) provided the product as an oil. The oil was repeatedly taken up with Et_2O and evaporated to dryness. Prolonged drying at 0.1 mbar furnished 26 mg (54%) of **21** as colorless needles. The $^1\text{H-NMR}$ spectrum (CD_3OD) showed four species that were assigned as the two pyranose forms (**a**-pyranose: 8%, **b**-pyranose: 50%) and the two furanose forms (22% and 20%, **a/b**-assignment could not be made from coupling constants). Additionally, trace amounts of the free aldehyde form were detected.

m.p. 86-88 °C (Ref.:^[2] 88-90 °C). $[\alpha]_D^{22} = -49.8$ (c = 0.27, H₂O, equilibrated), Ref.:^[3] – 51.5 (c = 0.33, H₂O). **a**-pyranose: ¹H-NMR (500 MHz, CD₃OD): δ = 1.22 (d*, 3 H, CH₃), 1.76 (ddd, J = 3.2, 4.0, 14.5 Hz, 1 H, 2-H), 2.17 (ddd, J = 2.1, 3.9, 14.5 Hz, 1 H, 2-H), 3.25 (dd, J = 3.2, 9.1 Hz, 1 H, 4-H), 3.47 (s, 3 H, OMe), 3.64 (dt, J = 3.2, 3.9 Hz, 1 H, 3-H), 4.08 (m_c, 1 H, 5-H), 5.03 (dd, J = 2.1, 4.0 Hz, 1 H, 1-H) ppm. ¹³C-NMR (126 MHz, CD₃OD): δ = 18.3 (q, CH₃), 33.6 (t, C-2), 58.4 (q, OMe), 66.0 (d, C-5), 73.8 (d, C-4), 78.9 (d, C-3), 92.4 (d, C-1) ppm. **b**-pyranose: ¹H-NMR (500 MHz, CD₃OD): δ = 1.22 (d, J = 6.3 Hz, 3 H, CH₃), 1.49 (ddd, J = 2.6, 9.8, 14.0 Hz, 1 H, 2-H), 2.21 (ddd, J = 2.0, 3.4, 14.0 Hz, 1 H, 2-H), 3.15 (dd, J = 3.4, 9.6 Hz, 1 H, 4-H), 3.43 (s, 3 H, OMe), 3.59 (dt, J = 2.6, 3.4 Hz, 1 H, 3-H), 3.74 (dq, J = 6.3, 9.6 Hz, 1 H, 5-H), 4.94 (dd, J = 2.0, 9.8 Hz, 1 H, 1-H) ppm. ¹³C-NMR (126 MHz, CD₃OD): δ = 18.7 (q, CH₃), 36.7 (t, C-2), 58.0 (q, OMe), 71.4 (d, C-5), 74.5 (d, C-4), 79.2 (d, C-3), 92.9 (d, C-1) ppm. Minor furanose: ¹H-NMR (500 MHz, CD₃OD): δ = 1.18 (d, J = 6.4 Hz, 3 H, CH₃), 1.95 (dt, J = 1.4, 15.2 Hz, 1 H, 2-H), 2.11 (ddd, J = 5.4, 6.7, 15.2 Hz, 1 H, 2-H), 3.32 (s, 3 H, OMe), 3.67-3.70 (m, 1 H, 5-H), 3.91-3.94 (m, containing 3-H, 4-H), 5.45 (dd, J = 1.4, 5.4 Hz, 1 H, 1-H) ppm. ¹³C-NMR (126 MHz, CD₃OD): δ = 19.3 (q, CH₃), 40.0 (t, C-2), 57.1 (q, OMe), 68.5 (d, C-5), 82.1 (d, C-3), 88.9 (d, C-4), 99.6 (d, C-1) ppm. Major furanose: ¹H-NMR (500 MHz, CD₃OD): δ = 1.21 (d, J = 6.3 Hz, 3 H, CH₃), 2.04 (ddd, J = 3.8, 6.6, 13.6 Hz, 1 H, 2-H), 2.09 (ddd, J = 3.9, 5.3, 13.6 Hz, 1 H, 2-H), 3.30 (s, 3 H, OMe), 3.71-3.78 (m, containing 4-H, 5-H), 4.05-4.09 (m, 1 H, 3-H), 5.49 (dd, J = 3.8, 5.3 Hz, 1 H, 1-H) ppm. ¹³C-NMR (126 MHz, CD₃OD): δ = 19.5 (q, CH₃), 41.0 (t, C-2), 56.9 (q, OMe), 69.2 (d, C-5), 82.4 (d, C-3), 89.4 (d, C-4), 99.8 (d, C-1) ppm. (*): Coupling constant could not be determined. The spectroscopic data are in agreement with Ref.^[4]

References:

- [1] K. Mori, H. Kikuchi, *Liebigs Ann. Chem.* **1989**, 963-967.
- [2] B. M. Arshava, Y. E. Raifel'd, S. M. Makin, *J. Org. Chem. USSR (Engl. Trans.)*, **1990**, 26, 1439-1445.

- [3] K. Toshima, T. Yoshida, S. Mukaiyama, K. Tatsuta, *Carbohydr. Res.* **1991**, 222, 173-188.
- [4] H. Bai, W. Li, K. Koike, T. Satou, Y. Chen, T. Nikaido, *Tetrahedron* **2005**, 61, 5797-5811.