

Supporting Information © Wiley-VCH 2007

● Wilcy-VOI1 2007

69451 Weinheim, Germany

Rhodium-Catalyzed Enantioselective 1,2-Addition of Aluminum Organyls to Cyclic Enones

Jürgen Siewert, René Sandmann, and Paultheo von Zezschwitz*

Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany), e-mail: pzezsch@gwdg.de, Fax: +49 551 399475

1. General Experimental Methods

¹H NMR spectra: Bruker AM 250 (250 MHz) or Varian Mercury 200 (200 MHz). Chemical shifts in CDCl₃ are reported as δ values relative to CHCl₃ (δ = 7.26) as the internal reference unless stated otherwise. – ¹³C NMR spectra: Bruker AW 250 (62.9 MHz) or Varian Mercury 200 (50.3 MHz). Chemical shifts in CDCl₃ are reported as δ values relative to CDCl₃ (δ = 77.0); the multiplicity of the signals was determined by the APT or DEPT technique and quoted as follows: APT: (+) for CH₃, CH, (-) for CH₂, quaternary carbons; DEPT: (+) for CH₃, CH, (-) for CH₂, and (C_{quat}) for quaternary carbons. – EI-MS: Finnigan MAT 95 spectrometer (70 eV). – ESI-HRMS: Bruker APEX-Q 7T IV spectrometer; preselected ion peak matching at R >> 10000 to be within ±2 ppm of the exact masses. – Optical rotation: Perkin-Elmer 241. – Melting points are uncorrected. – Solvents for extraction and chromatography were of technical grade and distilled prior to use. - All moisture sensitive reactions were carried out under dry nitrogen or argon in oven- and/or flame-dried glassware. - Column chromatography: silica gel 60 (0.040-0.063 mm/230-400 mesh ASTM, Machery&Nagel); prior to use the silica gel was treated with an aqueous solution of NaOAc (0.5% w/w), filtered and dried. - TLC: Macherey-Nagel precoated sheets, 0.25 mm SIL G/UV₂₅₄. – Tetrahydrofurane was distilled from sodium benzophenone ketyl and dichloromethane was distilled from CaH₂. – 5,5-Dimethylcyclohex-2-enone (**5**),^[1] cyclohept-2-enone (**6**),^[2] 4,4-dimethylcyclopent-2-enone (**8**),^[3] (E)-1-phenylpent-1-en-3-one (9), [4] and $[Rh(cod)OMe]_2^{[5]}$ were prepared as described in the literature. All other enones are commercially available and were distilled prior to use.

General procedure for the 1,2-addition of AlMe₃ (GP 1, Table 3): A slurry of $[Rh(cod)OMe]_2$ (60.5 mg, 124 µmol) and (S)-BINAP (187 mg, 300 µmol) in THF (10 mL) was stirred for 0.5 h at RT. The reaction mixture was then cooled to 0 °C and AlMe₃ (2.50 mL, 5.00 mmol, 2.0 M in hexane) and the respective enone (5.00 mmol) were added. The mixture was stirred for the stated time at the given temperature and then quenched by addition of saturated NH₄Cl solution (20 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (5 × 30 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo to yield the crude product which was purified by Kugelrohr distillation or column chromatography on NaOAc treated silica gel.

(*R*)-1-Methylcyclohex-2-enol (Table 3, entry 1): Cyclohex-2-enone (2, 291 μ L, 3.01 mmol) was treated with [Rh(cod)OMe]₂, (*S*)-BINAP and AlMe₃ for 2 h at 0 °C according to GP 1. The product was purified by column chromatography (55 g SiO₂, pentane:Et₂O 1:1) to furnish 284 mg (84%) of alcohol 3 ($R_f = 0.37$). The *ee* was determined by GC analysis on a heptakis-(2,3-di-*O*-acetyl-6-*O*-TBDMS)- β -cyclodextrin column (50% in OV1701,

w/w, 25 m, 0.25 mm i.d.), 80 °C isothermal, 20 kPa flow. Retention times: 12.7 min [(*S*)-enantiomer], 13.4 min [(*R*)-enantiomer]. 98% *ee*. $[\alpha]^{20}_{D} = 76.5$ (c = 1.0 in Et₂O). The physical and spectroscopic data were consistent with the reported data.^[6]

- (S)-1,4,4-Trimethylcyclohex-2-enol (Table 3, entry 2): 4,4-Dimethylcyclohex-2-enone (4, 100 μ L, 0.76 mmol) was treated with [Rh(cod)OMe]₂, (R)-BINAP and AlMe₃ for 3.5 h at 60 °C according to GP 1. The product was purified by column chromatography (20 g SiO₂, pentane:Et₂O 1:1) to yield 91 mg (86%) of the 1,2-adduct (R_f = 0.45). The ee was determined by GC analysis on a heptakis-(2,3-di-O-acetyl-6-O-TBDMS)-B-cyclodextrin column (50% in OV1701, w/w, 25 m, 0.25 mm i.d.), 80 °C isothermal, 50 kPa flow. Retention times: 17.2 min (minor enantiomer), 18.1 min (major enantiomer). 99% ee. [α]²⁰_D = 3.1 (c = 0.49 in CHCl₃). The absolute configuration was assigned in analogy with compound 3. The physical and spectroscopic data were consistent with the reported data.^[7]
- (*S*)-1,5,5-Trimethylcyclohex-2-enol (Table 3, entry 3): 5,5-Dimethylcyclohex-2-enone (5, 62 mg, 0.50 mmol) was treated with [Rh(cod)OMe]₂, (*R*)-BINAP and AlMe₃ for 2.5 h at RT according to GP 1. The product was purified by Kugelrohr distillation (bp. 55-60 °C, 5 mbar) to furnish 22 mg (31%) of the 1,2-adduct. The *ee* was determined by GC analysis on a heptakis-(2,3-di-*O*-acetyl-6-*O*-TBDMS)- β -cyclodextrin column (50% in OV1701, w/w, 25 m, 0.25 mm i.d.), 80 °C isothermal, 40 kPa flow. Retention times: 6.8 min (minor enantiomer), 7.3 min (major enantiomer). 99% *ee*. [α]²⁰_D = 18.8 (c = 0.67 in CHCl₃). The absolute configuration was assigned in analogy with compound 3. The physical and spectroscopic data were consistent with the reported data. [8]
- (*R*)-1-Methylcyclohept-2-enol (Table 3, entry 4): Cyclohept-2-enone (6, 0.11 mL, 1.0 mmol) was treated with $[Rh(cod)OMe]_2$, (*S*)-BINAP and AlMe₃ for 2 h at 0 °C and then for 1 h at RT according to GP 1. The product was purified by column chromatography (10 g SiO₂, pentane:Et₂O 1:1) to yield 93 mg (74%) of the 1,2-adduct ($R_f = 0.37$). The *ee* was determined by GC analysis on a heptakis-(2,3-di-*O*-acetyl-6-*O*-TBDMS)-β-cyclodextrin column (50% in OV1701, w/w, 25 m, 0.25 mm i.d.), 80 °C isothermal, 20 kPa flow. Retention times: 17.7 min (minor enantiomer), 18.6 min (major enantiomer). 98% *ee*. [α]²⁰_D = 24.7 (c = 0.48 in CHCl₃). The absolute configuration was assigned in analogy with compound 3. The physical and spectroscopic data were consistent with the reported data.^[9]
- **1-Methylcyclopent-2-enol** (**Table 3, entry 5**): Cyclopent-2-enone (**7**, 81 μ L, 0.97 mmol) was treated with [Rh(cod)OMe]₂, (*R*)-BINAP and AlMe₃ for 1 h at 0 °C and then for 1 h at RT according to GP 1. The product was purified by column chromatography (20 g SiO₂, pentane:Et₂O 1:1) to yield 9.5 mg (10%) of the 1,2-adduct ($R_f = 0.45$). The physical and spectroscopic data were consistent with the reported data.^[10]
- (*R*)-1,4,4-Trimethylcyclopent-2-enol (Table 3, entry 6): 4,4-Dimethylcyclopent-2-enone (8, 110 mg, 0.999 mmol) was treated with [Rh(cod)OMe]₂, (*S*)-BINAP and AlMe₃ for 1 h at RT according to GP 1. The product was purified by Kugelrohr distillation (bp. 60-65 °C, 25 mbar) to furnish 35 mg (28%) of the 1,2-adduct as

a colorless oil. The *ee* was determined by GC analysis on a heptakis-(2,3-di-*O*-acetyl-6-*O*-TBDMS)-β-cyclodextrin column (50% in OV1701, w/w, 25 m, 0.25 mm i.d.), 80 °C isothermal, 20 kPa flow. Retention times: 4.4 min (major enantiomer), 4.9 min (minor enantiomer). >95% *ee*. $[\alpha]_D^{20} = 50.2$ (c = 0.5, CHCl₃). The absolute configuration was assigned in analogy with compound 3. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.08$ (s, 3 H, CH₃), 1.18 (s, 3 H, CH₃), 1.40 (s, 3 H, CH₃), 1.65 (s, 1 H, OH), 1.83 (m_c, 2 H, 5-H), 5.54 (d, J = 6.3 Hz, 1 H, 2-H*), 5.61 (d, J = 6.3 Hz, 1 H, 3-H*). – ¹³C NMR (62.9 MHz, CDCl₃, DEPT): $\delta = 29.0$ (+), 29.1 (+), 30.4 (+), 44.8 (C_{quat}), 54.8 (–), 83.7 (C_{quat}), 134.5 (+), 143.4 (+). – MS, m/z (%): 126 (1) [M⁺], 111 (100) [M⁺–CH₃], 93 (18), 77 (10), 55 (11) [C₃H₃O⁺], 43 (20).

3-Methyl-1-phenylpent-(*E*)-**1-en-3-ol** (**Table 3, entry 7**): (*E*)-1-Phenylpent-1-en-3-one (**9**, 80 mg, 0.50 mmol) was treated with [Rh(cod)OMe]₂, (*S*)-BINAP and AlMe₃ for 3.5 h at RT according to GP 1. The product was purified by column chromatography (10 g SiO₂, hexane:EtOAc 5:1) to give 43 mg (49%) of the 1,2-adduct. The *ee* was determined by GC analysis on a heptakis-(2,3-di-*O*-acetyl-6-*O*-TBDMS)-β-cyclodextrin column (50% in OV1701, w/w, 25 m, 0.25 mm i.d.), 110 °C isothermal, 20 kPa flow. Retention times: 94.1 min (minor enantiomer), 98.1 min (major enantiomer). 7% *ee*. The physical and spectroscopic data were consistent with the reported data.^[11]

2-Phenylbutan-2-ol (**Table 3, entry 8**): Propiophenone (**10**, 67 μL, 0.50 mmol) was treated with [Rh(cod)OMe]₂, (*S*)-BINAP and AlMe₃ for 8 h at reflux according to GP 1. Due to the low conversion the product was not isolated. The *ee* was determined by GC analysis on a heptakis-(2,3-di-*O*-acetyl-6-*O*-TBDMS)-β-cyclodextrin column (50% in OV1701, w/w, 25 m, 0.25 mm i.d.), 100 °C isothermal, 40 kPa flow. Retention times: 12.5 min (mayor enantiomer), 13.3 min (minor enantiomer). 54% *ee*.

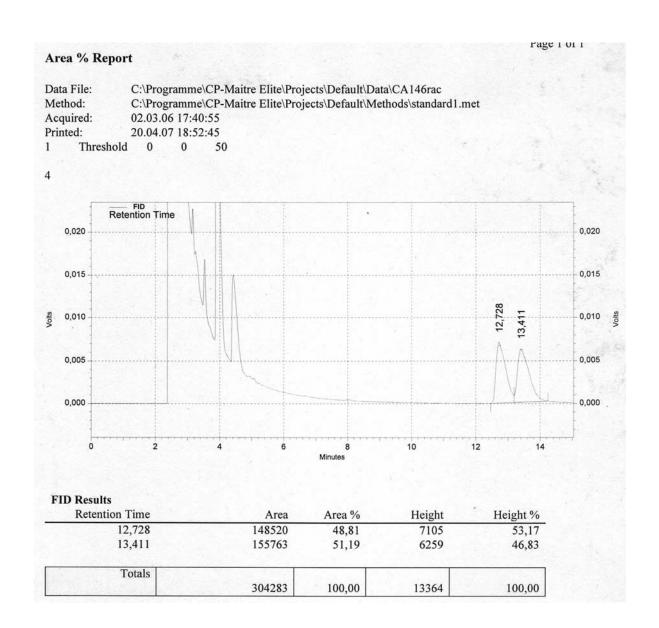
General procedure for the sequence of 1,2-arylation and subsequent epoxidation (GP 2, Scheme 2): The respective arylmagnesium bromide (0.50 mmol, solution in THF) was added at 0 °C to a solution of AlMe₂Cl (0.25 mL, 0.50 mmol, 2.0 M in hexane) in THF (1 mL) and the mixture was stirred for 0.5 h at 0 °C. In a second flask a slurry of [Rh(cod)OMe]₂ (6.0 mg, 12 μmol) and (*R*)-BINAP (18.7 mg, 30 μmol) in THF (1.5 mL) was stirred for 0.5 h at RT and then cooled to 0 °C. To this solution cyclohex-2-enone (2, 48.5 μL, 0.50 mmol) and the solution of the aryldimethylaluminum were added and the mixture was stirred for 1.5 h at 0 °C and was then quenched by addition of saturated NH₄Cl solution (0.5 mL). The mixture was poured onto Et₂O (10 mL) and water (10 mL). The layers were separated and the aqueous layer was extracted with Et₂O (10 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The thus obtained crude product was dissolved in CH₂Cl₂ (3 mL) and treated at 0 °C with *m*CPBA (0.16 g, 0.65 mmol, 70%). The mixture was stirred for 16 h and was allowed to warm up to RT during this time. It was then diluted with ethyl acetate (10 mL) and successively washed with saturated Na₂SO₃ solution (10 mL) and saturated NaHCO₃ solution (10 mL). The aqueous phases were extracted with ethyl acetate (5 mL) and the combined organic phases were washed with brine (5 mL), dried over MgSO₄ and concentrated in vacuo. The crude products were purified by column chromatography (20 g SiO₂, hexane:EtOAc 5:1).

(1*R*,2*R*,6*R*)-2-Phenyl-7-oxabicyclo[4.1.0]heptan-2-ol: Cyclohex-2-enone (2, 48.5 μL, 0.50 mmol) was treated with *in situ* prepared PhAlMe₂ and subsequently with *m*CPBA according to GP 2. Column chromatography furnished 62 mg (65%) of the desired product (R_f = 0.36, hexane:EtOAc 3:1) as colorless solid, m.p. 72 °C. The *ee* was determined by HPLC analysis on a Daicel CHIRALPAK IA column with hexane : *i*PrOH = 99 : 1, eluent flow: 0.6 mL/min. Retention times: 16.8 min (minor enantiomer), 18.4 min (major enantiomer). 99% *ee*. [α]²⁰_D = 3.5 (c = 1.0 in CHCl₃). The absolute configuration was assigned in analogy with compound 3. – ¹H NMR (200 MHz, CDCl₃): δ = 1.17–1.88 (m, 5 H), 1.96–2.14 (m, 1 H), 2.78 (s, br, 1 H, OH), 3.27 (d, J = 4.0 Hz, 1 H, 1-H), 3.50 (m_c, 1 H, 6-H), 7.18–7.47 (m, 5 H, Ar-H). – ¹³C NMR (50.3 MHz, CDCl₃, APT): δ = 14.8 (–), 22.5 (–), 36.8 (–), 55.3 (+), 58.1 (+), 70.7 (–), 124.4 (+), 126.5 (+), 127.6 (+), 144.7 (–). – MS, m/z (%): 190 (18) [M⁺], 159 (3), 133 (32), 121 (49), 105 (100), 91 (8), 77 (39), 55 (16), 43 (8). – Anal. calcd. for C₁₂H₁₄O₂: 213.08860 [*M*+Na]⁺ (correct mass according to ESI-HRMS).

(1*R*,2*R*,6*R*)-2-(4-Fluorophenyl)-7-oxabicyclo[4.1.0]heptan-2-ol: Cyclohex-2-enone (2, 48.5 μL, 0.50 mmol) was treated with *in situ* prepared (pFC_6H_4)AlMe₂ and subsequently with mCPBA according to GP 2. Column chromatography furnished 49 mg (47%) of the desired product (R_F = 0.33, hexane:EtOAc 3:1) as colorless solid, m.p. 84 °C. The *ee* was determined by HPLC analysis on a Daicel CHIRALPAK IA column with hexane: iPrOH = 99: 1, eluent flow: 0.6 mL/min. Retention times: 13.4 min (minor enantiomer), 14.4 min (major enantiomer). 92% *ee*. [α]²⁰_D = -4.6 (c = 1.0 in CHCl₃). The absolute configuration was assigned in analogy with compound 3. – ¹H NMR (200 MHz, CDCl₃): δ = 1.18–1.59 (m, 3 H), 1.66–1.92 (m, 2 H), 2.01–2.17 (m, 1 H), 2.97 (s, br, 1 H, OH), 3.28 (d, J = 4.0 Hz, 1 H, 1-H), 3.54 (m_c, 1 H, 6-H), 7.02 (m_c, 2 H, Ar-H), 7.43 (m_c, 2 H, Ar-H). – ¹³C NMR (50.3 MHz, CDCl₃, APT): δ = 15.6 (–), 23.2 (–), 37.6 (–), 56.1 (+), 58.7 (+), 71.3 (–), 115.1 (+, d, ${}^2J_{C-F}$ = 21.3 Hz), 127.0 (+, d, ${}^3J_{C-F}$ = 8.0 Hz), 141.2 (–, d, ${}^4J_{C-F}$ = 2.5 Hz), 162.1 (–, d, ${}^1J_{C-F}$ = 246.2 Hz). – MS, m/z (%): 208 (14) [M⁺], 190 (1) [M⁺-H₂O], 177 (3), 151 (33), 139 (45), 123 (100), 109 (7), 95 (19) [C₆H₄F⁺], 70 (17), 55 (5), 43 (3). – Anal. calcd. for C₁₂H₁₃FO₂: 231.07918 [M+Na]⁺ (correct mass according to ESI-HRMS).

(1*R*,2*R*,6*R*)-2-(2-Methylphenyl)-7-oxabicyclo[4.1.0]heptan-2-ol: Cyclohex-2-enone (2, 48.5 μL, 0.50 mmol) was treated with *in situ* prepared (*o*Tolyl)AlMe₂ and subsequently with *m*CPBA according to GP 2. Column chromatography furnished 39 mg (38%) of the desired product (R_f = 0.41, hexane:EtOAc 3:1) as colorless solid, m.p. 41 °C. The *ee* was determined by HPLC analysis on a Daicel CHIRALPAK IA column with hexane : *i*PrOH = 99 : 1, eluent flow: 0.6 mL/min. Retention times: 38.4 min (minor enantiomer), 41.3 min (major enantiomer). 97% *ee*. [α]²⁰_D = 1.9 (c = 1.0 in CHCl₃). The absolute configuration was assigned in analogy with compound 3. – ¹H NMR (200 MHz, CDCl₃): δ = 1.20–1.86 (m, 5 H), 2.06–2.21 (m, 1 H), 2.39 (s, 3 H, CH₃), 3.02 (s, br, 1 H, OH), 3.36 (d, J = 4.0 Hz, 1 H, 1-H), 3.57 (m_c, 1 H, 6-H), 7.09–7.20 (m, 3 H, Ar-H), 7.64 (m_c, 1 H, Ar-H). – ¹³C NMR (50.3 MHz, CDCl₃, APT): δ = 14.1 (–), 20.2 (+), 22.7 (–), 34.8 (–), 55.9 (+), 58.5 (+), 70.4 (–), 125.1 (+, 2 C), 126.5 (+), 131.3 (+), 133.2 (–), 142.5 (–). – MS, m/z (%): 204 (3) [M⁺], 186 (24) [M⁺-H₂O], 147

(13), 135 (13), 119 (100), 91 (33) $[C_7H_7^+]$, 77 (6), 65 (8), 55 (10), 43 (4). – Anal. calcd. for $C_{13}H_{16}O_2$: 227.10425 $[M+Na]^+$ (correct mass according to ESI-HRMS).

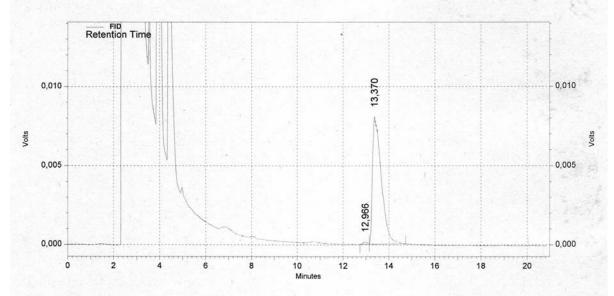

2.Literature

- [1] B. L. Shapiro, M. D. Johnston, T. W. Proulx, J. Am. Chem. Soc. 1973, 95, 520-526.
- [2] H. O. House, T. V. Lee, J. Org. Chem. 1979, 44, 2819–2824.
- [3] J. Yang, Y. O. Long, L. A. Paquette, J. Am. Chem. Soc. 2003, 125, 1567–1574.
- [4] P. J. Smith, J. R. Dimmock, W. G. Taylor, Can. J. Chem. 1972, 50, 871–879.
- [5] R. Uson, L. A. Oro, J. A. Cabeza, *Inorg. Synth.* **1985**, *23*, 126–130.
- [6] K. Mori, B. G. Hazra, R. J. Pfeiffer, A. K. Gupta, B. S. Lindgren, *Tetrahedron* **1987**, *43*, 2249–2254.
- [7] W. G. Dauben, D. M. Michno, J. Org. Chem. 1977, 42, 682–685.
- [8] A. Takezawa, K. Yamaguchi, T. Ohmura, Y. Yamamoto, N. Miyaura, Synlett 2002, 1733–1735.
- [9] E. A. Mash, T. M. Gregg, M. A. Kaczynski, J. Org. Chem. 1996, 61, 2743–2752.
- [10] I.-C. Chiu, H. Kohn, J. Org. Chem. 1983, 48, 2857–2866.
- [11] D. J. Ramon, M. Yus, Tetrahedron 1998, 54, 5651–5666.

3. Spectral Data and Analyses:

S7	(R)-1-Methylcyclohex-2-enol (Table 3, entry 1)
S9	(S)-1,4,4-Trimethylcyclohex-2-enol (Table 3, entry 2)
S11	(S)-1,5,5-Trimethylcyclohex-2-enol (Table 3, entry 3)
S13	(R)-1-Methylcyclohept-2-enol (Table 3, entry 4)
S15	(R)-1,4,4-Trimethylcyclopent-2-enol (Table 3, entry 6)
S19	3-Methyl-1-phenylpent-(<i>E</i>)-1-en-3-ol (Table 3, entry 7)
S21	2-Phenylbutan-2-ol (Table 3, entry 8)
S23	(1R,2R,6R)-2-Phenyl-7-oxabicyclo[4.1.0]heptan-2-ol
S29	(1R,2R,6R)-2-(4-Fluorophenyl)-7-oxabicyclo[4.1.0]heptan-2-ol
S35	(1R,2R,6R)-2-(2-Methylphenyl)-7-oxabicyclo[4.1.0]heptan-2-ol

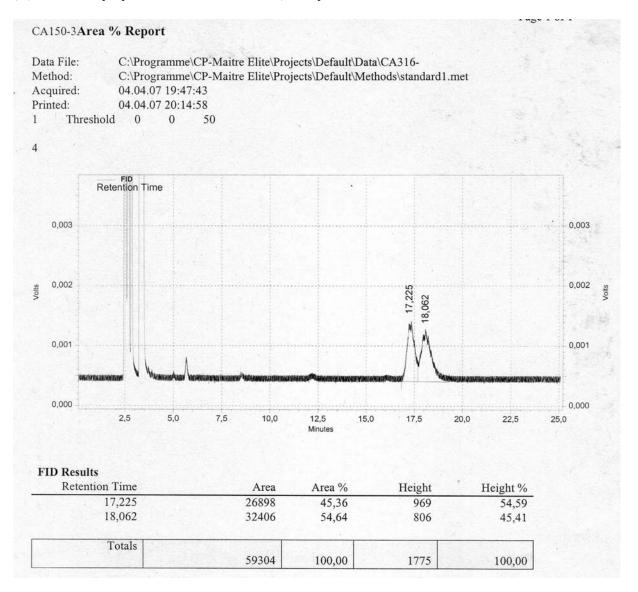
(R)-1-Methylcyclohex-2-enol (Table 3, entry 1):



Data File:

 $\label{lem:condition} C:\operatorname{Programme}\cP-Maitre\ Elite\Projects\Default\Data\Ca146-2 \\ C:\operatorname{Programme\CP-Maitre}\ Elite\Projects\Default\Methods\standard1.met \\ 02.03.06\ 18:16:01$ Method:

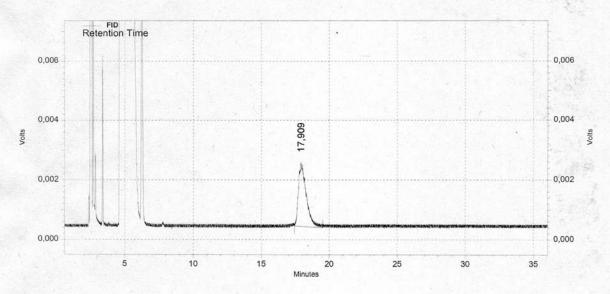
Acquired: Printed: 20.04.07 18:53:36 Threshold 0 0


4

Retention Time	Area	Area %	Height	Height %
12,966	1964	0,91	156	1,90
13,370	214060	99.09	8047	98,10

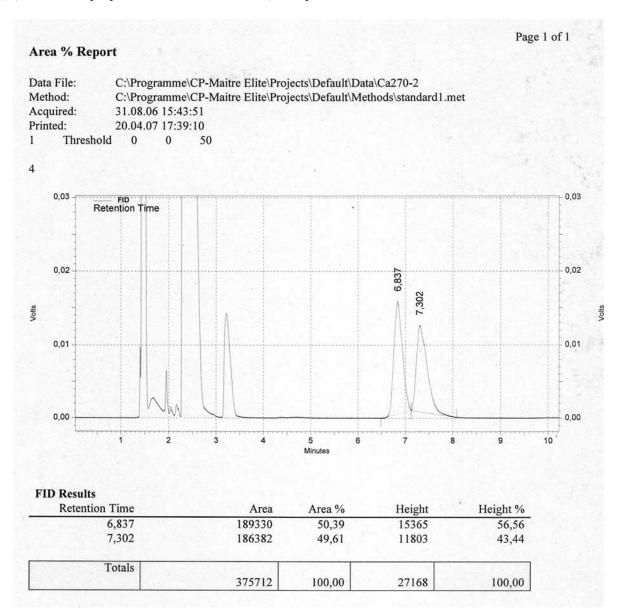
Totals				
	216024	100,00	8203	100,00

(S)-1,4,4-Trimethylcyclohex-2-enol (Table 3, entry 2):


CA150-3Area % Report

Data File:

Method:

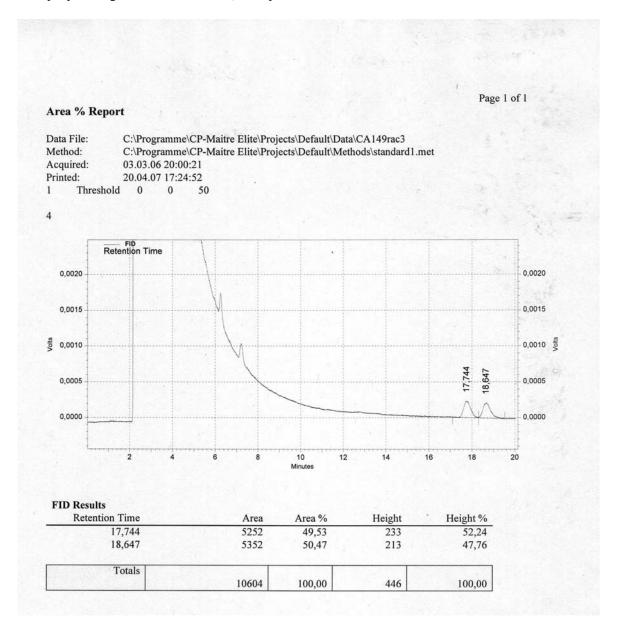

04.04.07 17:21:38 Acquired: Printed: 04.04.07 19:45:45 Threshold 0 0

4

Retention Time	Area	Area %	Height	Height %
17,909	86197	100,00	2169	100,00
Totals	86197	100,00	2169	100,00

(S)-1,5,5-Trimethylcyclohex-2-enol (Table 3, entry 3):

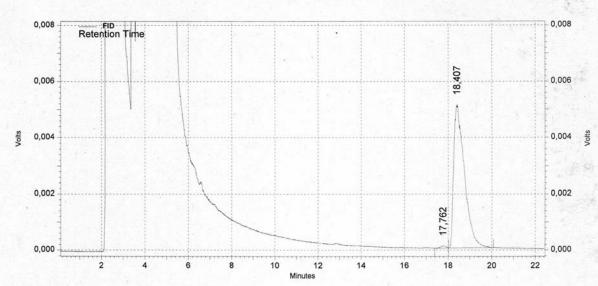
Data File:


Method:

Acquired: 31.08.06 15:22:52 Printed: 20.04.07 17:38:18 Threshold 0 0 1

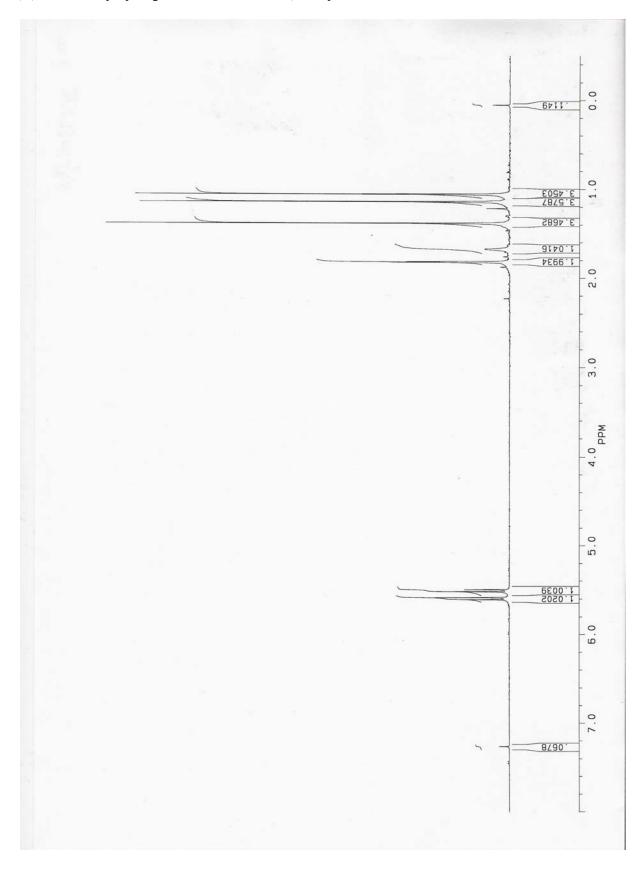
Retention Time	Area	Area %	Height	Height %
7,416	59029	100,00	4141	100,00
Totals	59029	100,00	4141	100,00

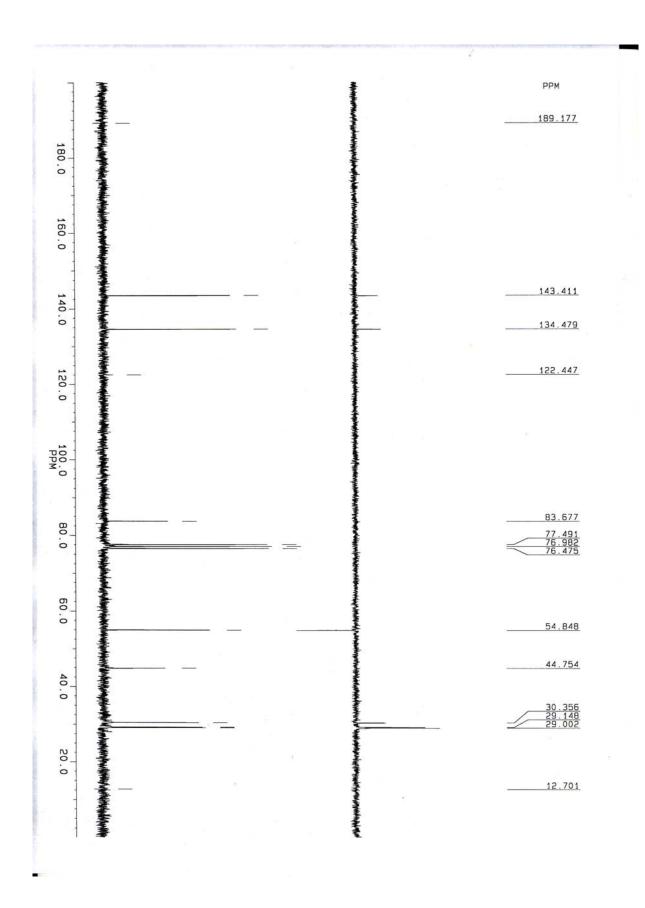
(R)-1-Methylcyclohept-2-enol (Table 3, entry 4):



Data File: C:\Programme\CP-Maitre Elite\Projects\Default\Data\Ca149-1

Method: C:\Programme\CP-Maitre Elite\Projects\Default\Methods\standard1.met


Acquired: 03.03.06 21:13:30 Printed: 20.04.07 17:49:08 1 Threshold 0 0 50


4

Retention Time	Area	Area %	Height	Height %
17,762	1414	0,81	88	1,70
18,407	173472	99,19	5096	98,30
Totals				
	174886	100,00	5184	100,00

(R)-1,4,4-Trimethylcyclopent-2-enol (Table 3, entry 6):

Data File:

Method:

Acquired: Printed: 20.04.07 18:13:53 0 0 Threshold

4

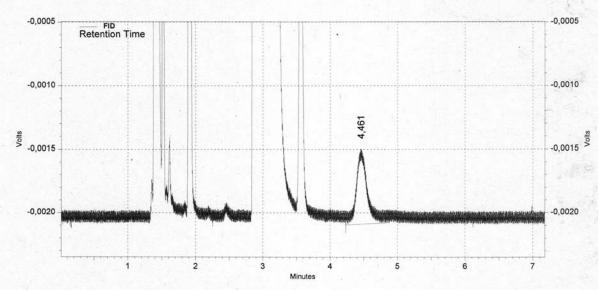
Area %

Height

Height %

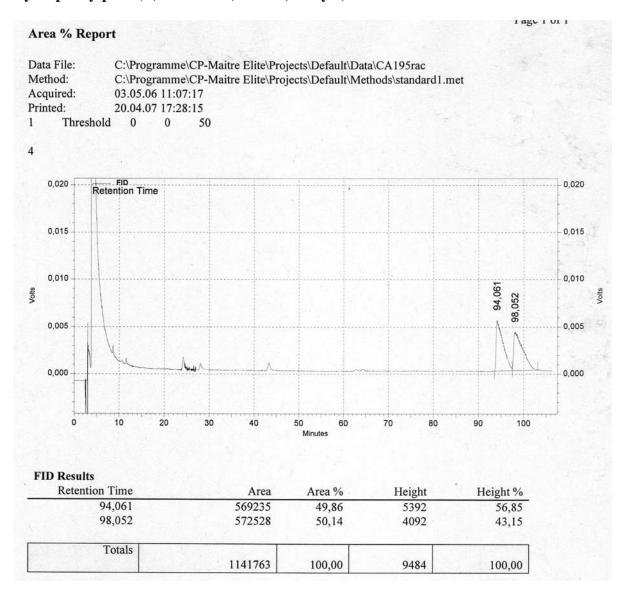
FID Results

Retention Time


4,438	5321	46,41	681	55,96
4,870	5471	47,72	500	41,08
5,214	673	5,87	36	2,96
Totals				
	11465	100,00	1217	100,00

Area

Data File:


 $\label{lem:condition} C:\Programme\CP-Maitre\ Elite\Projects\Default\Data\Ca308-3 \\ C:\Programme\CP-Maitre\ Elite\Projects\Default\Methods\standard\1.met$ Method:

Acquired: 06.03.07 18:04:29 Printed: 20.04.07 18:02:32 Threshold 0 0

Retention Time	Area	Area %	Height	Height %
4,461	6900	100,00	594	100,00
Totals	6900	100,00	594	100,00

3-Methyl-1-phenylpent-(*E*)-1-en-3-ol (Table 3, entry 7):

CA150-3Area % Report

Data File:

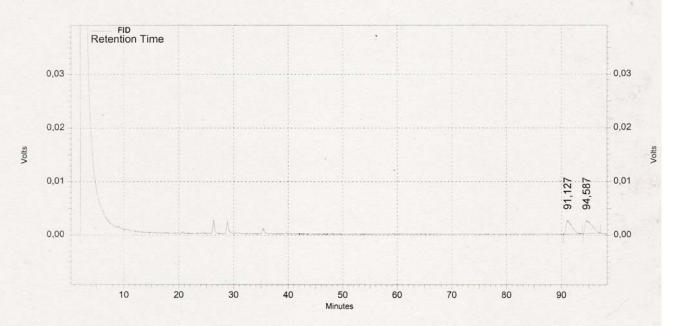
Method:

 $C: \label{lem:condition} C: \label{lem:condition} C: \label{lem:condition} C: \label{lem:condition} Projects \label{lem:condition} Default \label{lem:condition} Default \label{lem:condition} Methods \label{lem:condition} S: \label{lem:condition} C: \label{lem:condition} Projects \label{lem:condition} Default \label{lem:condition} Methods \label{lem:condition} S: \label{lem:condition} C: \label{lem:condition} C: \label{lem:condition} Projects \label{lem:condition} Default \label{lem:condition} Default \label{lem:condition} Methods \label{lem:condition} S: \label{lem:condition} C: \label{lem:condition} Projects \label{lem:condition} Default \label{lem:condition} Methods \label{lem:condition} S: \label{lem:condition} Default \label{lem:condition}$

Acquired:

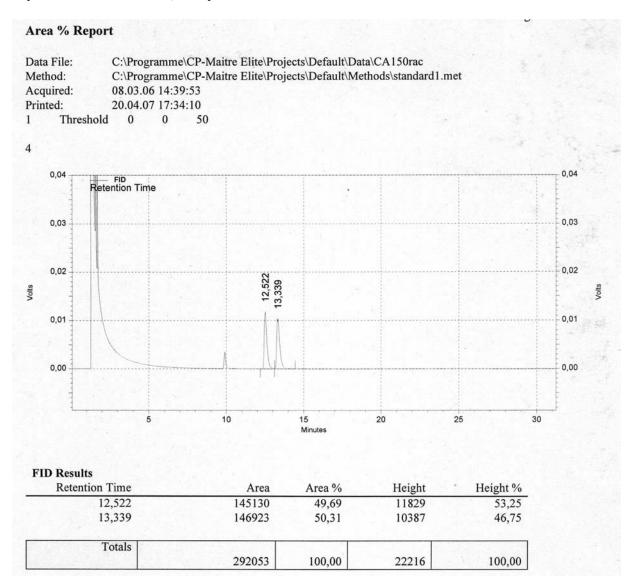
05.05.06 14:40:53

Printed:


18.05.07 15:57:04

Threshold 1

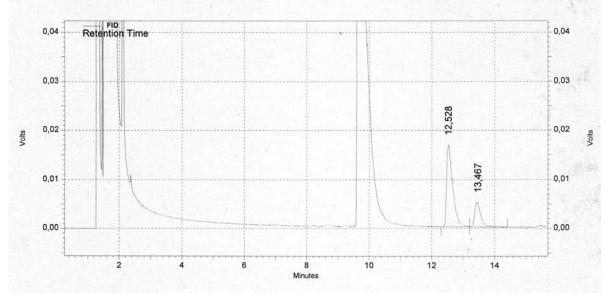
0


0 50

4

Retention Time	Area	Area %	Height	Height %
91,127	192471	46,42	2566	51,16
94,587	222122	53,58	2450	48,84
Totals				
	414593	100,00	5016	100,00

2-Phenylbutan-2-ol (Table 3, entry 8):



Data File:

Method:

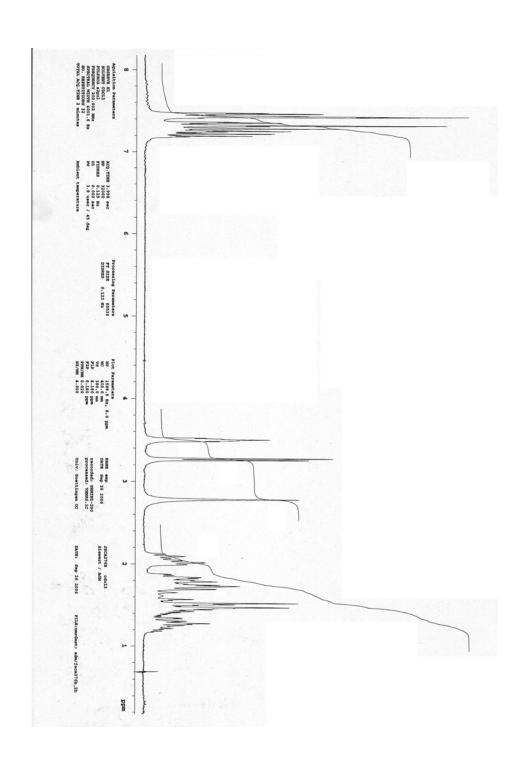
Acquired: 09.03.06 15:21:39 Printed: 20.04.07 17:37:06 0 1 Threshold 0

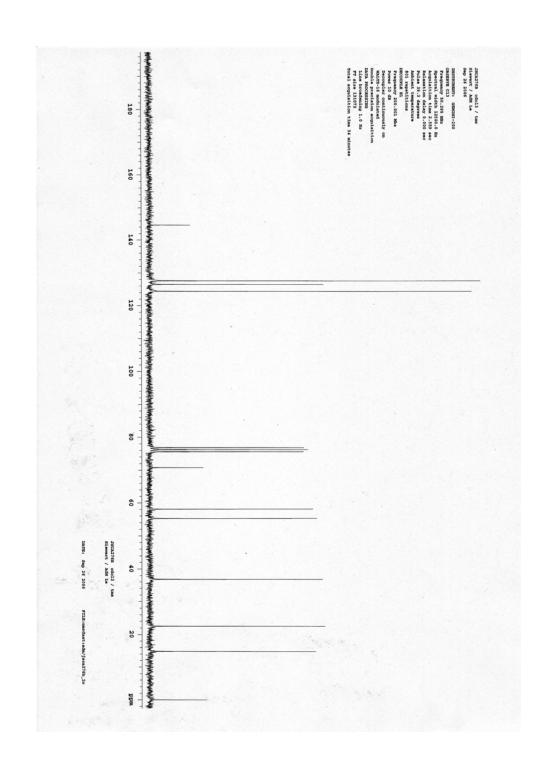
4

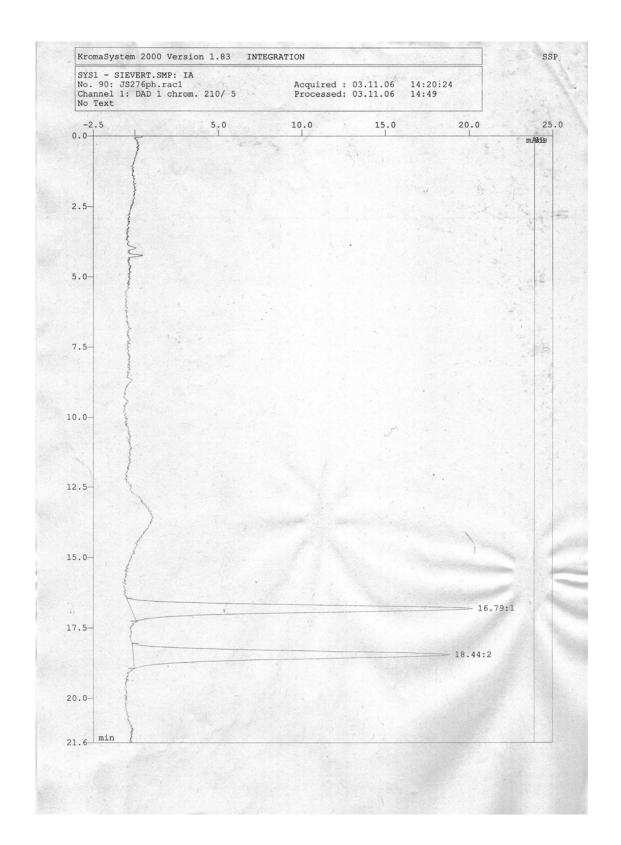
Area %

Height

Height %


FID Results


Retention Time


12,528	226775	76,83	16703	76,61
13,467	68393	23,17	5100	23,39
Totals				
	295168	100,00	21803	100,00

Area

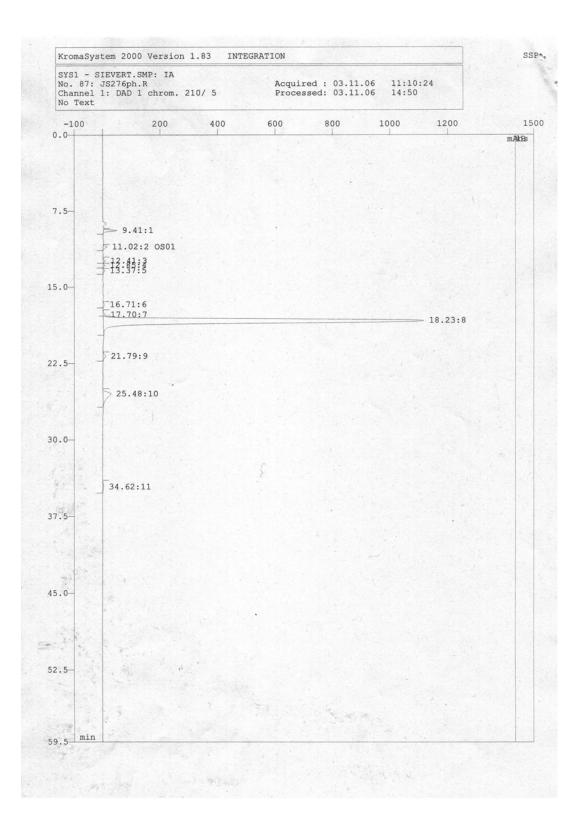
(1R,2R,6R)-2-Phenyl-7-oxabicyclo[4.1.0]heptan-2-ol:

SYS1 - SIEVERT.SMP: IA

Acquired: 03.11.06 14:20:24 Processed: 03.11.06 14:49 No. 90: JS276ph.rac1

Channel 1: DAD 1 chrom. 210/ 5

No Text


Program File SIEVER21

Worksheet OS01 Standard
Peak Table OS01 Auto-generated

Parameter Table .. STANDARD

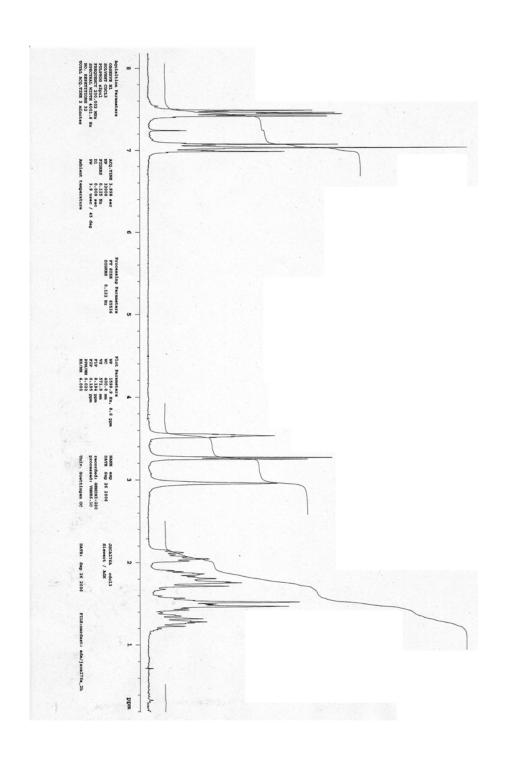
Report File
Document File OS01

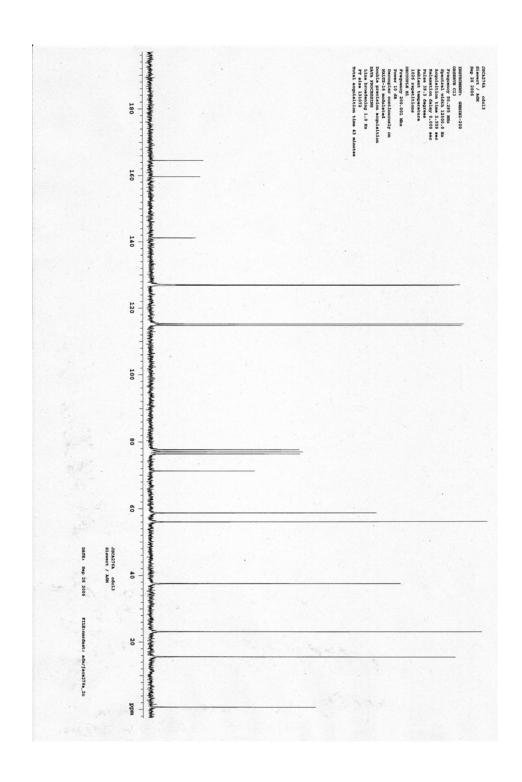
No.	PNo	Ret.Time min	Type	Ne	ame	Area mAbs*min	Amount	Rel.Ar
1	?	16.79	MLR		?	6.2312e+000	?	49.71
2	?	18.44	MLR		?	6.3036e+000	?	50.29
						1.2535e+001	0.0000e+000	100.00

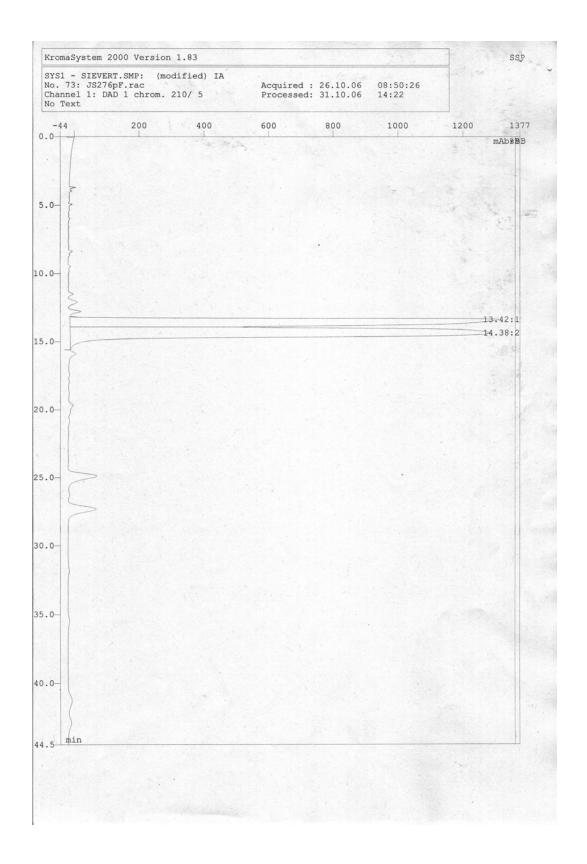
SYS1 - SIEVERT.SMP: IA

Acquired: 03.11.06 11:10:24 No. 87: JS276ph.R Processed: 03.11.06 14:50 Channel 1: DAD 1 chrom. 210/5

No Text A Section Section


Program File SIEVER21


Worksheet OS01 Standard
Peak Table OS01 Auto-generated
Parameter Table


Parameter Table .. STANDARD Report File OS01

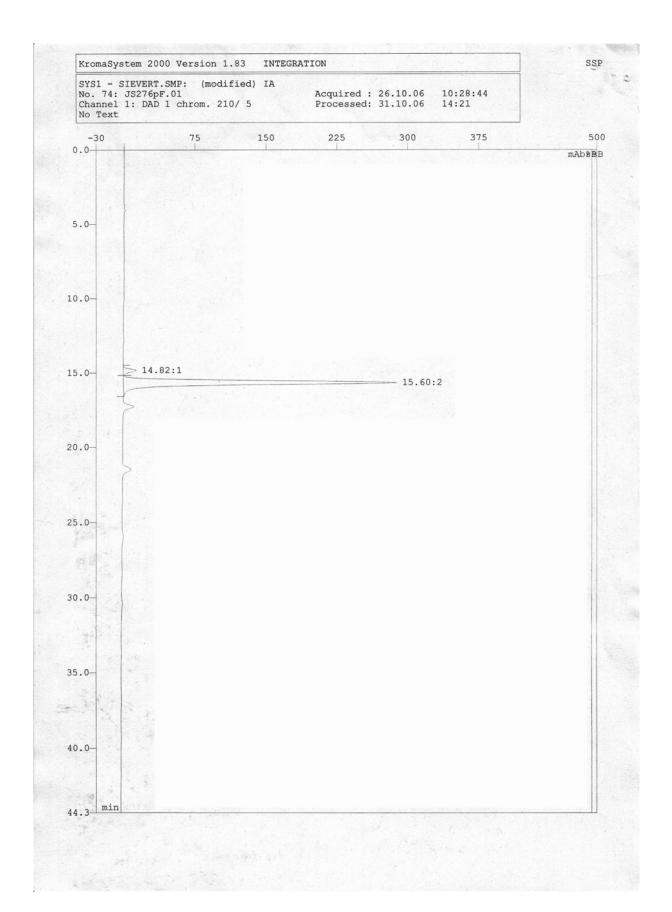
No.	PNo	Ret.Time min	Туре		Name	MAbs*min	Amount	Rel.Ar
1	?	9.41	MLR		?	7.9128e+000	?	1.39
2	8	11.02	MLR	OS01-8		2.9360e+000	1.8953e+002	0.51
3	?	12.41	MLr		?	1.4978e+000	?	0.26
4	?	12.85	MlR		?	1.0441e+000	?	0.18
5	?	13.37	MLR		?	1.2874e+000	?	0.23
6	?	16.71	MLR		?	1.5989e+000	?	0.28
7	?	17.70	ML		?	2.0616e+000	?	0.36
8	?	18.23	MR		?	5.2823e+002	?	92.51
9	?	21.79	MLR		?	3.4289e+000	?	0.60
10	?	25.48	MLR		?	1.9111e+001	?	3.35
11	?	34.62	MLR		?	1.9153e+000	?	0.34
						5.7103e+002	1.8953e+002	100.00

 $(\textit{IR}, \textit{2R}, \textit{6R}) - 2 - (4 - Fluorophenyl) - 7 - oxabicyclo[4.1.0] \\ \text{heptan-2-ol:}$

SYS1 - SIEVERT.SMP (modified): IA

Acquired: 26.10.06 08:50:26 No. 73: JS276pF.rac Processed: 31.10.06 14:22

Channel 1: DAD 1 chrom. 210/ 5


No Text

Program File SIEVER18

Worksheet OS01 Standard
Peak Table OS01 Auto-generated
Parameter Table ... STANDARD

Report File OS01

No.	PNo	Ret.Time min	Туре	Name			Area mAbs*min	Amount	Rel.Ar
1	?	13.42	ML		?	37.33	7.3262e+002	?	44.79
2	?	14.38	M R		?		9.0291e+002	?	55.21
							1.6355e+003	0.0000e+000	100.00

SYS1 - SIEVERT.SMP (modified): IA

No. 74: JS276pF.01 Acquired: 26.10.06 10:28:44

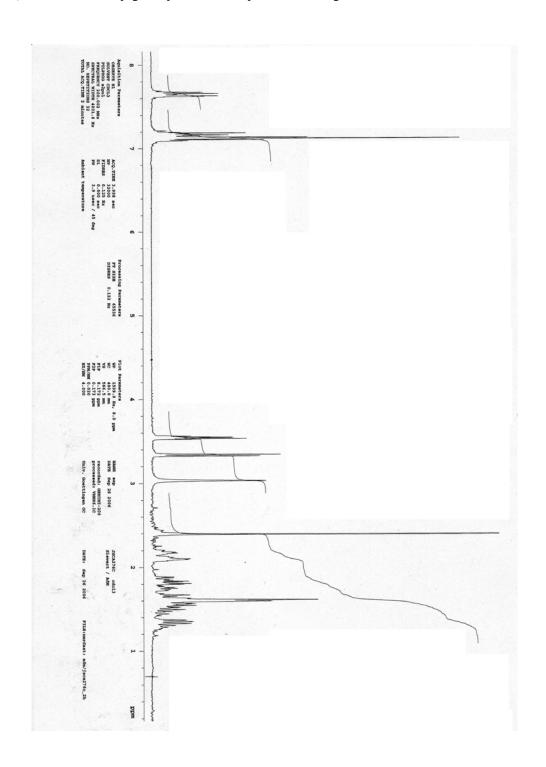
Channel 1: DAD 1 chrom. 210/ 5 Processed: 31.10.06 14:21

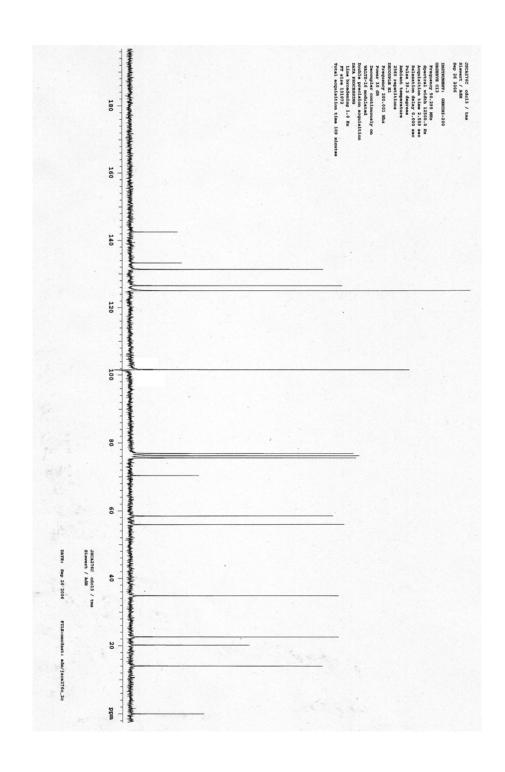
No Text

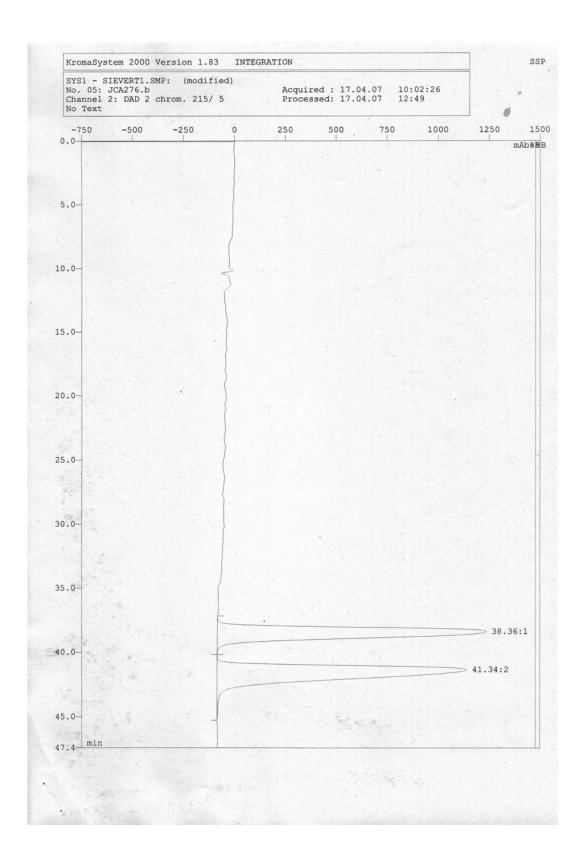
Program File SIEVER18

Worksheet OS01 Standard

Peak Table OS01 Auto-generated


Parameter Table .. STANDARD


Report File


Document File OS01

No.	PNo	Ret.Time min	Type		. 1	Name		Area mAbs*min	Amount	Rel.Ar
1	?	14.82	ML	1		?		3.7389e+000	?	3.86
2	?	15.60	M R			?		9.3051e+001	?	96.14
	(8			
								9.6789e+001	0.0000e+000	100.00

 $(\textit{IR}, \textit{2R}, \textit{6R}) \text{-} 2 \text{-} (2 \text{-} Methylphenyl}) \text{-} 7 \text{-} oxabicyclo} [4.1.0] \text{heptan-} 2 \text{-} ol:$

SYS1 - SIEVERT1.SMP (modified):

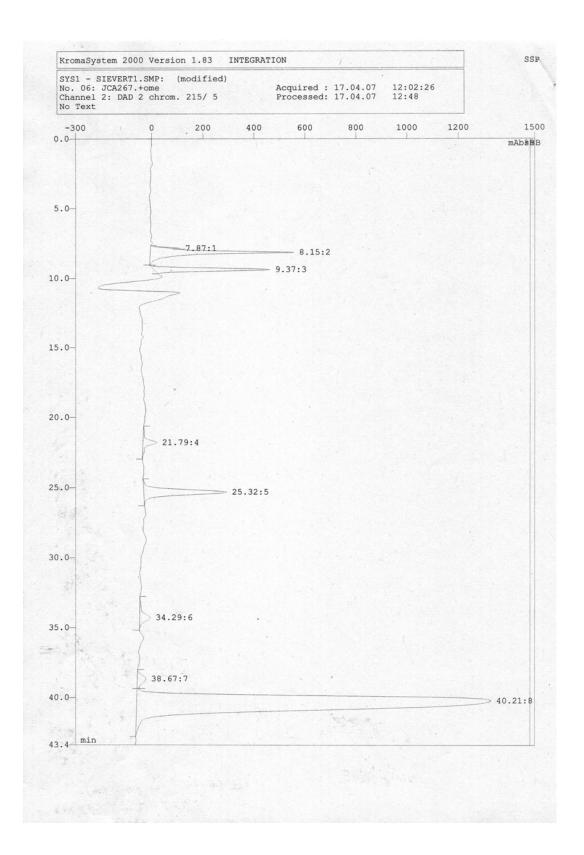
No. 05: JCA276.b Acquired: 17.04.07 10:02:26

Channel 2: DAD 2 chrom. 215/ 5 Processed: 17.04.07 12:49

No Text

Program File SIEVER3

Worksheet OS01 Standard


Peak Table OS01 Auto-generated

Parameter Table .. OS01

Report File

Document File OS01

No.	PNo	Ret.Time min	Type	Name	Area mAbs*min	Amount	Rel.Ar
1	?	38.36	MLr	?	1.2038e+003	?	46.32
2	?	41.34	MlR	?	 1.3950e+003	?	53.68
					2.5988e+003	0.0000e+000	100.00

SYS1 - SIEVERT1.SMP (modified):

No. 06: JCA267.+ome Acquired: 17.04.07 12:02:26

Channel 2: DAD 2 chrom. 215/ 5 Processed: 17.04.07 12:49

No Text

Program File SIEVER3

Worksheet OS01 Standard

Peak Table OS01 Auto-generated

Parameter Table .. OS01

Report File

Document File OS01

No.	PNo	Ret.Time min	Type	Name	Area mAbs*min	Amount	Rel.Ar
1	?	7.87	RuL	?	3.7674e+000	?	0.19
2	?	8.15	M R	? .	1.6810e+002	?	8.46
3	?	9.37	MLR	?	1.0745e+002	?	5.41
4	?	21.79	MLR	?	2.6384e+001	?	1.33
5	?	25.32	MLR	?	1.4382e+002	?	7.24
6	?	34.29	MLR	?	2.7725e+001	?	1.40
7	?	38.67	ML	?	2.3277e+001	?	1.17
8	?	40.21	M R	?	1.4865e+003	?	74.81
					1.9870e+003	0.0000e+000	100.00