

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Asymmetric Formation of Allylic Amines with N-Substituted Quaternary Stereocenters by Pd(II)-Catalyzed Aza-Claisen Rearrangements

Daniel F. Fischer, Zhuo-qun Xin and René Peters*

Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg HCI E 111, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland

peters@org.chem.ethz.ch

www.peters.ethz.ch

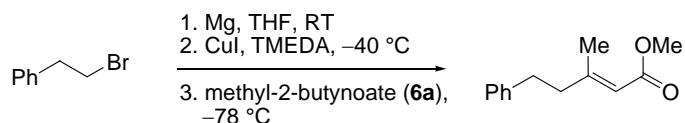
Table of Contents

Preparation of 3,3-disubstituted allylic alcohols and precursors	8
(E)-3-Methyl-5-phenylpent-2-enoic acid methyl ester	8
(E)-3-Methyl-5-phenylpent-2-enol (2a).....	9
Ethyl-2-butynoate (6b).....	10
(E)-3-Methylhept-2-enol (2b).....	11
(E)-3-Methyl-6-triisopropylsilyloxyhex-2-enol (2d)	12
(E)-3-Methyl-6-benzyloxycarbonyloxyhex-2-enol acetic acid ester	13
(E)-3-Methyl-6-benzyloxycarbonyloxyhex-2-enol (2e)	14
(E)-3-Methyl-6-benzylaminohex-2-enol acetic acid ester	15
(E)-3-Methyl-6-(benzyl- <i>t</i> -butyloxycarbonylamino)hex-2-enol acetic acid ester	16
(E)-3-Methyl-6-(benzyl- <i>t</i> -butyloxycarbonylamino)hex-2-enol (2f)	17
6-Hydroxy-4-methylhex-4-enoic acid ethyl ester (2g)	17
(Z)-3-Methyl-6-triisopropylsilyloxyhex-2-enol (2h)	19
4-Benzylxybut-2-ynoic acid ethyl ester (6c).....	20
(Z)-4-Benzylxy-3-methylbut-2-enoic acid ethyl ester	21
(Z)-4-Benzylxy-3-methylbut-2-enol (2i)	22
(Z)-4-Benzylxy-3-ethylbut-2-enoic acid ethyl ester	23
(Z)-4-Benzylxy-3-ethylbut-2-enol (2j)	24
(Z)-3-Benzylxymethylhex-2-enoic acid ethyl ester	25
(Z)-3-Benzylxymethylhex-2-enol (2k)	26
(Z)-3-Benzylxymethylhept-2-enoic acid ethyl ester	27
(Z)-3-Benzylxymethylhept-2-enol (2l)	29
(Z)-3-Benzylxymethyl-6-triisopropylsilyloxyhex-2-enoic acid ethyl ester	30
(Z)-3-Benzylxymethyl-6-triisopropylsilyloxyhex-2-enol (2m)	31
General procedure for the preparation of allylic N-(4-methoxyphenyl) trifluoroacetimidates 4 (GP1)	32
(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl) acetimidic acid 3-methyl-5-phenyl-pent-2-enyl ester (4a)	33
(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methylhept-2-enyl ester (4b)	33

(<i>E</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3,7-dimethyloct-2,6-dienyl ester (4c)	34
(<i>E</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-triisopropylsilyloxyhex-2-enyl ester (4d)	35
(<i>E</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-benzyloxycarbonyloxyhex-2-enyl ester (4e)	36
(<i>E</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-(benzyl- <i>t</i> -butyloxycarbonylamino)hex-2-enyl ester (4f)	37
(<i>E</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-oxo-7-oxa-non-2-enyl ester (4g)	38
(<i>Z</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-triisopropylsilyloxyhex-2-enyl ester (4h)	39
(<i>Z</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-5-benzyloxypent-2-enyl ester (4i)	40
(<i>Z</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-ethyl-5-benzyloxypent-2-enyl ester (4j)	40
(<i>Z</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-propyl-5-benzyloxypent-2-enyl ester (4k)	41
(<i>Z</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-butyl-5-benzyloxypent-2-enyl ester (4l)	42
(<i>Z</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-(3-triisopropylsilyloxypropyl)-5-benzyloxypent-2-enyl ester (4m)	43
(<i>E</i>)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-4,4,4-trideuterobut-2-enyl ester (4n)	44
Preparation of diastereomerically pure precatalyst	45
General procedure for the rearrangement of 3,3-disubstituted allylic trifluoroacetimidates 4 (GP2)	46
General procedure for the removal of the trifluoroacetyl protecting group (GP3)	47
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-phenethyl-1-methylallyl)acetamide (5a)	48
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-butyl-1-methylallyl)acetamide (5b)	49

(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-[4-methylpent-3-enyl]-1-methylallyl)acetamide (5c)	50
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-triisopropylsilyloxypropyl-1-methylallyl)acetamide (5d)	51
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-(3-benzyloxycarbonyloxy)-1-methylallyl)acetamide (5e)	51
(<i>R</i>)-tert-Butyl benzyl(4-methyl-4-(2,2,2-trifluoro- <i>N</i> -(4-methoxyphenyl)acetamido)hex-5-enyl)carbamate (5f)	52
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-[3-oxo-4-oxaheptyl]-1-methylallyl)acetamide (5g)	53
(<i>S</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-triisopropylsilyloxypropyl-1-methylallyl)acetamide (5h)	54
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-benzyloxymethyl-1-methylallyl)acetamide (5i)	55
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-benzyloxymethyl-1-ethylallyl)acetamide (5j)	56
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-benzyloxymethyl-1-propylallyl)acetamide (5k)	57
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-benzyloxymethyl-1-butylallyl)acetamide (5l)	58
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-benzyloxymethyl-1-[3-triisopropylsilyloxypropyl]allyl)acetamide (5m)	59
(<i>R</i>)-2,2,2-Trifluoro- <i>N</i> -(4-methoxyphenyl)- <i>N</i> -(1-trideuteromethyl-1-methyl]-allyl)acetamide (5n)	60
(2 <i>S</i>)-3,3,3-Trifluoro-2-methoxy- <i>N</i> -((<i>IR</i>)-1-methyl-1-trideuteromethylallyl)-2-phenylpropionamide	61
Formation of enantioenriched quaternary amino acids	63
(<i>R</i>)- <i>N</i> -(4-Methoxyphenyl)- <i>N</i> -(1-phenethyl-1-methylallyl)amine	63
(<i>R</i>)-(1-Phenethyl-1-methylallyl)amine and (<i>R</i>)-(1-phenethyl-1-methylallyl)amine hydrochloride	64
(<i>R</i>)-(1-Methyl-1-phenethylallyl) carbamic acid 9 <i>H</i> -fluoren-9-ylmethyl ester (11)	65
(<i>R</i>)-2-(9 <i>H</i> -Fluoren-9-ylmethoxycarbonylamino)-2-methyl-4-phenylbutanal	66
(<i>R</i>)-2-(9 <i>H</i> -Fluoren-9-ylmethoxycarbonylamino)-2-methyl-4-phenyl-butanoic acid (12)	66

(<i>R</i>)-2-Amino-2-methyl-4-phenyl-butanoic acid.....	67
(<i>R</i>)-(9H-Fluoren-9-yl)methyl 1-hydroxy-3-methyl-5-phenylpentan-3-ylcarbamate	68
(<i>R</i>)-3-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-methyl-5-phenylpentanoic acid (13).....	69
References.....	70

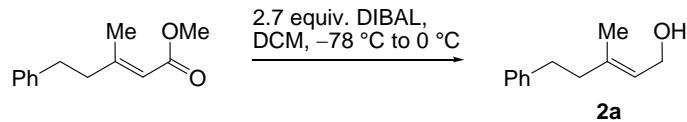

Experimental

Except as otherwise indicated, all reactions were carried out in oven dried glassware under a positive pressure of nitrogen. Anhydrous solvents were prepared by passage of distilled technical grade solvents over a column of activated alumina or molecular sieves under nitrogen atmosphere or purchased as crown-cap solvents. Silver trifluoroacetate (Aldrich, >99.99%) was ground to powder and stored in a glovebox.¹ All other laboratory chemicals were purchased from *Fluka, Merck, J.T. Baker, ABCR* or *Aldrich* and were used without purification. For work-up procedures and flash chromatography, distilled technical grade solvents were used. Unless otherwise indicated, all liquids were added *via* syringe, solids were added neat against a nitrogen flow. Solvents were removed at a heating bath temperature of 40 to 45 °C by rotary evaporation using an appropriate pressure. Non-volatile compounds were dried *in vacuo* at 0.1 mbar. Yields refer to chromatographically purified compounds and are calculated in mol% of the used starting material. Except as otherwise indicated, reactions were magnetically stirred and monitored by high performance liquid chromatography (HPLC) (reversed phase column, H₂O/MeCN gradient) or by thin layer chromatography (TLC) using silica gel plates from *Merck (silica gel 60 F₂₅₄)*. Visualization occurred by fluorescence quenching under UV light and by staining with KMnO₄ (0.5% in 1 M aqueous NaOH). Purification by flash chromatography was performed on silica gel 60 (32-62) provided by *Fluka* using a forced flow of eluent at 0.2-0.4 bar pressure. Racemic reference samples of the rearrangement products **5** needed for chiral HPLC were prepared by stirring the corresponding imidate (30 mg) with PdCl₂(MeCN)₂ (2 mg) in DCM (1 mL) for 1-2 hours, followed by filtration over a plug of silica with DCM. NMR spectra were recorded on a *Varian Gemini 300* and a *Varian Mercury 300* spectrometer operating at 300 MHz (¹H), 75 MHz (¹³C), 122 MHz (³¹P) and 282 MHz (¹⁹F). Chemical shifts δ are referred in terms of ppm and *J* coupling constants are given in Hz. Abbreviations for multiplicity are

as follows: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quadruplet), *m* (multiplet), *bs/bm* (broad singulet/broad multiplet). IR spectra were recorded on a *Perkin Elmer Spectrum RX I FT-IR* and the signals are given by wave numbers (cm⁻¹). Samples were prepared by the thin film technique. Optical rotation was measured on a *Jasco DIP-100 digital polarimeter* operating at the sodium D line with a 100 mm path length cell. Melting points were measured using a *Büchi 535 melting point apparatus* in open glass capillaries and are uncorrected. Mass spectra were obtained from the ETH Zürich MS Service. HI-RES MALDI spectra were recorded using *anIon Spec 4.7 T Ultima HiRes FT-ICR MS MALDI-FT-ICR MS* employing 3HPA (3-Hydroxy-picolinic acid) and two layer technique in positive or negative mode. High resolution EI mass spectra were performed on a *Micromass AutoSpec Ultima* and were calibrated with perfluorotributylamine (PFTBA) and Ultramark 1621 as internal standard. Low resolution ESI was performed on a TSQ7000 with a home-built ESI-source and flow rates of MeOH:water 19:1 of 2-3 µL/min or on a 4.7 T IonsSpec HiRes FT-ICR MS employing a waters 2spray source. Combustion analysis was performed by the Mikroelementaranalytisches Laboratorium at ETH Zürich.

Preparation of 3,3-disubstituted allylic alcohols and precursors

(E)-3-Methyl-5-phenylpent-2-enoic acid methyl ester

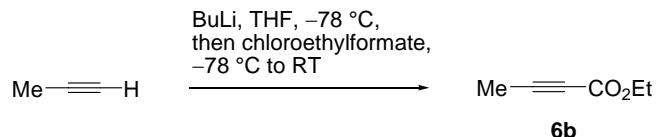

Magnesium turnings were activated by grinding in a mortar inside a glovebox, the metal (0.840 g, 35 mmol, ca. 1.4 equiv.) was suspended in THF (50 mL) and a few drops of a solution of iodine in MTBE were added. Then 2-phenylethylbromide (4.625 g, 25 mmol, 1 equiv.) was added portionwise at RT. After addition of the first portion, the flask was placed in an ultrasonic bath for five minutes or until the reaction had started, visible by the disappearance of the yellow color of iodine. The temperature was kept below 45 °C by cooling in a water bath.

A suspension of CuI (1.840 g, 9.6 mmol, 1.2 equiv.) in THF (25 mL) was cooled to ca. $-40\text{ }^\circ\text{C}$. TMEDA ($\text{N,N,N',N'-tetramethylethylenediamine}$) (2.78 g, 3.61 mL, 24.0 mmol, 3 equiv.) was subsequently added followed by the solution of 2-phenylethylmagnesiumbromide (16.0 mL, 8.0 mmol, 1 equiv.). The grey suspension, which may turn to yellow-brown, was stirred at $-40\text{ }^\circ\text{C}$ for 30 min and then cooled to $-78\text{ }^\circ\text{C}$. Methyl-2-butyanoate (**6a**, 0.784 g, 784 μL , 8.0 mmol, 1.0 equiv.) was added in one portion and the resulting grey to orange suspension was stirred for 2 h at $-78\text{ }^\circ\text{C}$. The reaction was quenched by addition of methanol (technical grade, ca. 10 mL) and the cooling bath was subsequently removed. Saturated aqueous ammonium sulfate (ca. 10 mL) was added and the suspension was warmed to RT. Aqueous ammonia (ca. 20%) was added until complete dissolution of all solids, followed by extraction with MTBE (2 x) and washing of the combined organic phases with additional aqueous ammonia. The solution was dried over MgSO_4 and the volatiles were removed *in vacuo*. The (*E*)/(*Z*)-ratio of 98:2 was determined by $^1\text{H-NMR}$ (allylic

CH₃-group: (E): 2.21 ppm, (Z): 1.89 ppm). The isomers were separated by column chromatography (pentane / diethylether 16:1) to give the desired (E)-isomer as a colorless oil (1.440 g, 7.06 mmol, 88%). Similar results were obtained with ethyl ester **6b**.

C₁₃H₁₆O₂, MW: 204.26 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.29-7.16 (*m*, 5 H, Ar-*H*), 5.69 (*app d*, *J* = 1.2, 1H, C=CH), 3.68 (*s*, 3 H, OCH₃), 2.78 (*dd*, *J* = 10.5, *J* = 7.8, 2 H, Ar-CH₂-CH₂), 2.45 (*dd*, *J* = 10.5, *J* = 7.8, 2 H, Ar-CH₂-CH₂), 2.21 (*app d*, *J* = 1.2, 3H, C=C-CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 166.9, 159.1, 140.8, 128.3, 126.0, 115.5, 50.8, 42.7, 33.9, 19.0. **IR (film):** ν = 3027, 2948, 1721, 1650, 1603, 1495, 1435, 1385, 1359, 1280, 1225, 1147, 1080, 1048. **MS (EI) *m/z*:** 91.0 [100%], 204.1 [2.2%, MH⁺]. **HRMS (EI) *m/z*:** Calc. for [MH⁺]: 204.1145. Found: 204.1147. **Anal. Calcd. for C₁₃H₁₆O₂:** C, 76.44; H, 7.89. Found: C, 76.16, H, 7.91.

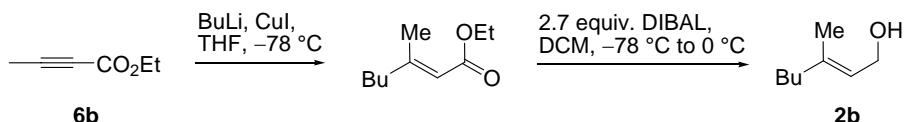
(E)-3-Methyl-5-phenylpent-2-enol (2a)



(E)-3-Methyl-5-phenylpent-2-enoic acid methyl ester (1.440 g, 7.06 mmol, 1.0 equiv) was dissolved in DCM (20 mL) and cooled to -78 °C. DIBAL (1 M in DCM or hexanes, 20 mL, 20 mmol, 2.8 equiv.) was added in portions within 1 min. After 30 min stirring at -78 °C, the solution was slowly warmed to 0 °C and stirred for 1 h, then cooled again to -78 °C. The reaction was quenched by dropwise addition of 1 N aqueous HCl. After warming to RT, additional 1 N HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with DCM and the combined organic phases were dried over MgSO₄. Subsequent solvent removal under

reduced pressure gave **2a** (1.205 g, 6.84 mmol, 97%) as colorless oil which did not require further purification.

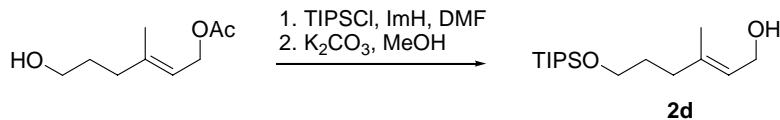
C₁₂H₁₆O, MW: 176.25 g/mol. **¹H NMR (300 MHz, CDCl₃, 21 °C):** δ = 7.30-7.28 (*m*, 2 H, Ar-*H*), 7.20-7.16 (*m*, 2 H, Ar-*H*), 5.41 (*t*, *J* = 6.9, 1 H, C=CH), 4.14 (*t*, *J* = , 2 H, CH₂OH), 2.27 & 2.32 (*t*, *J* = 7.5, 2 H each, CH₂CH₂), 1.73 (*s*, 3 H, C=C-CH₃), 1.03 (*t*, *J* = 5.4, 1 H, CH₂OH). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 141.8, 138.8, 128.25, 128.20, 125.7, 123.8, 59.2, 41.4, 34.4, 16.5. **IR (film):** ν = 3334, 2927, 2858, 1669, 1602, 1495, 1453, 1382, 1001. **MS (EI) *m/z*:** 91.0 [100%], 176.1 [3.3%, M⁺]. **HRMS (EI) *m/z*:** Calc. for [M⁺]: 176.1196. Found: 176.1198. **Anal. Calcd. for C₁₂H₁₆O:** C, 81.77; H, 9.15. Found: C, 81.66, H, 9.23.


Ethyl-2-butynoate (**6b**)²

Propyne (6.0 g, 0.150 mol, 1 equiv.) was condensed at -78 °C into a flask containing THF (100 mL). *n*-Butyllithium (1.6 M in hexane, 93 mL, 0.150 mol, 1 equiv.) was added *via* cannula within 10 min and the resulting turbid mixture was stirred at -78 °C for 30 min. Ethylchloroformate (17.4 g, 15.4 mL, 0.160 mol, 1.07 equiv.) was added in one portion. After 10 min, the mixture was allowed to warm to RT, then saturated aqueous ammonium chloride (ca. 10 mL) was added resulting in the formation of a white precipitate. The suspension was washed with water (50 mL), the organic phase was dried over MgSO₄ and most of the solvent was removed *in vacuo*. Distillation (60 mbar, 80 °C bath temperature) afforded **6b** as colorless oil (13.76 g, 0.122 mol, 81%).

C₆H₈O₂, MW: 112.13 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 4.20 (*q*, *J* = 7.2, 2 H, CO₂CH₂CH₃), 1.97 (s, 3 H, CCCH₃), 1.29 (*t*, *J* = 7.2, 3 H, CO₂CH₂CH₃). All other analytical data were in accordance with the purchased material.

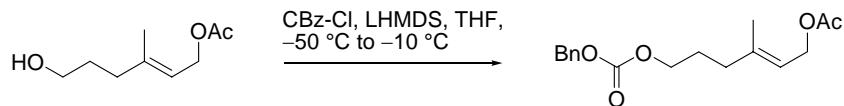
(E)-3-Methylhept-2-enol (2b)



3-Methylhept-2-enoic acid ethyl ester was prepared by CuI-mediated addition of BuLi to ethylbutynoate, following a literature procedure.³ To a solution of this ester (0.520 g, 1.88 mmol, 1.0 equiv.) in DCM (10 mL) at -78°C was added DIBAL (1 M in DCM, 5 mL, 5 mmol, 2.7 equiv.) in portions within 1 min. After 30 min stirring at -78°C , the solution was slowly warmed to 0°C and stirred for 1 h, then cooled again to -78°C . The reaction was quenched by dropwise addition of 1 N aqueous HCl. After warming to RT, additional 1 N aqueous HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with DCM and the combined organic phases were dried over MgSO₄. Subsequent solvent removal under reduced pressure gave **2b** (0.400 g, 1.7 mmol, 90%) as colorless oil which did not require further purification.

C₈H₁₆O, MW: 128.21 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 5.36 (*t*, *J* = 0.9, 1 H, C=CH), 4.10 (*d*, *J* = 5.4, 2 H, CH₂OH), 1.98 (*t*, *J* = 7.2, 2 H, CH₂CH₂CH₂CH₃), 1.89 (*bs*, 1 H, OH), 1.63 (*s*, 3 H, C=CCH₃), 1.39-1.27 (*m*, 4 H, CH₂CH₂CH₂CH₃), 0.89 (*t*, *J* = 6.9, 3 H, CH₂CH₂CH₂CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 139.7, 124.0, 59.1, 39.1, 29.7, 22.2, 15.9, 13.8. **IR (film):** ν = 3330, 2958, 2873, 1670, 1467, 1380, 1238, 1181, 1075, 999, 789, 730. **MS (EI) *m/z*:** 128.1 [4.5%],

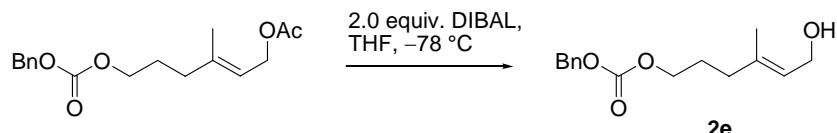
M^+]. **HRMS (EI) *m/z*:** Calc. for $[M^+]$: 128.1196. Found: 128.1195. **Anal. Calcd. for C₈H₁₆O:** C, 74.94; H, 12.58. Found: C, 74.65, H, 12.44.


(*E*)-3-Methyl-6-triisopropylsilyloxyhex-2-enol (**2d**)

Triisopropylsilylchloride (0.425 g, 473 μ L, 2.2 mmol, 1.1 equiv.) was added to a solution of (*E*)-acetic acid 6-hydroxy-3-methylhex-2-enyl ester⁴ (0.344 g, 2.0 mmol, 1.0 equiv.) and imidazole (0.544 g, 8.0 mmol, 4 equiv.) in DMF (20 mL). The resulting clear solution was stirred for 2-3 days at RT (TLC-monitoring, pentane / EtOAc 9:1). The reaction was quenched by addition of water and the mixture was extracted twice with MTBE. The combined organic phases were washed three times with water to remove residual DMF, dried over $MgSO_4$ and the solvent was removed under reduced pressure to give silyl ether **2d** as a slightly yellowish oil which was utilized without purification. **[¹H-NMR** (300 MHz, $CDCl_3$, 21 °C): δ = 5.36 (*t*, J = 7.2, 1 H, $C=CH$), 4.58 (*d*, J = 7.2, 2 H, CH_2OH), 3.66 (*t*, J = 6.3, 2 H, $CH_2CH_2CH_2OTIPS$), 2.14 (*t*, J = 6.9, 2 H, $CH_2CH_2CH_2OTIPS$), 2.05 (*s*, 3 H, $OCOCH_3$), 1.71-1.61 (*m*, 2 + 3 H, $C=C-CH_3$ & $CH_2CH_2CH_2OTIPS$), 1.10 (*b*, 1 H, CH_2OH), 1.10-1.00 (*m*, 3 + 18 H, $Si(CH(CH_3)_2)_3$).] The crude silyl ether was dissolved in a 0.2 M solution of potassium carbonate in methanol (ca. 15 mL) and stirred at RT overnight. Water and MTBE were then added and the aqueous phase was extracted with additional MTBE. The combined organic phases were dried over $MgSO_4$, the solvent was removed under reduced pressure and the residue was purified by column chromatography (pentane / EtOAc 4:1) to give **2d** as colorless oil (0.449 g, 1.57 mmol, 78% over two steps).

C₁₆H₃₄O₂Si, MW: 286.53 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 5.41 (*t*, *J* = 6.9, 1 H, C=CH), 4.12 (*d*, *J* = 6.9, 2 H, CH₂OH), 3.66 (*t*, *J* = 6.3, 2 H, CH₂CH₂CH₂OTIPS), 2.08 (*t*, *J* = 7.2, 2 H, CH₂CH₂CH₂OTIPS), 1.67-1.60 (*m*, 2 + 3 H, C=C-CH₃ & CH₂CH₂CH₂OTIPS), 1.10 (*b*, 1 H, CH₂OH), 1.10-1.00 (*m*, 3 + 18 H, Si(CH₃)₂). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 139.4, 123.2, 62.9, 59.4, 35.8, 31.2, 18.1, 16.3, 12.1. **IR (film):** ν = 3324, 2943, 2867, 1463, 1382, 1247, 1108, 1069, 996. **MS (EI) *m/z*:** 95.0 [100%], 243.1 [0.7%, (M-C₃H₇)⁺]. **HRMS (EI) *m/z*:** Calc. for [M-C₃H₇]⁺: 243.1775. Found: 243.1773. **Anal. Calcd. for C₁₆H₃₄O₂Si:** C, 67.07; H, 11.96; Found: C, 67.05, H, 11.92.

(*E*)-3-Methyl-6-benzyloxycarbonyloxyhex-2-enol acetic acid ester

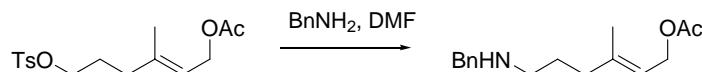


LHMDS (1.0 M in THF, 5.0 mmol, 5.0 mL, 1 equiv.) was added to a solution of (*E*)-acetic acid 6-hydroxy-3-methylhex-2-enyl ester⁴ (0.860 g, 5.0 mmol, 1 equiv.) and chloroformic acid benzylester (CBz-Cl, 1.020 g, 6.0 mmol, 1.2 equiv.) in THF (15 mL) at -50 °C. The reaction was allowed to warm to -10 °C, then water was added and the mixture was extracted three times with DCM. The combined organic phases were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (CyH / EtOAc 7:1) to give (*E*)-3-methyl-6-benzyloxycarbonyloxyhex-2-enol acetic acid ester as colorless oil (1.140 g, 3.72 mmol, 75%).

C₁₇H₂₂O₅, MW: 306.35 g/mol. **¹H-NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.38-7.30 (*m*, 5 H, arom-H), 5.32 (*t*, *J* = 6.9, 1 H, C=CH), 5.14 (*s*, 2 H, OCH₂Ph), 4.56 (*d*, *J* = 7.2, CH₂OAc), 4.12 (*t*, *J* = 6.6, 2 H, OC(O)OCH₂CH₂CH₂), 2.10 (*t*, *J* = 7.2, 2 H, OC(O)OCH₂CH₂CH₂), 2.03 (*s*, 3 H, OCOCH₃),

1.80 (*dd*, *J* = 7.2, *J* = 6.6, 2 H, OC(O)OCH₂CH₂CH₂), 1.68 (*s*, 3 H, C=C-CH₃). ¹³C NMR (75 MHz, CDCl₃, 21 °C): δ = 170.8, 155.0, 140.5, 135.1, 128.5, 128.4, 128.2, 119.0, 69.3, 67.4, 61.0, 35.2, 26.3, 20.9, 16.2. IR (film): ν = 3066, 3034, 2958, 1745, 1671, 1586, 1498, 1455, 1398, 1375, 1265, 1079, 1024, 952, 908, 790, 754, 698. MS (EI) *m/z*: 91.0 [100%], 215.0 [1.6%, (M-C₇H₇)⁺]. HRMS (EI) *m/z*: Calc. for [(M-C₇H₇)⁺]: 215.0914. Found: 215.0914. Anal. Calcd. for C₁₇H₂₂O₅: C, 66.65; H, 7.24; Found: C, 66.73, H, 7.19.

(*E*)-3-Methyl-6-benzyloxycarbonyloxyhex-2-enol (2e)

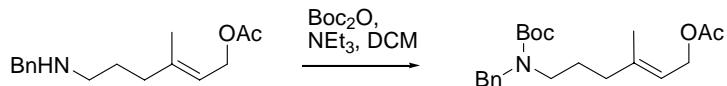


(*E*)-3-Methyl-6-benzyloxycarbonyloxyhex-2-enol acetic acid ester (0.450 g, 1.47 mmol, 1 equiv.) was dissolved in THF (20 mL) and cooled to -78 °C. DIBAL (1.0 M in DCM, 2.94 mmol, 2.94 mL, 2.0 equiv.) was added in two portions within one hour. After two hours reaction time, a saturated solution of potassium sodium tartrate was added. The mixture was warmed to RT and extracted three times with DCM. The combined organic phases were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (CyH / EtOAc 2:1 + 3% NEt₃) to yield **2e** as colorless oil (0.314 g, 1.19 mmol, 81%).

C₁₅H₂₀O₄, MW: 264.31 g/mol. ¹H-NMR (300 MHz, CDCl₃, 21 °C): δ = 7.39-7.34 (*m*, 5 H, Ar-H), 5.40 (*t*, *J* = 6.9, 1 H, C=CH), 5.14 (*s*, 2 H, OCH₂Ph), 4.16-4.10 (*m*, 2+ 2 H, CH₂OAc & OC(O)OCH₂CH₂CH₂), 2.09 (*t*, *J* = 7.2, 2 H, OC(O)OCH₂CH₂CH₂), 1.84-1.77 (*m*, 2 H, OC(O)OCH₂CH₂CH₂), 1.65 (*s*, 3 H, C=C-CH₃). ¹³C NMR (75 MHz, CDCl₃, 21 °C): δ = 155.1, 137.8, 135.1, 128.5, 128.4, 128.2, 124.2, 69.4, 67.5, 59.0, 35.2, 26.4, 15.9. IR (film): ν = 3401,

2959, 1748, 1669, 1653, 1558, 1498, 1456, 1398, 1375, 1265, 1001, 906. **MS (EI) *m/z*:** 91.0 [100%], 173.0 [5%, $(M-C_7H_7)^+$]. **HRMS (EI) *m/z*:** Calc. for $[(M-C_7H_7)^+]$: 173.0808. Found: 173.0809. **Anal. Calcd. for $C_{15}H_{20}O_4$:** C, 68.16; H, 7.63; Found: C, 67.90, H, 7.61.

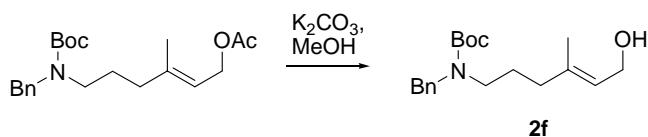
(*E*)-3-Methyl-6-benzylaminohex-2-enol acetic acid ester



To a solution of (*E*)-3-methyl-6-(toluene-4-sulfonyloxy)hex-2-enol acetic acid ester⁴ (1.140 g, 3.50 mmol, 1 equiv.) in DMF (20 mL) at RT was added benzylamine (3.745 g, 3.82 mL, 35 mmol, 10 equiv.). The solution was stirred overnight and then diluted with MTBE and cooled to 0 °C. Saturated sodium hydrogencarbonate-solution was added and the aqueous phase extracted 3 times with MTBE. The combined organic phases were washed with brine and dried over $MgSO_4$. After solvent removal, the residue was purified by column chromatography (CyH / EtOAc 4:1 + 3% NEt₃) to give (*E*)-3-methyl-6-benzylaminohex-2-enol acetic acid ester as colorless oil (0.840 g, 3.21 mmol, 92%).

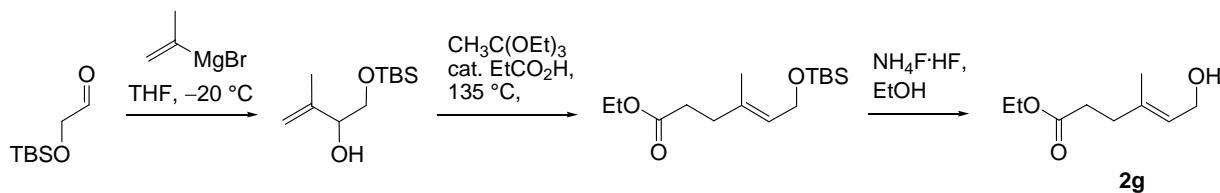
$C_{16}H_{23}NO_2$, MW: 261.36 g/mol. **¹H-NMR** (300 MHz, $CDCl_3$, 21 °C): δ = 7.32-7.21 (m, 5 H, Ar-H), 5.33 (t, J = 7.2, 1 H, C=CH), 4.56 (d, J = 6.9, 2 H, CH_2OAc), 3.77 (s, 2 H, NCH_2Ph), 2.61 (t, J = 7.2, 2 H, $NCH_2CH_2CH_2$), 2.07 (t, J = 7.5, 2 H, $NCH_2CH_2CH_2$), 2.03 (s, 3H, $OCOCH_3$), 1.69 (s, 3 H, C=C-CH₃), 1.61 (app t, J = 5.4, 2 H, $NCH_2CH_2CH_2$), 1.23 (bs, 1H, NH). **¹³C NMR** (75 MHz, $CDCl_3$, 21 °C): δ = 170.9, 141.9, 140.4, 128.2, 127.9, 126.7, 118.3, 61.3, 54.1, 49.0, 37.3, 28.0, 21.1, 16.4. **IR (film):** ν = 3026, 2935, 1734, 1700, 1670, 1558, 1495, 1455, 1366, 1234, 1119, 1025, 954, 735. **MS (EI) *m/z*:** 91.0 [100%], 261.1 [1.7%, M^+]. **HRMS (EI) *m/z*:** Calc. for $[M]^+$: 261.1723.

Found: 261.1723. **Anal. Calcd. for C₁₆H₂₃NO₂:** C, 73.53; H, 8.87; N, 5.36; Found: C, 73.45, H, 8.90, N, 5.50.


(E)-3-Methyl-6-(benzyl-*t*-butyloxycarbonylamino)hex-2-enol acetic acid ester

Triethylamine (0.430 g, 0.598 mL, 4.26 mmol, 1.5 equiv.) was added at 0 °C to a solution of (E)-3-methyl-6-benzylaminohex-2-enol acetic acid ester (0.740 g, 2.84 mmol, 1 equiv.) and (Boc)₂O (0.743 g, 3.41 mmol, 1.2 equiv.) in DCM (15 mL). The solution was warmed to RT and stirred for four hours before it was cooled again to 0 °C, followed by the addition of saturated aqueous NaHCO₃. The mixture was three times extracted with DCM. The combined organic phases were washed with brine, dried over MgSO₄, and the solvent was removed under reduced pressure. The residue was purified by column chromatography (CyH / EtOAc 4:1) to give (E)-3-methyl-6-(benzyl-*t*-butyloxycarbonylamino)hex-2-enol acetic acid ester as colorless oil (0.960 g, 2.66 mmol, 94%).

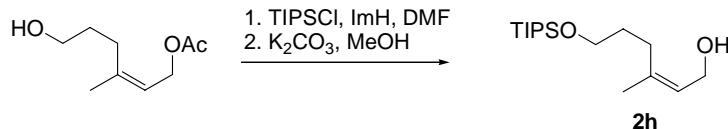
C₂₁H₃₁NO₄, MW: 361.47 g/mol. **¹H-NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.32-7.19 (m, 5 H, Ar-H), 5.28 (t, *J* = 6.6, 1 H, C=CH), 4.53 (d, *J* = 6.9, 2 H, CH₂OAc), 4.40 (bs, 2 H, NCH₂Ph), 3.12 (bs, 2 H, NCH₂CH₂CH₂), 2.00 (s, 3H, OCOCH₃), 2.00-1.95 (bm, 2 H, NCH₂CH₂CH₂), 1.63 (bs, 3+2 H, C=C-CH₃ & NCH₂CH₂CH₂), 1.43 (bs, 9 H, C(CH₃)₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 170.9, 156.0, 141.3, 138.4, 128.3, 127.5, 127.0, 118.5, 79.4, 61.1, 50.4 & 49.8, 46.1, 36.5, 28.3, 25.7, 20.9, 16.2. **IR (film):** ν = 2976, 2934, 1739, 1696, 1558, 1455, 1417, 1366, 1234, 1162, 1126, 1025, 956, 895. **MS (MALDI) m/z:** 384.2 [29%, (MNa)⁺]. **HRMS (MALDI) m/z:** Calc. for [MNa]⁺: 384.2145. Found: 384.2142. **Anal. Calcd. for C₂₁H₃₁NO₄:** C, 69.78; H, 8.64; N, 3.87; Found: C, 69.77, H, 8.93, N, 4.04.


(E)-3-Methyl-6-(benzyl-*t*-butyloxycarbonylamino)hex-2-enol (2f)

(*E*)-3-Methyl-6-(benzyl-*t*-butyloxycarbonylamino)hex-2-enol acetic acid ester (0.810 g, 2.24 mmol, 1 equiv.) was dissolved in a solution of potassium carbonate (0.031 g, 0.224 mmol, 0.1 equiv.) in methanol (15 mL). After six hours, water and MTBE were added. The phases were separated and the organic layer was washed with brine and dried over $MgSO_4$. After solvent removal, the residue was purified by column chromatography (CyH / EtOAc 2:1 + 3% NEt_3) to give **2f** as colorless oil (0.710 g, 2.23 mmol, quant.).

C₁₉H₂₉NO₃, MW: 319.44 g/mol. **¹H-NMR** (300 MHz, $CDCl_3$, 21 °C): δ = 7.32-7.22 (m, 5 H, Ar-H), 5.35 (t, J = 6.6, 1 H, C=CH), 4.40 (bs, 2 H, NCH_2Ph), 4.09 (bs, 2 H, CH_2OH), 3.13 (bs, 2 H, $NCH_2CH_2CH_2$), 1.94 (bm, 2 H, $NCH_2CH_2CH_2$), 1.80 (bs, 1H, OH), 1.61 (bs, 3+2 H, C=C-CH₃ & $NCH_2CH_2CH_2$), 1.43 (bs, 9, $C(CH_3)_3$). **¹³C NMR** (75 MHz, $CDCl_3$, 21 °C): δ = 155.8, 155.4, 138.3, 128.3, 127.5, 127.0, 123.8, 79.6, 59.1, 50.4 & 50.0, 46.2, 36.6, 28.5, 26.1, 25.7, 16.2. **IR (film)**: ν = 3432, 2975, 2925, 1692, 1451, 1413, 1367, 1303, 1244, 1159, 1121, 1007, 885, 737. **MS (MALDI)** *m/z*: 343.2 [21%, (MNa)⁺]. **HRMS (MALDI) m/z**: Calc. for $[MNa]^+$: 342.2040. Found: 342.2035. **Anal. Calcd. for C₁₉H₂₉NO₃**: C, 71.44; H, 9.15; N, 4.38; Found: C, 71.52, H, 8.92, N, 4.43.

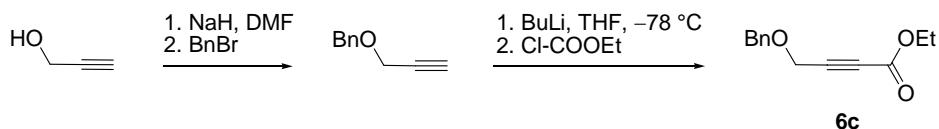
6-Hydroxy-4-methylhex-4-enoic acid ethyl ester (2g)


2-(*tert*-Butyldimethylsilyloxy)acetaldehyde was prepared following a literature procedure.⁵ Isopropenylmagnesiumbromide (0.5 M in THF, 40 mL, 20 mmol, 1.17 equiv.) was added to a solution of the aldehyde (2.98 mmol, 17.1 mmol, 1 equiv.) in THF (50 mL) at -40 °C. The solution was warmed to RT and saturated aqueous ammonium chloride was added. The mixture was extracted with MTBE. The organic phase was washed with brine, dried over MgSO₄ and the solvents were removed under reduced pressure to give 1-(*tert*-butyldimethylsilyloxy)-3-methylbut-3-en-2-ol (1.477 g, 6.84 mmol, 40% yield) as a colorless oil. The alcohol was then refluxed in triethyl orthoacetate (5.54 g, 34 mmol, 5 equiv.) in the presence of propionic acid (0.50 g, 6.8 mmol, 1 equiv.) for 24 h to give the corresponding (*E*)-configured γ,δ -unsaturated ester (0.606 g, 2.1 mmol, 31% yield) after purification by column chromatography (pentane / Et₂O 16:1).

C₁₅H₃₀O₃Si, MW: 286.48 g/mol. **¹H-NMR** (300 MHz, CDCl₃, 21 °C): δ = 5.29 (*t*, *J* = 5.7, 1 H, C=CH), 4.15 (*d*, *J* = 6.3, 2 H, CH₂OTBS), 4.12 (*q*, *J* = 7.2, 2 H, OCH₂CH₃), 2.42-2.38 & 2.31-2.26 (*m*, 2 H each, CH₂CH₂CO₂Et), 1.61 (*s*, 3 H, C=C-CH₃), 1.22 (*t*, *J* = 7.2, 3 H, OCH₂CH₃), 0.97 (*s*, 9 H, SiC(CH₃)₃), 0.03 (*s*, 6 H, Si(CH₃)₂). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 172.9, 134.9, 124.9, 60.2, 60.1, 34.3, 32.8, 26.0, 18.4, 16.3, 14.3, -4.9. **IR (film):** ν = 2956, 2930, 2857, 2362, 1739, 1477, 1446, 1371, 1292, 1255, 1158, 1111, 1068. **MS (EI) *m/z*:** 229.1 [1.7 %, (M-C₄H₉)⁺]. **HRMS (EI) *m/z*:** Calc. for [M-C₄H₉]⁺: 229.1255. Found: 229.1254. **Anal. Calcd. for C₁₅H₃₀O₃Si:** C, 62.89; H, 10.55; Found: C, 62.62, H, 10.45.

The ester was subsequently treated with ammonium fluoride – hydrogen fluoride (0.240 mg, 4.2 mmol, 2 equiv.) in ethanol (15 mL) overnight to give **2g** after purification by column chromatography (pentane / EtOAc 9:1) as colorless oil (0.223 g, 1.26 mmol, 60%). Due to its low stability, only the preceding TBS-protected allylic alcohol was obtained in analytically pure form.

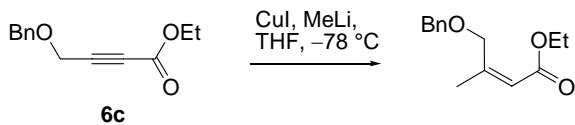
C₉H₁₆O₃, MW: 177.22 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 5.42 (*t*, *J* = 5.7, 1 H, C=CH), 4.14 (*m*, 2+2 H, CH₂OH & OCH₂CH₃), 2.45-2.30 (*m*, 4 H, CH₂CH₂), 1.69 (*s*, 3 H, C=C-CH₃), 1.25 (*t*, *J* = 7.2, 3 H, OCH₂CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 173.1, 137.2, 124.1, 60.2, 58.9, 34.2, 23.5, 16.0, 14.0. **IR (film):** ν = 3422, 2982, 2937, 1732, 1671, 1447, 1373, 1298, 1263, 1159, 1029. **MS (EI) *m/z*:** 81.0 [100 %], 172.1 [0.25 %, M⁺]. **HRMS (EI) *m/z*:** Calc. for [M]⁺: 172.1094. Found: 172.1094.


(Z)-3-Methyl-6-triisopropylsilyloxyhex-2-enol (2h)

Alcohol **2h** was prepared in analogy to **2d**, but with nerylacetate instead of geranylacetate as starting point.⁶ Yield starting from (Z)-6-hydroxy-3-methylhex-2-enyl acetate: 92% (two steps, 1 mmol scale).

C₁₆H₃₄O₂Si, MW: 286.53 g/mol. **¹H-NMR** (300 MHz, CDCl₃, 21 °C): δ = 5.51 (*t*, *J* = 6.9, 1 H, C=CH), 4.10 (*t*, *J* = 7.2, 2 H, CH₂OH), 3.67 (*t*, *J* = 6.0, 2 H, CH₂CH₂CH₂OTIPS), 2.21 (*t*, *J* = 7.2, 2 H, CH₂CH₂CH₂OTIPS), 1.73-1.60 (*m*, 2 + 3 H, C=C-CH₃ & CH₂CH₂CH₂OTIPS), 1.10-1.00 (*m*, 3 + 18 + 1 H, Si(CH₃)₃ & OH). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 139.4, 124.8, 62.1, 58.4, 30.8, 27.6, 23.1, 17.8, 11.8. **IR (film):** ν = 3339, 2944, 2867, 1464, 1381, 1247, 1109, 1069, 1013, 882. **MS (EI) *m/z*:** 95.0 [100%], 243.1 [1.5%, (M-C₃H₇)⁺]. **HRMS (EI) *m/z*:** Calc. for [M-C₃H₇]⁺: 243.1775. Found: 243.1775. **Anal. Calcd. for C₁₆H₃₄O₂Si:** C, 67.07; H, 11.96; Found: C, 66.82, H, 11.76.

4-Benzylxybut-2-ynoic acid ethyl ester (6c)

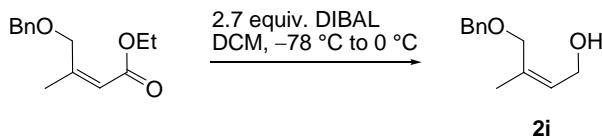

Propargylic alcohol (3.360 g, 3.48 mL, 60 mmol, 1 equiv.) was added in portions to a suspension of NaH (60% in mineral oil, 2.40 g, 60 mmol, 1 equiv.) in DMF (100 mL) at 0°C . After 30 min at RT, the now homogeneous solution was cooled again to 0°C and benzyl bromide (10.26 g, 7.20 mL, 60 mmol, 1 equiv.) was added. The solution was stirred for 30 min at RT, then ammonia (in water or methanol, 20 mL of a saturated solution) was added and the mixture was stirred at RT overnight. Water was added and the mixture was extracted three times with MTBE. The combined organic phases were washed three times with water and once with 1 N aqueous HCl and were then dried over MgSO_4 . The solvent was removed *in vacuo* to give benzyl propargylether as slightly yellowish oil (6.570 g, 45 mmol, 75%) after filtration over silica with pentane / Et_2O 1:1. **[¹H NMR** (300 MHz, CDCl_3 , 21 °C): $\delta = 7.37\text{--}7.26$ (*m*, 5 H, Ar-*H*), 4.62 (*s*, 2 H, PhCH_2O), 4.18 (*s*, 2 H, BnOCH_2), 2.47 (*s*, 1 H, *CH*).]

Benzyl propargylether (3.30 g, 22.6 mmol, 1.0 equiv.) was dissolved in THF (30 mL) and cooled to -78°C . $n\text{BuLi}$ (1.6 M in hexanes, 15.0 mL, 24.0 mmol, 1.06 equiv.) was added and the solution was stirred for 30 min followed by addition of ethylchloroformate (2.72 g, 2.40 mL, 25 mmol, 1.1 equiv.). After five minutes, the reaction mixture was allowed to warm to RT and then quenched by addition of saturated aqueous ammonium chloride. After addition of water the aqueous phase was extracted twice with MTBE, the combined organic phases were dried over MgSO_4 and the solvent was removed under reduced pressure. Column chromatography (pentane / diethylether 16:1 → pentane / diethylether 1:1) gave **6c** as colorless to slightly yellow oil (3.560 g, 16.3 mmol, 72%)

which contained an unidentified impurity. Alternatively, **6c** can be purified by distillation (Kugelrohr distillation, 0.1 mbar, 170 °C).

C₁₃H₁₄O₃, MW: 218.25 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.36-7.26 (*m*, 5 H, Ar-*H*), 4.62 (*s*, 2 H, C₆H₅CH₂O), 4.29 (*s*, 2 H, OCH₂CCCOOEt), 4.24 (*q*, *J* = 7.2, 2 H, OCH₂CH₃), 1.32 (*t*, *J* = 7.2, 3 H, OCH₂CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 152.9, 136.7, 128.6, 128.4, 128.2, 128.0, 128.0, 68.1, 78.3, 72.0, 62.1, 56.8, 14.1. **IR (film)**: ν = 2983, 2859, 2235, 1715, 1455, 1366, 1251, 1090, 1056, 749, 698. **MS (EI)**: no unambiguously assignable peak was found. **Anal. Calcd.** for C₁₃H₁₄O₃: C, 71.54; H, 6.47; Found: C, 71.52, H, 6.70.

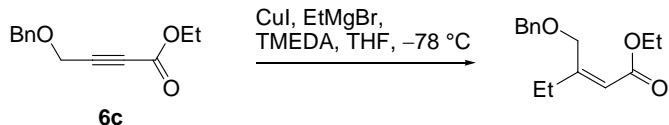
(Z)-4-Benzylxy-3-methylbut-2-enoic acid ethyl ester



CuI (1.140 g, 6.0 mmol, 1.1 equiv.) was suspended in THF (16 mL) and cooled to ca. -40 °C. To the suspension was added MeLi (1.6 M in diethylether, 3.50 mL, 5.5 mmol, 1 equiv.). The mixture was stirred at -40 °C for 30 min and was then cooled to -78 °C. A solution of 4-benzylxybut-2-ynoic acid ethyl ester **6c** (1.200 g, 5.5 mmol, 1 equiv.) in THF (4 mL) was added in one portion and the resulting suspension was stirred for 4 h at -78 °C. The reaction was quenched by addition of methanol (technical grade, ca. 2 mL), and the cooling bath was subsequently removed. Saturated aqueous ammonium chloride (ca. 10 mL) was added. The mixture was extracted three times with MTBE, and the combined organic phases were dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (pentane / Et₂O 16:1) to

give (*Z*)-4-benzyloxy-3-methylbut-2-enoic acid ethyl ester as colorless oil (1.222 g, 5.22 mmol, 95%). The (*E*)-isomer could not be detected by ^1H -NMR.

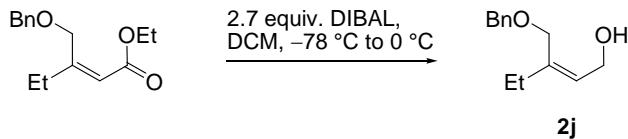
C₁₄H₁₈O₃, MW: 234.29 g/mol. **^1H NMR (300 MHz, CDCl₃, 21 °C):** δ = 7.36-7.28 (*m*, 5 H, Ar-*H*), 5.77 (*t*, *J* = 1.5, 1H, C=CH), 4.68 (*s*, 2 H, CH₂Ph), 4.52 (*s*, 2 H, CH₂OBn), 4.14 (*q*, *J* = 7.2, 2 H, OCH₂CH₃), 2.02 (*s*, 3 H, C=C-CH₃), 1.27 (*t*, *J* = 6.9, 3 H, OCH₂CH₃). **^{13}C NMR (75 MHz, CDCl₃, 21 °C):** δ = 165.7, 156.8, 138.1, 128.2, 127.5, 117.2, 72.7, 69.3, 59.8, 21.8, 14.4. **IR (film):** ν = 3032, 2981, 2860, 1713, 1649, 1497, 1445, 1375, 1336, 1223, 1150, 1096, 1065, 1029, 852. **MS (EI) *m/z*:** 91.0 [100%], 235.1 [0.1%, MH⁺]. **HRMS (EI) *m/z*:** Calc. for [MH⁺]: 235.1329. Found: 235.1329. **Anal. Calcd. for C₁₄H₁₈O₃:** C, 71.77; H, 7.75. Found: C, 71.81, H, 7.90.


(*Z*)-4-Benzyl-3-methylbut-2-enol (**2i**)

(*Z*)-4-Benzyl-3-methylbut-2-enoic acid ethyl ester (1.220 g, 5.2 mmol, 1 equiv.) was dissolved in DCM (10 mL) and cooled to -78 °C. DIBAL (1 M in DCM or hexanes, 14.0 mL, 14.0 mmol, 2.7 equiv.) was added in portions within 1 min. After 30 min stirring at -78 °C, the solution was slowly warmed to 0 °C and stirred for 1 h, then cooled again to -78 °C and quenched by dropwise addition of 1 N HCl. After warming to RT, additional 1 N aqueous HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with DCM and the combined organic phases were dried over MgSO₄. Subsequent solvent removal under reduced pressure gave **2i** (0.800 g, 4.16 mmol, 80%) as colorless oil which did not require further purification.

C₁₂H₁₆O₂, MW: 192.26 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.39-7.26 (*m*, 5 H, Ar-*H*), 5.63 (*t*, *J* = 6.9, 1H, C=CH), 4.48 (*s*, 2 H, CH₂Ph), 4.09 (*t*, *J* = 6.0, CH₂OH), 4.02 (*s*, 2 H, CH₂OBn), 2.36 (*app d*, *J* = 4.5, 1H, CH₂OH), 1.83 (*d*, *J* = 1.2, 3 H, C=C-CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 137.9, 135.8, 128.4, 128.3, 127.7, 72.2, 68.6, 58.5, 22.1. **IR (film):** ν = 3390, 2064, 3031, 2971, 2917, 2862, 1671, 1606, 1496, 1453, 1366, 1311, 1248, 1205, 1073, 1027, 1000, 738, 698. **MS (EI) *m/z*:** 91.0 [100%], 174.1 [1.5%, (M-H₂O)⁺]. **HRMS (EI) *m/z*:** Calc. for [(M-H₂O)⁺]: 174.1039. Found: 174.1040. **Anal. Calcd. for C₁₂H₁₆O₂:** C, 74.97; H, 8.39. Found: C, 74.70, H, 8.22.

(Z)-4-Benzylxy-3-ethylbut-2-enoic acid ethyl ester

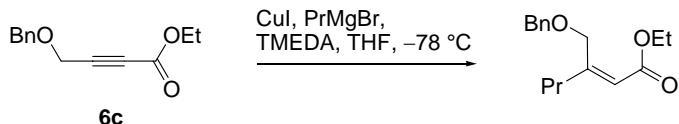


To a suspension of CuI (0.950 g, 5.0 mmol, 1.25 equiv.) in THF (30 mL) at -40 °C ethylmagnesiumbromide (3 M in diethylether, 1.34 mL, 4 mmol, 1 equiv.) and TMEDA (1.74 g, 2.26 mL, 15.0 mmol, 3.75 equiv.) were added successively. The grey suspension which may turn to purple was stirred at -40 °C for 30 min and then cooled to -78 °C. 4-Benzylxybut-2-ynoic acid ethyl ester **6c** (0.872 g, 4.0 mmol, 1.0 equiv.) was added in one portion and the resulting suspension was stirred for 2 h at -78 °C. The reaction was quenched by dropwise addition of methanol (technical grade, ca. 5 mL) and the cooling bath was subsequently removed. Saturated aqueous ammonium sulfate (ca. 5 mL) was added and the suspension was allowed to warm to RT. Then aqueous ammonia (ca. 20%) was added until complete dissolution of all solids, followed by extraction with MTBE (2 x) and washing of the combined organic phases with additional aqueous

ammonia and brine. The solution was dried over MgSO_4 and the volatiles were removed *in vacuo*. Purification by column chromatography (pentane / Et_2O 16:1) afforded (*Z*)-4-benzyloxy-3-ethylbut-2-enoic acid ethyl ester (492 mg, 1.98 mmol, 49%) as a colorless oil. The (*E*)/(*Z*)-ratio of 4:96 was determined by $^1\text{H-NMR}$ (characteristic signals: *E*: 5.95 ppm, *Z*: 5.74 ppm, $\text{C}=\text{CH}$).⁷

C₁₅H₂₀O₃, MW: 248.32 g/mol. **$^1\text{H NMR}$** (300 MHz, CDCl_3 , 21 °C): δ = 7.36-7.26 (*m*, 5 H, Ar-*H*), 5.75 (*t*, *J* = 1.5, 1 H, $\text{C}=\text{CH}$), 4.69 (*s*, 2 H, CH_2Ph), 4.52 (*s*, 2 H, CH_2OBn), 4.14 (*q*, *J* = 7.2, 2 H, OCH_2CH_3), 2.38 (*q*, *J* = 7.5, 2 H, $\text{C}=\text{C-CH}_2\text{CH}_3$), 1.25 (*t*, *J* = 6.9, 3 H, OCH_2CH_3), 1.10 (*t*, *J* = 7.5, 3 H, $\text{C}=\text{C-CH}_2\text{CH}_3$). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3 , 21 °C): δ = 166.1, 161.5, 128.2, 128.2, 127.5, 127.4, 115.6, 72.6, 68.2, 59.7, 27.5, 14.1, 12.0. **IR (film)**: ν = 2975, 2934, 2878, 2363, 1713, 1647, 1497, 1454, 1377, 1309, 1212, 1150, 1074, 1036, 868, 736. **MS (EI) *m/z***: 91.0 [100%], 157.0 [25%, (M- C_7H_7)⁺]. **HRMS (EI) *m/z***: Calc. for [M- C_7H_7)⁺]: 157.0860. Found: 157.0860. **Anal. Calcd. for C₁₅H₂₀O₃**: C, 72.55; H, 8.12. Found: C, 72.47, H, 8.10.

(*Z*)-4-Benzylxy-3-ethylbut-2-enol (2j)

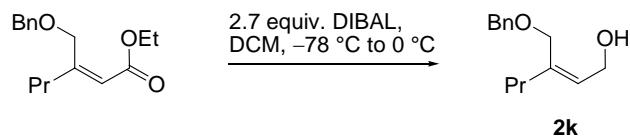


(*Z*)-4-Benzylxy-3-ethylbut-2-enoic acid ethyl ester (0.434 g, 1.75 mmol, 1.0 equiv) was dissolved in DCM (10 mL) and cooled to -78 °C. DIBAL (1.1 M in cyclohexane, 4.3 mL, 4.7 mmol, 2.7 equiv.) was added in portions within 1 min. After 30 min stirring at -78 °C, the solution was slowly warmed to 0 °C and stirred for an additional hour, then cooled again to -78 °C and quenched by dropwise addition of 1 N aqueous HCl. After warming to RT, additional 1 N HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with

DCM and the combined organic phases were dried over MgSO_4 . Subsequent solvent removal under reduced pressure gave **2j** (0.299 g, 1.45 mmol, 83%) as colorless oil which did not require further purification.

C₁₃H₁₈O₂, MW: 206.28 g/mol. **¹H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.36-7.26 (*m*, 5 H, Ar-*H*), 5.65 (*t*, *J* = 6.6, 1H, C=CH), 4.48 (*s*, 2 H, CH_2Ph), 4.13 (*d*, *J* = 6.9, CH_2OH), 4.02 (*s*, 2 H, CH_2OBn), 2.40 (*bs*, 1H, CH_2OH), 2.17 (*q*, *J* = 7.5, 2 H, C=C- CH_2CH_3), 1.04 (*t*, *J* = 7.5, 3 H, C=C- CH_2CH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 141.1, 137.8, 128.3, 127.7, 127.6, 126.9, 72.3, 67.6, 58.5, 28.3, 12.2. **IR (film)**: ν = 3391, 3064, 3031, 2965, 2932, 2874, 1953, 1870, 1811, 1668, 1607, 1586, 1496, 1454, 1366, 1310, 1246, 1205, 1174, 1071, 1012. **MS (EI) *m/z***: 91.0 [100%], 188.1 [1.5%], $[\text{M}-\text{H}_2\text{O}]^+$. **HRMS (EI) *m/z***: Calc. for $[\text{M}-\text{H}_2\text{O}]^+$: 188.1196. Found: 188.1196. **Anal. Calcd. for C₁₃H₁₈O₂**: C, 75.69; H, 8.79. Found: C, 75.41, H, 8.69.

(Z)-3-Benzylloxymethylhex-2-enoic acid ethyl ester

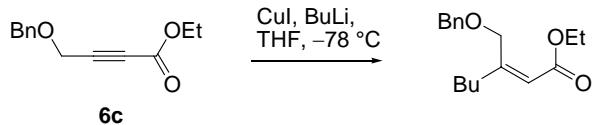


To a suspension of CuI (0.760 g, 4 mmol, 1.33 equiv.) in THF (10 mL) at -40 °C propylmagnesiumbromide (2 M in diethylether, 1.65 mL, 3.3 mmol, 1.1 equiv.) and TMEDA (1.39 g, 1.80 mL, 12.0 mmol, 4 equiv.) were added successively. The grey suspension that may turn to purple was stirred at -40 °C for 30 min and then cooled to -78 °C. 4-Benzylxy-but-2-ynoic acid ethyl ester (**6c**, 0.654 g, 3.0 mmol, 1.0 equiv.) was added in one portion and the resulting suspension was stirred for 2 h at -78 °C. The reaction was quenched by dropwise addition of methanol (technical grade, ca. 5 mL) and the cooling bath was subsequently removed. Saturated aqueous

ammonium sulfate (ca. 5 mL) was added and the suspension was allowed to warm to RT. Then aqueous ammonia (ca. 20%) was added until complete dissolution of all solids, followed by extraction with MTBE (2 x) and washing of the combined organic phases with additional aqueous ammonia and brine. The solution was dried over MgSO_4 and the volatiles were removed *in vacuo*. Purification by column chromatography (pentane / Et_2O 16:1) afforded (Z)-3-benzyloxymethylhex-2-enoic acid ethyl ester (592 mg, 2.25 mmol, 75%) as a colorless oil. The (E)/(Z)-ratio of 0.5:99.5 was determined by ^1H -NMR (characteristic signals: *E*: 6.02 ppm, *Z*: 5.75 ppm, $\text{C}=\text{CH}$).⁷

C₁₆H₂₂O₃, MW: 262.34 g/mol. **^1H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.37-7.25 (*m*, 5 H, Ar-*H*), 5.75 (*t*, *J* = 2.5, 1 H, $\text{C}=\text{CH}$), 4.68 (*s*, 2 H, CH_2Ph), 4.52 (*s*, 2 H, CH_2OBn), 4.14 (*q*, *J* = 7.2, 2 H, OCH_2CH_3), 2.33 (*t*, *J* = 7.5, 2 H, $\text{C}=\text{C-CH}_2\text{CH}_2\text{CH}_3$), 1.51 (*dt*, *J* = 7.5, *J* = 7.2, 2H, $\text{C}=\text{C-CH}_2\text{CH}_2\text{CH}_3$), 1.25 (*t*, *J* = 6.9, 3 H, OCH_2CH_3), 0.97 (*t*, *J* = 7.2, 3 H, $\text{C}=\text{C-CH}_2\text{CH}_3$). **^{13}C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 166.0, 159.9, 138.2, 128.2, 127.5, 127.5, 116.7, 72.7, 68.1, 59.9, 36.9, 21.1, 14.4, 14.0. **IR (film)**: ν = 2961, 1934, 2873, 1643, 1497, 1454, 1377, 1255, 1209, 1151, 1096, 1037, 881. **MS (EI) *m/z***: 91.0 [100%], 171.1 [25%, $(\text{M-C}_7\text{H}_7)^+$]. **HRMS (EI) *m/z***: Calc. for $[(\text{M-C}_7\text{H}_7)^+]$: 171.1016. Found: 171.1015. **Anal. Calcd. for C₁₆H₂₂O₃**: C, 73.25; H, 8.45. Found: C, 72.98, H, 8.41.

(Z)-3-Benzylloxymethylhex-2-enol (2k)

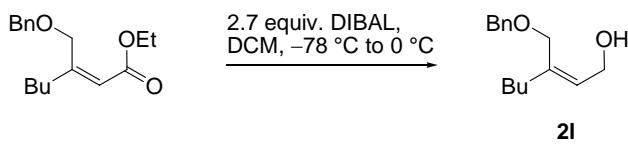


(Z)-3-Benzylloxymethylhex-2-enoic acid ethyl ester (0.300 g, 1.14 mmol, 1.0 equiv) was dissolved in DCM (5 mL) and cooled to -78 °C. DIBAL (1.1 M in cyclohexane, 2.8 mL, 3.0 mmol, 2.7

equiv.) was added in portions within 1 min. After 30 min stirring at $-78\text{ }^{\circ}\text{C}$, the solution was slowly warmed to $0\text{ }^{\circ}\text{C}$ and stirred for an additional hour, then cooled again to $-78\text{ }^{\circ}\text{C}$ and quenched by dropwise addition of 1 N aqueous HCl. After warming to RT, additional 1 N HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with DCM and the combined organic phases were dried over MgSO_4 . Subsequent solvent removal under reduced pressure gave **2k** (0.249 g, 1.13 mmol, 99%) as colorless oil which did not require further purification.

C₁₄H₂₀O₂, MW: 220.31 g/mol. **¹H NMR** (300 MHz, CDCl_3 , 21 $^{\circ}\text{C}$): δ = 7.38-7.25 (*m*, 5 H, Ar-*H*), 5.64 (*t*, *J* = 6.6, 1H, C=CH), 4.48 (*s*, 2 H, CH_2Ph), 4.11 (*t*, *J* = 6.3, CH_2OH), 4.01 (*s*, 2 H, CH_2OBn), 2.35 (*bs*, 1H, CH_2OH), 2.10 (*t*, *J* = 7.8, 2 H, C=C-CH₂CH₂CH₃), 1.52-1.29 (*dt*, *J* = 7.5, *J* = 7.2, 2 H, C=C-CH₂CH₂CH₃), 0.91 (*t*, *J* = 7.2, 3 H, C=C-CH₂CH₂CH₃). **¹³C NMR** (75 MHz, CDCl_3 , 21 $^{\circ}\text{C}$): δ = 139.5, 137.8, 128.3, 128.1, 127.7, 127.6, 72.4, 67.6, 58.6, 37.9, 21.1, 13.9. **IR (film)**: ν = 3372, 2950, 2930, 2861, 1449, 1371, 1067, 1008. **MS (EI) *m/z***: 91.0 [100%], 202.1 [1.3%, $(\text{M}-\text{H}_2\text{O})^+$]. **HRMS (EI) *m/z***: Calc. for $[(\text{M}-\text{H}_2\text{O})^+]$: 202.1353. Found: 202.1351. **Anal. Calcd. for C₁₄H₂₀O₂**: C, 76.33; H, 9.15. Found: C, 76.08, H, 9.06.

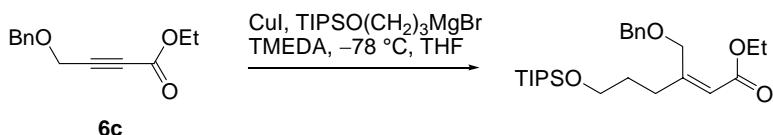
(Z)-3-Benzylloxymethylhept-2-enoic acid ethyl ester



To a suspension of CuI (0.760 g, 4 mmol, 1.33 equiv.) in THF (10 mL) at $-40\text{ }^{\circ}\text{C}$ *n*-BuLi (1.6 M in hexane, 2.06 mL, 3.3 mmol, 1.1 equiv.) was added. The grey suspension that may turn to purple was stirred at $-40\text{ }^{\circ}\text{C}$ for 30 min and then cooled to $-78\text{ }^{\circ}\text{C}$. 4-Benzylxyloxy-but-2-yneoic acid ethyl ester

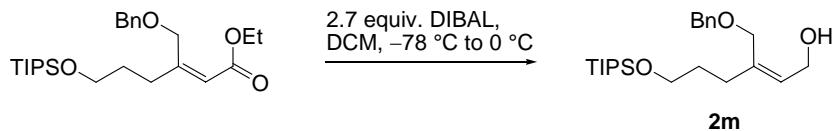
(**6c**, 0.654 g, 3.0 mmol, 1.0 equiv.) was added in one portion and the resulting suspension stirred for 2 h at -78°C . The reaction was quenched by dropwise addition of methanol (technical grade, ca. 5 mL) and the cooling bath was subsequently removed. Saturated aqueous ammonium sulfate (ca. 5 mL) was added and the suspension was allowed to warm to RT. Then aqueous ammonia (ca. 20%) was added until complete dissolution of all solids, followed by extraction with MTBE (2 x) and washing of the combined organic phases with additional aqueous ammonia and brine. The solution was dried over MgSO_4 and the volatiles were removed *in vacuo*. Purification by column chromatography (pentane / Et_2O 16:1, $R_f = 0.19$) afforded (*Z*)-3-benzyloxymethylhept-2-enoic acid ethyl ester (608 mg, 2.20 mmol, 73%) as a colorless oil. An unidentified impurity could only be removed after the subsequent reduction step. The (*Z*)/(*E*)-ratio of $> 100:1$ was determined by ^1H -NMR (characteristic signals: *E*: 5.99 ppm, *Z*: 5.76 ppm, $\text{C}=\text{CH}$).⁷

C₁₇H₂₄O₃, MW: 276.37 g/mol. **^1H NMR** (300 MHz, CDCl_3 , 21 °C): $\delta = 7.36\text{--}7.16$ (*m*, 5 H, Ar-*H*), 5.76 (*t*, *J* = 1.5, 1H, $\text{C}=\text{CH}$), 4.68 (*s*, 2H, OCH_2Ph), 4.52 (*s*, 2H, CH_2OBn), 4.15 (*q*, *J* = 7.2, 2 H, OCH_2H_3), 2.35 (*t*, *J* = 8.1, 2 H, $\text{C}=\text{CH-CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 1.60-1.29 (*m*, 4 H, $\text{C}=\text{CH-CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 1.29 (*t*, *J* = 7.2, 3H, OCH_2CH_3), 0.92 (*t*, *J* = 7.2, 3H, $\text{C}=\text{CH-CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$).
 ^{13}C NMR (75 MHz, CDCl_3 , 21 °C): $\delta = 166.0, 160.3, 138.2, 128.2, 127.5, 127.4, 116.5, 72.6, 68.0, 59.7, 34.4, 29.8, 22.3, 14.1, 13.8. **IR (film):** $\nu = 2958, 2932, 2862, 1713, 1642, 1497, 1454, 1377, 1261, 1206, 1151, 1096, 1038, 735, 697$. **MS (EI) *m/z*:** 91.0 [100%], 185.1 [25%, $(\text{M-C}_7\text{H}_7)^+$].
HRMS (EI) *m/z*: Calc. for $[(\text{M-C}_7\text{H}_7)^+]$: 185.1173. Found: 185.1173.$


(Z)-3-Benzylloxymethylhept-2-enol (2l)

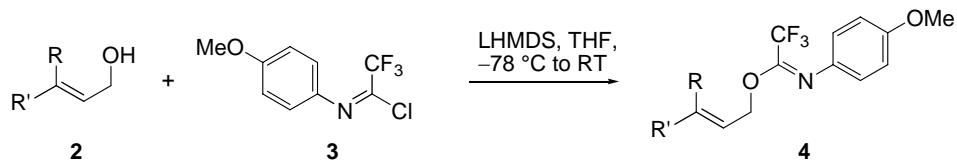
(Z)-3-Benzylloxymethylhept-2-enoic acid ethyl ester (0.278 g, 1.0 mmol, 1.0 equiv) was dissolved in DCM (5 mL) and cooled to $-78\text{ }^{\circ}\text{C}$. DIBAL (1.1 M cyclohexane, 2.5 mL, 2.75 mmol, 2.75 equiv.) was added in portions within 1 min. After 30 min stirring at $-78\text{ }^{\circ}\text{C}$, the solution was slowly warmed to $0\text{ }^{\circ}\text{C}$ and stirred for an additional hour then cooled again to $-78\text{ }^{\circ}\text{C}$ and quenched by dropwise addition of 1 N aqueous HCl. After warming to RT, additional 1 N HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with DCM and the combined organic phases were dried over MgSO_4 . After solvent removal under reduced pressure the crude product was purified by column chromatography (pentane / Et_2O 1:1) furnishing **2l** (0.224 g, 0.95 mmol, 95%) as a colorless oil.

C₁₅H₂₂O₂, MW: 234.33 g/mol. **¹H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.38-7.25 (*m*, 5 H, Ar-*H*), 5.65 (*t*, *J* = 6.9, 1H, C=CH), 4.49 (*s*, 2 H, CH_2Ph), 4.11 (*t*, *J* = 6.3, CH_2OH), 4.01 (*s*, 2 H, CH_2OBn), 2.25 (*bs*, 1H, CH_2OH), 2.12 (*t*, *J* = 6.9, 2 H, C=C-CH₂CH₂CH₂CH₃), 1.44-1.28 (*m*, 4 H, C=C-CH₂CH₂CH₂CH₃), 0.91 (*t*, *J* = 7.2, 3 H, C=C-CH₂CH₂CH₂CH₃). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 139.9, 137.8, 128.3, 127.9, 127.7, 127.6, 72.4, 67.6, 58.6, 35.5, 30.1, 22.5, 14.0. **IR (film):** ν = 3368, 3031, 2956, 2929, 2860, 2363, 1664, 1496, 1454, 1363, 1245, 1205, 1071, 1010. **MS (EI)** *m/z*: 91.0 [100%], 216.1 [1.2%, $(\text{M}-\text{H}_2\text{O})^+$]. **HRMS (EI)** *m/z*: Calc. for $[(\text{M}-\text{H}_2\text{O})^+]$: 216.1509. Found: 216.1507. **Anal. Calcd. for C₁₅H₂₂O₂:** C, 76.88; H, 9.46. Found: C, 76.65, H, 9.49.

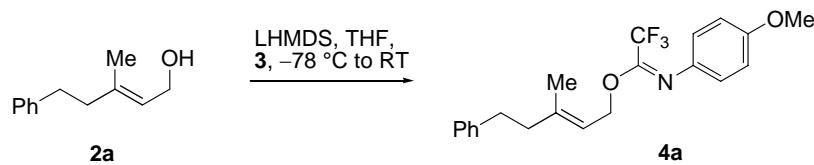

(Z)-3-Benzylloxymethyl-6-triisopropylsilanyloxyhex-2-enoic acid ethyl ester

3-(Triisopropylsilyloxy)propylbromide was prepared following a literature procedure from 3-bromopropanol.⁸ Magnesium turnings were activated by grinding in a mortar inside a glovebox, the metal (0.210 g, 5 mmol, ca. 1.2 equiv.) was suspended in THF (5 mL), followed by addition of a few drops of a solution of iodine in MTBE. Then 3-(triisopropylsilyloxy)propylbromide (1.220 g, 4.1 mmol, 1 equiv.) was added at RT in one portion. The flask was placed in an ultrasonic bath until the reaction had started, visible by the disappearance of the yellow color of iodine. The temperature was kept below ca. 45 °C by cooling in a water bath. This Grignard solution (1 equiv., 5 mL, 4.1 mmol) was added to a suspension of CuI (0.760 g, 4 mmol, 1.33 equiv.) in THF (10 mL) at -40 °C. The grey suspension that may turn to purple was stirred at -40 °C for 30 min and then cooled to -78 °C. 4-Benzylxy-but-2-ynoic acid ethyl ester (**6c**, 0.736 g, 3.5 mmol, 1.0 equiv.) was added in one portion and the resulting suspension stirred for 2 h at -78 °C. The reaction was quenched by dropwise addition of methanol (technical grade, ca. 5 mL) and the cooling bath was subsequently removed. After 0 °C was reached, saturated aqueous ammonium sulfate (ca. 5 mL) was added and the suspension was allowed to warm to RT. Then aqueous ammonia (ca. 20%) was added until complete dissolution of all solids, followed by extraction with MTBE (2 x) and washing of the combined organic phases with additional aqueous ammonia and brine. The solution was dried over MgSO₄ and the volatiles were removed *in vacuo*. Purification by column chromatography (pentane / Et₂O 16:1) afforded (Z)-3-benzyloxymethyl-6-triisopropylsilanyloxyhex-2-enoic acid ethyl ester (1026 mg, 2.36 mmol, 67%) as a colorless oil. The (Z)/(E)-ratio of > 100:1 was determined by ¹H-NMR (characteristic signals: *E*: expected ca. 6.00 ppm, *Z*: 5.77 ppm, C=CH).

C₂₅H₄₂O₄Si MW: 434.68 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.35-7.26 (m, 5 H, Ar-H), 5.79 (t, J = 1.2, 1H, C=CH), 4.68 (s, 2H, OCH₂Ph), 4.52 (s, 2H, CH₂OBn), 4.15 (q, J = 7.2, 2 H, OCH₂H₃), 3.72 (t, J = 6.3, 2 H, CH₂CH₂CH₂OTIPS), 2.46 (t, J = 6.6, 2 H, CH₂CH₂CH₂OTIPS), 1.78-1.72 (m, 2 H, CH₂CH₂CH₂OTIPS), 1.29 (t, J = 7.2, 3H, OCH₂CH₃), 1.11-1.02 (m, 21 H, Si(CH(CH₃)₂)₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 166.0, 160.0, 138.2, 128.2, 127.5, 127.4, 116.6, 72.6, 68.1, 62.6, 59.7, 31.2, 31.0, 17.9, 14.1, 11.8. **IR (film)**: ν = 2943, 2892, 2866, 2727, 1746, 1714, 1643, 1497, 1463, 1378, 1257, 1212, 1148, 1107, 1037, 882. **MS (EI) m/z**: 91.0 [100%], 391.2 [17.6%, (M-C₃H₇)⁺]. **HRMS (EI) m/z**: Calc. for [(M-C₃H₇)⁺]. 391.2300. Found: 391.2302. **Anal. Calcd. for C₂₅H₄₂O₄Si**: C, 69.08; H, 9.74. Found: C, 68.94, H, 9.63.

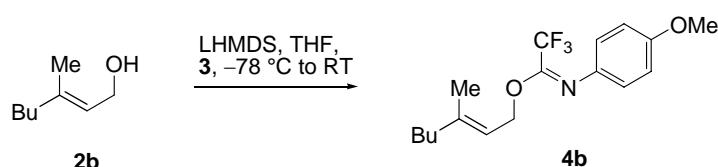

(Z)-3-Benzylloxymethyl-6-triisopropylsilanyloxyhex-2-enol (2m)

(Z)-3-Benzylloxymethyl-6-triisopropylsilanyloxyhex-2-enoic acid ethyl ester (0.635 g, 1.46 mmol, 1.0 equiv) was dissolved in DCM (5 mL) and cooled to -78 °C. DIBAL (1.1 M in cyclohexane, 3.6 mL, 3.9 mmol, 2.7 equiv.) was added in portions within 1 min. After 30 min stirring at -78 °C, the solution was slowly warmed to 0 °C and stirred for an additional hour then cooled again to -78 °C and quenched by dropwise addition of 1 N aqueous HCl. After warming to RT, additional 1 N HCl and DCM were added until complete dissolution of the precipitate. The aqueous phase was extracted twice with DCM and the combined organic phases were dried over MgSO₄. Subsequent solvent removal under reduced pressure gave **2m** (0.530 g, 1.35 mmol, 92%) as colorless oil which did not require further purification.


C₂₃H₄₀O₃Si, MW: 392.65 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.40-7.26 (*m*, 5 H, Ar-*H*), 5.68 (*t*, *J* = 6.9, 1 H, C=CH), 4.49 (*s*, 2 H, OCH₂Ph), 4.12 (*d*, *J* = 7.2, 2 H, CH₂OH), 4.03 (*s*, 2 H, CH₂OBn), 3.68 (*t*, *J* = 12.9, 2 H, CH₂CH₂CH₂OTIPS), 2.22 (*t*, *J* = 8.4, 2 H, CH₂CH₂CH₂OTIPS), 2.10 (*bs*, 1 H, CH₂OH), 1.73-1.63 (*m*, 2 H, CH₂CH₂CH₂OTIPS), 1.13-1.02 (*m*, 21 H, Si(CH₂CH₃)₂). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 139.7, 137.8, 128.3, 128.1, 127.7, 127.6, 71.5, 67.8, 62.9, 58.7, 32.2, 31.4, 18.1, 12.1. **IR (film)**: ν = 3380, 2943, 2866, 2376, 1462, 1382, 1249, 1108, 013, 882. **MS (EI) *m/z***: 91.0 [100%, (C₇H₇)⁺], 241.1 [9%]. **Anal. Calcd. for C₂₃H₄₀O₃Si**: C, 70.36; H, 10.27. Found: C, 70.46, H, 10.39.

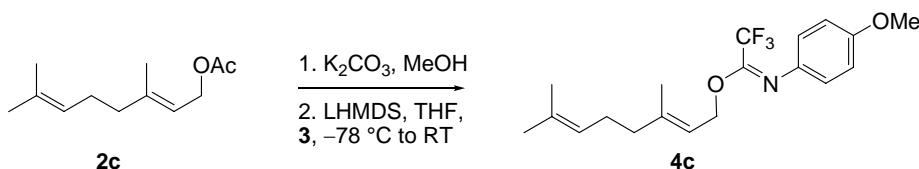
General procedure for the preparation of allylic N-(4-methoxyphenyl) trifluoroacetimidates 4 (GP1)

To a solution of the corresponding allylic alcohol **2** in THF (2 mL/mmol) at -78 °C was added lithium hexamethyldisilazane⁹ (LHMDS, 1.0 equiv.) as 1 M solution in THF, followed by 2,2,2-trifluoro-N-(4-methoxyphenyl)acetimidoyl chloride¹⁰ **3** (1.0 equiv.). The solution was allowed to warm to RT and stirred for additional 2 hours before filtration over silica (with MTBE). The solvent was removed under reduced pressure, followed by HV to remove residual HN(SiMe₃)₂. The yellow residue was then purified by column chromatography (pentane/3% NEt₃). In the case of allylic alcohols bearing alcoholate sensitive functional groups, modified procedures which are given below were applied.


(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl) acetimidic acid 3-methyl-5-phenyl-pent-2-enyl ester (4a)

According to GP1, imidate **4a** was obtained from allylic alcohol **2a** (430 mg, 2.48 mmol) as a colorless solid (917 mg, 2.43 mmol, 98%).

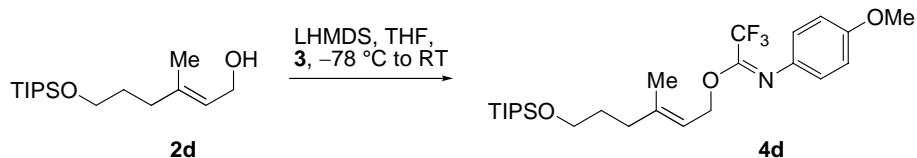
C₂₁H₂₂F₃NO₂, MW: 377.40 g/mol. Mp.: 28.5-29.5 °C. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.32-7.25 & 7.21- 7.18 (m, 5 H, C₆H₅), 6.87-6.83 & 6.82-6.74 (m, 4 H, C₆H₄OMe), 5.47 (t, J = 6.9, 1 H, C=CH), 4.76 (d, J = 6.9, 2 H, CH₂O), 3.79 (s, 3 H, OCH₃), 2.78 & 2.38 (t, J = 8.7, 2 H each, CH₂CH₂), 1.79 (s, 3 H, C=C-CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 156.0, 145.5 (q, J_{C-C-F} = 32.7), 142.5, 141.5, 137.5, 128.3, 128.2, 125.9, 120.6, 117.9, 116.0 (q, J_{C-F} = 285.4), 113.8, 64.7, 55.4, 41.4, 34.2, 16.8. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -65.5. **IR (film)**: ν = 3389, 2958, 2912, 2823, 2359, 1698, 1507, 1314, 1243, 1205, 1140. **MS (EI) m/z**: 91.0 [100%], 377.1 [0.8%, M⁺]. **HRMS (EI) m/z**: Calc. for [M⁺]: 377.1597. Found: 377.1599. **Anal. Calcd. for C₂₁H₂₂F₃NO₂**: C, 66.83; H, 5.88; N, 3.71. Found: C, 66.95, H, 6.04, N, 3.67.


(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methylhept-2-enyl ester (4b)

According to GP1, imidate **4b** was obtained from allylic alcohol **2b** (256 mg, 2 mmol) as a colorless oil (440 mg, 1.33 mmol, 67%, single run, not optimized).

C₁₇H₂₂F₃NO₂, MW: 329.36 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 6.86-6.74 (m, 4 H, Ar-H), 5.45 (t, J = 6.9, 1 H, C=CH), 4.76 (d, J = 11.7, 2 H, C=CHCH₂O), 3.79 (s, 3 H, OCH₃), 2.07 (t, J = 7.2, CH₂CH₂CH₂CH₃), 1.72 (s, 3H, C=C-CH₃), 1.46-1.26 (m, 4 H, CH₂CH₂CH₂CH₃), 0.92 (t, J = 7.2, CH₂CH₂CH₂CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 156.0, 145.5 (q, J_{C-C-F} = 32.7), 143.5, 137.5, 120.6, 117.9, 116.0 (q, J_{C-F} = 285.4), 113.8, 64.8, 55.4, 39.3, 29.8, 22.3, 16.6, 14.0. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -65.0. **IR (film)**: ν = 2933, 2362, 1702, 1611, 1508, 1443, 1382, 1347, 1315, 1290, 1243, 1205, 1140, 1106, 1038, 833. **MS (EI) m/z**: 329.1 [1.3%, M⁺]. **HRMS (EI) m/z**: Calc. for [M⁺]: 329.1597. Found: 329.1599. **Anal. Calcd. for C₁₇H₂₂F₃NO₂**: C, 61.99; H, 6.73; N, 4.25. Found: C, 61.84, H, 6.98, N, 4.15.

(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3,7-dimethyloct-2,6-dienyl ester (4c)

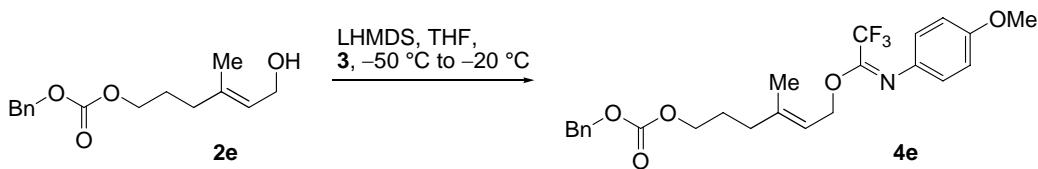


Diastereomerically pure geraniol was prepared in quantitative yield from geranylacetate by treatment with a saturated K₂CO₃ solution in methanol (ca. 15 mL/mmol) overnight, followed by addition of water and extraction with MTBE. According to GP1, imidate **4c** was obtained from allylic alcohol **2c** (308 mg, 2 mmol) as a colorless oil (560 mg, 1.57 mmol, 78%).

C₁₉H₂₄F₃NO₂, MW: 355.39 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 6.85-6.73 (m, 4 H, arom-H), 5.45 (t, J = 7.2, 1H, C=CHCH₂O), 5.10 (t, J = 1.2, 1 H, Me₂C=CH), 4.76 (d, J = 6.6, 2 H,

$\text{C}=\text{CHCH}_2\text{O}$), 3.79 (*s*, 3 H, OCH_3), 2.16-2.03 (*m*, 4 H, CH_2CH_2), 1.73 (*s*, 3 H, $\text{OCH}_2\text{C}=\text{C-CH}_3$), 1.69 & 1.61 (s, 3 H each, $\text{C}=\text{C}(\text{CH}_3)_2$). **^{13}C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 156.0, 145.5 (q, $J_{\text{C-C-F}} = 32.7$), 143.0, 137.5, 131.8, 123.6, 120.6, 117.4, 116.0 (q, $J_{\text{C-F}} = 285.0$), 114.2, 113.8, 64.8, 55.4, 39.6, 26.3, 25.7, 17.7, 16.7. **^{19}F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -65.0. **IR (film)**: ν = 2931, 1701, 1508, 1458, 1314, 1243, 1204, 1140, 1038, 833. **MS (EI) *m/z***: 69.0 [85%], 219.0 [100%], 355.1 [0.7%, M^+]. **HRMS (EI) *m/z***: Calc. for $[\text{M}]^+$: 3255.1754. Found: $[\text{M}]^+$: 355.1757. **Anal. Calcd. for** $\text{C}_{19}\text{H}_{24}\text{F}_3\text{NO}_2$: C, 64.21; H, 6.81; N, 3.94. Found: C, 64.07, H, 7.01, N, 3.89.

(*E*)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-triisopropylsilyloxyhex-2-enyl ester (4d)

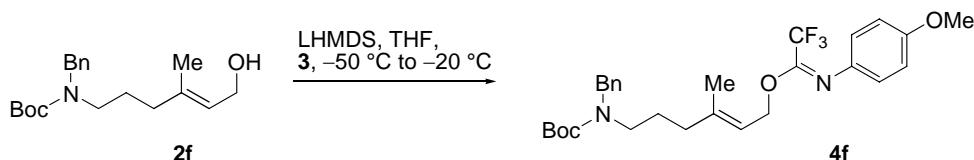


According to GP1, imidate **4d** was obtained from allylic alcohol **2d** (290 mg, 1 mmol) as a colorless oil (394 mg, 0.80 mmol, 80%).

$\text{C}_{25}\text{H}_{40}\text{F}_3\text{NO}_3\text{Si}$, MW: 487.67 g/mol. **^1H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 6.85-6.74 (*m*, 4 H, arom-*H*), 5.47 (*t*, $J = 7.2$, 1 H, $\text{C}=\text{CH}$), 4.76 (*d*, $J = 6.6$, 2 H, $\text{C}=\text{CHCH}_2\text{O}$), 3.79 (*s*, 3 H, OCH_3), 3.71 (*t*, $J = 6.3$, 2 H, TIPOCH_2), 2.15 (*t*, $J = 7.5$, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{OTIPS}$), 1.73 (*s*, 3H, $\text{C}=\text{C-CH}_3$), 1.73-1.64 (*m*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{OTIPS}$), 1.13-1.02 (*m*, 3 + 18 H, $\text{Si}(\text{CH}(\text{CH}_3)_2)_3$). **^{13}C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 156.1, 145.5 (q, $J_{\text{C-C-F}} = 32.7$), 143.1, 137.6, 120.6, 117.4, 116.0 (q, $J_{\text{C-F}} = 285.4$), 113.8, 64.5, 62.6, 55.2, 35.6, 30.8, 17.9, 16.5, 11.8. **^{19}F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -65.5. **IR (film)**: ν = 3397, 1945, 2859, 1703, 1507, 1243, 1205, 1153, 1141. **MS (EI) *m/z***: 95.0 [100%], 219.0 [22%], 444.2 [1.8%, $(\text{M}-\text{C}_3\text{H}_7)^+$], 487.2 [0.21%, M^+]. **HRMS (EI) *m/z***: Calc. for $[\text{M}-$

$\text{C}_3\text{H}_7]^+$: 444.2176. Found: $[\text{M}-\text{C}_3\text{H}_7]^+$: 444.2176. **Anal. Calcd. for $\text{C}_{25}\text{H}_{40}\text{F}_3\text{NO}_3\text{Si}$:** C, 61.57; H, 8.27; N, 2.87. Found: C, 61.85, H, 8.18, N, 2.99.

(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-benzyloxycarbonyloxyhex-2-enyl ester (4e)

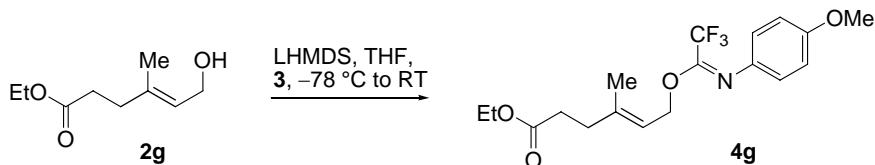


A solution of (*E*)-3-methyl-6-benzyloxycarbonyloxyhex-2-enol (**2e**, 0.163 g, 0.62 mmol, 1 equiv.) in THF (3 mL) and LHMDS (1.0 M in THF, 0.62 mmol, 0.62 mL, 1 equiv.) were added simultaneously to a solution of 2,2,2-trifluoro-N-(4-methoxy-phenyl)acetimidoyl chloride **3**¹⁰ (0.220 g, 0.93 mmol, 1.5 equiv.) in THF (3 mL) at -50°C . The solution was allowed to warm to -20°C and quenched by addition of water after 1.5 hours. The mixture was extracted 3 times with MTBE and the combined organic phases were washed with brine and dried over MgSO_4 . Solvent removal and purification by column chromatography (CyH / 1% \rightarrow 2% NEt_3) gave **4e** as slightly yellowish oil (0.260 g, 0.56 mmol, 90%).

$\text{C}_{24}\text{H}_{26}\text{F}_3\text{NO}_5$, MW: 465.46 g/mol. **$^1\text{H NMR}$** (300 MHz, CDCl_3 , 21 °C): δ = 7.42-7.32 (*m*, 5 H, C_6H_5), 6.87-6.76 (*m*, 4 H, $\text{C}_6\text{H}_4\text{OMe}$), 5.50 (*t*, J = 7.2, 1 H, $\text{C}=\text{CH}$), 5.17 (*s*, 2 H, OCH_2Ph), 4.77 (*d*, J = 6.6, 2 H, $\text{C}=\text{CHCH}_2\text{O}$), 4.17 (*t*, J = 6.9, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 3.78 (*s*, 3 H, OCH_3), 2.17 (*t*, J = 7.2, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 1.84 (*tt*, J = 7.2, J = 6.9, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 1.73 (*s*, 3H, $\text{C}=\text{C}-\text{CH}_3$). **$^{13}\text{C NMR}$** (75 MHz, CDCl_3 , 21 °C): δ = 156.0, 155.0, 145.3 (q, $J_{\text{C-C-F}} = 33.9$), 141.5, 137.4, 135.1, 128.4, 128.2, 128.0, 120.6, 118.1, 116.0 (q, $J_{\text{C-F}} = 284.4$), 114.2, 113.9, 113.4, 69.5, 67.5, 55.4, 35.5, 26.6, 15.5. **$^{19}\text{F NMR}$** (282 MHz, CDCl_3 , 21 °C): δ = -65.0. **IR (film):** ν = 2957, 2837, 1747, 1698,

1610, 1582, 1507, 1456, 1397, 1315, 1265, 1204, 1140, 1106, 1035, 947, 909, 834. **MS (EI) *m/z*:** 91.0 [100%], 219.0 [69%], 465.1 [0.4%, M^+]. **HRMS (EI) *m/z*:** Calc. for $[M^+]$: 465.1758. Found: 465.1753. **Anal. Calcd. for $C_{24}H_{26}F_3NO_5$:** C, 61.93; H, 5.63; N, 3.01. Found: C, 61.83, H, 5.90, N, 3.24.

(*E*)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-(benzyl-*t*-butyloxycarbonylamino)hex-2-enyl ester (4f)

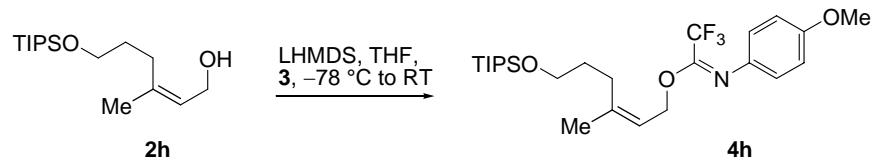


A solution of (*E*)-3-methyl-6-(benzyl-*t*-butyloxycarbonylamino)hex-2-enol (**2f**, 0.313 g, 0.98 mmol, 1 equiv.) in THF (5 mL) and LHMDS (1.0 M in THF, 0.98 mL, 0.98 mmol, 1 equiv.) were simultaneously added to a solution of 2,2,2-trifluoro-N-(4-methoxyphenyl)acetimidoyl chloride **3** (0.286 g, 1.2 mmol, 1.22 equiv.) in THF (5 mL) at $-50\text{ }^\circ\text{C}$. The solution was warmed to $-20\text{ }^\circ\text{C}$ and quenched by addition of water after 2 hours. It was extracted 3 times with MTBE and the combined organic phases were washed with brine and dried over MgSO_4 . Solvent removal and purification by column chromatography ($\text{CyH} + 1\% \rightarrow 2\% \text{ NEt}_3$) gave **4f** as slightly yellowish oil (0.470 g, 0.90 mmol, 92%).

$C_{28}H_{35}F_3N_2O_4$, MW: 520.59 g/mol. **1H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.35-7.22 (*m*, 5 H, C_6H_5), 6.87-6.83 & 6.82-6.74 (*m*, 4 H, $C_6H_4\text{OMe}$), 5.42 (*t*, J = 6.0, 1 H, $C=CH$), 4.75 (*d*, J = 6.3, 2 H, CH_2O), 4.44 (*s*, 2 H, $NCH_2\text{Ph}$), 3.78 (*s*, 3 H, OCH_3), 3.15 (*bm*, 2 H, $NCH_2\text{CH}_2\text{CH}_2$), 2.02 (*bm*, 2 H, $NCH_2\text{CH}_2\text{CH}_2$), 1.68 (*s*, 3 H, $C=C\text{-}CH_3$), 1.67 (*bm*, 2 H, $NCH_2\text{CH}_2\text{CH}_2$), 1.49 (*bs*, 9 H, $C(CH_3)_3$). **^{13}C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 156.4, 156.2, 145.5 (q, J_{C-C-F} = 32.7), 142.6, 138.8, 137.8,

128.6, 128.3, 127.8, 127.3, 120.9, 117.9, 116.0 (q, $J_{C-F} = 285.4$), 114.4, 114.1, 79.8, 64.9, 55.5, 50.8 & 50.2, 46.6, 36.9, 28.6, 26.0, 16.6. **^{19}F NMR** (282 MHz, $CDCl_3$, 21 °C): $\delta = -64.9$. **IR (film)**: $\nu =$ 2975, 2935, 2836, 1640, 1609, 1582, 1507, 1465, 1416, 1366, 1314, 1290, 1249, 1204, 1157, 1036, 834. **MS (MALDI) m/z** : 543.3 [48%, $(MNa)^+$]. **HRMS (MALDI) m/z** : Calc. for $[MNa]^+$: 543.2441. Found: 543.2448. **Anal. Calcd. for $C_{28}H_{35}F_3N_2O_4$** : C, 64.60; H, 6.78; N, 5.38. Found: C, 64.60, H, 6.74, N, 5.47.

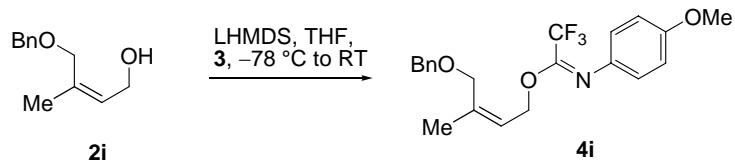
(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-oxo-7-oxa-non-2-enyl ester (4g)



According to GP1, imidate **4g** was obtained from allylic alcohol **2g** (172 mg, 1 mmol) as a colorless oil (160 mg, 0.43 mmol, 43%).

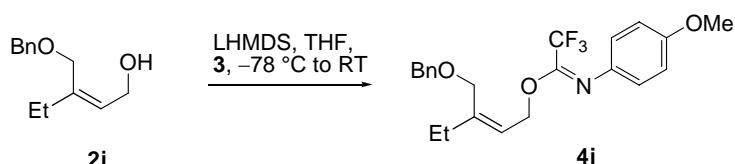
$C_{18}H_{22}F_3NO_4$, MW: 373.37 g/mol. **1H NMR** (300 MHz, $CDCl_3$, 21 °C): $\delta = 6.85-6.73$ (*m*, 4 H, arom-*H*), 5.47 (*t*, $J = 6.0$, 1 H, C=CH), 4.75 (*d*, $J = 11.7$, 2 H, C=CHCH₂O), 4.13 (*q*, $J = 7.2$, 2 H, OCH₂CH₃), 3.79 (*s*, 3 H, OCH₃), 2.55-2.35 (*m*, 4 H, CH₂CH₂), 1.74 (*s*, 3 H, C=C-CH₃), 1.25 (*t*, $J = 6.9$, 3 H, OCH₂CH₃). **^{13}C NMR (75 MHz, $CDCl_3$, 21 °C)**: $\delta = 173.1, 156.4, 145.5$ (*q*, $J_{C-C-F} = 32.7$), 141.4, 137.7, 120.8, 118.4, 116.0 (*q*, $J_{C-F} = 285.1$), 114.1, 64.7, 60.5, 55.5, 34.5, 32.7, 16.7, 14.3. **^{19}F NMR** (282 MHz, $CDCl_3$, 21 °C): $\delta = -65.5$. **IR (film)**: $\nu =$ 2983, 2374, 1736, 1702, 1647, 1610, 1508, 1444, 1374, 1315, 1291, 1243, 1204, 1140, 1106, 1036, 835. **MS (EI) m/z** : 81.0 [100%], 109.0 [46%], 155.1 [56%], 219.0 [28%], 328.1 [1.1%, $(M-C_2H_5O)^+$], 373.1 [0.25%, M^+]. **HRMS**

(EI) *m/z*: Calc. for $[M-C_2H_5O]^+$: 328.1155. Found: $[M-C_2H_5O]^+$: 328.1156. **Anal. Calcd. for $C_{18}H_{22}F_3NO_4$:** C, 57.90; H, 5.94; N, 3.75. Found: C, 58.15, H, 5.95, N, 3.74.


(Z)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-6-triisopropylsilyloxyhex-2-enyl ester (4h)

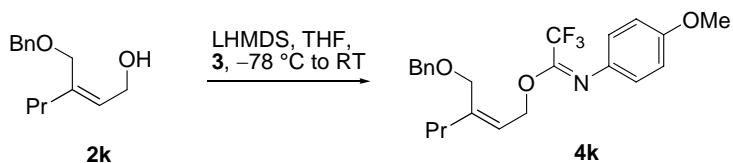
According to GP1, imidate **4h** was obtained from allylic alcohol **2h** (152 mg, 0.53 mmol) as a colorless oil (257 mg, 0.53 mmol, 99%).

$C_{25}H_{40}F_3NO_3Si$, MW: 487.67 g/mol. **1H NMR** (300 MHz, $CDCl_3$, 21 °C): δ = 6.85-6.73 (*m*, 4 H, Ar-*H*), 5.48 (*t*, *J* = 6.9, 1 H, C=CH), 4.75 (*d*, *J* = 6.9, 2 H, C=CHCH₂O), 3.79 (*s*, 3 H, OCH₃), 3.67 (*t*, *J* = 6.3, 2 H, CH₂CH₂CH₂OTIPS), 2.22 (*t*, *J* = 7.5, 2 H, CH₂CH₂CH₂OTIPS), 1.69 (*s*, 3 H, C=C-CH₃), 1.69-1.60 (*m*, 2 H, CH₂CH₂CH₂OTIPS), 1.15-0.99 (*m*, 3 + 18 H, Si(CH₂CH₃)₃). **^{13}C NMR** (75 MHz, $CDCl_3$, 21 °C): δ = 155.9, 145.3 (q, *J*_{C-C-F} = 33.9), 143.4, 137.5, 120.6, 118.3, 116.0 (q, *J*_{C-F} = 285.4), 113.8, 64.5, 62.6, 55.4, 31.4, 28.5, 23.6, 18.0, 12.0. **^{19}F NMR** (282 MHz, $CDCl_3$, 21 °C): δ = -65.1. **IR (film):** ν = 3374, 2944, 2867, 1699, 1507, 1464, 1318, 1243, 1204, 1141, 1106. **MS (EI) *m/z*:** Calc. for $[M-C_3H_7]^+$: 444.2176. Found: 444.2178. **Anal. Calcd. for $C_{25}H_{40}F_3NO_3Si$:** C, 61.57; H, 8.27; N, 2.87. Found: C, 61.82, H, 8.26, N, 2.99.


(Z)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-5-benzyloxypent-2-enyl ester (4i)

According to GP1, imidate **4i** was obtained from allylic alcohol **2i** (380 mg, 2 mmol) as a colorless oil (730 mg, 1.86 mmol, 93%).

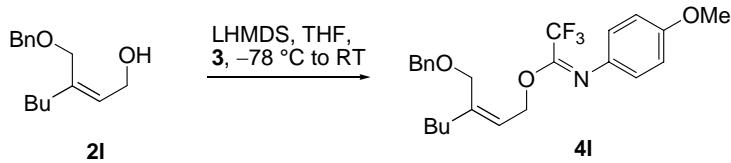
C₂₁H₂₂F₃NO₃, MW: 393.40 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.36-7.25 & 7.21- 7.18 (m, 5 H, C₆H₅), 6.87-6.83 & 6.82-6.74 (m, 4 H, C₆H₄OMe), 5.69 (t, J = 6.3, 1 H, C=CH), 4.81 (d, J = 6.6, 2 H, CH₂O), 4.49 (s, 2 H, OCH₂Ph), 4.11 (s, 2 H, CH₂OBn), 3.80 (s, 3 H, OCH₃), 1.92 (s, 3 H, C=C-CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 156.1, 145.5 (q, J_{C-F} = 32.7), 139.4, 138.0, 137.4, 128.3, 127.6, 121.8, 120.6, 116.0 (q, J_{C-F} = 285.4), 113.9, 72.1, 68.4, 63.9, 55.4, 21.8. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -65.0. **IR (film)**: ν = 2950, 2837, 1699, 1610, 1587, 1454, 1380, 1338, 1314, 1290, 1243, 1205, 1141, 1106, 1036, 949, 834, 737. **MS (MALDI) m/z**: 416.1 [20%, (MNa)⁺]. **HRMS (MALDI) m/z**: Calc. for [MNa]⁺: 416.1444. Found: 416.1440. **Anal. Calcd. for C₂₁H₂₂F₃NO₃**: C, 64.11; H, 5.64; N, 3.56. Found: C, 64.15, H, 5.66, N, 3.78.


(Z)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-ethyl-5-benzyloxypent-2-enyl ester (4j)

According to GP1, imidate **4j** was obtained from allylic alcohol **2j** (250 mg, 1.21 mmol) as a colorless oil (298 mg, 0.73 mmol, 60%, single run, not optimised).

C₂₂H₂₄F₃NO₃, MW: 407.43 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.36-7.25 (*m*, 5 H, C₆H₅), 6.85-6.81 & 6.80-6.72 (*m*, 4 H, C₆H₄OCH₃), 5.64 (*t*, *J* = 6.3, 1 H, C=CH), 4.82 (*d*, *J* = 7.2, 2 H, C=CHCH₂O), 4.47 (*s*, 2 H, OCH₂Ph), 4.08 (*s*, 2 H, CH₂OBn), 3.79 (*s*, 3 H, OCH₃), 2.22 (*q*, *J* = 6.0, 2 H, CH₂CH₃), 1.05 (*t*, *J* = 7.2, 3 H, CH₂CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 156.1, 145.5 (q, *J_{C-C-F}* = 32.7), 144.3, 138.0, 137.4, 128.3, 127.64, 127.60, 120.6, 120.4, 116.0 (q, *J_{C-F}* = 285.4), 113.9, 72.2, 67.5, 64.1, 55.4, 28.1, 12.4. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -65.0. **IR (film)**: ν = 3033, 2966, 2877, 1700, 1610, 1582, 1507, 1455, 1321, 1290, 1243, 1204, 1141, 1105, 1036, 947, 834. **MS (EI) *m/z***: 91.0 [100%], 407.1 [0.3%, M⁺]. **HRMS (EI) *m/z***: Calc. for [M⁺]: 407.1705. Found: 407.1705. **Anal. Calcd. for C₂₂H₂₄F₃NO₃**: C, 64.86; H, 5.94; N, 3.44. Found: C, 64.91, H, 5.97, N, 3.61.

(Z)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-propyl-5-benzyloxy-pent-2-enyl ester (**4k**)

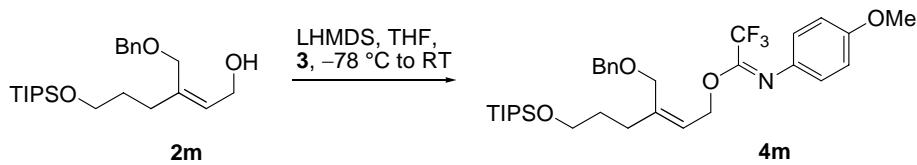


According to GP1, imidate **4k** was obtained from allylic alcohol **2k** (190 mg, 0.86 mmol) as a colorless oil (267 mg, 0.63 mmol, 73%).

C₂₃H₂₆F₃NO₃, MW: 421.45 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.37-7.25 (*m*, 5 H, C₆H₅), 6.85-6.81 & 6.80-6.72 (*m*, 4 H, C₆H₄OCH₃), 5.65 (*t*, *J* = 6.6, 1 H, C=CH), 4.82 (*d*, *J* = 7.2, 2 H, C=CHCH₂O), 4.47 (*s*, 2 H, OCH₂Ph), 4.07 (*s*, 2 H, CH₂OBn), 3.79 (*s*, 3 H, OCH₃), 2.17 (*t*, *J* =

6.9, 2 H, $CH_2CH_2CH_3$), 1.57-1.44 (m, 2 H, $CH_2CH_2CH_3$), 0.93 (t, $J = 7.2$, 3 H, $CH_2CH_2CH_3$). **^{13}C NMR** (75 MHz, $CDCl_3$, 21 °C): $\delta = 156.0, 145.5$ (q, $J_{C-F} = 32.7$), 142.6, 137.9, 137.4, 128.0, 127.58, 127.54, 121.6, 120.4, 116.0 (q, $J_{C-F} = 285.4$), 113.8, 72.1, 67.3, 64.1, 55.4, 37.3, 20.9, 13.9. **^{19}F NMR** (282 MHz, $CDCl_3$, 21 °C): $\delta = -65.0$. **IR (film)**: $\nu = 2958, 1702, 1610, 1507, 1454, 1314, 1290, 1243, 1204, 1141, 1105, 1036, 948, 834$. **MS (EI) m/z** : 91.0 [100%], 421.1 [0.12%, M^+]. **HRMS (EI) m/z** : Calc. for $[M]^+$: 421.1860. Found: 421.1860. **Anal. Calcd. for $C_{23}H_{26}F_3NO_3$** : C, 65.55; H, 6.22; N, 3.32. Found: C, 65.93, H, 6.40, N, 3.45.

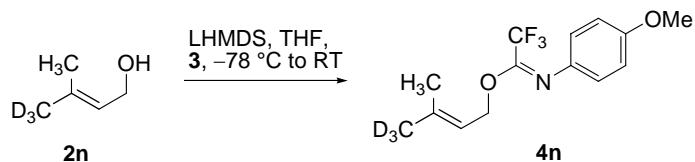
(Z)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-butyl-5-benzyloxypent-2-enyl ester (4l)



According to GP1, imidate **4l** was obtained from allylic alcohol **2l** (122 mg, 0.52 mmol) as a colorless oil (177 mg, 0.4 mmol, 78%).

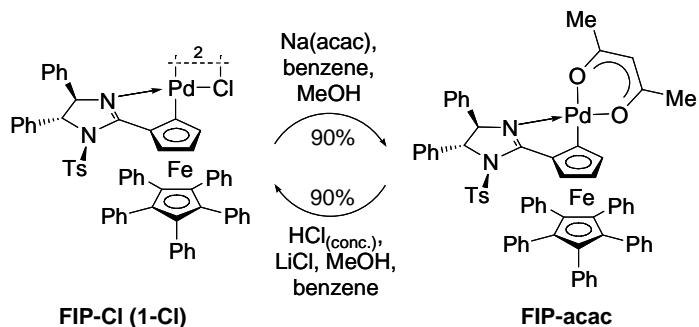
$C_{24}H_{28}F_3NO_3$, MW: 435.48 g/mol. **1H NMR** (300 MHz, $CDCl_3$, 21 °C): $\delta = 7.34-7.26$ (m, 5 H, C_6H_5), 6.85-6.81 & 6.80-6.72 (m, 4 H, $C_6H_4OCH_3$), 5.65 (t, $J = 6.6$, 1 H, $C=CH$), 4.83 (d, $J = 7.2$, 2 H, $C=CHCH_2O$), 4.47 (s, 2 H, OCH_2Ph), 4.07 (s, 2 H, CH_2OBn), 3.79 (s, 3 H, OCH_3), 2.19 (t, $J = 67.2$, 2 H, $CH_2CH_2CH_2CH_3$), 1.48-1.30 (m, 4 H, $CH_2CH_2CH_2CH_3$), 0.92 (t, $J = 7.2$, 3 H, $CH_2CH_2CH_2CH_3$). **^{13}C NMR** (75 MHz, $CDCl_3$, 21 °C): $\delta = 156.0, 145.5$ (q, $J_{C-F} = 32.7$), 142.5, 137.9, 137.4, 128.2, 128.0, 127.6, 127.5, 121.4, 120.6, 116.0 (q, $J_{C-F} = 285.4$), 113.8, 72.1, 67.3, 64.1, 55.4, 35.0, 30.0, 22.5, 14.0. **^{19}F NMR** (282 MHz, $CDCl_3$, 21 °C): $\delta = -65.0$. **IR (film)**: $\nu = 2932, 2860, 1702, 1611, 1507, 1458, 1315, 1290, 1243, 1204, 1141, 1105$. **MS (EI) m/z** : 91.0 [100],

435.2 [0.1%, M^+]. **HRMS (EI) m/z :** Calc. for $[M]^+$: 435.2016. Found: 435.2006. **Anal. Calcd. for $C_{24}H_{28}F_3NO_3$:** C, 66.19; H, 6.48; N, 3.22. Found: C, 66.15, H, 6.54, N, 3.35.


(Z)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-(3-triisopropyloxysilylpropyl)-5-benzyloxypent-2-enyl ester (4m)

According to GP1, imidate **4m** was obtained from allylic alcohol **2m** (484 mg, 1.23 mmol) as a colorless oil (597 mg, 1 mmol, 81%).

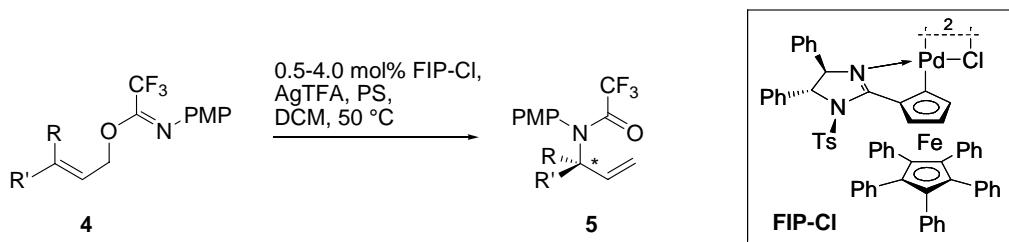
$C_{32}H_{46}F_3NO_4Si$, MW: 593.79 g/mol. **1H NMR** (300 MHz, $CDCl_3$, 21 °C): δ = 7.39-7.26 (*m*, 5 H, C_6H_5), 6.85-6.81 & 6.80-6.72 (*m*, 4 H, $C_6H_4OCH_3$), 5.68 (*t*, J = 6.6, 1 H, $C=CH$), 4.83 (*d*, J = 6.9, 2 H, $C=CHCH_2O$), 4.48 (*s*, 2 H, OCH_2Ph), 4.09 (*s*, 2 H, CH_2OBn), 3.79 (*s*, 3 H, OCH_3), 3.72 (*t*, J = 6.2, 2 H, $CH_2CH_2CH_2OTIPS$), 2.30 (*t*, J = 7.5, 2 H, $CH_2CH_2CH_2OTIPS$), 1.77-1.68 (*m*, 2 H, $CH_2CH_2CH_2OTIPS$), 1.09-1.01 (*m*, 3 + 18 H, $Si(CH(CH_3))_3$). **^{13}C NMR** (75 MHz, $CDCl_3$, 21 °C): δ = 156.1, 145.5 (*q*, J_{C-F} = 32.7), 142.6, 137.9, 137.4, 128.3, 127.6, 127.5, 121.6, 120.6, 116.0 (*q*, J_{C-F} = 285.4), 113.9, 72.2, 67.5, 64.1, 62.8, 55.4, 31.7, 31.2, 18.1, 12.1. **^{19}F NMR** (282 MHz, $CDCl_3$, 21 °C): δ = -65.5. **IR (film):** ν = 2944, 2866, 1699, 1611, 1582, 1507, 1464, 1384, 1365, 1339, 1315, 1290, 1243, 1205, 1141, 1105, 1037, 883, 833. **MS (EI):** 91.0 [100%, $(C_7H_7)^+$]. **Anal. Calcd. for $C_{32}H_{46}F_3NO_4Si$:** C, 64.73; H, 7.81; N, 2.36. Found: C, 64.45, H, 7.66, N, 2.57.


(E)-2,2,2-Trifluoro-N-(4-methoxyphenyl)acetimidic acid 3-methyl-4,4,4-trideuterobut-2-enyl ester (4n)

Geometrically pure trideuterated prenyl alcohol **2n** was prepared following a literature procedure.¹¹ According to GP1, imidate **4n** was obtained from allylic alcohol **2n** (0.6 mmol) as a colorless oil (210 mg, 0.55 mmol pure material, 91%). To avoid losses of the relatively volatile deuterated allylic alcohol **2n**, it was used after reduction without further purification. The crude alcohol contained ca. 20% 3-methyl-butanol (generated by over-reduction) which gave an imidate that could not be removed by column chromatography. However, the side product does not disturb the catalytic rearrangement and can be easily removed afterwards.

C₁₄H₁₃D₃F₃NO₂, MW: 290.30 g/mol. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 6.85-6.74 (m, 4 H, C₆H₄OCH₃), 5.45 (t, J = 6.9, 1 H, C=CH), 4.74 (d, J = 6.9, 2 H, C=CHCH₂O), 3.79 (s, 3 H, OCH₃), 1.73 (s, 3 H, C=C-CH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 156.0, 145.5 (q, J_{C-C-F} = 32.7), 139.8, 137.5, 120.6, 117.8, 116.0 (q, J_{C-F} = 285.4), 114.1, 64.8, 55.4, 18.2, 18.1 (m, CD₃). **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -65.1. **IR (film):** ν = 2956, 2837, 1700, 1611, 1582, 1508, 1467, 1433, 1384, 1342, 1314, 1290, 1243, 1204, 1141, 1037, 834. **MS (EI) m/z:** 290.1 [1.6%, M⁺]. **HRMS (EI) m/z:** Calc. for [M]⁺: 290.1316. Found: 290.1314.

Preparation of diastereomerically pure precatalyst


To obtain a diastereomerically pure precatalyst, the corresponding acac-complex (FIP-acac) was prepared from crude FIP-Cl (**1-Cl**) as previously described.¹² FIP-acac was dissolved in a minimum of DCE (ca. 5 mL for 1 g of crude complex) and transferred into a crystallization beaker (ca. 3 mm height of the solution, 5 cm diameter) which was placed into a desiccator containing *n*-pentane (height ca. 2 cm, ca. 25 cm diameter). After generally 1 to 2 days, dark red-purple crystals of diastereomerically pure FIP-acac had formed. The supernatant was decanted and the crystals were dried *in vacuo*. Depending of the purity of the starting material, the yield is typically 90%. In the previous cyclopalladation step, it is not necessary to completely remove all unreacted ligand since the acac-complex forms large crystals whereas the free ligand precipitates in the form of microcrystals.

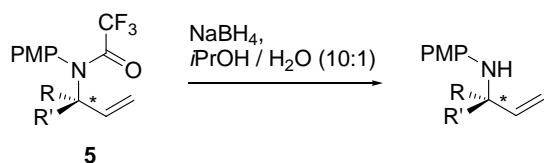
FIP-acac (850 mg, 0.742 mmol, 1 equiv.) was dissolved in benzene (50 mL). A solution of conc. aqueous HCl (2 mL) and lithium chloride (ca. 5 g) in methanol (30 mL) was added. The mixture was stirred for 10 min, then it was washed 2 times with water and saturated aqueous NaHCO₃. The solvent was removed and the residue was purified by column chromatography (pentane / DCM 1:1) to give diastereomerically pure FIP-Cl as a dark red solid (720 mg, 90%).

The palladium-complex FIP-Cl used in catalysis contained ca. 1.5 equiv. (determined by elementary analysis) of dichloromethane or chloroform (if the complex was evaporated with chloroform prior to

use) since these solvents remain in the crystalline material and cannot be removed even after several days under high vacuum.

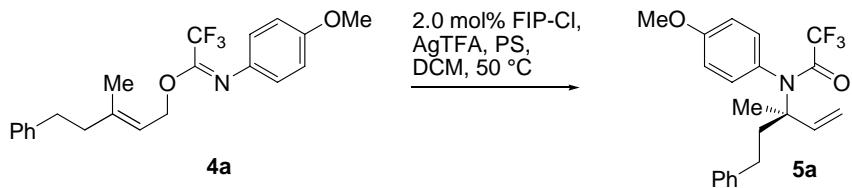
General procedure for the rearrangement of 3,3-disubstituted allylic trifluoroacetimidates **4** (GP2)

Catalyst activation:


A solution of FIP-Cl (**1-Cl**, 1 equiv.) in dry DCM (0.33 mL/μmol) is added into a dry pear-shaped flask equipped with a magnetic stirring bar and containing AgOCOCF₃ (3.75 equiv.). The flask is sealed with a plastic cap and the suspension is stirred at RT, shielded from light, for one day. The resulting wine-red suspension is filtrated under N₂ atmosphere through *celite* / CaH₂ (~1:1) and the filter cake is washed with dry DCM (0.33 mL/μmol). Proton sponge (1 M in DCM, 3 equiv.) is added. AgOCOCF₃ may be handled under air but should be stored in a glove box. The following operations should be performed under dry atmosphere.

Catalysis:

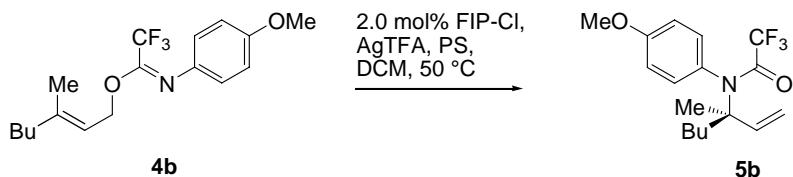
The activated catalyst solution (0.5-4 mol%) is transferred into a dry flask equipped with a magnetic stirring bar containing the corresponding imidate substrate **4** (1 equiv). A stream of N₂ is passed through the flask until the solvent is nearly removed. The septum is replaced by a plastic cap and the


mixture stirred at 50 °C for the indicated time. Then, the usually highly viscous or solid residue is dissolved in a small amount of DCM (ca. 100 µL for 20 mg of product) and the resulting solution is suspended in pentane / EtOAc 9:1 (2 mL for 20 mg of product) and filtrated through a short plug of silica (eluent: pentane / EtOAc 9:1, ca. 5-10 mL for 20 mg of product), followed by removal of the solvent *in vacuo*. Further purification is performed by column chromatography (pentane:EtOAc 9:1).

General procedure for the removal of the trifluoroacetyl protecting group (GP3)

The allylic amide is dissolved in an isopropanol/water mixture (10:1, ca. 1 mL for small-scale experiments up to 60 µmol, or 5 mL/mmol for larger scale experiments). Sodium borohydride (6 equiv.) is added in one portion at RT (small scale) / in three portions within 30 min at 0 °C (larger scale). The solution is then allowed to warm to RT and stirred overnight. Water is subsequently added and the mixture extracted three times with DCM or MTBE. The combined organic phases are dried over MgSO₄ and the solvent is removed *in vacuo*.

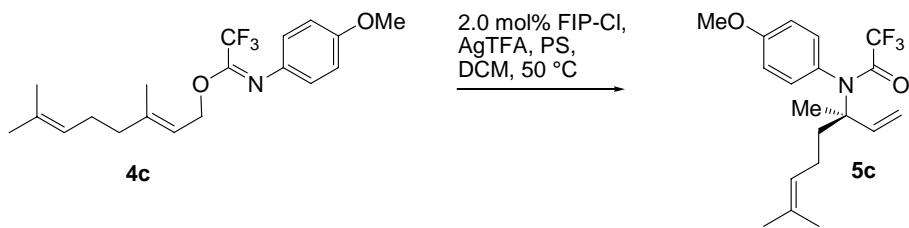
(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-phenethyl-1-methylallyl)acetamide (5a)



According to GP2, allylic amide **5a** was obtained from imidate **4a** (113/377 mg, 0.3/1 mmol, reaction time 2.5/10 d, precatalyst loading: 2.0/0.5 mol%) as a colorless oil (106/298 mg, 0.28/0.79 mmol, 94/79%, *ee* = 99.6/97%). The *ee* values were determined by chiral column HPLC: Chiralcel OD-H, *n*-hexane/*i*PrOH 99:1, 0.8 mL/min, detection at 210 nm.

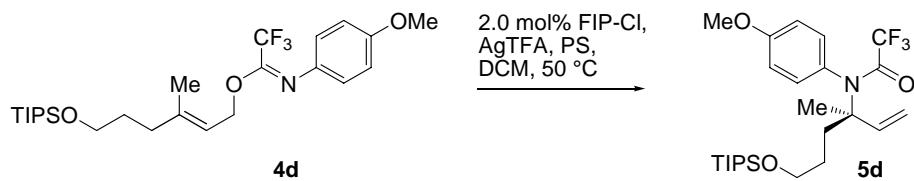
C₂₁H₂₂F₃NO₂, MW: 377.40 g /mol. $[\alpha]_D^{22.5^\circ C}$ (c = 2.18, CHCl₃) = -22.3 (@ 99.6% *ee*). **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.29-7.17 (m, 5 H, C₆H₅), 7.16 & 6.89 (d, *J* = 9.0, 2 + 2 H, C₆H₄OMe), 6.20 (dd, *J* = 17.4, *J* = 10.8, 1 H, CH=CH₂), 5.16 (dd, *J* = 17.4, *J* = 10.8, 2 H, CH=CH₂), 3.84 (s, 3 H, OCH₃), 2.65-2.55 & 2.23-2.10 (m, 3 + 1 H, CH₂CH₂), 1.31 (s, 3 H, NCCH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 159.6, 156.3 (q, *J*_{C-C-F} = 33.3), 141.4, 140.8, 131.8, 131.7, 129.3, 128.3, 128.2, 125.8, 116.0 (q, *J*_{C-F} = 288.1), 113.8, 113.5, 113.3, 66.5, 55.5, 39.9, 31.1, 23.3. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -67.2. **IR (film):** ν = 3063, 3027, 2990, 2937, 1697, 1606, 1583, 1510, 1456, 1444, 1397, 1299, 1525, 1202, 1183, 1151, 1108, 1072. **MS (EI) *m/z*:** 91.0 [100%], 377.1 [1.1%, M⁺]. **HRMS (EI) *m/z*:** Calc. for [M⁺]: 377.1597. Found: 377.1597. **Anal. Calcd. for C₂₁H₂₂F₃NO₂:** C, 66.83; H, 5.88; N, 3.71. Found: C, 67.09, H, 6.00, N, 3.73.

(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-butyl-1-methylallyl)acetamide


(5b)

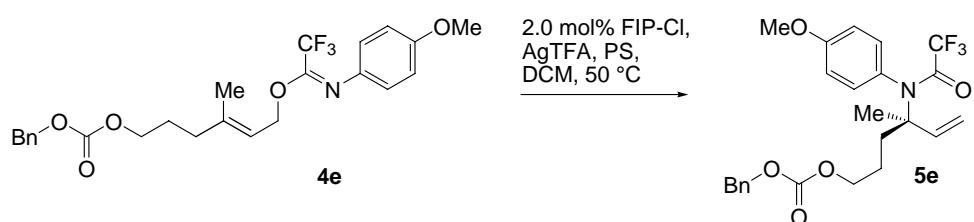
According to GP2, allylic amide **5b** was obtained from imidate **4b** (25.5 mg, 77 μ mol, reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (15.9 mg, 49 μ mol, 63%, *ee* = 93 %). The *ee* value was determined after removal of the trifluoroacetyl group according to GP3 [**1H NMR** of the secondary amine (300 MHz, CDCl_3 , 21 °C): δ = 6.76-6.63 (*m*, 4 H, Ar-*H*), 5.94 (*dd*, *J* = 16.8, *J* = 11.4, 1 H, $\text{CH}=\text{CH}_2$), 5.10 (*dd*, *J* = 16.8, *J* = 11.4, $\text{CH}=\text{CH}_2$), 3.74 (*s*, 3 H, OCH_3), 1.75-1.53 & 1.28-1.24 (*m*, 6 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 0.88 (*t*, *J* = 7.2, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$)] by chiral column HPLC: Chiralcel OD-H, *n*-hexane/EtOH 99.8:0.2, 0.8 mL/min, detection at 250 nm.

C₁₇H₂₂F₃NO₂, MW: 329.36 g/mol. $[\alpha]_D^{29.0^\circ\text{C}}$ (*c* = 0.350, CHCl_3) = -28.0 (@ 93% *ee*). **1H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.25-7.06 & 6.87-6.83 (*m*, 4 H, $\text{C}_6\text{H}_4\text{OMe}$), 6.11 (*dd*, *J* = 17.4, *J* = 10.8, 1 H, $\text{CH}=\text{CH}_2$), 5.09 (*dd*, *J* = 17.4, *J* = 10.8, 2 H, $\text{CH}=\text{CH}_2$), 3.83 (*s*, 3 H, OCH_3), 2.20-2.18 & 1.82-1.77 & 1.32-1.27 (*m*, 1+1+4 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$) 1.19 (*s*, 3 H, NCCCH_3), 0.90 (*t*, *J* = 6.6, 3 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$). **13C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 159.5, 156.5 (*q*, *J*_{C-C-F} = 33.9), 141.3, 131.8, 129.5, 116.0 (*q*, *J*_{C-F} = 287.5), 113.3, 66.6, 55.3, 37.5, 26.7, 23.2, 23.0, 14.1. **19F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -67.2. **IR (film)**: ν = 2960, 2361, 2342, 1699, 1510, 1466, 1299, 1253, 1202, 1182, 1151, 1035. **MS (EI) m/z**: 329.1 [0.8%, M^+]. **HRMS (EI) m/z**: Calc. for $[\text{M}]^+$: 329.1598. Found: 329.1595. **Anal. Calcd. for C₁₇H₂₂F₃NO₂**: C, 61.99; H, 6.73; N, 4.25. Found: C, 62.12, H, 6.87, N, 4.50.


(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-[4-methylpent-3-enyl]-1-methylallyl)acetamide (5c)

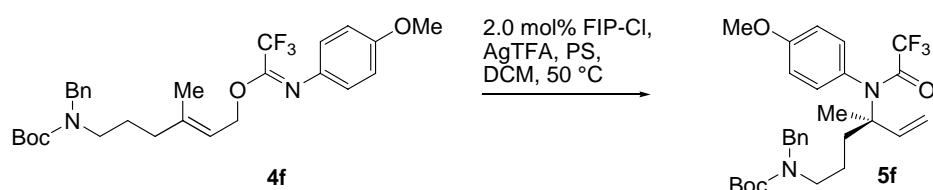
According to GP2, allylic amide **5c** was obtained from imidate **4c** (21.9 mg, 62 μ mol, reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (16.2 mg, 46 mmol, 74%, *ee* = 98%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, 99.8:0.2 *n*-hexane/*i*PrOH, 0.8 mL/min, detection at 210 nm.

C₁₉H₂₄F₃NO₂, MW: 355.39 g/mol. $[\alpha]_D^{28.9^\circ C}$ ($c = 0.695$, CHCl_3) = -24.3 (@ 98% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.08 (*d*, $J = 8.1$, 2 H, Ar-*H*), 6.87-6.83 (*m*, 2 H, Ar-*H*), 6.08 (*dd*, $J = 17.4$, $J = 10.8$, 1 H, $\text{CH}=\text{CH}_2$), 5.11 (*m*, 3 H, $\text{CH}=\text{CH}_2$ & $\text{Me}_2\text{C}=\text{CH}$), 3.83 (*s*, 3 H, OCH_3), 2.26-2.16 & 2.02-1.95 & 1.86-1.76 (*m*, 4 H, CH_2CH_2), 1.67 & 1.59 (*s*, 3 H each, $\text{C}=\text{C}(\text{CH}_3)_2$), 1.22 (*s*, 3 H, NCCCH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 159.6, 156.6 (*q*, $J_{\text{C-C-F}} = 34.0$), 141.1, 131.8, 129.0, 123.3, 118.0, 116.0 (*q*, $J_{\text{C-F}} = 284.2$), 114.0, 113.5, 66.4, 55.2, 37.5, 25.5, 22.9, 17.4. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -67.3. **IR (film)**: ν = 2928, 1699, 1608, 1511, 1465, 1379, 1299, 1253, 1206, 1183, 1152, 1108, 1035, 926. **MS (EI) *m/z***: 219.0 [100%], 355.1 [3.3%, M^+]. **HRMS (EI) *m/z***: Calc. for $[\text{M}]^+$: 355.1754. Found: $[\text{M}]^+$: 355.1754. **Anal. Calcd. for C₁₉H₂₄F₃NO₂**: C, 64.21; H, 6.81; N, 3.94. Found: C, 63.93, H, 7.01, N, 3.74.


(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-triisopropylsilyloxypropyl-1-methylallyl)acetamide (5d)

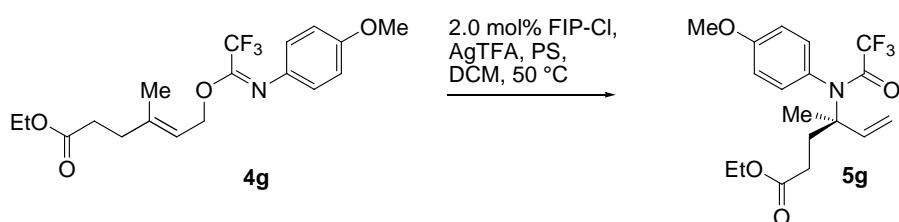
According to GP2, allylic amide **5d** was obtained from imidate **4d** (30.0 mg, 61 μ mol, reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (21.9 mg, 45 μ mol, 73%, *ee* = 96%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, 99.94:0.06 *n*-hexane/*i*PrOH, 0.8 mL/min, detection at 210 nm.

C₂₅H₄₀F₃NO₃Si, MW: 487.67 g /mol. $[\alpha]_D^{28.9^{\circ}C}$ ($c = 0.740$, CHCl₃) = -19.7 (@ 96% *ee*). All other analytical data are in accordance with the (*S*)-isomer **5h**.


(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-(3-benzyloxycarbonyloxy)-1-methylallyl)acetamide (5e)

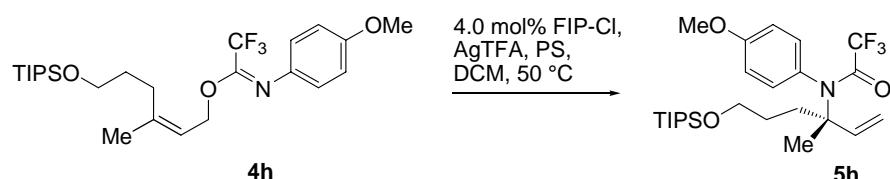
According to GP2, allylic amide **5e** was obtained from imidate **4e** (31.5 mg, 68 μ mol, reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (26.4 mg, 57 μ mol, 84%, *ee* = 98%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, 97:3 *n*-hexane/*i*PrOH, 0.8 mL/min, detection at 210 nm.

C₂₄H₂₆F₃NO₅, MW: 465.46 g/mol. $[\alpha]_D^{26.5^\circ C}$ ($c = 0.850$, CHCl_3) = -31.3 (@98% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): $\delta = 7.40 - 7.32$ (*m*, 5 H, C_6H_5), 7.09 (*d*, $J = 7.3$, 2 H, $\text{C}_6\text{H}_4\text{OMe}$), 6.85 (*d*, $J = 7.3$, 2H, $\text{C}_6\text{H}_4\text{OMe}$), 6.08 (*dd*, $J = 17.4, 10.5$, 1H, $\text{CH}=\text{CH}_2$), 5.15 (*s*, 2 H, OCH_2Ph), 5.11 (*dd*, $J = 17.4, 10.5$, 2 H, $\text{CH}=\text{CH}_2$), 4.17-4.11 (*m*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 3.81 (*s*, 3 H, OCH_3), 2.30-2.24 & 1.93-1.86 (*m*, 1 H each, $\text{CHHCH}_2\text{CH}_2\text{O}$), 1.72-1.67 (*m*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 1.20 (*s*, 3H, NCCH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): $\delta = 159.7, 156.3$ (*q*, $J_{\text{C-C-F}} = 34.0$), 154.9, 140.6, 135.1, 131.7, 129.2, 128.4, 128.2, 116.0 (*q*, $J_{\text{C-F}} = 288.6$), 113.9, 113.4, 69.4, 67.8, 66.1, 55.2, 33.6, 23.8, 22.9. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): $\delta = -67.7$. **IR (film)**: $\nu = 2958, 2840, 1747, 1698, 1607, 1583, 1511, 1456, 1398, 1377, 1253, 1201, 1182, 1152, 1109, 1032, 960$. **MS (MALDI) m/z**: 488.2, [100%, $(\text{MNa})^+$]. **HRMS (MALDI) m/z**: Calc. for $[\text{MNa}]^+$: 488.1655. Found: $[\text{MNa}]^+$: 488.1650. **Anal. Calcd. for C₂₄H₂₆F₃NO₅**: C, 61.93; H, 5.63; N, 3.01. Found: C, 61.64, H, 5.71, N, 3.08.


(R)-tert-Butyl benzyl(4-methyl-4-(2,2,2-trifluoro-N-(4-methoxyphenyl)acetamido)hex-5-enyl)carbamate (5f)

According to GP2, allylic amide **5f** was obtained from imidate **4f** (30.0 mg, 58 μmol , reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (19.2 mg, 37 mmol, 64%, *ee* = 93%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, 99:1 *n*-hexane/*i*PrOH, 0.8 mL/min, detection at 210 nm.

C₂₈H₃₅F₃N₂O₄, MW: 520.58 g/mol. $[\alpha]_D^{26.6^\circ C}$ ($c = 0.500$, CHCl_3) = -28.3 (@93% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): $\delta = 7.34$ -7.22 & 7.02-6.93 & 6.84-6.81 (*m*, 5+4 H, Ar-H), 6.04 (*dd*, $J = 17.7, 10.8$, 1 H, $\text{CH}=\text{CH}_2$), 5.08 (*dd*, $J = 17.4, 10.8$, 2 H, $\text{CH}=\text{CH}_2$), 4.42 (*bs*, 2 H, NCH_2Ph), 3.82 (*s*, 3 H, OCH_3), 3.13 (*bm*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{N}$), 2.11 (*bm*, 1 H, $\text{CHHCH}_2\text{CH}_2\text{N}$), 1.68 (*bm*, 1 H, $\text{CHHCH}_2\text{CH}_2\text{N}$), 1.46 (*bm*, 2 + 9 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{N}$ & $\text{C}(\text{CH}_3)_3$), 1.13 (*s*, 3 H, NCCH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): $\delta = 159.9, 156.3$ (*q*, $J_{\text{C-C-F}} = 34.0$), 156.0, 141.2, 138.8, 132.0, 131.9, 129.5, 128.6, 127.9, 127.3, 116.0 (*q*, $J_{\text{C-F}} = 288.6$), 113.8, 113.7, 113.5, 79.8, 66.4, 55.5, 50.9, 50.5, 47.1, 35.0, 28.5, 23.7, 23.3. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): $\delta = -67.7$. **IR (film)**: $\nu = 2977, 2936, 1694, 1607, 1511, 1465, 1415, 1366, 1299, 1252, 1201, 1182, 1152, 1033, 927, 877, 834, 802, 760$. **MS (MALDI) m/z**: 542.3 [32%, $(\text{MNa})^+$]. **HRMS (MALDI) m/z**: Calc. for $[\text{MNa}]^+$: 543.2441. Found: $[\text{MNa}]^+$: 543.2448. **Anal. Calcd. for C₂₈H₃₅F₃N₂O₄**: a sufficient elementary analysis was not obtained due to solvent inclusion.


(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-[3-oxo-4-oxaheptyl]-1-methylallyl)acetamide (5g)

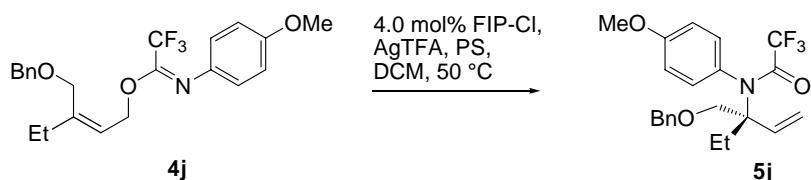
According to GP2, allylic amide **5g** was obtained from imidate **4g** (23.0 mg, 61 μmol , reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (11.5 mg, 31 μmol , 50%, *ee* = 96%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, 99.5:0.5 *n*-hexane/*i*PrOH, 0.8 mL/min, detection at 210 nm.

C₁₈H₂₂F₃NO₄, MW: 373.37 g /mol. $[\alpha]_D^{29.2^\circ C}$ ($c = 0.420$, CHCl_3) = -30.4 (@96% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.10-7.07 (*m*, 2 H, Ar-*H*), 6.87-6.84 (*m*, 2 H, Ar-*H*), 6.08 (*dd*, *J* = 17.7, *J* = 11.1, 1 H, $\text{CH}=\text{CH}_2$), 5.17 (*m*, 2 H, $\text{CH}=\text{CH}_2$), 4.09 (*q*, *J* = 7.2, 2 H, OCH_2CH_3), 3.83 (*s*, 3 H, OCH_3), 2.55-2.18 (*m*, 4 H, CH_2CH_2), 1.25 (*t*, *J* = 6.6, 3 H, OCH_2CH_3), 1.23 (*s*, 3H, NCCH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 172.8, 159.7, 156.6 (*q*, $J_{\text{C-C-F}} = 34.0$), 140.3, 131.8, 129.0, 116.0 (*q*, $J_{\text{C-F}} = 284.2$), 114.2, 113.5, 65.8, 60.5, 55.3, 32.4, 29.7, 22.5, 14.0. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -67.2 . **IR (film):** ν = 2987, 1735, 1698, 1608, 1511, 1465, 1376, 1300, 1253, 1202, 1183, 1152, 1107, 1033. **MS (EI) *m/z*:** 81.0 [60%], 109.0 [46%], 155.1 [100%], 219.0 [45%], 328.1 [14%, ($\text{M-C}_2\text{H}_5\text{O}$)⁺], 373.1 [0.5%, M^+]. **HRMS (EI) *m/z*:** Calc. for $[\text{M-C}_2\text{H}_5\text{O}]^+$: 328.1155. Found $[\text{M-C}_2\text{H}_5\text{O}]^+$: 328.1156. **Anal. Calcd. for C₁₈H₂₂F₃NO₄:** C, 57.90; H, 5.94; N, 3.75. Found: C, 58.08, H, 6.09, N, 3.91.


(*S*)-2,2,2-Trifluoro-*N*-(4-methoxyphenyl)-*N*-(1-triisopropylsilyloxypropyl-1-methylallyl)acetamide (5h)

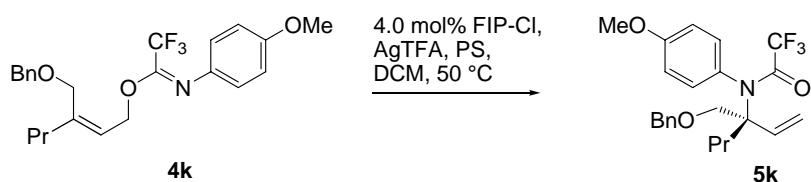
According to GP2, allylic amide **5h** was obtained from imide **4h** (34.6 mg, 70 μmol , reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (25.2 mg, 51 μmol , 74%, *ee* = 98%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, 99.94:0.06 *n*-hexane/*i*PrOH, 0.8 mL/min, detection at 210 nm.

C₂₅H₄₀F₃NO₃Si, MW: 487.67 g/mol. $[\alpha]_D^{28.9^\circ C}$ ($c = 1.010$, CHCl_3) = + 24.7 (@ 98% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): $\delta = 7.09$ (*d*, $J = 7.3$, 2 H, Ar-*H*), 6.85 (*d*, $J = 7.3$, 2 H, ar-*H*), 6.08 (*dd*, $J = 17.4$, $J = 10.8$, 1 H, $\text{CH}=\text{CH}_2$), 5.10 (*dd*, $J = 17.4$, $J = 10.8$, 2 H, $\text{CH}=\text{CH}_2$), 3.83 (*s*, 3 H, OCH_3), 3.66 (*m*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 2.10-2.04 (*m*, 1 H, $\text{CHHCH}_2\text{CH}_2\text{O}$), 2.79-2.91 (*m*, 1 H, $\text{CHHCH}_2\text{CH}_2\text{O}$), 1.45-1.61 (*m*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 1.25 (*s*, 3 H, NCCCH_3), 1.05 (*m*, 18 + 3 H, $\text{Si}(\text{CH}(\text{CH}_3)_2)_3$). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): $\delta = 159.6$, 156.3 (*q*, $J_{\text{C-C-F}} = 33.3$), 141.2, 131.8, 131.7, 129.3, 116.0 (*q*, $J_{\text{C-F}} = 288.1$), 114.2, 113.4, 113.3, 66.3, 63.1, 55.2, 33.1, 27.9, 22.9, 17.8, 11.8. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): $\delta = -67.2$. **IR (film):** $\nu = 2959, 2867, 1704, 1511, 1464, 1252, 1203, 1176, 1149$. **MS (EI) *m/z*:** 95.0 [100%], 444.2 [19%, $(\text{M-C}_3\text{H}_7)^+$]. **HRMS (EI) *m/z*:** Calc. for $[\text{M-C}_3\text{H}_7]^+$: 444.2177. Found: 444.2178. **Anal. Calcd. for C₂₅H₄₀F₃NO₃Si:** C, 61.57; H, 8.27; N, 2.87. Found: C, 61.83, H, 8.54, N, 2.91.


(*R*)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-benzyloxymethyl-1-methylallyl)acetamide (5i)

According to GP2, allylic amide **5i** was obtained from imidate **4i** (25.3 mg, 64 μmol , reaction time 2.5 d, precatalyst loading: 2.0 mol%) as a colorless oil (21 mg, 54 μmol , 84%, *ee* = 99%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, *n*-hexane/*i*PrOH 99.8:0.2, 0.8 mL/min, detection at 210 nm.

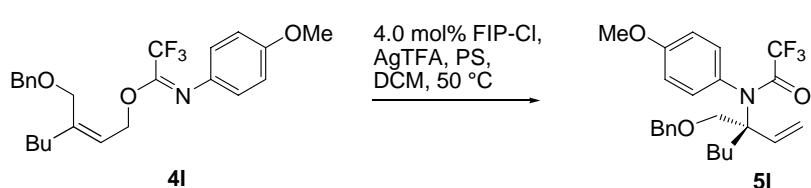
C₂₁H₂₂F₃NO₃, MW: 393.40 g /mol. $[\alpha]_D^{28.9^\circ C}$ ($c = 0.870$, CHCl_3) = + 3.6 (@ 99% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.36-7.12 (*m*, 5 + 2 H, C_6H_5 & $\text{C}_6\text{H}_4\text{OMe}$), 6.84-6.79 (*m*, 2 H, $\text{C}_6\text{H}_4\text{OMe}$), 6.17 (*dd*, *J* = 17.4, *J* = 10.8, 1 H, $\text{CH}=\text{CH}_2$), 5.17 (*dd*, *J* = 17.4, *J* = 10.8, 2 H, $\text{CH}=\text{CH}_2$), 3.84 (*s*, 3 H, OCH_3), 4.53 (app *dd*, *J* = 17.1, *J* = 12.3, 2 H, OCH_2Ph), 4.17 & 3.64 (*d*, *J* = 9.0, 1 H each, CH_2OBn), 3.82 (*s*, 2 H, CH_2OBn), 1.22 (*s*, 3 H, NCCH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 159.8, 156.5 (q, J_{C-C-F} = 33.9), 139.6, 138.4, 132.9, 132.3, 129.7, 128.5, 127.8, 127.7, 116.0 (q, J_{C-F} = 287.5), 114.2, 113.4, 113.2, 73.5, 73.0, 66.4, 55.5, 23.0. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -67.2. **IR (film)**: ν = 3090, 3032, 299, 2864, 1697, 1607, 1582, 1510, 1455, 1404, 1271, 1300, 1251, 1202, 1184, 1151, 1105, 1033, 931, 841, 803, 761, 737. **MS (MALDI)** *m/z*: 416.2 [56%, (MNa^+)]. **HRMS (MALDI)** *m/z*: Calc. for $[\text{MNa}]^+$: 416.1444. Found: 416.1447. **Anal. Calcd. for C₂₁H₂₂F₃NO₃**: C, 64.11; H, 5.64; N, 356. Found: C, 64.23, H, 5.59, N, 3.57.


(*R*)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-benzyloxymethyl-1-ethylallyl)acetamide (5j)

According to GP2, allylic amide **5j** was obtained from imidate **4j** (26.7 mg, 65 μmol , (*E/Z*) = 4:96, reaction time 2.5 d, precatalyst loading: 4.0 mol%) as a colorless oil (18.3 mg, 44 μmol , 68%, *ee* = 91%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, *n*-hexane/iPrOH 99.8:0.2, 0.8 mL/min, detection at 210 nm. Note: since the undesired (*E*)-isomer is converted to the minor enantiomer, the highest possible *ee* value would be ca. 92%.

C₂₂H₂₄F₃NO₃, MW: 407.43 g/mol. $[\alpha]_D^{28.9^\circ C}$ ($c = 0.740$, CHCl_3) = -23.5 (@ 91% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): $\delta = 7.35\text{-}7.19$ (*m*, 5 + 2 H, C_6H_5 & $\text{C}_6\text{H}_4\text{OMe}$), 6.78 (*d*, $J = 6.9$, 2 H, $\text{C}_6\text{H}_4\text{OMe}$), 5.80 (*dd*, $J = 17.7$, $J = 11.1$, 1 H, $\text{CH}=\text{CH}_2$), 5.17 (*dd*, $J = 17.4$, $J = 10.8$, 2 H, $\text{CH}=\text{CH}_2$), 4.50 (*s*, 2 H, OCH_2Ph), 4.00 & 3.88 (*d*, $J = 9.6$, 1 H each, CH_2OBn), 3.84 (*s*, 3 H, OCH_3), 3.81 (*s*, 2 H, CH_2OBn), 1.82-1.69 (*m*, 2 H, CH_2CH_3), 0.83 (*t*, $J = 7.5$, 2 H, CH_2CH_3). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): $\delta = 159.4$, 156.5 (*q*, $J_{C-C-F} = 33.3$), 138.0, 137.8, 132.7, 132.5, 129.2, 128.5, 127.6, 127.5, 116.0 (*q*, $J_{C-F} = 288.5$), 114.4, 112.9, 112.8, 73.2, 69.3, 69.0, 55.2, 26.9, 8.3. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): $\delta = -67.1$. **IR (film)**: $\nu = 3089, 3032, 2970, 2939, 2884, 1694, 1607, 1584, 1511, 1455, 1404, 1364, 1299, 1251, 1202, 1183, 1151, 1106, 1034, 929, 841$. **MS (EI) m/z**: 91.0 [100%], 407.1 [0.28%, M^+]. **HRMS (EI) m/z**: Calc. for $[\text{M}^+]$: 407.1703. Found: 407.1706. **Anal. Calcd. for C₂₂H₂₄F₃NO₃**: C, 64.86; H, 5.94; N, 3.44. Found: C, 64.99, H, 6.01, N, 3.43.

(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-benzyloxymethyl-1-propylallyl)acetamide (5k)

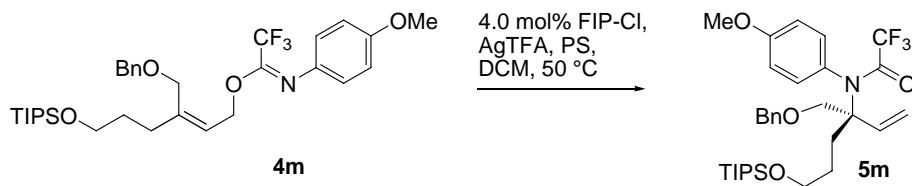


According to GP2, allylic amide **5k** was obtained from imidate **4k** (23.0 mg, 55 μmol , reaction time 3.5 d, precatalyst loading: 4.0 mol%) as a colorless oil (14.5 mg, 35 μmol , 63%, *ee* >99.5%). The *ee* value was determined after removal of the trifluoroacetyl group according to GP3 [**¹H NMR** of the secondary amine (300 MHz, CDCl_3 , 21 °C): $\delta = 7.39\text{-}7.26$ (*m*, 5 H, C_6H_5), 6.77-6.72 (*m*, $\text{C}_6\text{H}_4\text{OMe}$), 5.96 (*dd*, $J = 17.7$, $J = 6.9$, 1H, $\text{CH}=\text{CH}_2$), 5.20 (*dd*, $J = 17.4$, $J = 6.9$, 2 H, $\text{CH}=\text{CH}_2$), 4.47 (*s*, 2 H,

OCH_2Ph), 3.74 (*s*, 3 H, OCH_3), 3.45 (*s*, 2 H, CH_2OBn), 1.79-1.60 & 1.42-1.20 (*m*, 4 H, $CH_2CH_2CH_3$), 0.89 (*t*, $J = 7.2$, 2 H, $CH_2CH_2CH_3$)] by chiral column HPLC: Chiralcel OD-H, *n*-hexane/*iPrOH* 99.5:0.5, 0.8 mL/min, detection at 250 nm.

C₂₃H₂₆F₃NO₃, MW: 421.45 g /mol. $[\alpha]_D^{29.5^\circ C}$ ($c = 0.312$, $CHCl_3$) = -32.0 (@>99.5% *ee*). **¹H NMR** (300 MHz, $CDCl_3$, 21 °C): $\delta = 7.38$ -7.19 (*m*, 5 + 2 H, C_6H_5 & C_6H_4OMe), 6.79 (*d*, $J = 6.9$, 2 H, C_6H_4OMe), 5.76 (*dd*, $J = 17.7$, $J = 10.8$, 1H, $CH=CH_2$), 5.09 (*dd*, $J = 17.4$, $J = 10.8$, 2 H, $CH=CH_2$), 4.49 (*s*, 2 H, OCH_2Ph), 3.93 (*s*, 2 H, CH_2OBn), 3.82 (*s*, 3 H, OCH_3), 1.78-1.59 & 1.40-1.20 (*m*, 4 H, $CH_2CH_2CH_3$), 0.84 (*t*, $J = 7.2$, 2 H, $CH_2CH_2CH_3$). **¹³C NMR** (75 MHz, $CDCl_3$, 21 °C): $\delta = 159.4$, 156.3 (q, $J_{C-C-F} = 33.3$), 138.1, 132.8, 132.4, 129.3, 128.2, 128.0, 127.5, 116.0 (q, $J_{C-F} = 288.1$), 114.2, 112.9, 72.3, 69.8, 69.2, 55.4, 36.4, 17.4, 14.5. **¹⁹F NMR** (282 MHz, $CDCl_3$, 21 °C): $\delta = -67.1$. **IR (film)**: $\nu = 2965$, 2871, 1697, 1608, 1510, 1455, 1400, 1300, 1250, 1201, 1183, 1151, 1106. **MS (EI) m/z**: 91.0 [100%], 421.1 [0.24%, M^+]. **HRMS (EI) m/z**: Calc. for $[M^+]$: 421.1860. Found: 421.1863. **Anal. Calcd. for C₂₃H₂₆F₃NO₃**: C, 65.55; H, 6.22; N, 3.32. Found: C, 65.64, H, 6.17, N, 3.29.

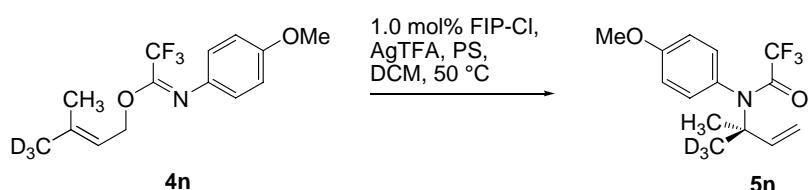
(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-benzyloxymethyl-1-butylallyl)acetamide (5l)



According to GP2, allylic amide **5l** was obtained from imidate **4l** (13.7 mg, 30 μ mol, reaction time 3.5 d, precatalyst loading: 4.0 mol%) as a colorless oil (8.4 mg, 18 μ mol, 61%, *ee* = 98%). The *ee* value was determined after removal of the trifluoroacetyl-group according to GP3 [**¹H NMR** of the

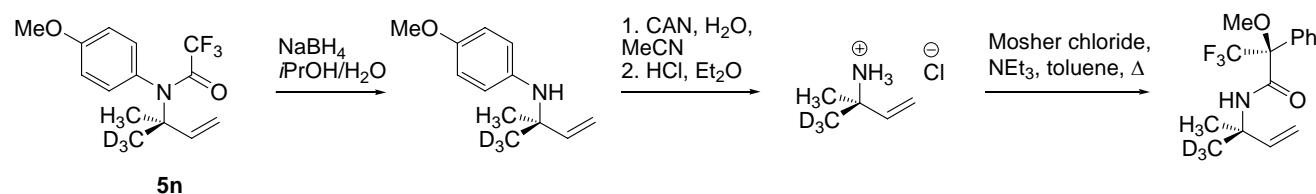
secondary amine (300 MHz, CDCl_3 , 21 °C): δ = 7.33-7.29 (*m*, 5 H, C_6H_5), 6.77-6.69 (*m*, 4 H, $\text{C}_6\text{H}_4\text{OMe}$), 5.95 (*dd*, J = 17.4, J = 10.8, 1 H, $\text{CH}=\text{CH}_2$), 5.23 (*dd*, J = 17.4, J = 10.8, 2 H, $\text{CH}=\text{CH}_2$), 4.47 (*s*, 2 H, OCH_2Ph), 3.74 (*s*, 3 H, OCH_3), 3.45 (*s*, 2 H, CH_2OBn), 1.78-1.57 & 1.31-1.19 (*m*, 6 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 0.88 (*t*, J = 6.9, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$)] by chiral column HPLC: Chiralcel OD-H, *n*-hexane/*iPrOH* 95:5, 0.8 mL/min, detection at 210 nm.

C₂₄H₂₈F₃NO₃, **MW**: 435.48 g/mol. $[\alpha]_D^{28.9^\circ\text{C}}$ (c = 0.567, CHCl_3) = -25.2 (@98% *ee*). **¹H NMR** (300 MHz, CDCl_3 , 21 °C): δ = 7.37-7.20 (*m*, 5 +2 H, C_6H_5 & $\text{C}_6\text{H}_4\text{OMe}$), 6.81-6.77 (*m*, 2 H, $\text{C}_6\text{H}_4\text{OMe}$), 5.77 (*dd*, J = 17.4, J = 10.8, 1 H, $\text{CH}=\text{CH}_2$), 5.10 (*dd*, J = 17.1, J = 10.8, 2 H, $\text{CH}=\text{CH}_2$), 4.49 (*s*, 2 H, OCH_2Ph), 3.81 (*s*, 3 H, OCH_3), 3.39 (*s*, 2 H, CH_2OBn), 1.78-1.57 & 1.23-1.17 (*m*, 6 H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 0.84 (*t*, J = 6.6, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$). **¹³C NMR** (75 MHz, CDCl_3 , 21 °C): δ = 159.3, 156.3 (*q*, J_{C-C-F} = 33.3), 138.1, 132.7, 132.4, 129.3, 128.2, 127.5, 116.0 (*q*, J_{C-F} = 288.1), 114.3, 113.8, 112.8, 73.3, 69.7, 69.1, 55.3, 33.9, 26.2, 23.1, 14.0. **¹⁹F NMR** (282 MHz, CDCl_3 , 21 °C): δ = -67.1. **IR (film)**: ν = 2968, 2939, 2872, 1698, 1608, 1510, 1456, 1400, 1299, 1251, 1202, 1182, 1151, 1107, 1034, 927, 841, 803, 737. **MS (EI) *m/z***: 91.0 [100%], 435.2 [0.59%, M^+]. **HRMS (EI) *m/z***: Calc. for $[\text{M}^+]$: 435.2016. Found: 435.2020. **Anal. Calcd. for C₂₄H₂₈F₃NO₃**: C, 66.19; H, 6.48; N, 3.22. Found: C, 66.34, H, 6.62, N, 3.30.


(*R*)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-benzyloxymethyl-1-[3-triisopropylsilyloxypropyl]allyl)acetamide (5m)

According to GP2, allylic amide **5m** was obtained from imidate **4m** (18.0 mg, 30 μ mol, reaction time 3.5 d, precatalyst loading: 4.0 mol%) as a colorless oil (9.2 mg, 15 μ mol, 51%, (*ee* = 97%). The *ee* value was determined by chiral column HPLC: Chiralcel OD-H, *n*-hexane/EtOH 99.97:0.03 (i.e. 300 ppm EtOH), 0.8 mL/min, detection at 210 nm.

C₃₂H₄₆F₃NO₄Si, MW: 593.79 g/mol. $[\alpha]_D^{29.0^\circ C}$ (c = 0.805, CHCl₃) = -15.8 (@97% *ee*). **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.37-7.18 (*m*, 5+2 H, C₆H₅ & C₆H₄OMe), 6.77 (*d*, *J* = 7.5, 2 H, C₆H₄OMe), 5.80 (*dd*, *J* = 17.7, *J* = 11.1, 1 H, CH=CH₂), 5.15 (*dd*, *J* = 17.7, *J* = 11.1, 2 H, CH=CH₂), 4.51 (*app q*, *J* = 3.9, 2 H, OCH₂Ph), 4.07 & 3.87 (*d*, *J* = 9.9, 1 H each, CH₂OBn), 3.81 (*s*, 3 H, OCH₃), 3.58 (*t*, *J* = 5.7, 2 H, CH₂CH₂CH₂O), 1.95-1.80 & 1.70-1.50 & 1.49-1.44 (*m*, 2 H each, CH₂CH₂CH₂O), 1.07-0.95 (*m*, 18 + 3 H, Si(CH₃)₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 159.4, 156.3 (*q*, *J*_{C-C-F} = 33.3), 138.07, 138.04, 132.6, 129.1, 128.2, 127.5, 116.0 (*q*, *J*_{C-F} = 288.1), 114.5, 113.0, 112.9, 73.3, 69.6, 68.8, 63.2, 55.3, 30.9, 27.6, 18.1, 12.0. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -67.2. **IR (film)**: ν = 2944, 2866, 1698, 1608, 1510, 1463, 1390, 1366, 1300, 1251, 1202, 1182, 1152, 1106, 1035, 882. **MS (MALDI) *m/z***: 616.3 [100%, (MNa)⁺]. **HRMS (MALDI) *m/z***: Calc. for [MNa]⁺: 616.3040. Found: 616.3029. **Anal. Calcd. for C₃₂H₄₆F₃NO₄Si**: C, 64.73; H, 7.81; N, 2.36. Found: C, 65.01, H, 7.77, N, 2.28.

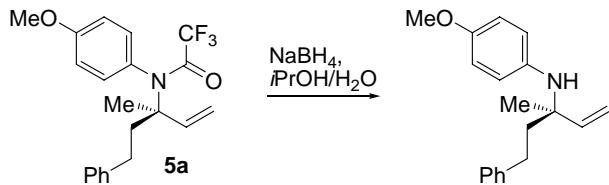

(R)-2,2,2-Trifluoro-N-(4-methoxyphenyl)-N-(1-trideuteromethyl-1-methyl)-allyl)acetamide (5n)

According to GP2, allylic amide **5n** was obtained from imidate **4n** (200 mg, 0.55 mmol, reaction time 2.5 d, precatalyst loading: 1.0 mol%) as a colorless oil (155 mg, 0.53 mmol, 95%, *ee* = 96%). The *ee* value was determined by ¹H-NMR after complete deprotection of the amino group and formation of the corresponding Mosher amide (see below).

C₁₄H₁₃D₃F₃NO₂, MW: 290.30 g/mol. $[\alpha]_D^{22.3^\circ C}$ (c = 0.435, CHCl₃) = -0.8 (@ 96% *ee*). **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.10 (d, *J* = 9.0, 2 H, C₆H₄OMe), 6.85 (d, *J* = 9.0, 2 H, C₆H₄OMe), 6.13 (dd, *J* = 18.0, *J* = 10.8, 1H, CH=CH₂), 5.10 (dd, *J* = 17.4, *J* = 10.8, 2 H, CH=CH₂), 3.82 (s, 3 H, OCH₃), 1.35 (s, 3 H, NCCH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 159.7, 156.3 (q, *J*_{C-C-F} = 33.3), 142.6, 131.5, 116.0 (q, *J*_{C-F} = 288.1), 113.4, 112.3, 63.2, 55.4, 26.4. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -67.4. **IR (film)**: ν = 3089, 2982, 2939, 2841, 2360, 2234, 1698, 1608, 1511, 1465, 1444, 1374, 1300, 1253, 1203, 1184, 1151, 1108, 1035. **MS (EI) *m/z***: 290.1 [4.5%, M⁺]. **HRMS (EI) *m/z***: Calc. for [M]⁺: 290.1316. Found: 290.1316. **Anal. Calcd. for C₁₄H₁₃D₃F₃NO₂**: C, 57.92; H*, 5.61; N, 4.82. Found: C, 58.01, H*: 5.73, N, 5.01. * Deuterium was for technical reasons measured as hydrogen.

(2S)-3,3,3-Trifluoro-2-methoxy-N-((*IR*)-1-methyl-1-trideuteromethylallyl)-2-phenylpropionamide

Allylic amide **5n** (80 mg, 0.27 mmol) was treated with sodium borohydride following GP3 to give the corresponding secondary amine (62 mg, 0.21 mmol, 78%) as colorless oil which was used in the

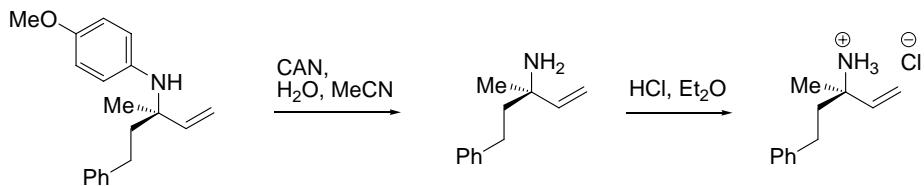

next step without further purification. **[¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 6.72 (s, 4 H, C₆H₄OMe), 6.02 (dd, J = 18.0, J = 10.8, 1H, CH=CH₂), 5.10 (dd, J = 17.4, J = 10.8, 2 H, CH=CH₂), 3.74 (s, 3 H, OCH₃), 1.32 (s, 3 H, NCCH₃)]. A solution of this amine (0.067 mmol, 1 equiv.) in acetonitrile (2 mL) was added dropwise within 10 min to a solution of CAN (92 mg, 0.168 mmol, 2.5 equiv.) in water (2 mL) at 0 °C. After 3 h at RT, diethylether (2 mL) and water (2 mL) were added, the phases were separated and the aqueous phase was washed with ether, whereas the organic phase was discarded. The aqueous phase was then basified with sodium carbonate to pH 10 and extracted four times with diethylether (5 mL each). The combined organic phases were dried over MgSO₄, then HCl (1 M in diethylether, 1 mL, 1 mmol) was added and the solvents were removed *in vacuo* to give the corresponding hydrochloride salt of the primary amine as light brown solid which was used in the next step without further purification [**[¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 8.5 (bs, 3 H, ⁺NH₃Cl), 6.00 (m, 1H, CH=CH₂), 5.44 & 5.25 (d, J = 10.8, 2 H, CH=CHH), 1.42 (s, 3 H, NCCH₃)]. To a solution of the hydrochloride salt in toluene (1 mL) was added triethylamine (0.1 mL) and (S)-configured Mosher's acid chloride (24 mg, 0.1 mmol). The solution was heated to 110 °C for 1 h, then water was added and the mixture was extracted twice with MTBE. The combined organic phases were dried over MgSO₄ and the solvent was removed *in vacuo*. Purification by column chromatography (CyH / EtOAc 20:1) gave the amide as colorless oil (8 mg, 26 μmol, 39% over two steps from the PMP-protected amine). The diastereomeric ratio of 98:2 was determined by comparison of the integrals of the diastereotopic methyl groups (1.240 and 1.230 ppm, C₆D₆, 600 MHz).

C₁₅H₁₅D₃F₃NO₂, MW = 304.32 g/mol. **[α]_D^{22.4°C}** (c = 0.140, CHCl₃) = -14.4. **[¹H-NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.71 (s, 1 H, NH), 7.15-6.98 (m, 5 H, C₆H₅), 5.85 (dd, J = 18.0, J = 10.8, 1H, CH=CH₂), 4.92 & 4.86 (d, J = 10.8, 2 H, CH=CHH), 3.12 (s, 3 H, OCH₃), 1.23 (s, 3 H, NCCH₃)].

¹³C NMR (75 MHz, CDCl₃, 21 °C): δ = 164.9, 142.9, 132.7, 129.2, 128.4, 127.5, 112.3, 55.0, 54.4, 29.8, 26.7. **¹⁹F NMR** (282 MHz, CDCl₃, 21 °C): δ = -68.5. **IR (film):** ν = 2490, 1702, 1508, 1268, 1166, 1106, 1008, 939. **MS (EI) m/z:** 189.0 [100%, (PhC(OMe)CF₃)⁺]. **HRMS (EI) m/z:** Calc. for [PhC(OMe)CF₃]⁺: 189.0527. Found: 189.0517.

Formation of enantioenriched quaternary amino acids

(R)-N-(4-Methoxyphenyl)-N-(1-phenethyl-1-methylallyl)amine

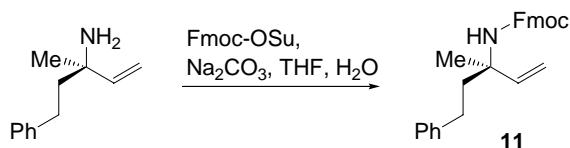


Following GP3 (*R*)-2,2,2-Trifluoro-*N*-(4-methoxyphenyl)-*N*-(1-phenethyl-1-methylallyl)acetamide (**5a**, 1.720 g, 4.55 mmol) was converted to (*R*)-*N*-(4-methoxyphenyl)-*N*-(1-phenethyl-1-methylallyl)amine which was obtained as colorless oil (0.997 g, 3.55 mmol, 78%) after purification by column chromatographe (pentane / EtOAc 9:1).

C₁₉H₂₃NO, MW: 281.18 g/mol. $[\alpha]_D^{26.3^\circ C}$ (c = 0.760, CHCl₃) = -19.1. **¹H NMR (300 MHz, CDCl₃, 21 °C):** δ = 7.32-7.15 (m, 5 H, C₆H₅), 6.76 (s, 4 H, C₆H₄OMe), 6.03 (dd, *J* = 18.0, *J* = 10.8, 1 H, CH=CH₂), 5.25 (dd, *J* = 17.4, *J* = 10.8, 2 H, CH=CH₂), 3.77 (s, 3 H, OCH₃), 3.41 (bs, 1 H, NH), 2.74-2.62 & 2.09-1.85 (m, 2 H each, CH₂CH₂), 1.41 (s, 3 H, NCCH₃). **¹³C NMR (75 MHz, CDCl₃, 21 °C):** δ = 152.5, 145.4, 142.3, 140.0, 128.4, 128.3, 125.7, 118.6, 114.2, 113.6, 57.8, 55.7, 42.9, 30.3, 25.1. **IR (film):** ν = 3400, 3061, 3026, 2948, 2832, 1603, 1511, 1454, 1411, 1371, 1297, 1236, 1179, 1039. **MS (MALDI) m/z:** 281.1 [56%, M⁺], 282.1 [80%, (MH)⁺]. **HRMS (MALDI) m/z:**

Calc. for $[M]^+$: 281.1774. Found: 281.1772. **Anal. Calcd. for $C_{19}H_{23}NO$:** C, 81.10; H, 8.24; N, 4.98. Found: C, 81.05, H, 8.25, N, 5.05.

(R)-(1-Phenethyl-1-methylallyl)amine and (R)-(1-phenethyl-1-methylallyl)amine hydrochloride

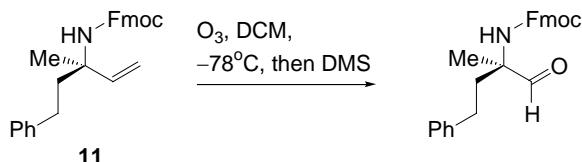


(R)-N-(4-Methoxyphenyl)-N-(1-phenethyl-1-methylallyl)amine (0.730 g, 2.60 mmol, 1 equiv.) in acetonitrile (20 mL) was added dropwise within 15 minutes to a solution of ceric ammonium nitrate (3.559 g, 6.49 mmol, 2.5 equiv.) in water (20 mL) at 0 °C. After 15 minutes, the reaction was allowed to warm to RT and stirred for additional 2 hours before diethylether and water were added. The phases were separated and the aqueous phase was washed with diethylether. The aqueous phase was basified to pH 10 with sodium carbonate and extracted three times with diethylether. The combined organic phases were dried over $MgSO_4$ and the solvent was removed under reduced pressure to give (R)-(1-Phenethyl-1-methylallyl)amine as a brown oil that was used in the next step without further purification. Purification is possible by formation of the hydrochloride salt with hydrogen chloride in diethylether (1.0 M), followed by trituration with pentane. All analytical data are given for the hydrochloride salt.

$C_{12}H_{18}NCl$, MW: 211.73 g/mol. **1H NMR** (300 MHz, $CDCl_3$, 21 °C): δ = 8.82 (bs, 3 H, $^+NH_3$), 7.26-7.15 (m, 5 H, C_6H_5), 5.93 (dd, J = 17.7, J = 11.1, 1 H, $CH=CH_2$), 5.48 & 5.28 (d, J = 17.4, 1 H each, $CH=CHH$), 2.77-2.67 & 2.19-2.05 (m, 2 H each, CH_2CH_2), 1.57 (s, 3 H, $NCCH_3$). **^{13}C NMR** (75 MHz, $CDCl_3$, 21 °C): δ = 140.4, 137.7, 128.4, 138.3, 126.0, 116.9, 58.3, 41.9, 30.2, 24.3. **IR**

(film): ν = 2887, 2064, 1615, 1516, 1454, 1428, 1384, 1324, 1234, 1074, 1029, 885, 925. **MS (ESI) m/z :** 211.1 [0.5%, M^+]. **Anal. Calcd. for $C_{12}H_{18}NCl$:** C, 68.07; H, 8.57; N, 6.62. Found: C, 67.80, H, 8.46, N, 6.63.

(R)-(1-Methyl-1-phenethylallyl) carbamic acid 9H-fluoren-9-ylmethyl ester (11)

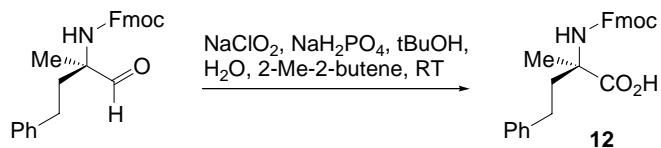


Crude (R)-(1-phenethyl-1-methylallyl)amine (0.455 g, 2.6 mmol, 1 equiv.) and Fmoc-N-hydroxysuccinimide ester (0.876 g, 2.6 mmol, 1 equiv.) were dissolved in THF (10 mL). At RT, a solution of sodium carbonate (0.276 g, 2.6 mmol, 1 equiv.) in water (1.5 mL) was added. The reaction mixture was stirred at RT overnight, then water was added and the mixture was extracted three times with MTBE. The combined organic phases were washed with 1 N aqueous HCl and dried over $MgSO_4$. The solvent was removed under reduced pressure and the residue purified by column chromatography (CyH / EtOAc 9:1) to give 11 as beige solid (0.730 g, 1.84 mmol, 73% over two steps from the trifluoroacetamide).

$C_{27}H_{27}NO_2$, MW: 397.20 g/mol. $[\alpha]_D^{24.7^\circ C}$ ($c = 1.25, CHCl_3$) = -8.9. **1H NMR** (300 MHz, $CDCl_3$, 21 $^\circ C$): δ = 7.79-7.76 & 7.63-7.60 & 7.41-7.15 (*m*, 5+8 H, Ar-*H*), 5.95 (*bm*, 1 H, $CH=CH_2$), 5.16 (*bm*, 2 H, $CH=CH_2$), 4.08 (*bs*, NH), 4.42 (*bs*, 2 H, OCH_2CHAr_2), 4.20 (*t*, $J = 6.6$, 1 H, OCH_2CHAr_2), 2.57 & 2.07 (*bs*, 2 H each, CH_2CH_2), 1.46 (*s*, 3 H, $NCCH_3$). **^{13}C NMR** (75 MHz, $CDCl_3$, 21 $^\circ C$): δ = 154.7, 144.2, 143.1, 142.1, 141.5, 128.6, 127.8, 127.2, 126.0, 125.1, 120.1, 113.0, 66.1, 56.7, 47.5, 41.4, 30.4, 24.9. **IR (film):** ν = 3414, 3347, 3064, 3025, 3940, 1728, 1641, 1604, 1503, 1450, 1412, 1372, 1330, 1247, 1085. **MS (MALDI) m/z :** 420.2 [100%, $(MNa)^+$]. **HRMS (MALDI) m/z :** Calc.

for $[\text{MNa}]^+$: 420.1934. Found: 420.1937. **Anal. Calcd. for $\text{C}_{27}\text{H}_{27}\text{NO}_2$:** C, 81.58; H, 6.85; N, 3.52. Found: C, 81.40, H, 6.90, N, 3.55.

(R)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)-2-methyl-4-phenylbutanal



(R)-N-Fmoc-(1-phenethyl-1-methylallyl)amine (**11**, 0.650 g, 1.64 mmol, 1 equiv.) was dissolved in DCM (50 mL) and cooled to -78°C . Ozone (gas flow 50 L/h) was passed through the solution until a blue color appeared. The solution was purged with nitrogen until the color had disappeared, then dimethylsulfide (1.1 mL) was added. After additional 30 minutes at -78°C , the solution was warmed to RT and the solvent was removed under reduced pressure. The crude residue was used in the next step without further purification.

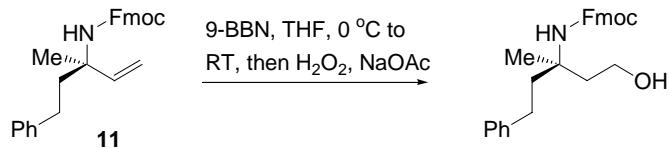
$\text{C}_{26}\text{H}_{25}\text{NO}_3$, MW: 429.19 g/mol. **$^1\text{H NMR}$** (300 MHz, CDCl_3 , 21 $^\circ\text{C}$): δ = 9.28 (s, 1 H, CHO), 7.78-7.76 & 7.61-7.59 & 7.42-7.10 (m, 5+8 H, Ar-H), 5.50 (bs, 1 H, NH), 4.39 (bs, 2 H, $\text{OCH}_2\text{CHAR}_2$), 4.21 (t, J = 6.6, 1 H, $\text{OCH}_2\text{CHAR}_2$), 2.40 & 2.00 (bs, 2+2 H, CH_2CH_2), 1.44 (s, 3 H, NCCH_3).

(R)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)-2-methyl-4-phenyl-butanoic acid

(12)

(*R*)-3-(9H-Fluoren-9-ylmethoxycarbonylamino)-2-methyl-4-phenyl-butanal (0.650 g, 1.63 mmol) was dissolved in *t*-butanol (20 mL) and 2-methyl-2-butene (2.5 mL). A solution of sodium chlorite (1.476 g, 16.3 mmol, 10 equiv.) and sodium dihydrogenphosphate (0.880 g, 5 mmol, 3 equiv.) was added portionwise within 10 minutes and the reaction mixture was stirred at RT for two hours. Subsequently, aqueous HCl (0.1 M, 20 mL) was added and the mixture was extracted three times with MTBE. The combined organic phases were washed with brine and dried over MgSO₄. After solvent removal, the residue was extracted with pentane and DCM. The extracts were evaporated and purified by column chromatography (DCM / MeOH 40:1 + 1% acetic acid) to give acid **12** as colorless oil (0.575 g, 1.38 mmol, 85% over two steps).

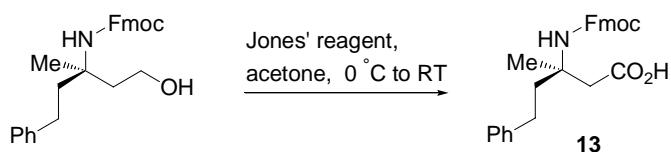
C₂₆H₂₅NO₄, MW: 415.17 g/mol. $[\alpha]_D^{23.9^\circ C}$ (c = 1.60, CHCl₃) = -6.3. **¹H NMR** (300 MHz, CD₃OD, 21 °C): δ = 7.79-7.76 & 7.61-7.59 & 7.39-7.10 (m, 5+8 H, Ar-H), 4.87 (bs, 2 H, OCH₂CHAR₂), 4.32 (bs, 1 H, NH), 4.19 (t, J = 6.6, 1 H, OCH₂CHAR₂), 2.55 & 2.17 (t, J = 8.1, 2 H each, CH₂CH₂), 1.52 (s, 3 H, NCCH₃). **¹³C NMR** (75 MHz, CD₃OD, 21 °C): δ = 177.3, 156.9, 145.1, 142.3, 142.2, 129.1, 128.5, 127.9, 126.5, 120.6, 67.2, 60.1, 39.6, 31.2, 23.2. **IR (AT-IR)**: ν = 3013, 2950, 2412, 2083, 1949, 1686, 1603, 1498, 1477, 1466, 1451, 1417, 1338, 1293, 1272, 1249, 1211, 1129, 1086, 1037, 932, 905. **MS (MALDI) m/z**: 438.2, [100%, (MNa)⁺]. **HRMS (MALDI) m/z**: Calc. for [MNa]⁺: 438.1676. Found: 438.1681. A sufficient microanalysis could not be obtained due to solvent inclusion.


(*R*)-2-Amino-2-methyl-4-phenyl-butanoic acid

(*R*)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)-2-methyl-4-phenylbutanoic acid (**12**, 42 mg, 0.1 mmol, 1 equiv.) was dissolved in DMF (0.5 mL) and a solution of tetra-*n*-butylammoniumfluoride (1.0 M in THF, 0.3 mL, 0.3 mmol, 3 equiv.) was added at RT. The solution was stirred overnight, then water was added and the mixture was washed with MTBE. The aqueous phase was lyophilized and the remaining solid was triturated with THF to give (*R*)-2-amino-2-methyl-4-phenyl-butanoic acid as a white powder (18 mg, 0.093 mmol, 93%). The absolute configuration was determined by comparison of the specific optical rotation ($[\alpha]_D^{21.2^\circ C}$ ($c = 0.46$, MeOH) = -15.7) with reported data (for the (*R*)-isomer: $[\alpha]_D^{20^\circ C}$ ($c = 0.24$, MeOH) = -27).¹³

C₂₆H₂₅NO₄, MW: 415.17 g/mol. $[\alpha]_D^{21.2^\circ C}$ ($c = 0.46$, MeOH) = -15.7 . ¹**H NMR** (300 MHz, CD₃OD, 21 °C): δ = 7.26-7.18 (*m*, 5 H, arom-*H*), 2.76 & 2.54 & 2.19-2.08 & 1.95-1.84 (*m*, 2+1+1 H, CH₂CH₂), 1.49 (*s*, 3 H, NCCH₃). All other analytical data were in accordance with literature.^{13,14}

(*R*)-(9H-Fluoren-9-yl)methyl 1-hydroxy-3-methyl-5-phenylpentan-3-ylcarbamate



(*R*)-N-Fmoc-(1-phenethyl-1-methylallyl)amine (**11**, 0.240 g, 0.60 mmol, 1 equiv.) was dissolved in THF (8 mL) and cooled to 0 °C. A solution of 9-BBN (0.5 M in THF, 3.60 mL, 1.8 mmol, 3 equiv.) was added dropwise and the reaction was subsequently stirred at RT for 2 hours. Then a solution of sodium acetate (0.298 g, 3.65 mmol, 6.1 equiv.) and aqueous hydrogen peroxide (30%, 1.2 mL, 9.1 mmol, 15.2 equiv.) in water (1.2 mL) was added at 0 °C and stirring was continued for one hour. The mixture was extracted three times with MTBE and the combined organic phases were dried over MgSO₄. The solvent was removed under reduced pressure and the residue purified by column

chromatography (CyH / EtOAc 4:1 → 2:1) to give (*R*)-(9H-fluoren-9-yl)methyl 1-hydroxy-3-methyl-5-phenylpentan-3-ylcarbamate as a colorless oil (0.180 g, 0.43 mmol, 73%).

C₂₇H₂₉NO₃, MW: 415.21 g/mol. $[\alpha]_D^{22.4^\circ C}$ (c = 0.94, CHCl₃) = -6.2. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.79-7.76 & 7.63-7.60 & 7.41-7.16 (m, 5+8 H, Ar-H), 5.29 (bs, 1 H, NH), 4.40 (bs, 2 H, OCH₂CH-Ar₂), 4.23 (t, J = 6.6, 1 H, OCH₂CHAr₂), 3.77 (bs, 2 H, CH₂CH₂OH), 2.57 & 2.07 & 1.85 (bs, 2 H each, CH₂CH₂ & CH₂CH₂OH), 1.37 (s, 3 H, NCCH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 154.7, 143.9, 141.9, 141.2, 128.3, 127.5, 126.9, 125.7, 124.8, 119.8, 65.7, 59.7, 47.3, 41.1, 40.8, 30.1, 24.7. **IR (film):** ν = 3347, 3064, 3025, 2943, 1706, 1603, 1513, 1451, 1378, 1256, 1088. **MS (MALDI) m/z:** Calc. for [(MNa)⁺]: 438.2040. Found: 438.2047. A sufficient microanalysis could not be obtained due to solvent inclusion.

(*R*)-3-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-methyl-5-phenylpentanoic acid (13)

Jones-reagent was prepared by dissolving chromium trioxide (0.54 g, 5.4 mmol) in concentrated sulfuric acid (0.46 mL, 8.6 mmol), followed by addition of water (2 mL). To a solution of (*R*)-(3-hydroxy-1-methyl-1-phenethyl-propyl) carbamic acid 9H-fluoren-9-ylmethyl ester (0.130 g, 0.313 mmol, 1 equiv.) in acetone (9 mL) at 0 °C was added the *Jones*-reagent (0.350 mL, 0.94 mmol, 3 equiv.). The mixture was stirred at RT for three hours, then isopropanol was added. The mixture was filtrated through a pad of cotton wool, diluted with DCM, washed with brine and dried over MgSO₄.

The solvent was removed under reduced pressure and the residue purified by column chromatography (DCM / MeOH 20:1) to give **13** (0.107 g, 0.25 mmol, 80%).

C₂₇H₂₇NO₄, MW: 429.19 g/mol. $[\alpha]_D^{23.0^\circ C}$ (c = 0.95, CHCl₃) = -5.8. **¹H NMR** (300 MHz, CDCl₃, 21 °C): δ = 7.74-7.71 & 7.58-7.56 & 7.38-7.14 (m, 5+8 H, Ar-H), 5.18 (bs, 1 H, NH), 4.38 (bs, 2 H, OCH₂CH-Ar₂), 4.19 (t, J = 6.6, 1 H, OCH₂CH-Ar₂), 2.94 & 2.57 & 2.21 & 1.96 (bs, 1+3+1+1 H, CH₂CH₂ & CH₂COOH), 1.42 (s, 3 H, NCCH₃). **¹³C NMR** (75 MHz, CDCl₃, 21 °C): δ = 176.6, 155.0, 144.0, 141.7, 141.5, 128.6, 127.8, 126.7, 126.1, 120.1, 66.4, 54.0, 47.4, 42.9, 41.1, 30.2, 23.8. **IR (film):** ν = 3026, 1711, 1512, 1451, 1338, 1240, 1115, 1085. **MS (MALDI) m/z:** 452.2 [100%, (MNa)⁺]. **HRMS (MALDI) m/z:** Calc. for [(MNa)⁺]: 452.1832. Found: 452.1835. A sufficient microanalysis could not be obtained due to solvent inclusion.

References

- ¹ Silver trifluoroacetate may also be stored under nitrogen over phosphorous pentoxide.
- ² Ethyl-2-butynoate is commercially available from various suppliers, though at a relatively high price.
- ³ R. J. Anderson, V. L. Corbin, G. Cotterrell, G. R. Cox, C. A. Henrick, F. Schaub, J. B. Siddall, *J. Am. Chem. Soc.* **1975**, 97, 1197.
- ⁴ K. Tago, M. Arai, H. Kogen, *J. Chem. Soc., Perkin Trans. 1* **2000**, 2073.
- ⁵ I. Paterson, O. Delgado, G. J. Florence, I. Lyothier, M. O'Brien, J. P. Scott, N. Sereinig, *J. Org. Chem.* **2004**, 70, 150.
- ⁶ E. Fillion, R. L. Beingessner, *J. Org. Chem.* **2003**, 68, 9485.

⁷ For comparison, a sample with low *E*:*Z*-ratio was prepared by quenching the cuprate complex at RT.

⁸ J. Claiden, F. E. Knowles, I. R. Baldwin, *J. Am. Chem. Soc.* **2005**, *127*, 2412.

⁹ Alternatively, sodium hexamethyldisilazane (NaHMDS, 1.0 M in THF) can be used giving similar results.

¹⁰ K. Tamura, H. Mizukami, K. Maeda, H. Watanabe, K. Uneyama, *J. Org. Chem.* **1993**, *58*, 32.

¹¹ H. V. Thulasiram, R. M. Phan, S. B. Rivera, C. D. Poulter, *J. Org. Chem.* **2006**, *71*, 1739.

¹² M. E. Weiss, D. F. Fischer, Z.-q. Xin, S. Jautze, W. B. Schweizer, R. Peters, *Angew. Chem. Int. Ed.* **2006**, *45*, 5694.

¹³ L. M. Harwood, K. J. Vines, M. G. B. Drew, *Synlett* **1996**, 1051.

¹⁴ W. H. Kruizinga, J. Bolster, R. M. Kellogg, *J. Org. Chem.* **1988**, *53*, 1826.

STANDARD 1H OBSERVE

Sample directory: df-317

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

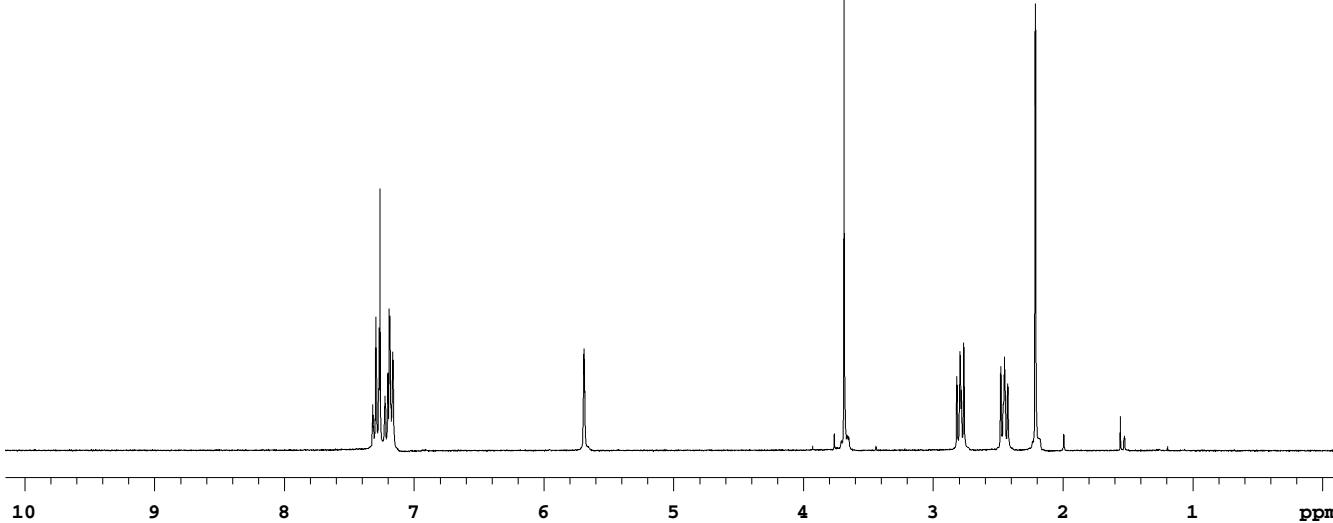
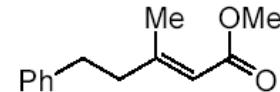
File: df-317_ester_1H

INOVA-500 "nmroc"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-318_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-318_Ester_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

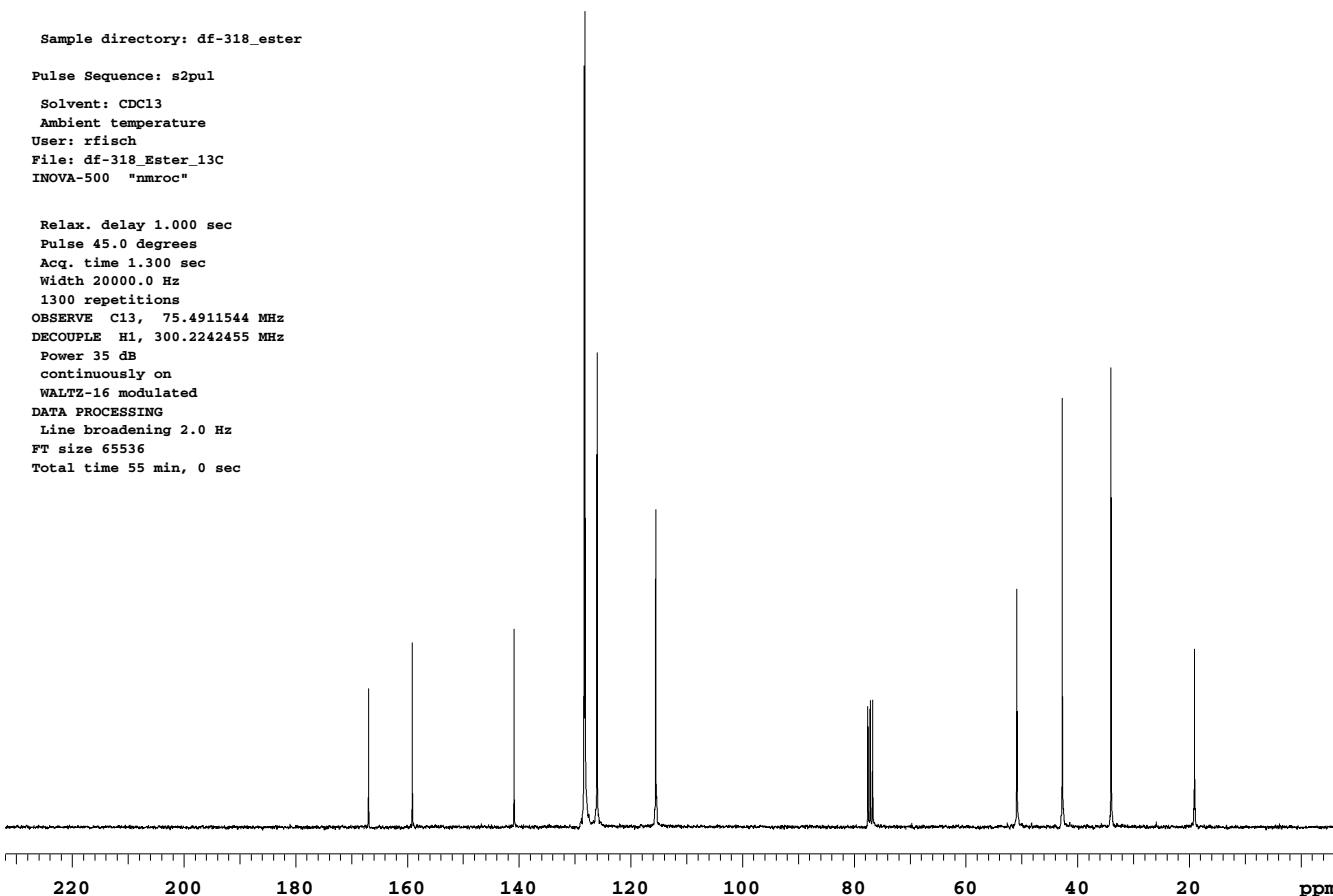
1300 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

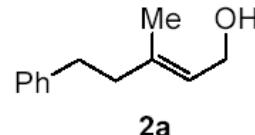
FT size 65536

Total time 55 min, 0 sec

STANDARD 1H OBSERVE

Sample directory: df-317_OH

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-317_OH_1H

INOVA-500 "nmroc"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz

16 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-317_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-317_OH_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

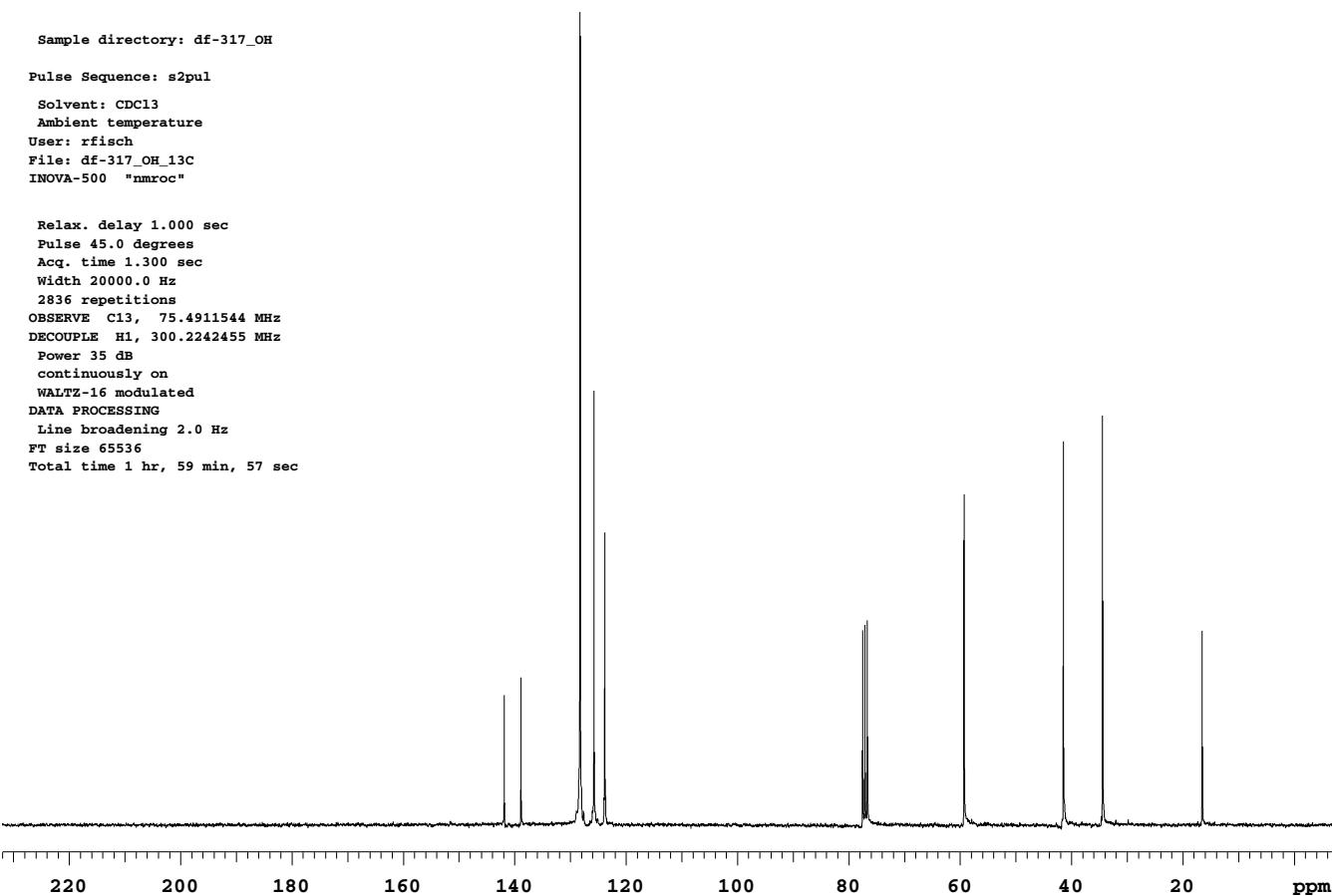
2836 repetitions

OBSERVE C13, 75.4911544 MHz

DECOUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 1 hr, 59 min, 57 sec

STANDARD 1H OBSERVE

Sample directory: df-338_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-338_OH_1H

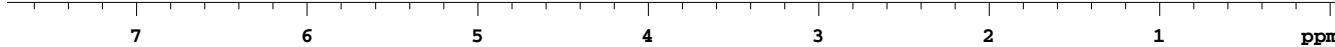
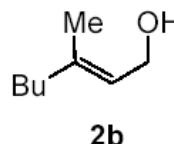
INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz



16 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 8 sec

13C OBSERVE

Sample directory: df-338_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-338-OH-13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

1404 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on

WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 56 min, 57 sec

STANDARD 1H OBSERVE

Sample directory: df-300_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

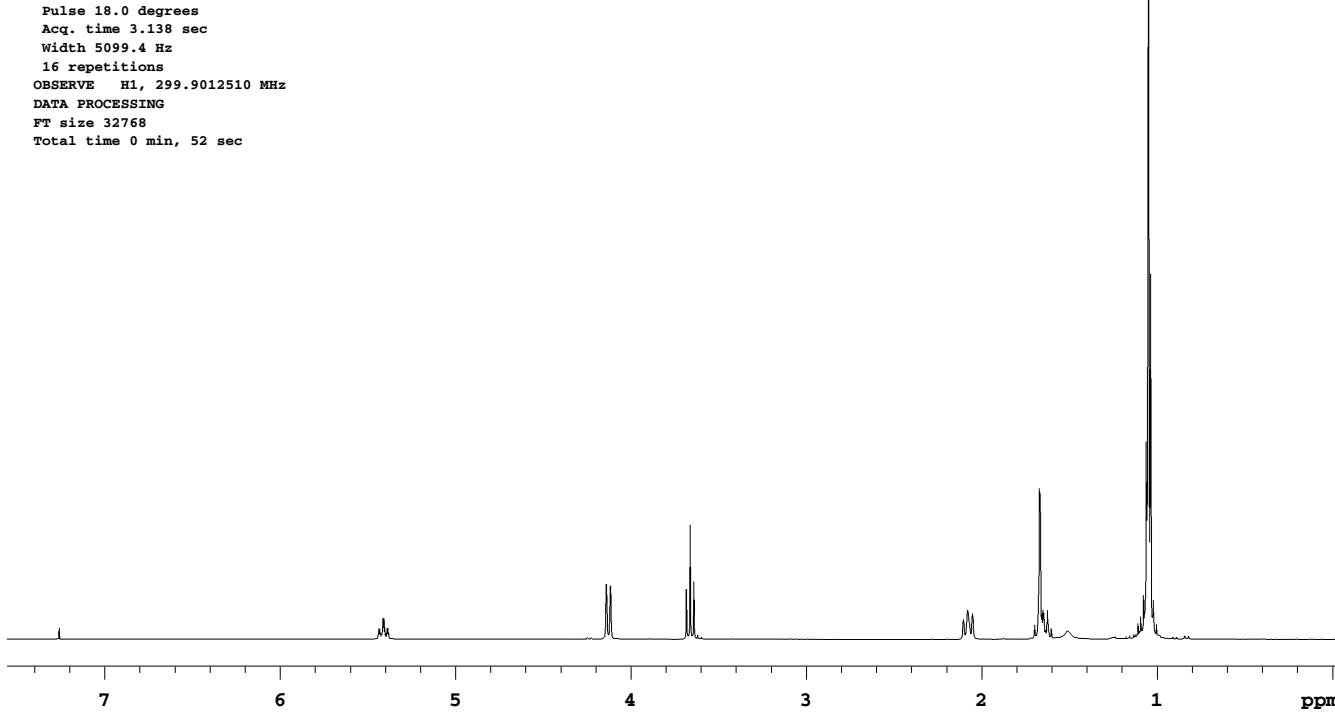
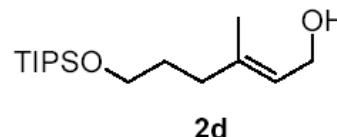
File: df-300_OH_1H

INOVA-500 "nmroc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-300_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-300_OH_13c

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

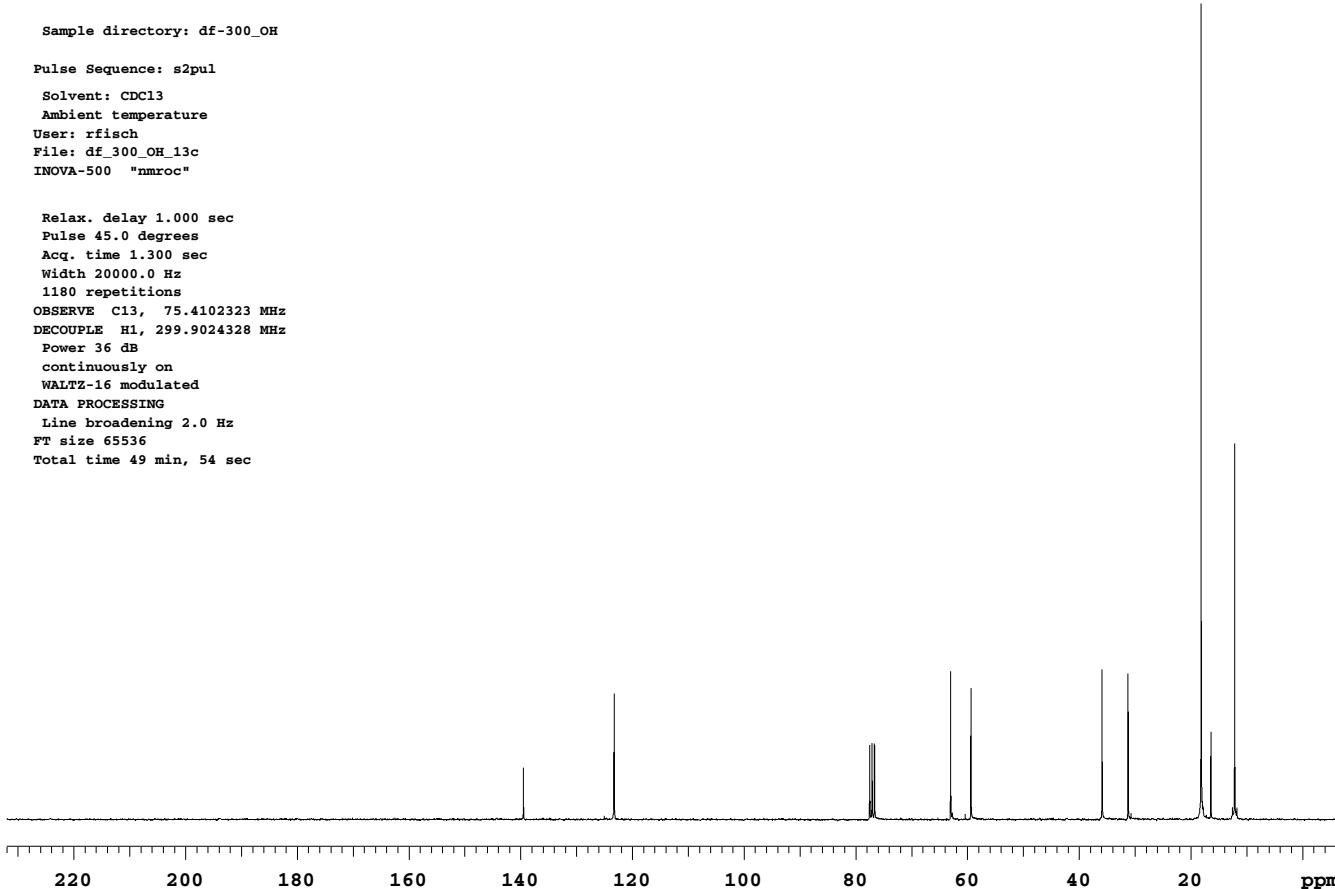
1180 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

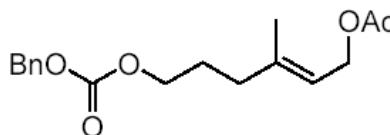
FT size 65536

Total time 49 min, 54 sec

STANDARD 1H OBSERVE

Sample directory: X341PPF-19

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rxin

File: X341PPF-19

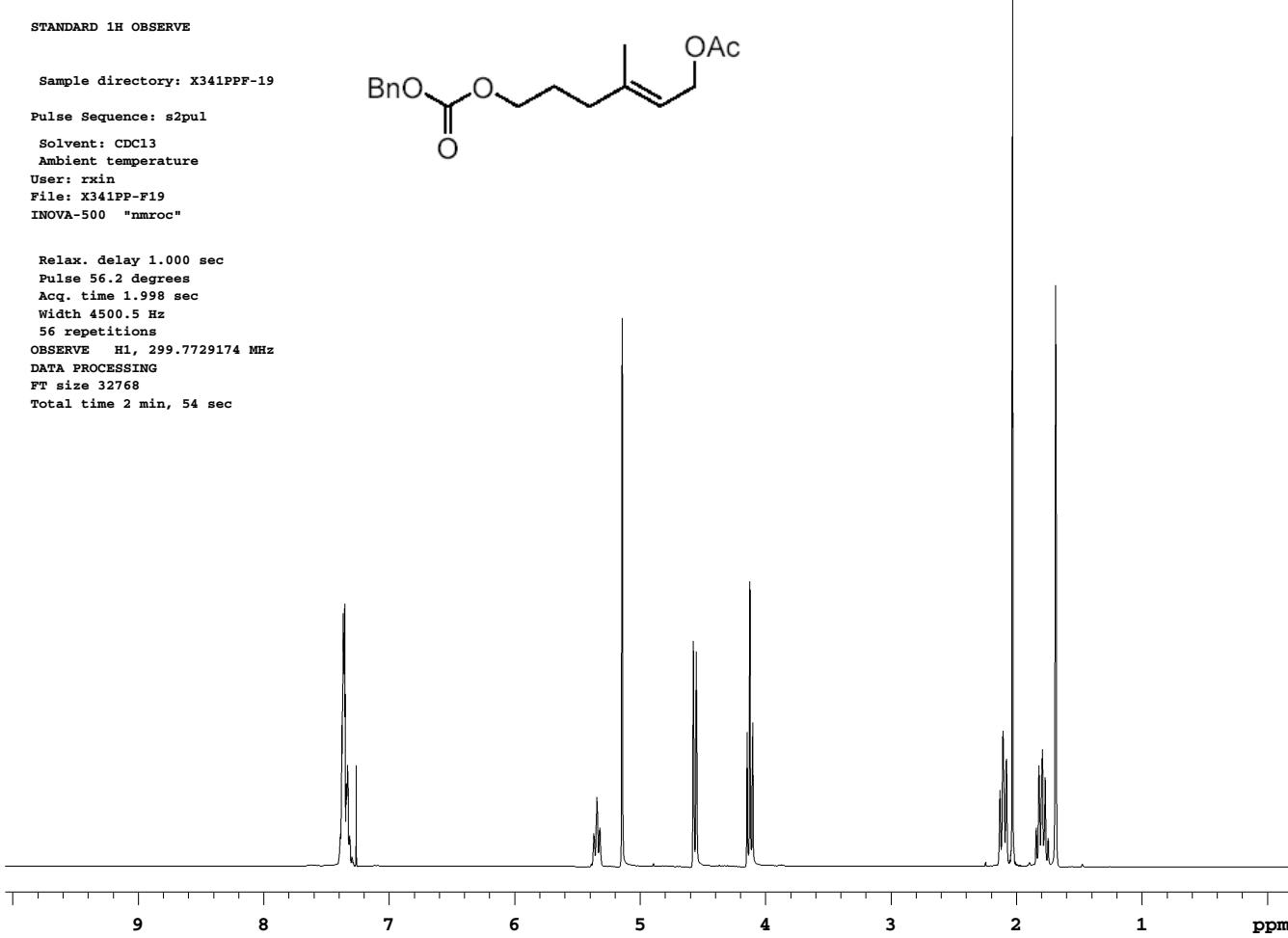
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 56.2 degrees

Acq. time 1.998 sec

Width 4500.5 Hz


56 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 2 min, 54 sec

13C OBSERVE

Sample directory: X341PPF-19-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X341PPF-19-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

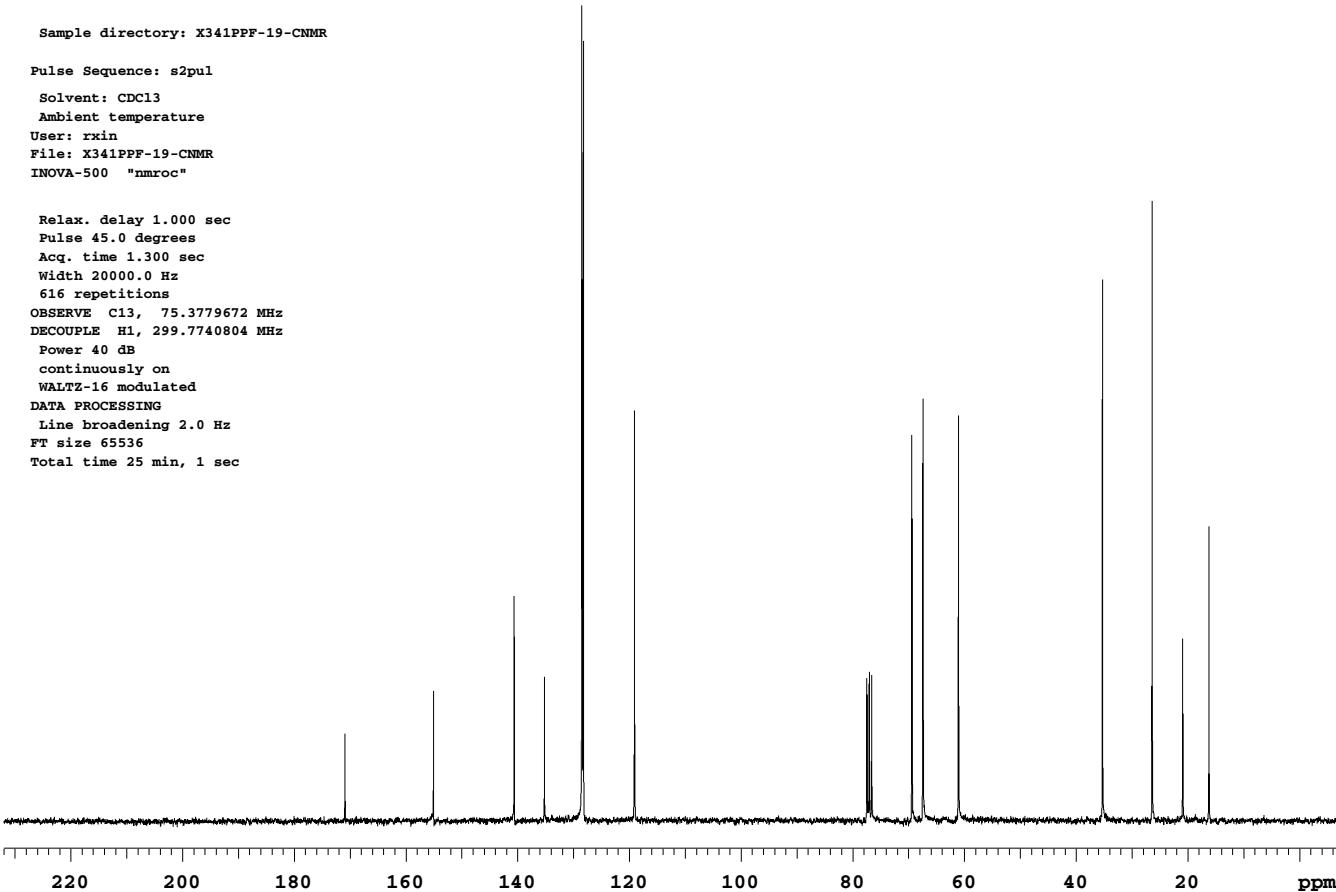
616 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

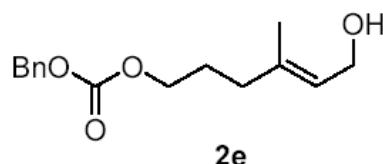
FT size 65536

Total time 25 min, 1 sec

STANDARD 1H OBSERVE

Sample directory: X347PP

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rxin

File: X347PP

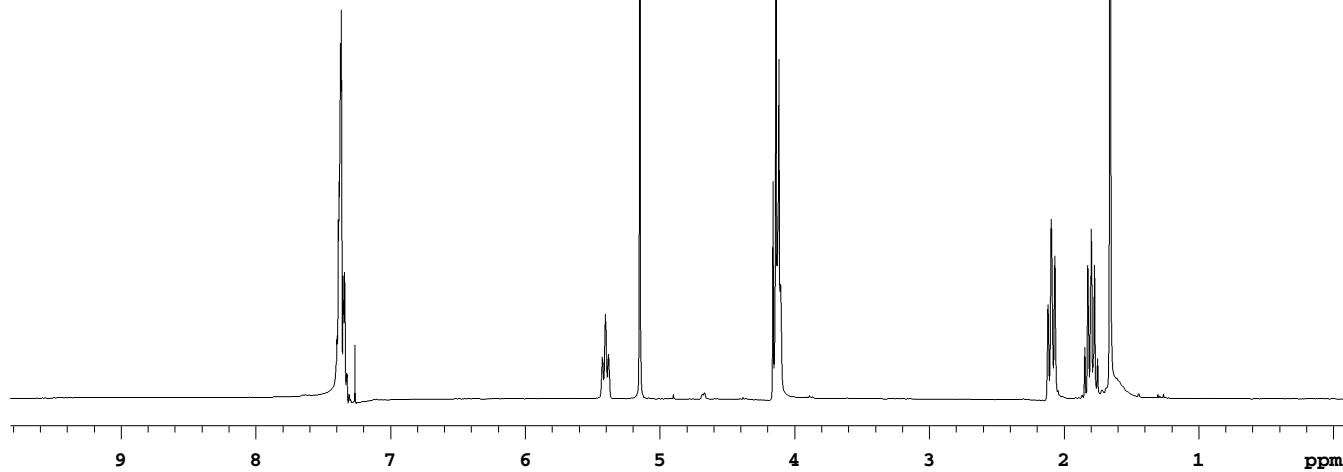
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 56.2 degrees

Acq. time 1.998 sec

Width 4500.5 Hz


32 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 39 sec

13C OBSERVE

Sample directory: X347PP

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X347PP-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

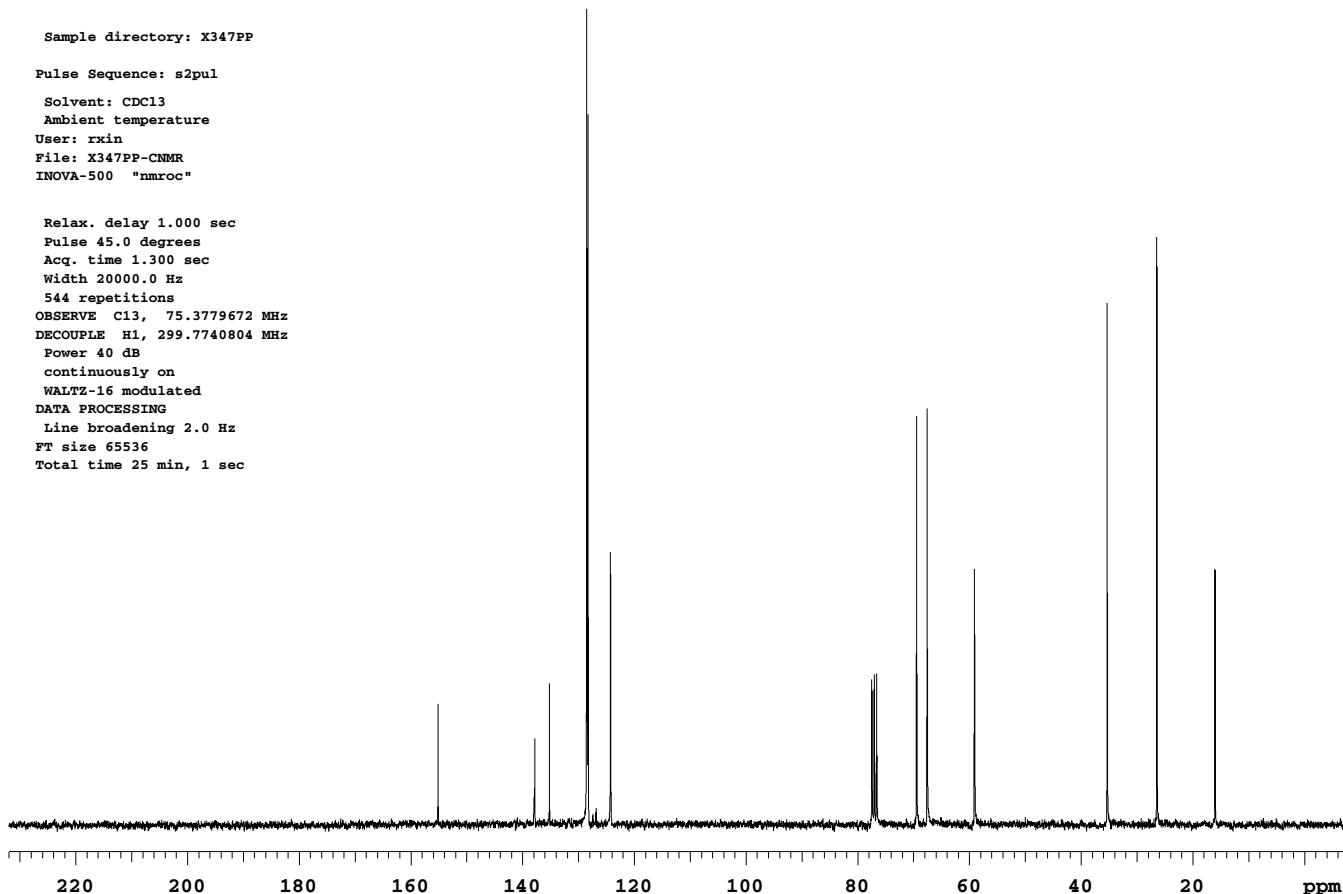
544 repetitions

OBSERVE C13, 75.3779672 MHz

DECOPPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 25 min, 1 sec

STANDARD 1H OBSERVE

Sample directory: X349PPF-28

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

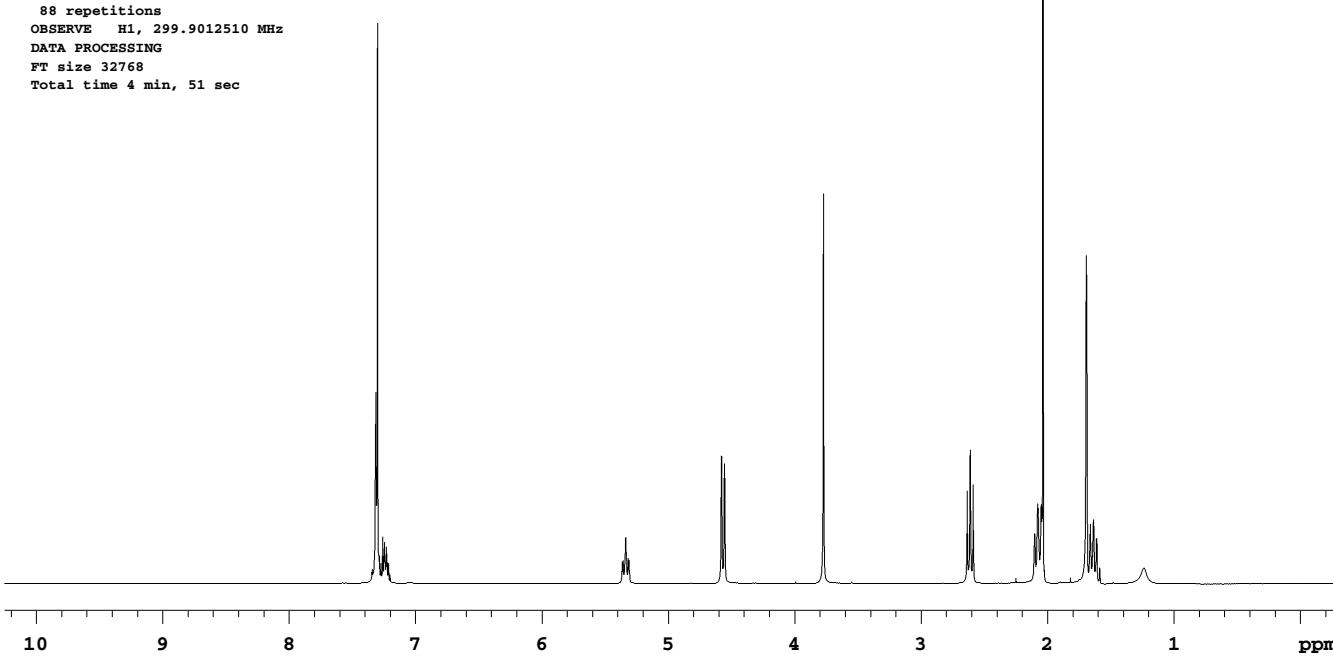
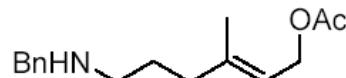
File: X349PPF-28

INOVA-500 "nmproc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



88 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 51 sec

13C OBSERVE

Sample directory: X349PPF-28

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X349PPF-28-CNMR

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

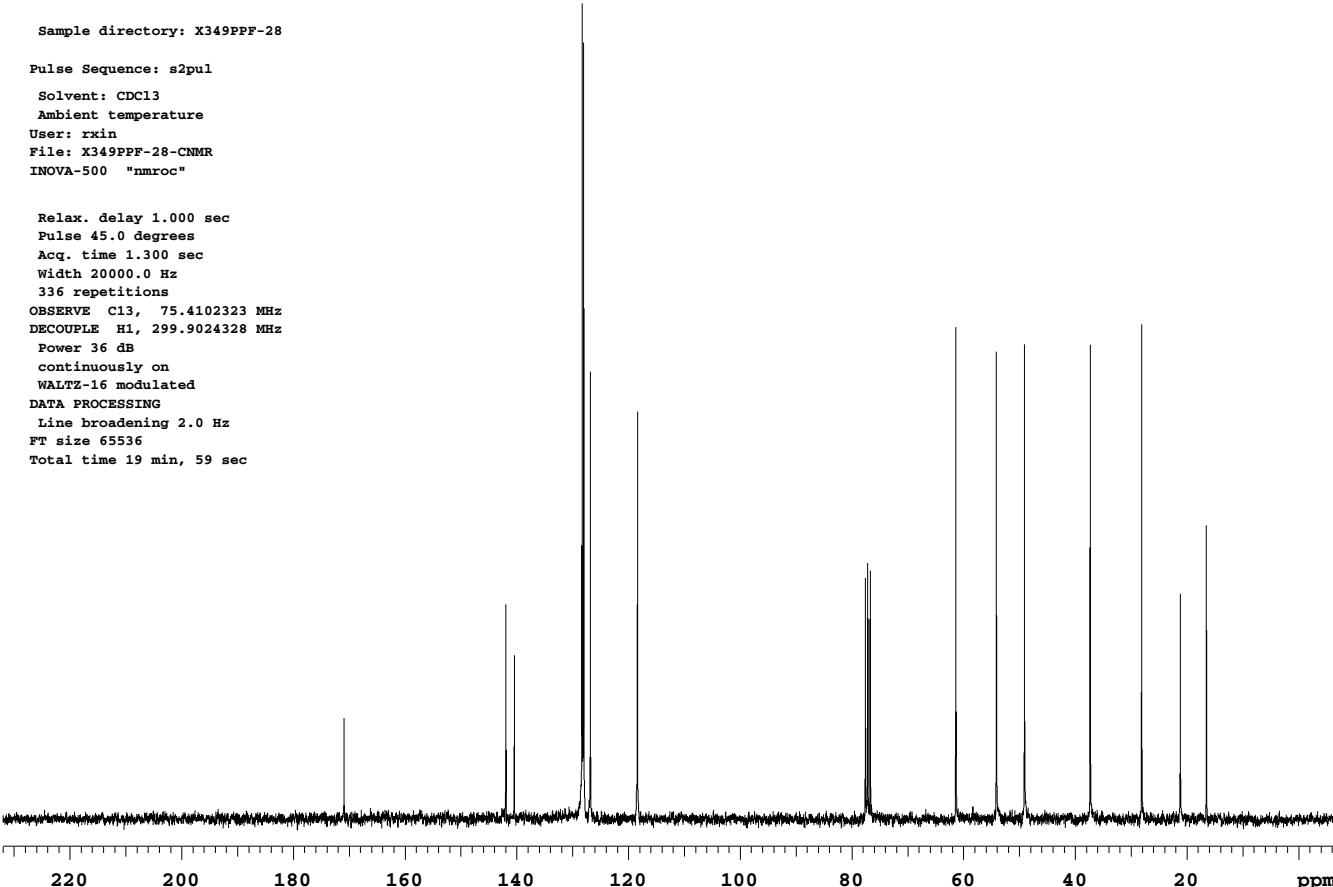
336 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

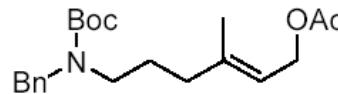
FT size 65536

Total time 19 min, 59 sec

STANDARD 1H OBSERVE

Sample directory: X352PPF-15

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rxin

File: X352PPF-15

INOVA-500 "nmr0c"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


88 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 51 sec

13C OBSERVE

Sample directory: X352PPF-13

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X352PP-F13-CNMR

INOVA-500 "nmr0c"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

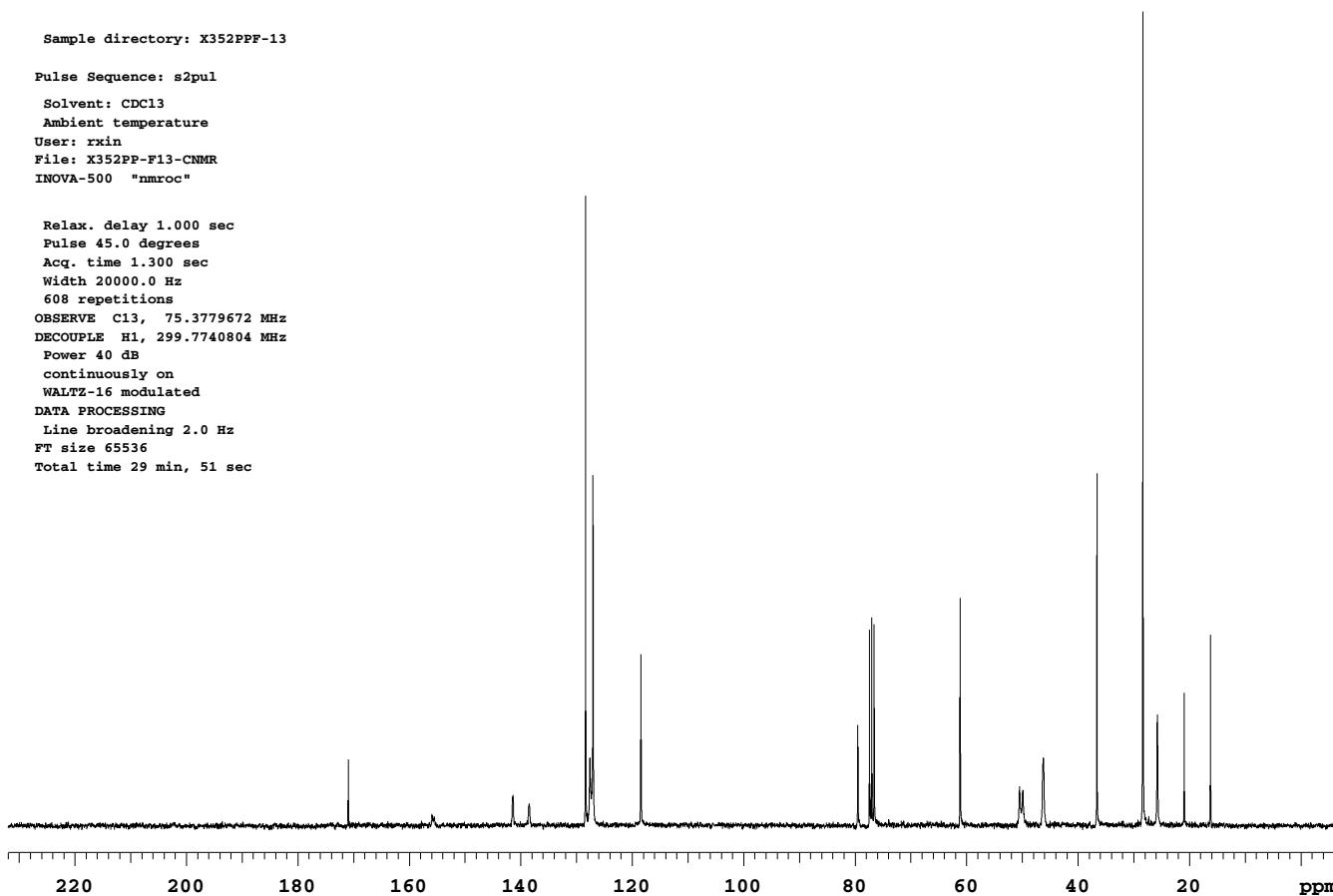
608 repetitions

OBSERVE C13, 75.3779672 MHz

DECOPPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

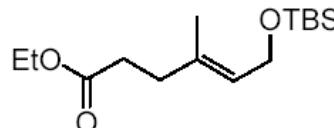
FT size 65536

Total time 29 min, 51 sec

STANDARD 1H OBSERVE

Sample directory: X262PP

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rxin

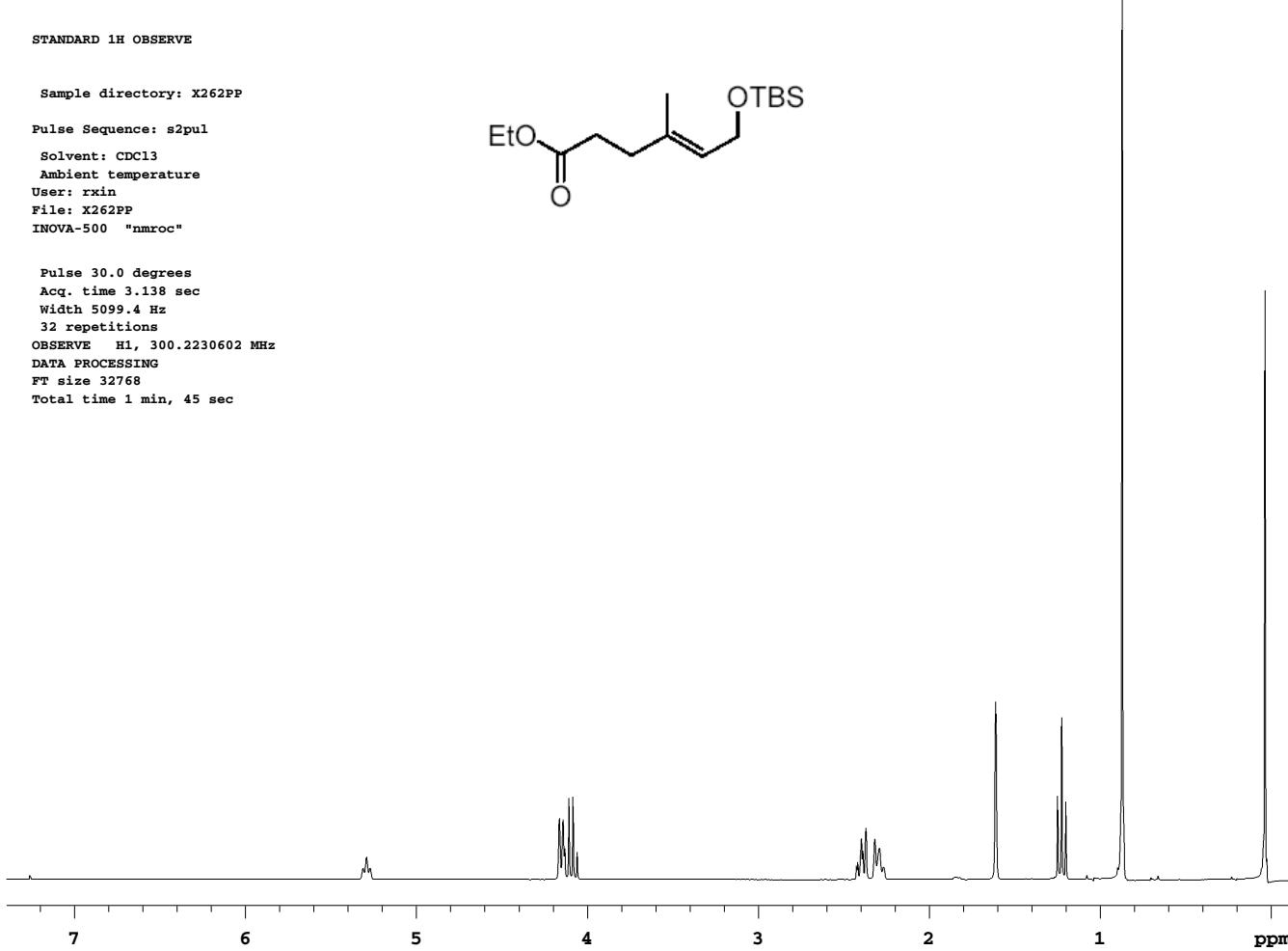
File: X262PP

INOVA-500 "nmproc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


32 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 45 sec

13C OBSERVE

Sample directory: X262PP-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X262PP-CNMR

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

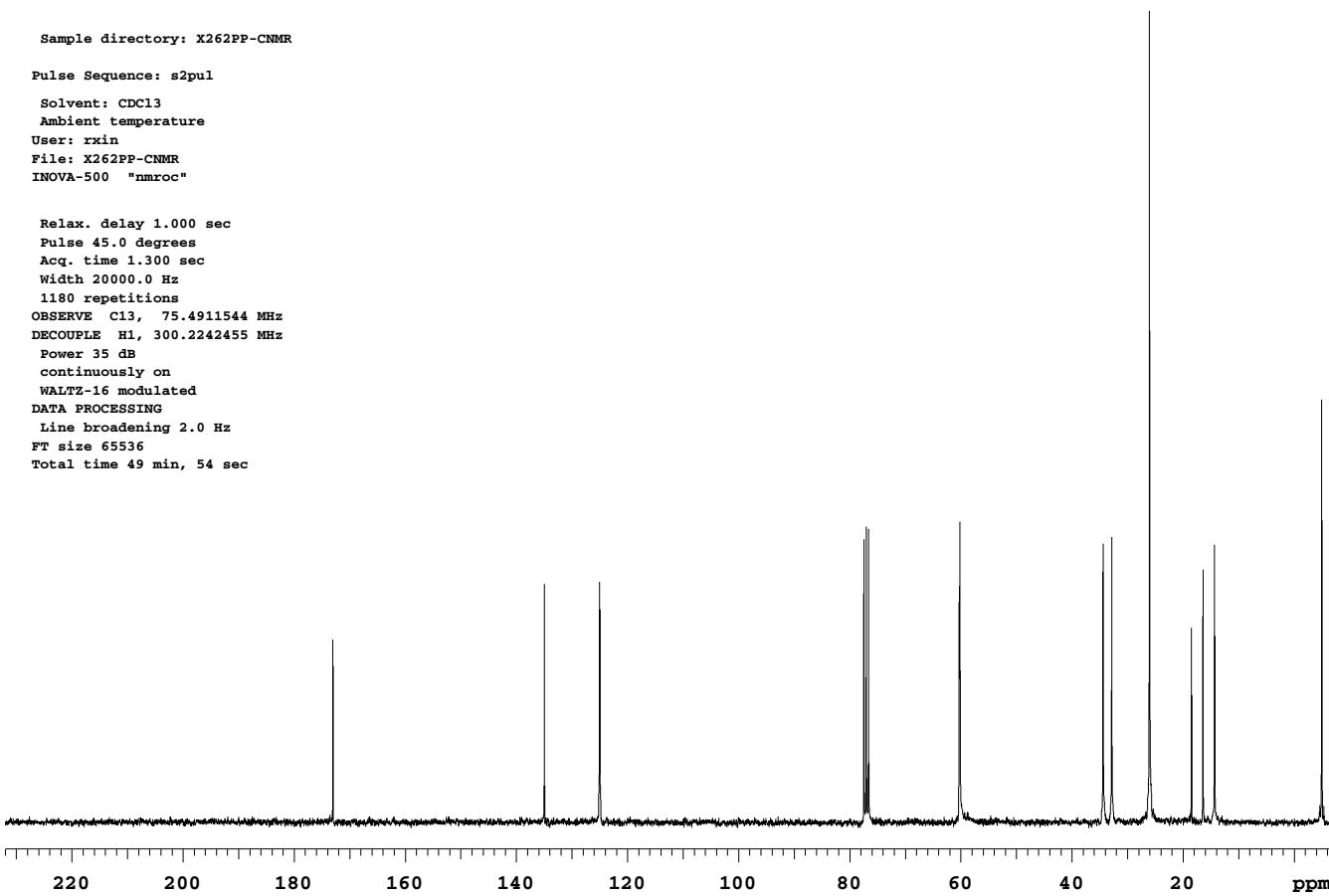
1180 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 49 min, 54 sec

STANDARD 1H OBSERVE

Sample directory: df-314_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-314_OH_1H

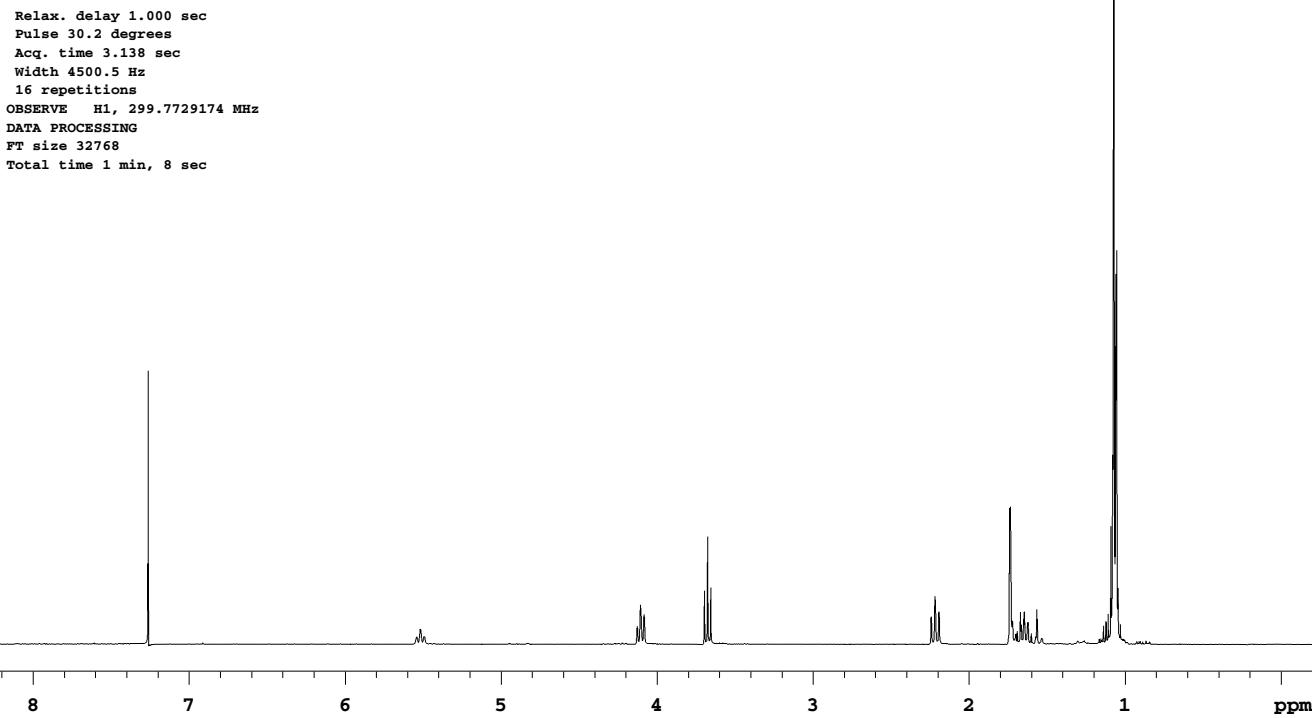
INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz


16 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 8 sec

13C OBSERVE

Sample directory: df-314_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-314_OH_230107_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

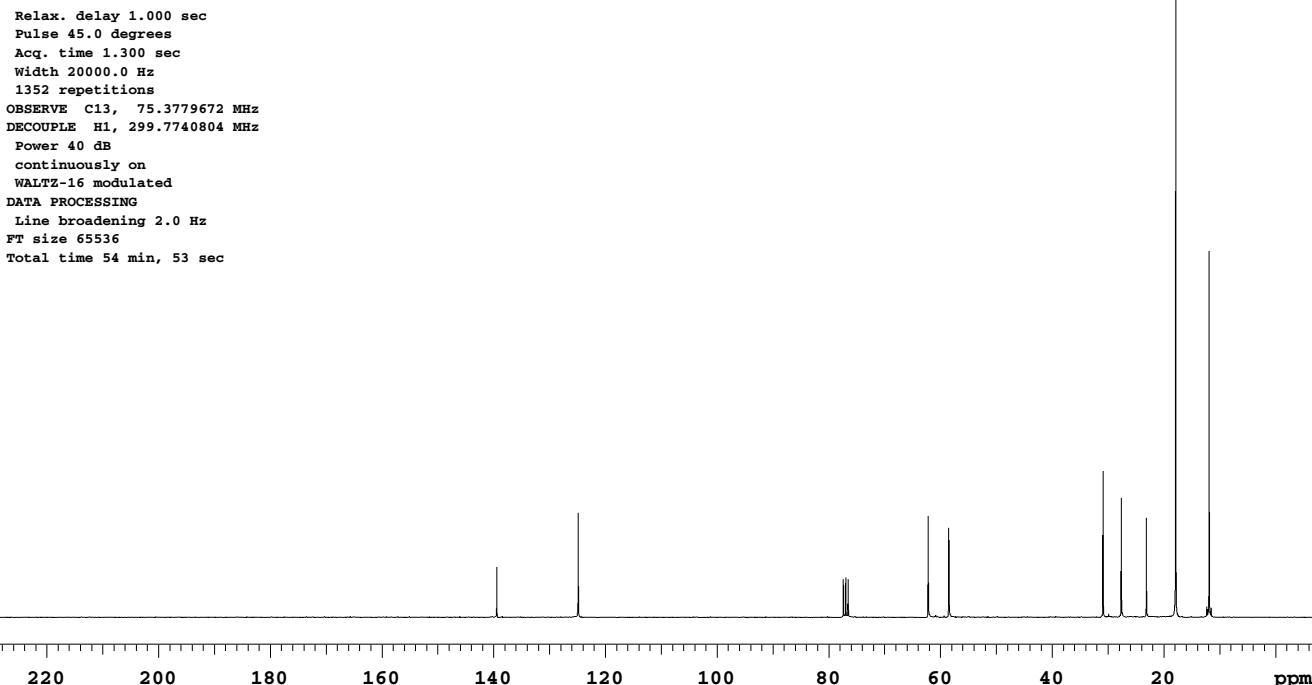
1352 repetitions

OBSERVE C13, 75.3779672 MHz

DECOPPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 54 min, 53 sec

STANDARD 1H OBSERVE

Sample directory: df-334_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

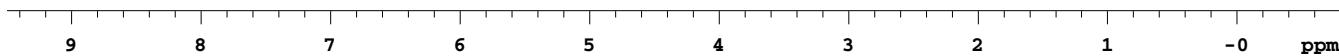
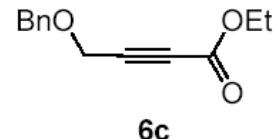
File: df-334_ester_1H

INOVA-500 "nmroc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



8 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 27 sec

13C OBSERVE

Sample directory: df-334_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-334_ester_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

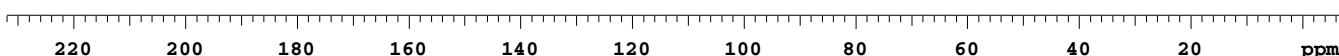
1416 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 59 min, 54 sec

STANDARD 1H OBSERVE

Sample directory: X361PP2-F-13

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

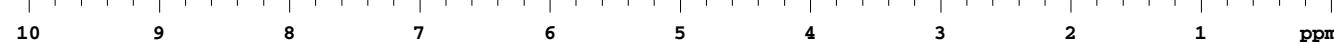
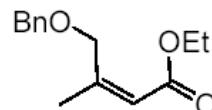
File: X361PP2-F-13

INOVA-500 "nmroc"

Pulse 18.0 degrees

Acc. time 3.138 sec

Width 5099.4 Hz



52 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 2 min, 53 sec

13C OBSERVE

Sample directory: X361PP2-F11-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X361PP2-F11-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acc. time 1.300 sec

Width 20000.0 Hz

944 repetitions

OBSERVE C13, 75.4102323 MHz

DECOUPLE H1, 299.9024328 MHz

Power 36 dB

continuously on

WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 39 min, 55 sec

STANDARD 1H OBSERVE

Sample directory: X362PPF-20

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

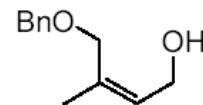
File: X362PPF-20

INOVA-500 "nmroc"

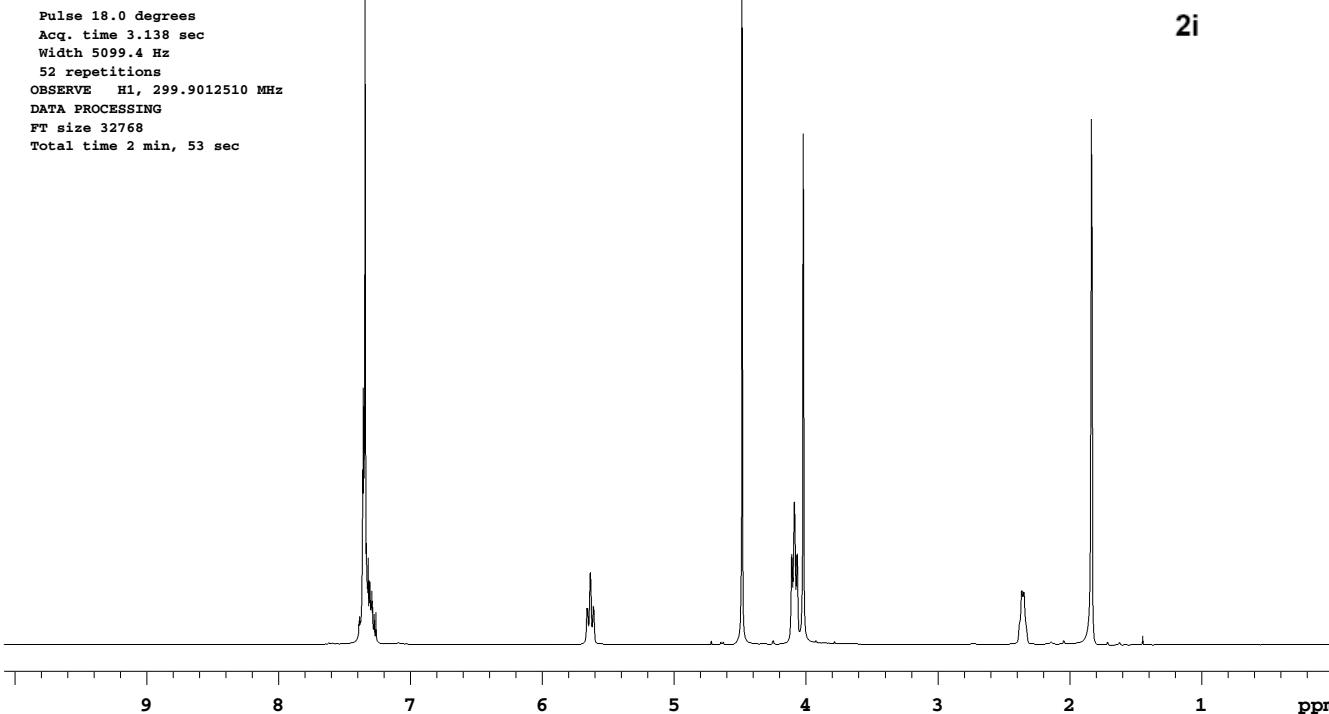
Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


52 repetitions

OBSERVE H1, 299.9012510 MHz


DATA PROCESSING

FT size 32768

Total time 2 min, 53 sec

2i

13C OBSERVE

Sample directory: X362PPF-20-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X362PPF20-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

1344 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 13 hr, 19 min, 54 sec

STANDARD 1H OBSERVE

Sample directory: df-340_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-340_ester_1H

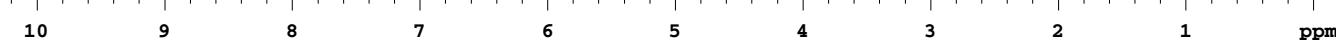
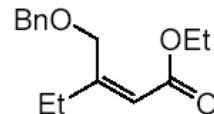
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz



8 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 35 sec

13C OBSERVE

Sample directory: df-340_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-340-Ester-13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

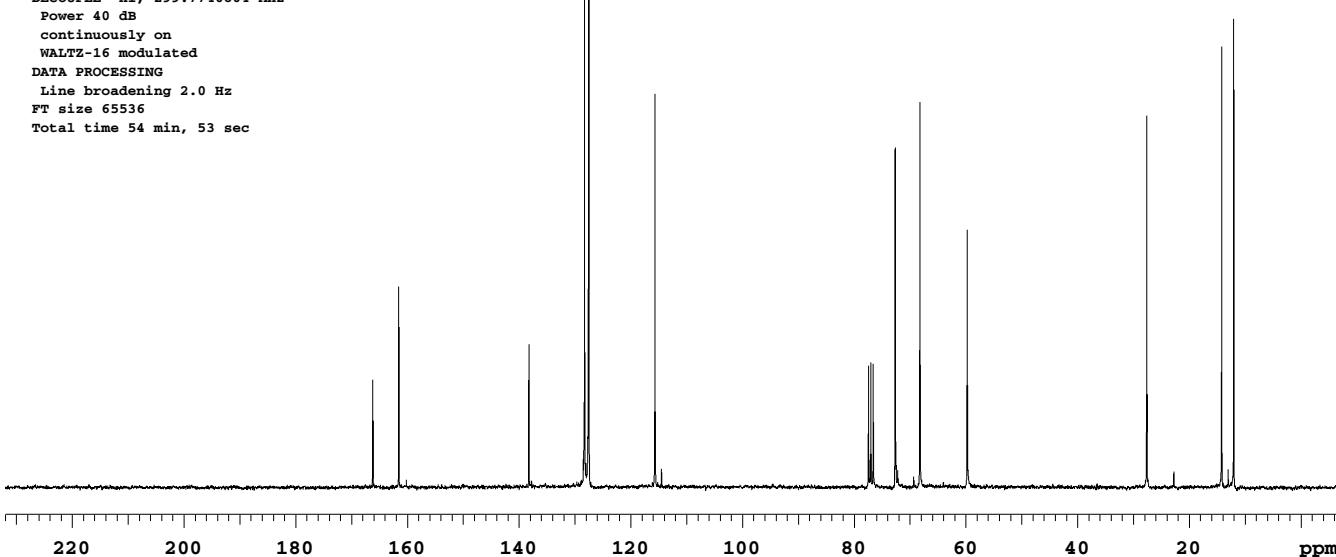
1352 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 54 min, 53 sec

STANDARD 1H OBSERVE

Sample directory: svf('cn-372-3fr')df-339_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

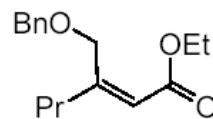
File: df-339_ester_1H

INOVA-500 "nmproc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


8 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 27 sec

13C OBSERVE

Sample directory: svf('cn-372-3fr')df-339_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-339_ester_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

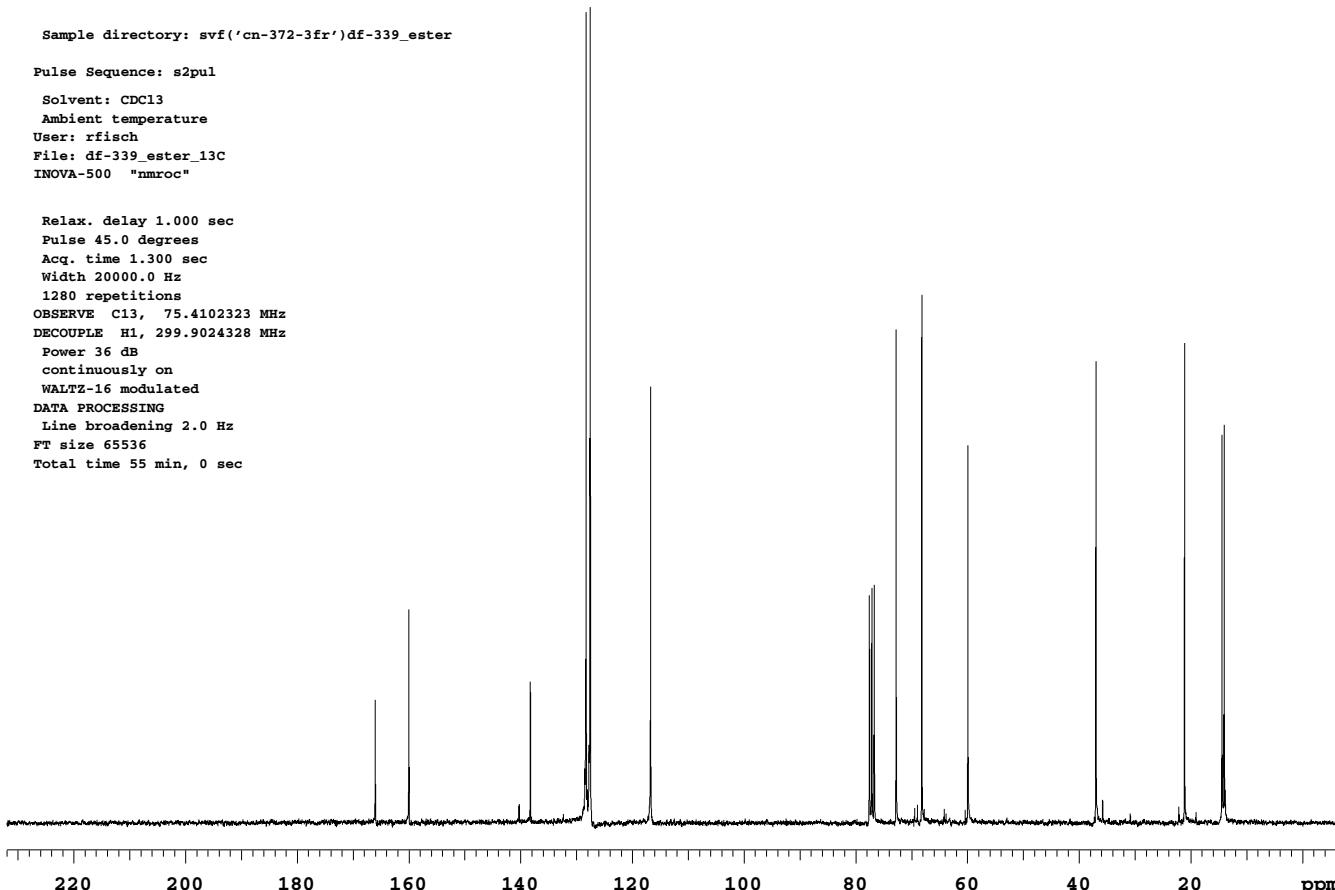
1280 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 55 min, 0 sec

STANDARD 1H OBSERVE

Sample directory: df-339_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

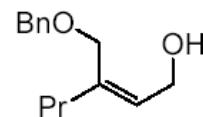
File: df-339_OH_1H

INOVA-500 "nmroc"

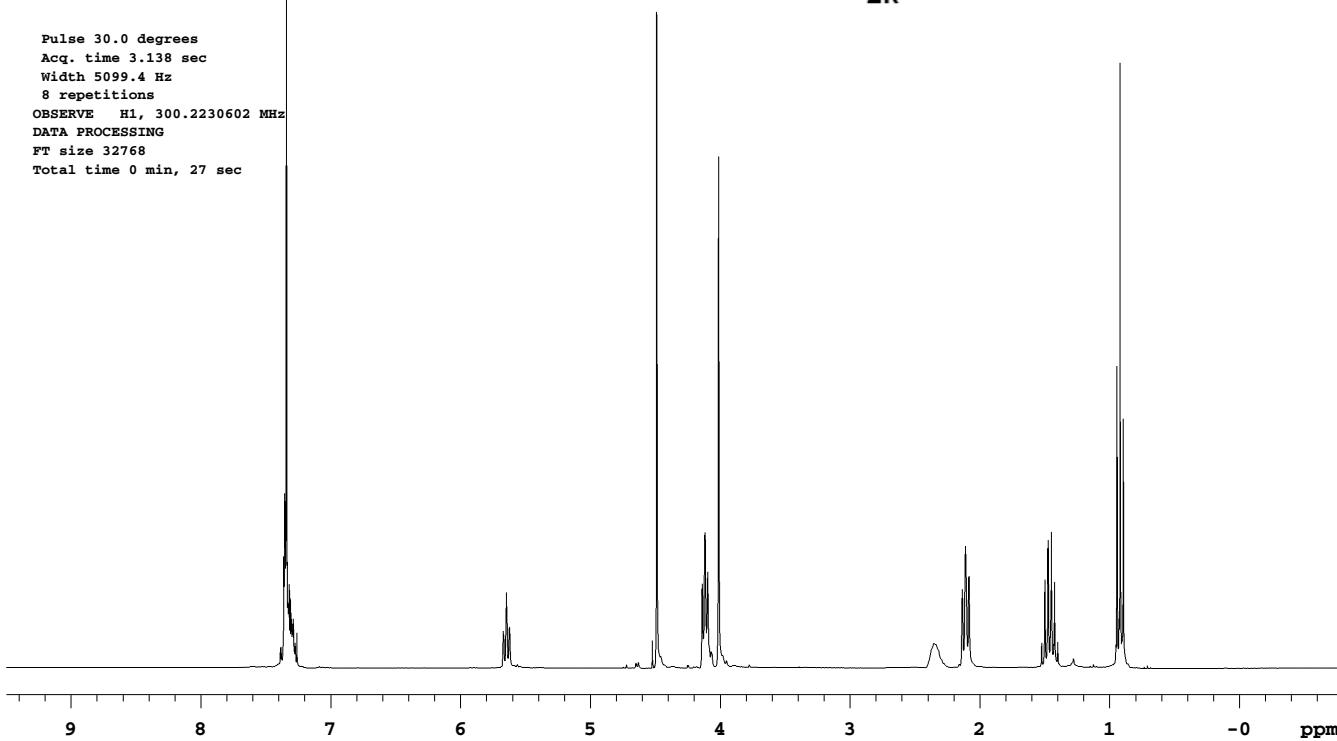
Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


8 repetitions

OBSERVE H1, 300.2230602 MHz


DATA PROCESSING

FT size 32768

Total time 0 min, 27 sec

2k

13C OBSERVE

Sample directory: df-339_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-339_OH_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

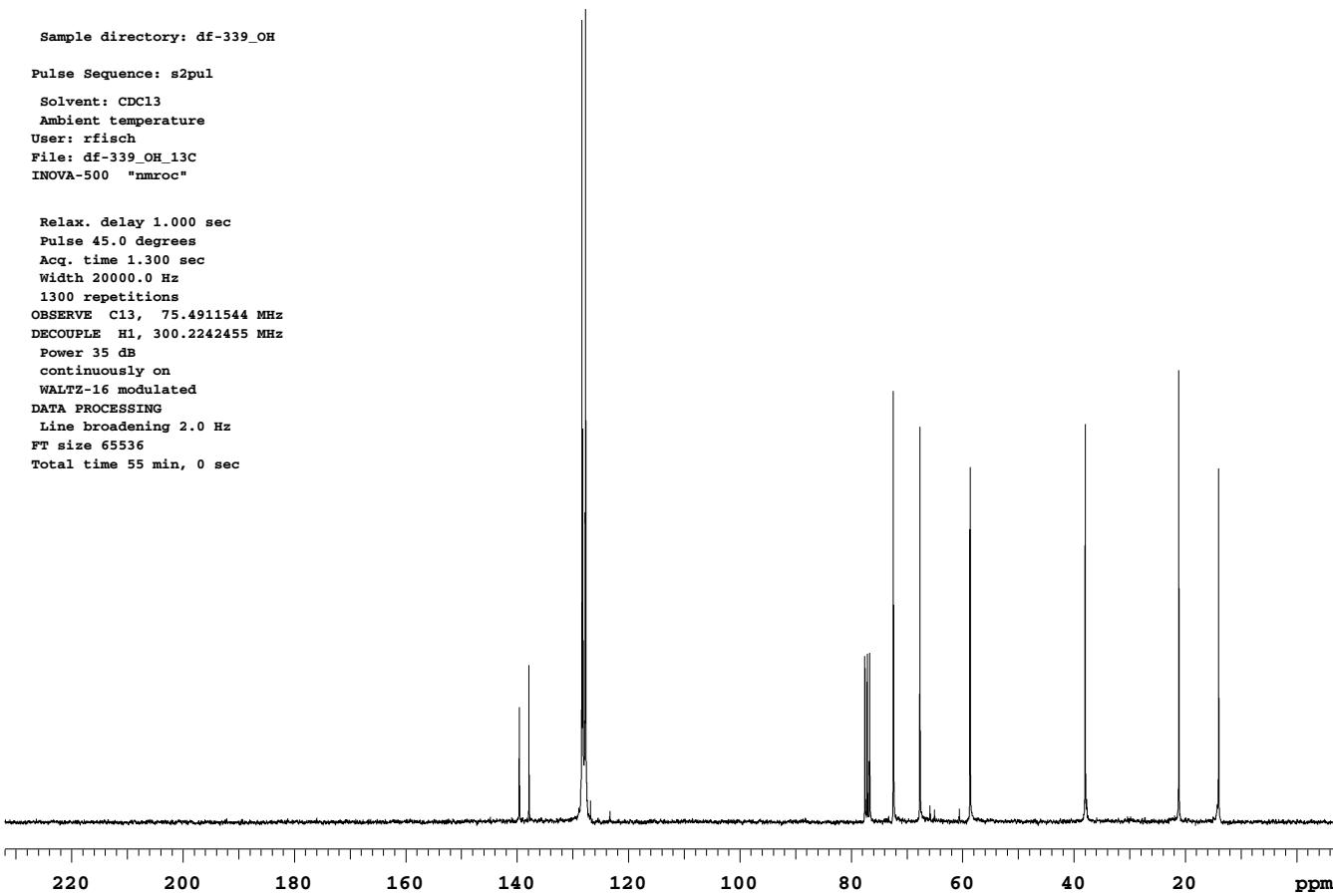
1300 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 55 min, 0 sec

STANDARD 1H OBSERVE

Sample directory: df-337_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-337_ester_1H

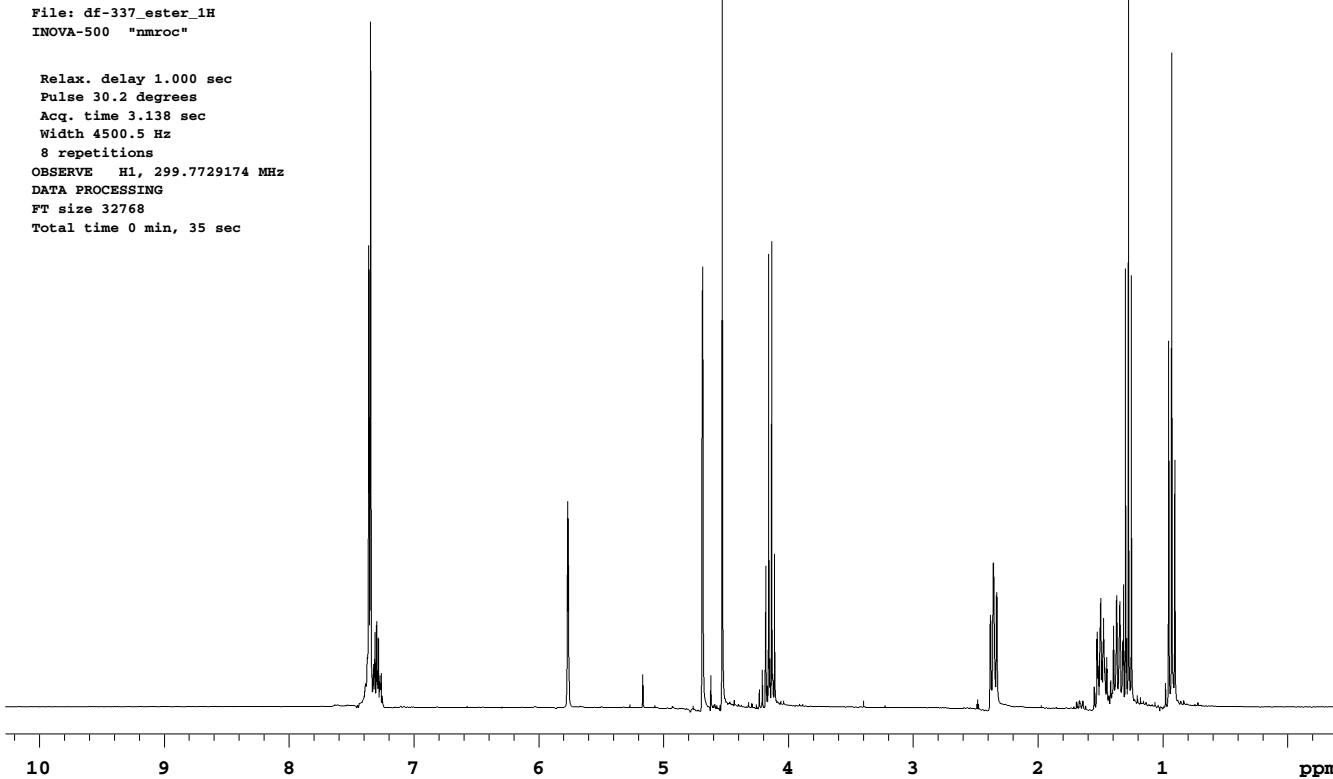
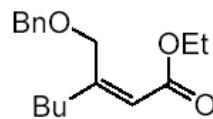
INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz



8 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 35 sec

13C OBSERVE

Sample directory: df-337_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-337_ester_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

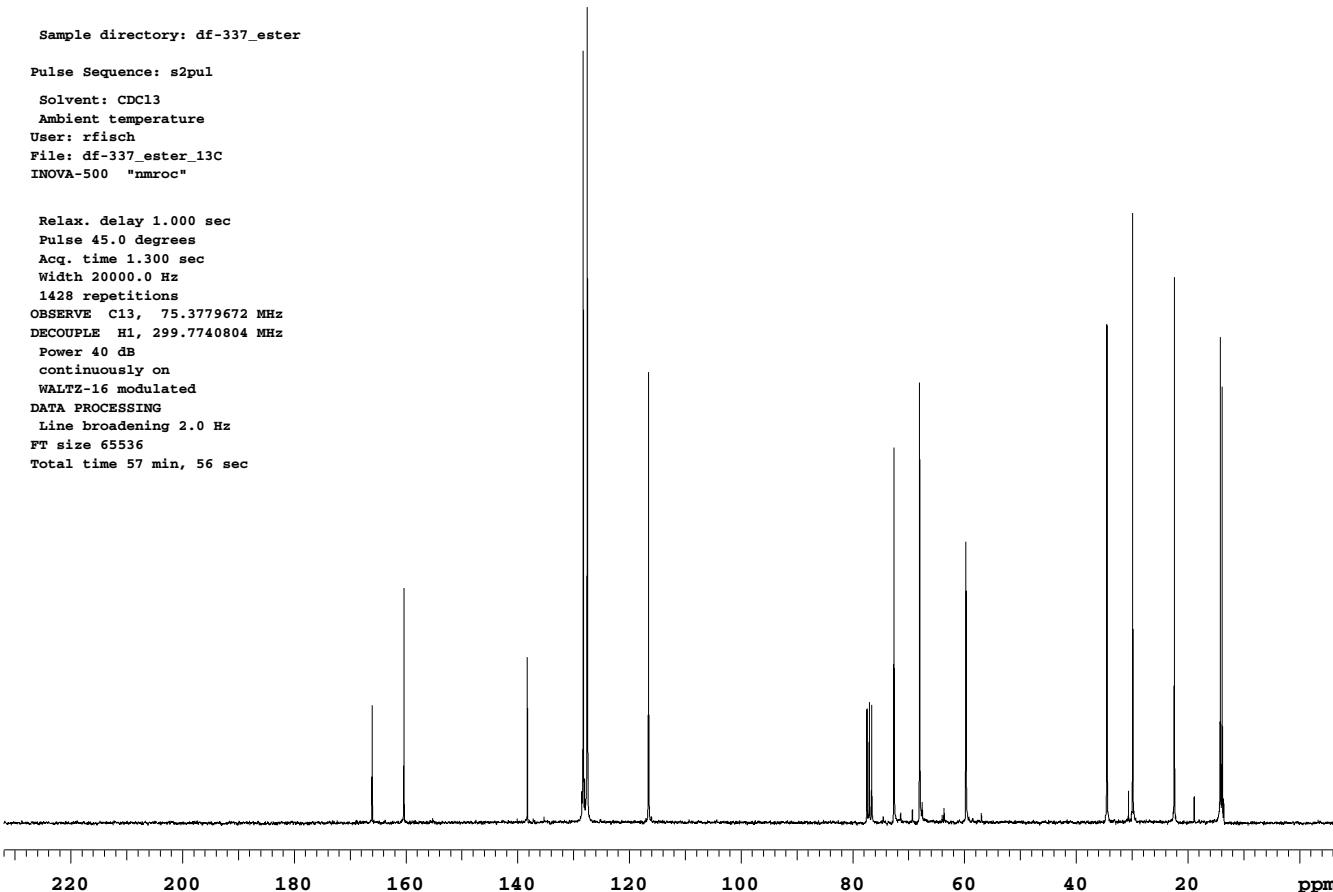
1428 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 57 min, 56 sec

STANDARD 1H OBSERVE

Sample directory: df-337_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

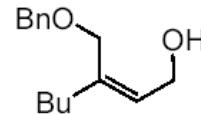
File: df-337_OH_1H

INOVA-500 "nmroc"

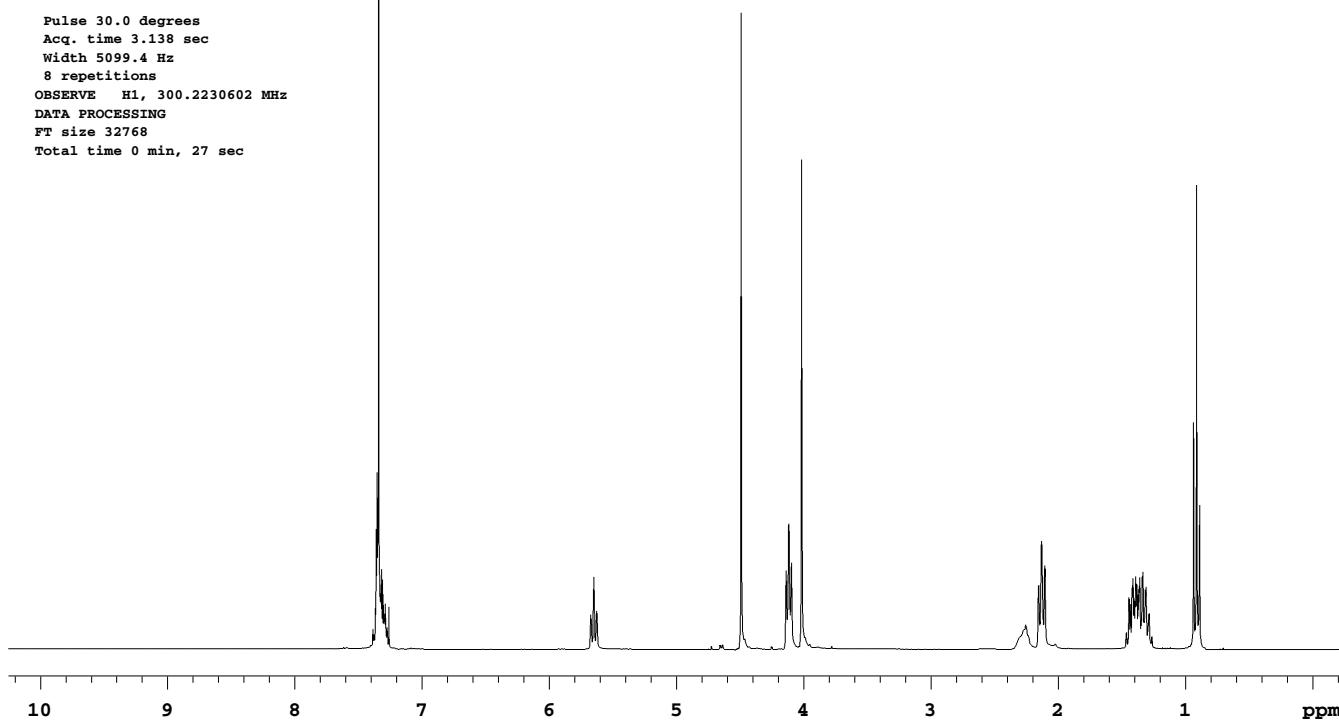
Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


8 repetitions

OBSERVE H1, 300.2230602 MHz


DATA PROCESSING

FT size 32768

Total time 0 min, 27 sec

2I

13C OBSERVE

Sample directory: df-337_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-337_OH_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

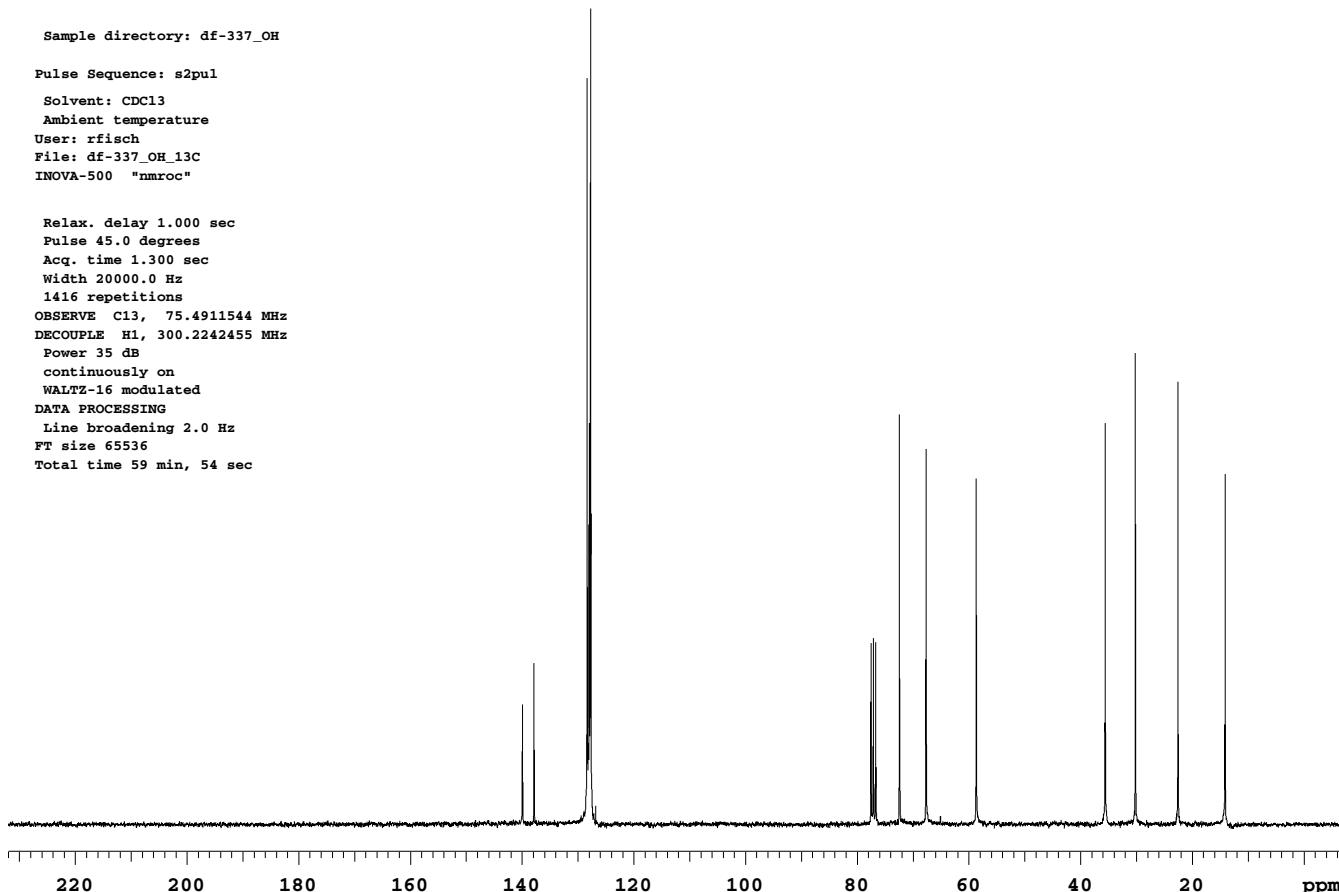
1416 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 59 min, 54 sec

STANDARD 1H OBSERVE

Sample directory: df-341_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-341_ester_1H

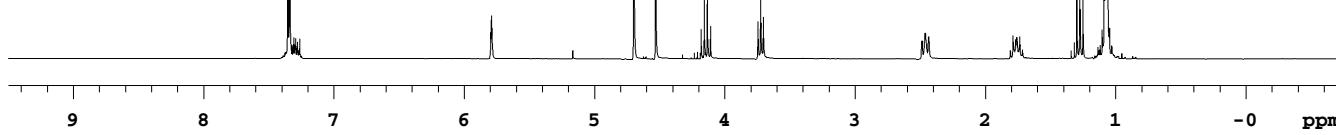
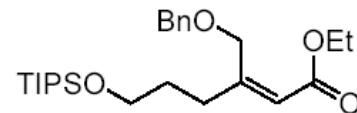
INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz



8 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 35 sec

13C OBSERVE

Sample directory: df-341_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-341-Ester_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

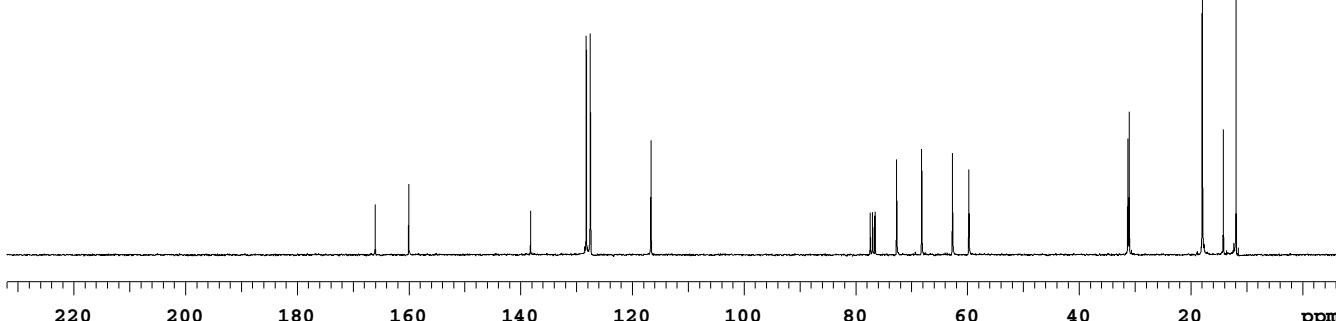
608 repetitions

OBSERVE C13, 75.3779672 MHz

DECOPPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

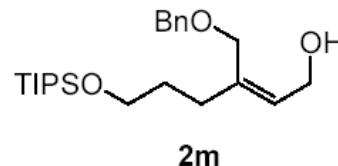
FT size 65536

Total time 59 min, 55 sec

STANDARD 1H OBSERVE

Sample directory: df-341_OH

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch

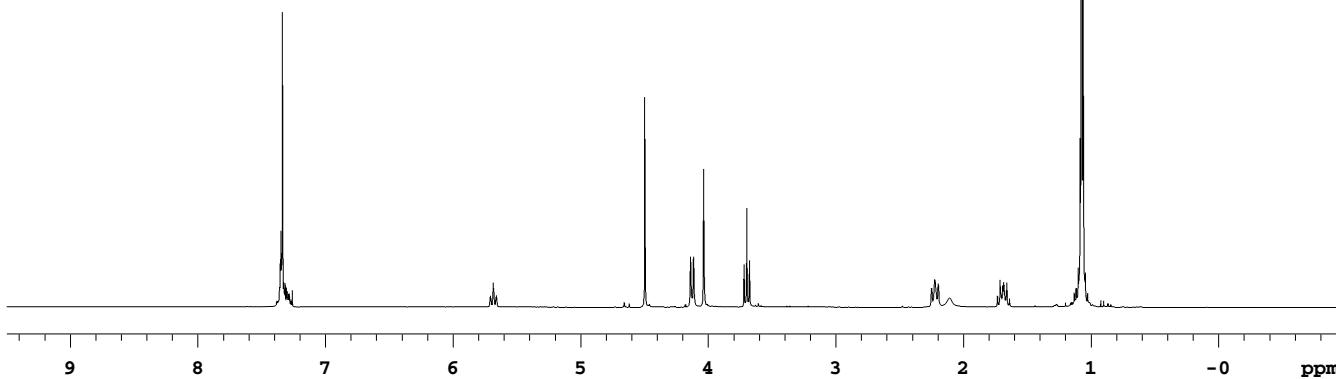
File: df-341_OH_1H

INOVA-500 "nmproc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


8 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 27 sec

13C OBSERVE

Sample directory: df-341_OH

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-341_OH_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

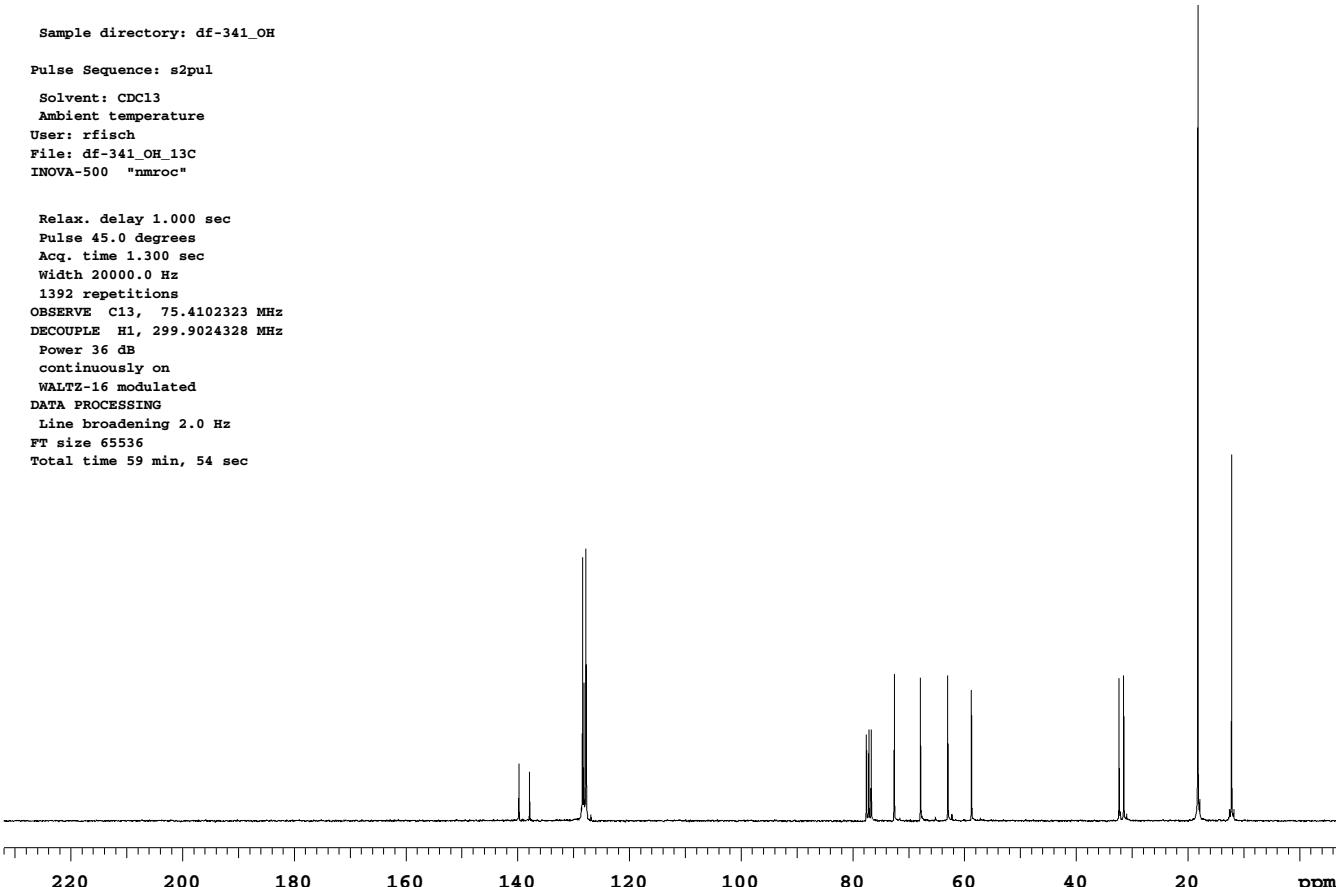
1392 repetitions

OBSERVE C13, 75.4102323 MHz

DECOUPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 59 min, 54 sec

STANDARD 1H OBSERVE

Sample directory: df-336_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

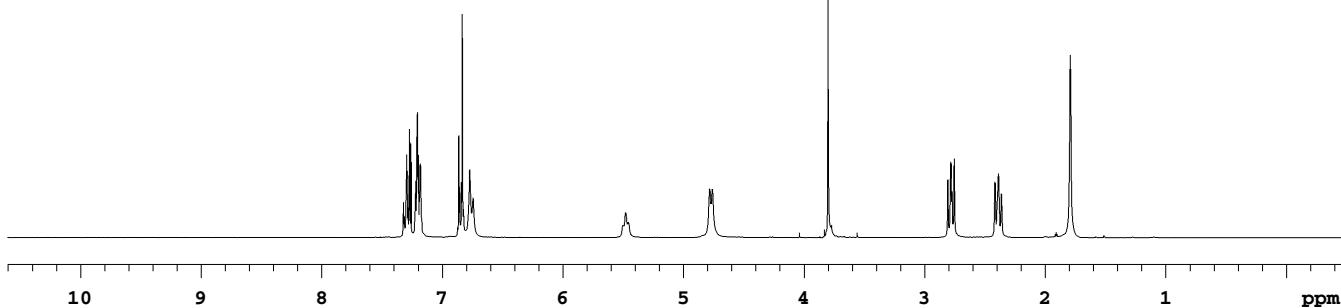
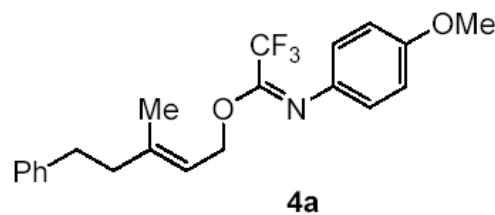
File: df-336_imidat_160407_1H

INOVA-500 "nmroc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-302_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-302-13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

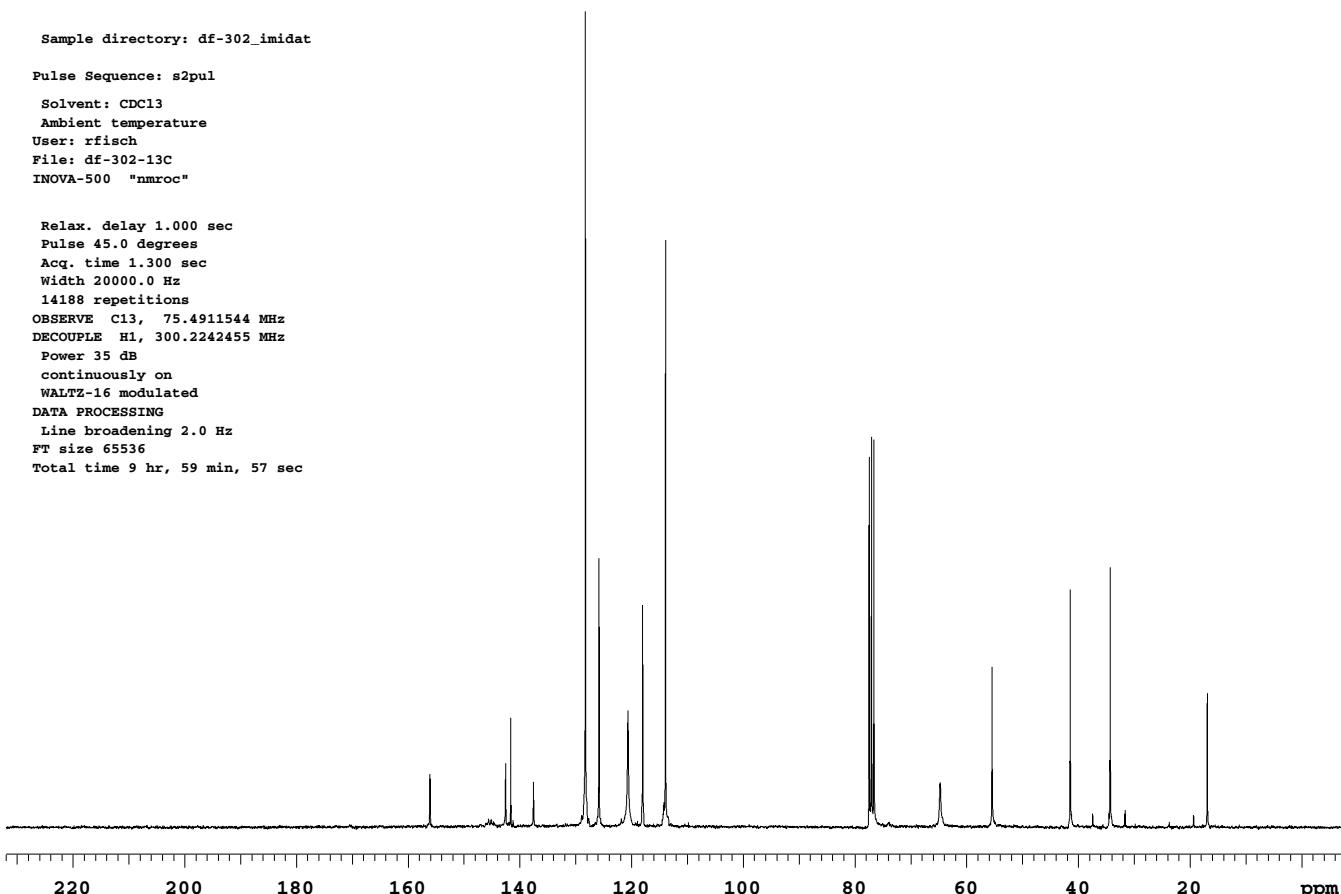
14188 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 9 hr, 59 min, 57 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-318

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-318_19F

INOVA-500 "nmproc"

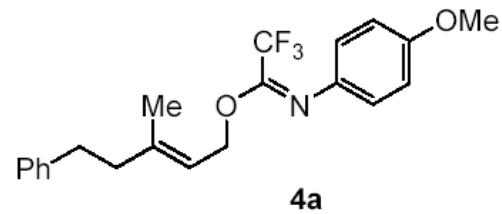
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.0683162 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

STANDARD 1H OBSERVE

Sample directory: df-252c

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

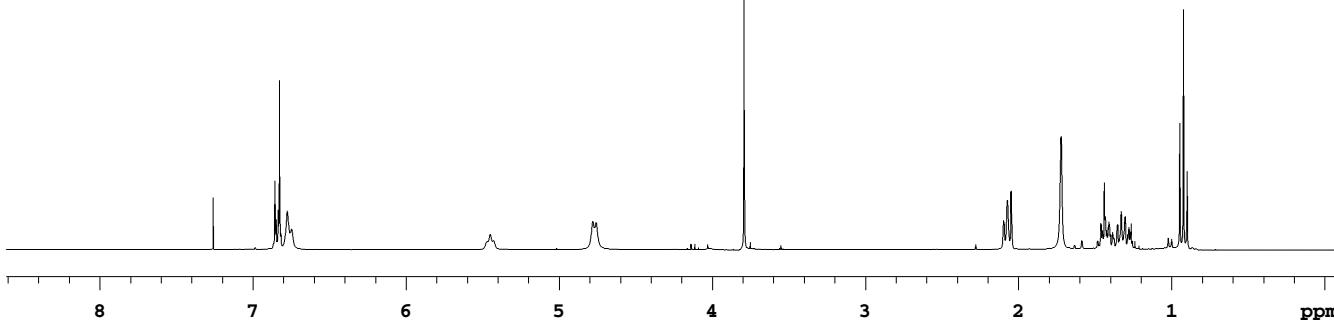
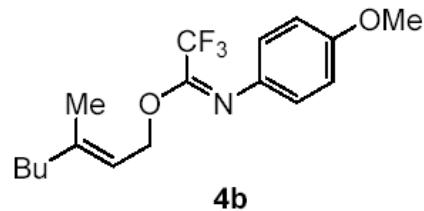
File: df-252c_1H

INOVA-500 "nmrroc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-252c

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-252c_13C

INOVA-500 "nmrroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

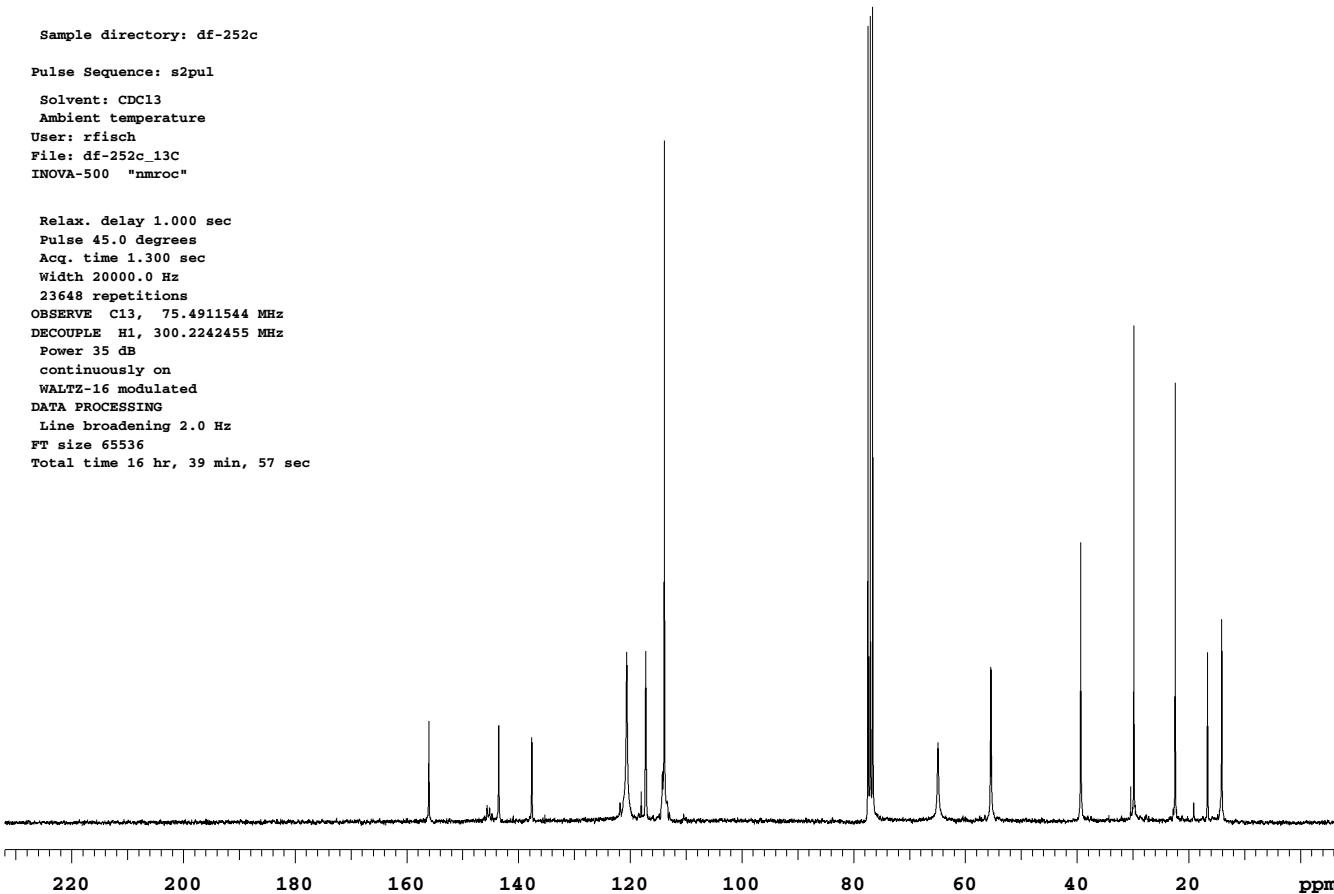
23648 repetitions

OBSERVE C13, 75.4911544 MHz

DECOUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 16 hr, 39 min, 57 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-252c

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-252c_19F

INOVA-500 "nmproc"

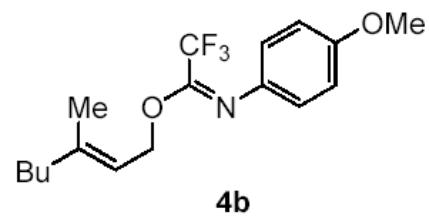
Relax. delay 4.000 sec

Pulse 45.0 degrees

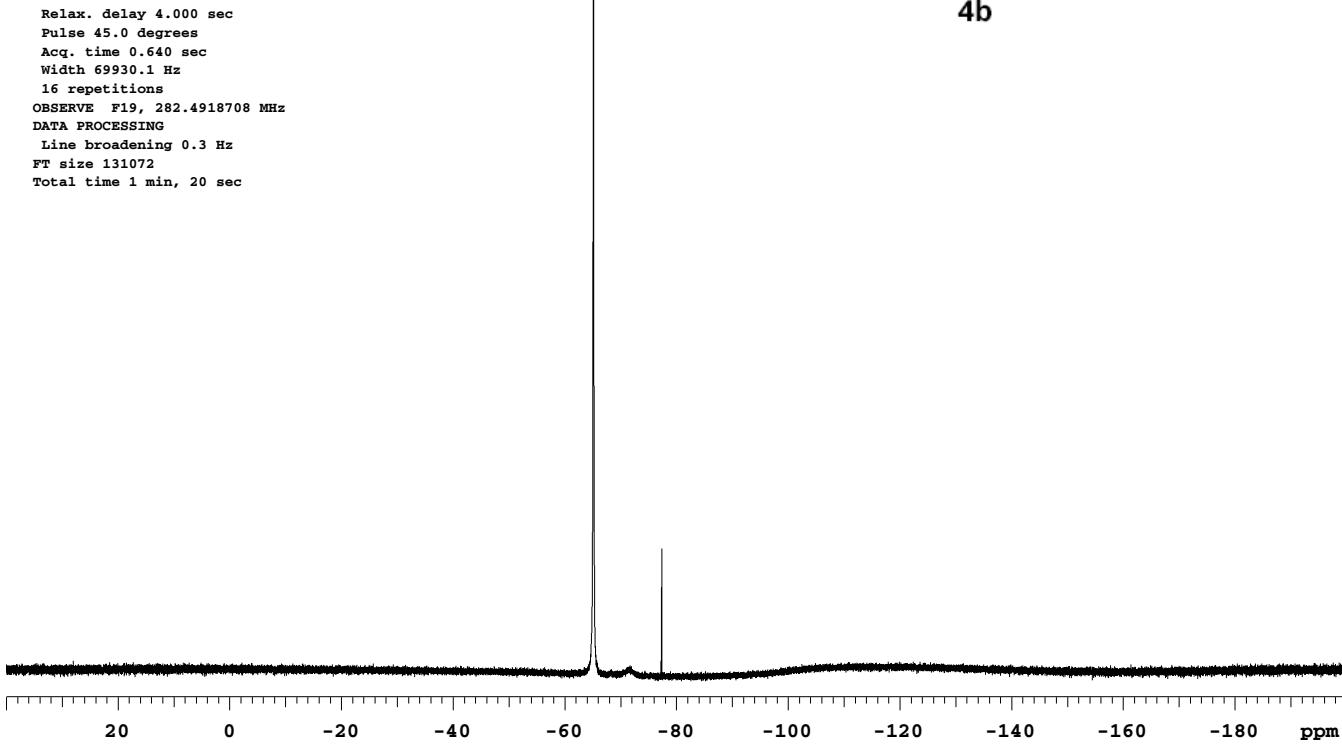
Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

4b

STANDARD 1H OBSERVE

Sample directory: df-252c

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-252c_geraniol_1H

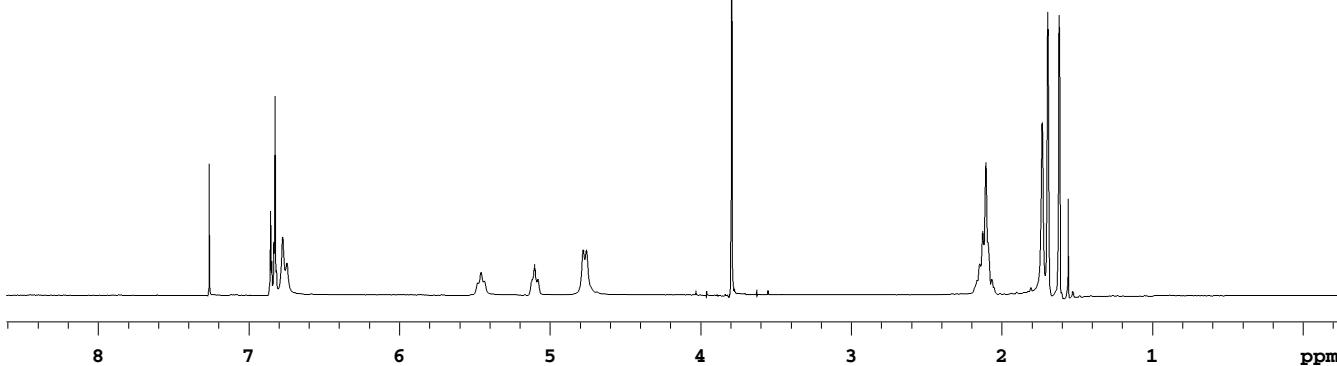
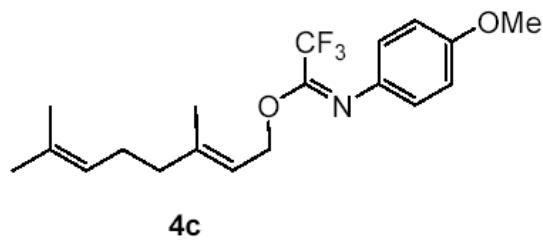
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 56.2 degrees

Acq. time 1.998 sec

Width 4500.5 Hz



16 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 49 sec

13C OBSERVE

Sample directory: df-265

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-265-13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

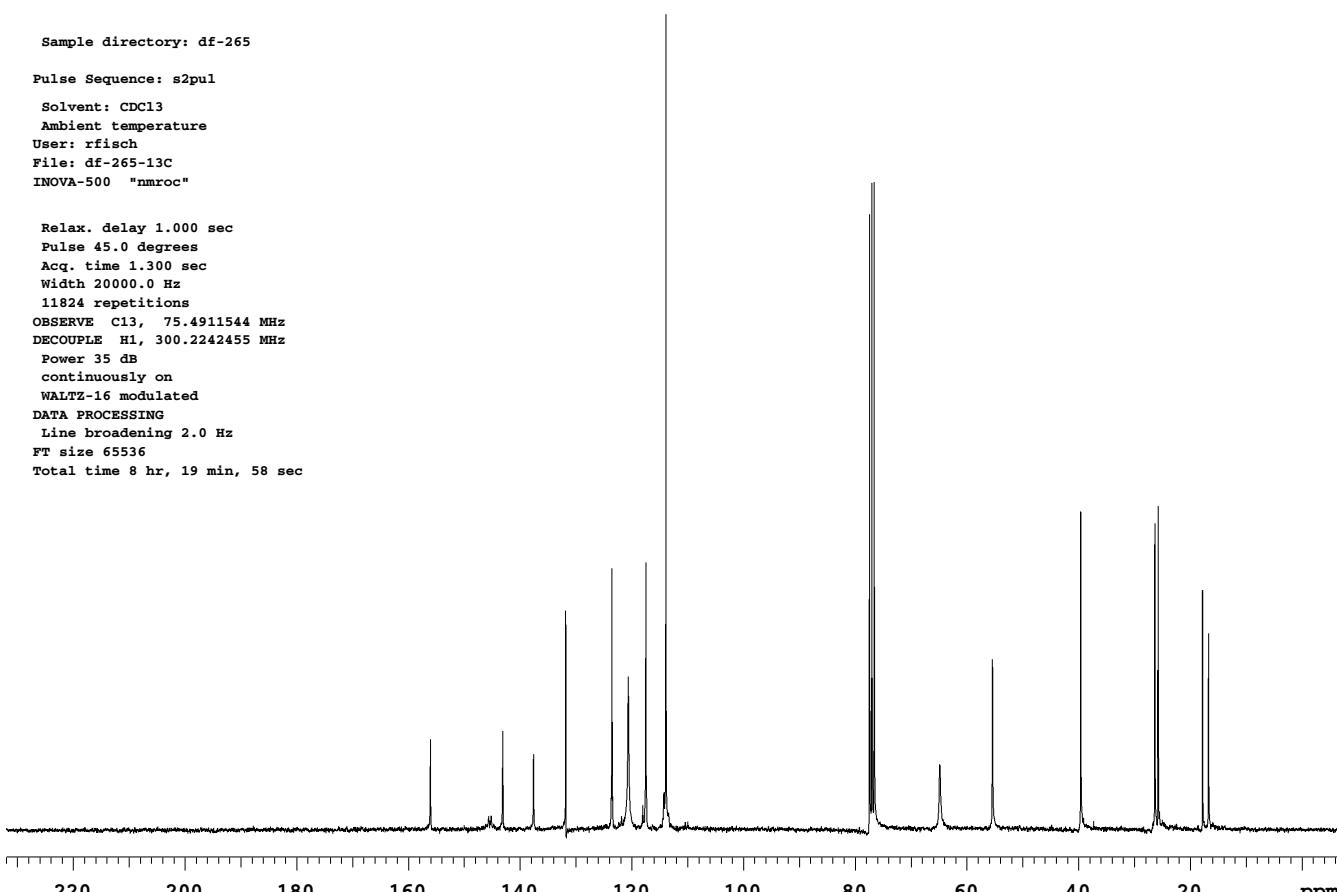
11824 repetitions

OBSERVE C13, 75.4911544 MHz

DECOUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 8 hr, 19 min, 58 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-252c

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-252c_geraniol_19F

INOVA-500 "nmroc"

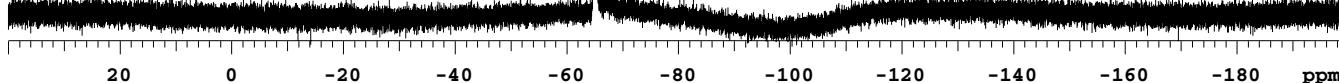
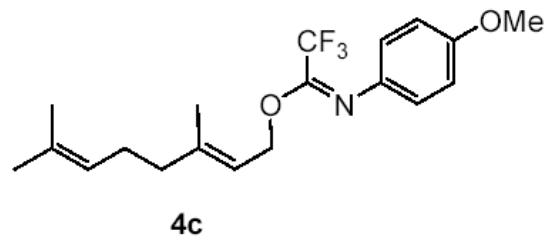
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions



OBSERVE F19, 282.0683162 MHz

DATA PROCESSING

Line broadening 0.3 Hz

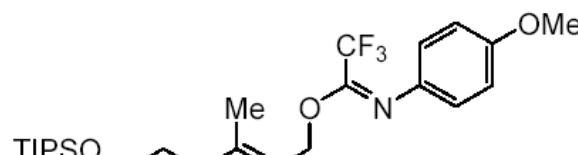
FT size 131072

Total time 1 min, 20 sec

STANDARD 1H OBSERVE

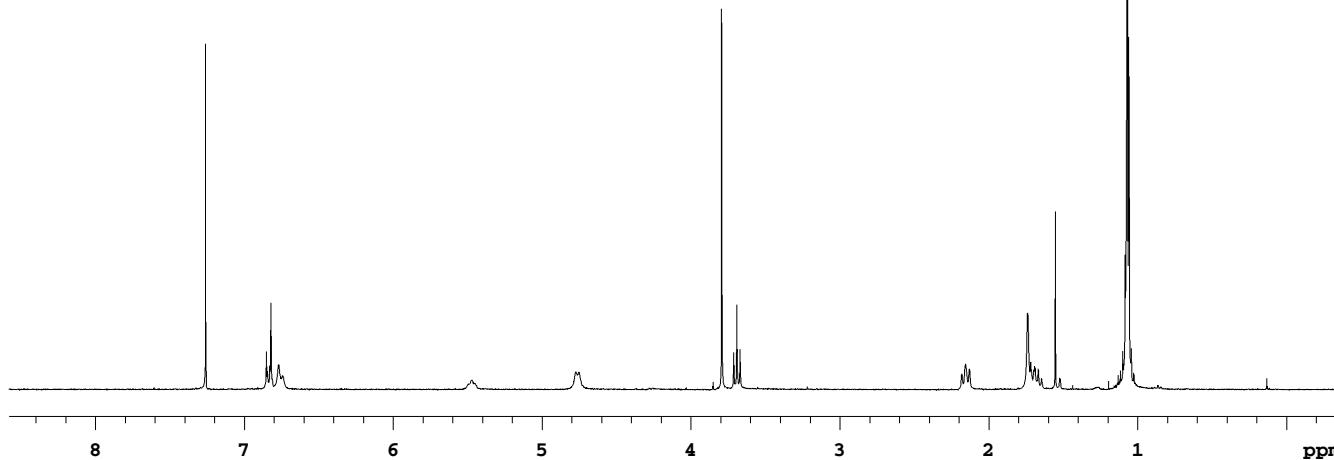
Sample directory: df-300_imidat

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch


File: df-300_imidat_1H_030407

INOVA-500 "nmroc"

4d

Pulse 18.0 degrees
Acq. time 3.138 sec
Width 5099.4 Hz
16 repetitions
OBSERVE H1, 299.9012510 MHz
DATA PROCESSING
FT size 32768
Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-300_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-300-imidat-13c

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

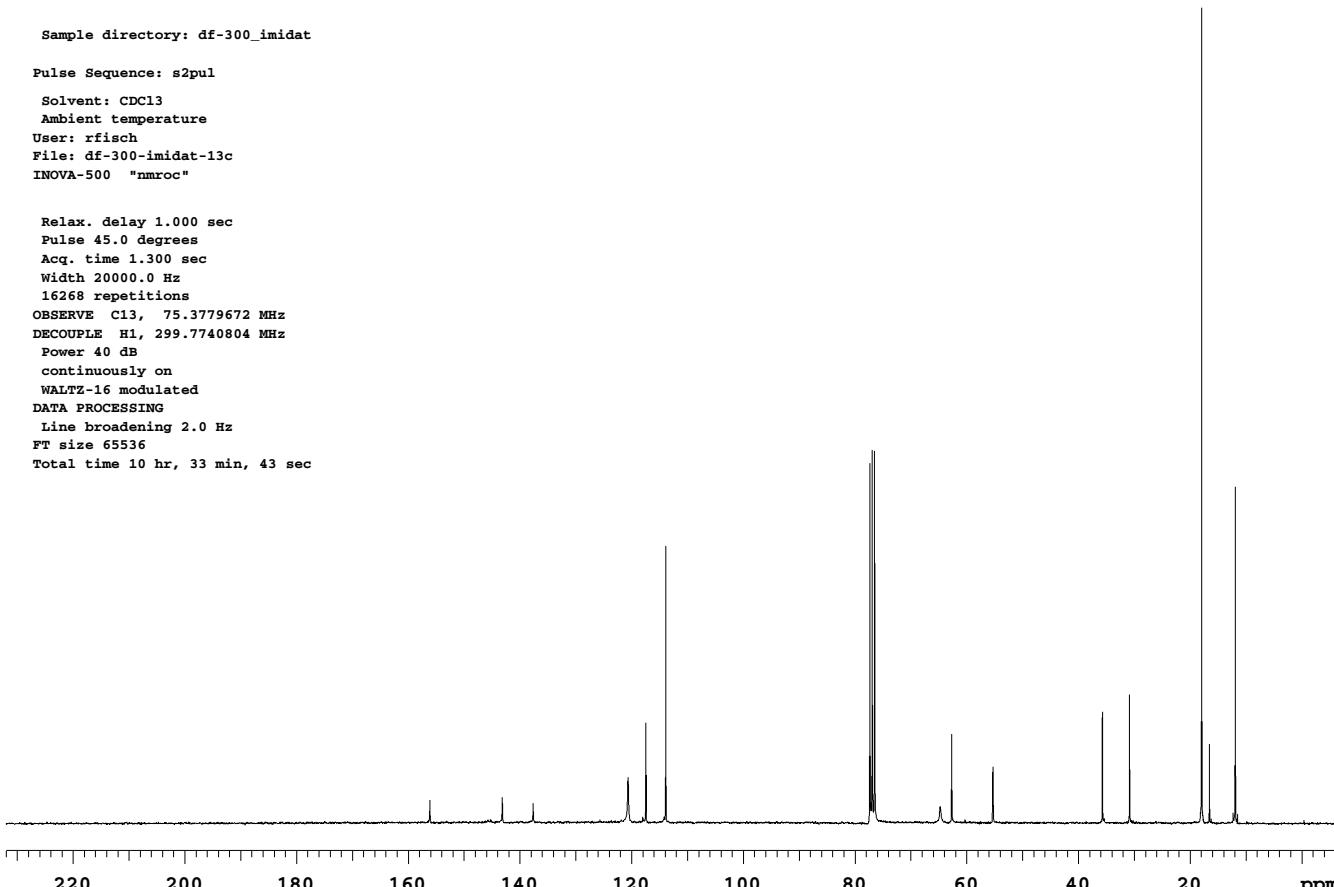
16268 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 10 hr, 33 min, 43 sec

19F OBSERVE

STANDARD PARAMETERS

Sample directory: df-302_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-302_19F

INOVA-500 "nmproc"

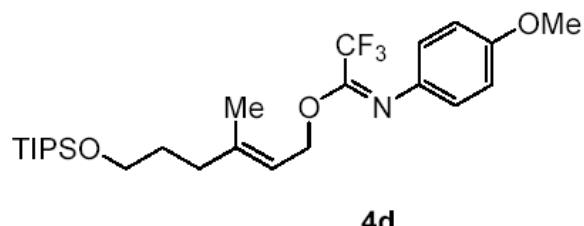
Relax. delay 4.000 sec

Pulse 45.0 degrees

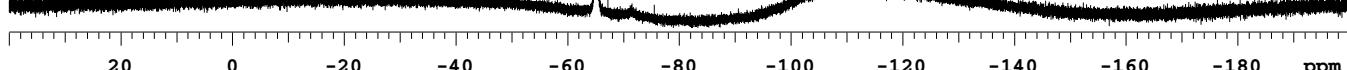
Acq. time 0.640 sec

Width 69930.1 Hz

92 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 7 min, 42 sec

4d

STANDARD 1H OBSERVE

Sample directory: X359PPF-15

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

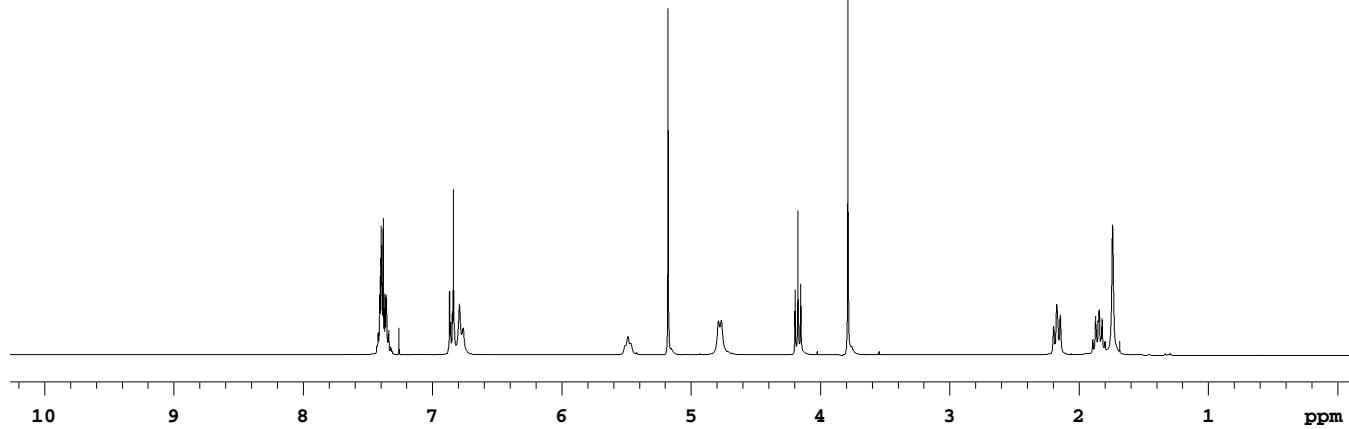
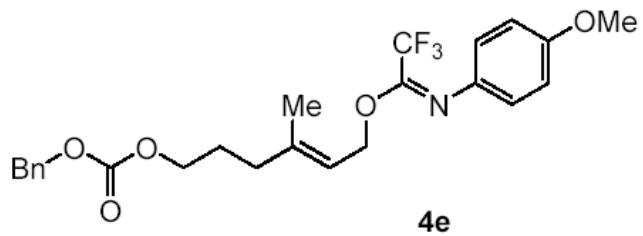
File: X359PPF-15

INOVA-500 "nmroc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: X359PP-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X359PP-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

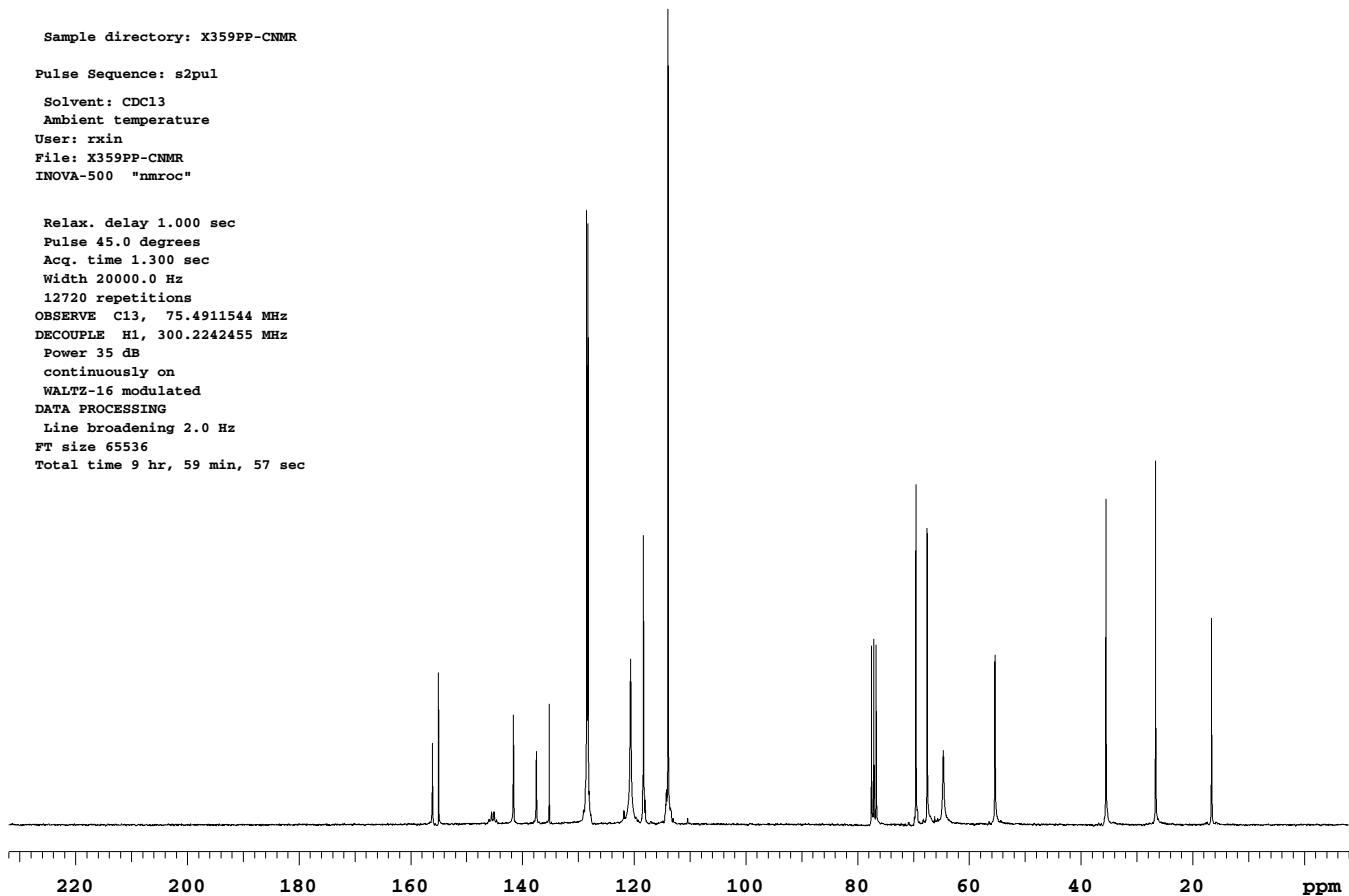
12720 repetitions

OBSERVE C13, 75.4911544 MHz

DECOUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

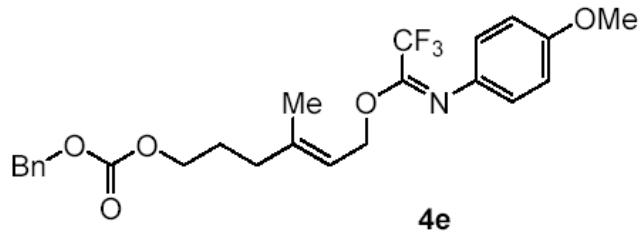
FT size 65536

Total time 9 hr, 59 min, 57 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: X359PPF-15

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rxin

File: X359PPF-15-FNMR

INOVA-500 "nmroc"

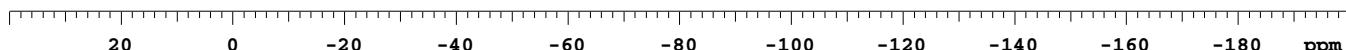
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acc. time 0.640 sec

Width 69930.1 Hz

19 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 39 sec

STANDARD 1H OBSERVE

Sample directory: X357PPF-10

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X357PPF-10

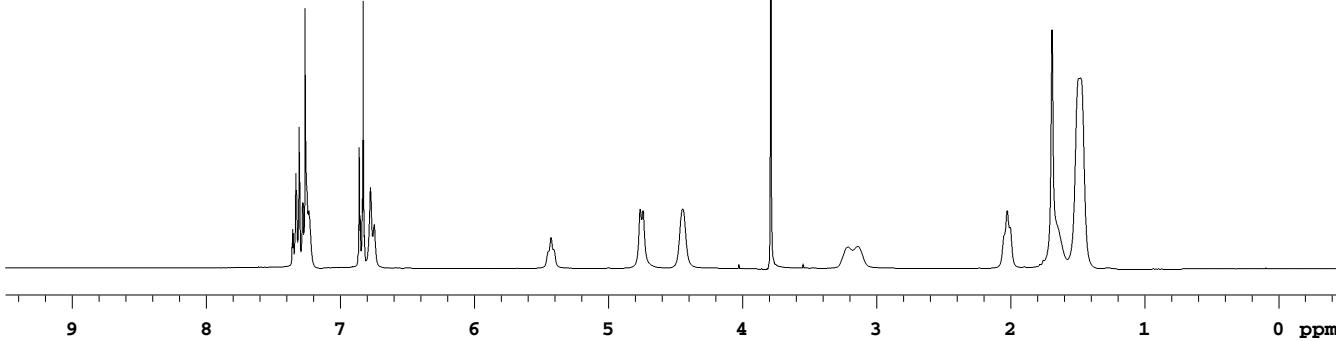
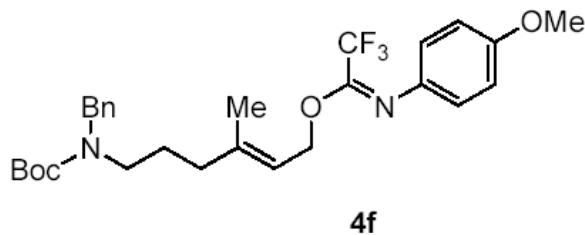
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 56.2 degrees

Acq. time 1.998 sec

Width 4500.5 Hz



56 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 2 min, 54 sec

13C OBSERVE

Sample directory: X357PPF-10-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X357PPF-10-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

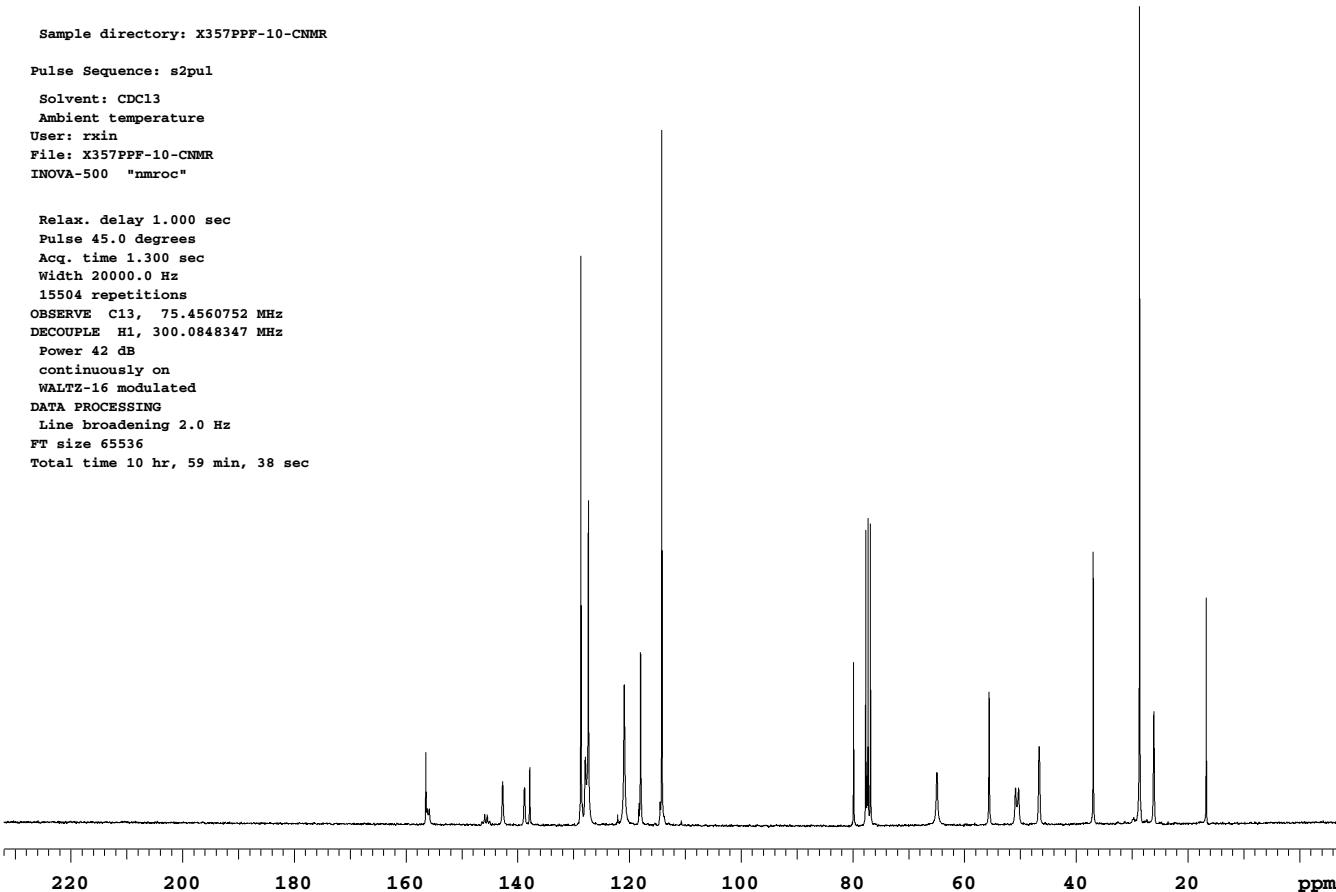
15504 repetitions

OBSERVE C13, 75.4560752 MHz

DECOPPLE H1, 300.0848347 MHz

Power 42 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 10 hr, 59 min, 38 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: X357PPF-10

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X357PPF-10-FNMR

INOVA-500 "nmroc"

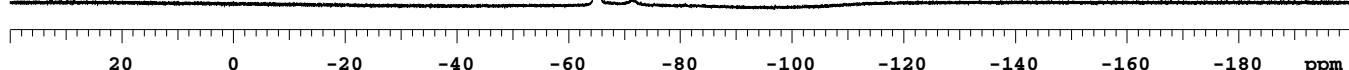
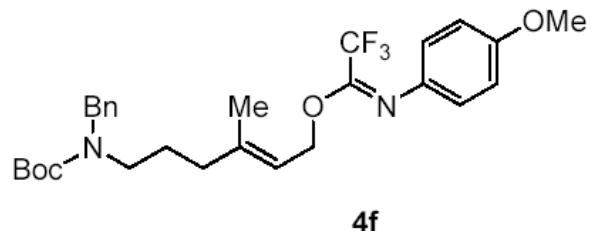
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

19 repetitions



OBSERVE F19, 282.0683162 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 39 sec

STANDARD 1H OBSERVE

Sample directory: X275PP-F25

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

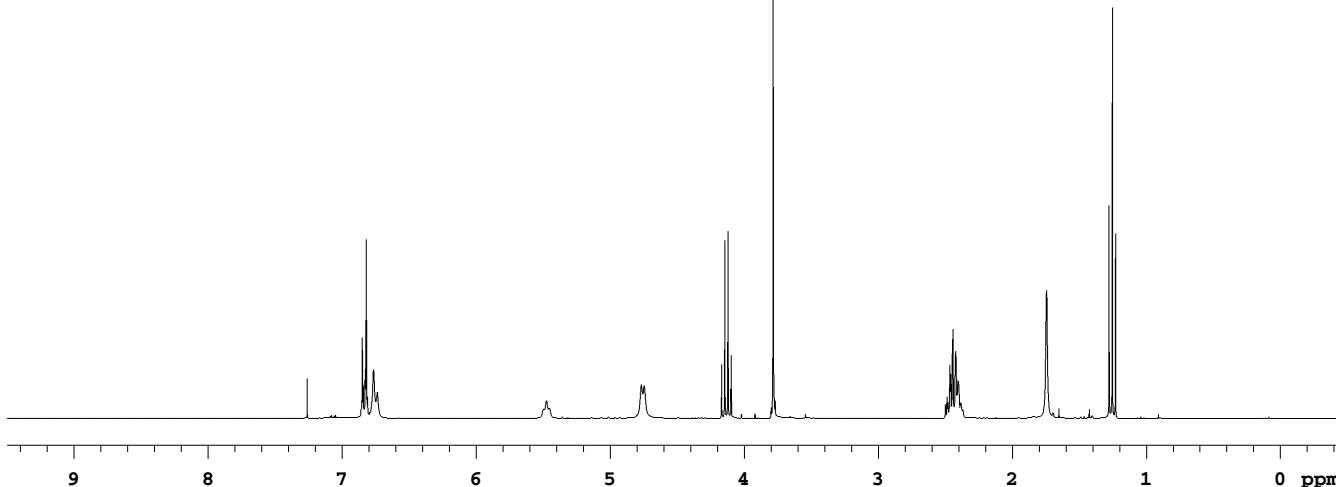
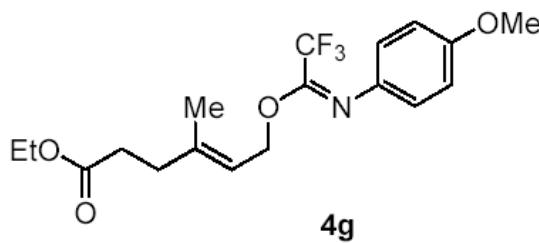
File: X275PP-F25

INOVA-500 "nmrcc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



32 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 45 sec

13C OBSERVE

Sample directory: df-308_imidat_ester

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfishch

File: df-308-73c

INOVA-500 "nmrcc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

9456 repetitions

OBSERVE C13, 75.4560752 MHz

DECOPPLE H1, 300.0848347 MHz

Power 42 dB

continuously on

WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 6 hr, 39 min, 50 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-308_imidat_ester

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-308_19F

INOVA-500 "nmproc"

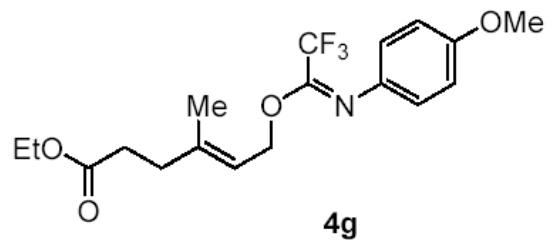
Relax. delay 4.000 sec

Pulse 45.0 degrees

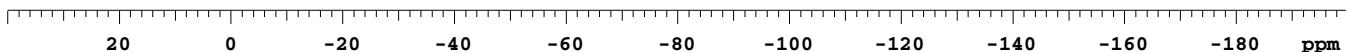
Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.3608271 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

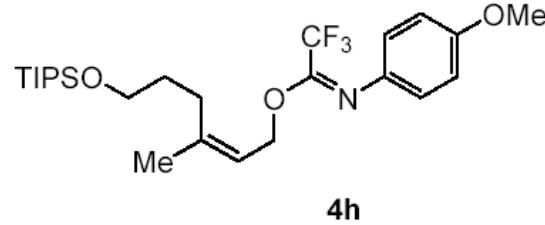
Total time 1 min, 20 sec

4g

STANDARD 1H OBSERVE

Sample directory: df-314_imidat

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch

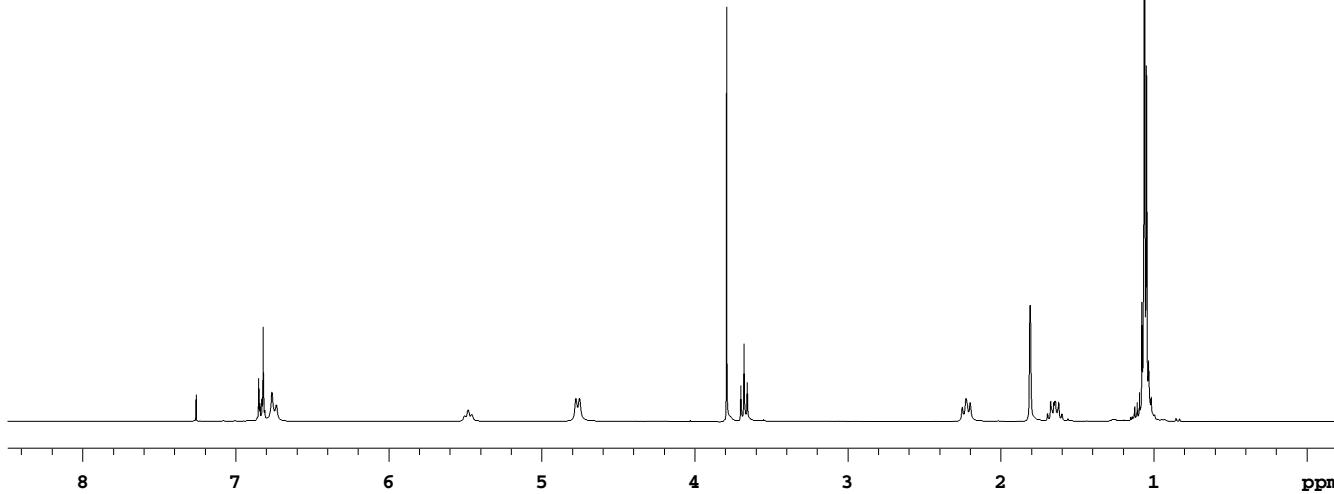
File: df-314_imidat_160407_1H

INOVA-500 "nmproc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


16 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: f-314_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-314_imidat_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

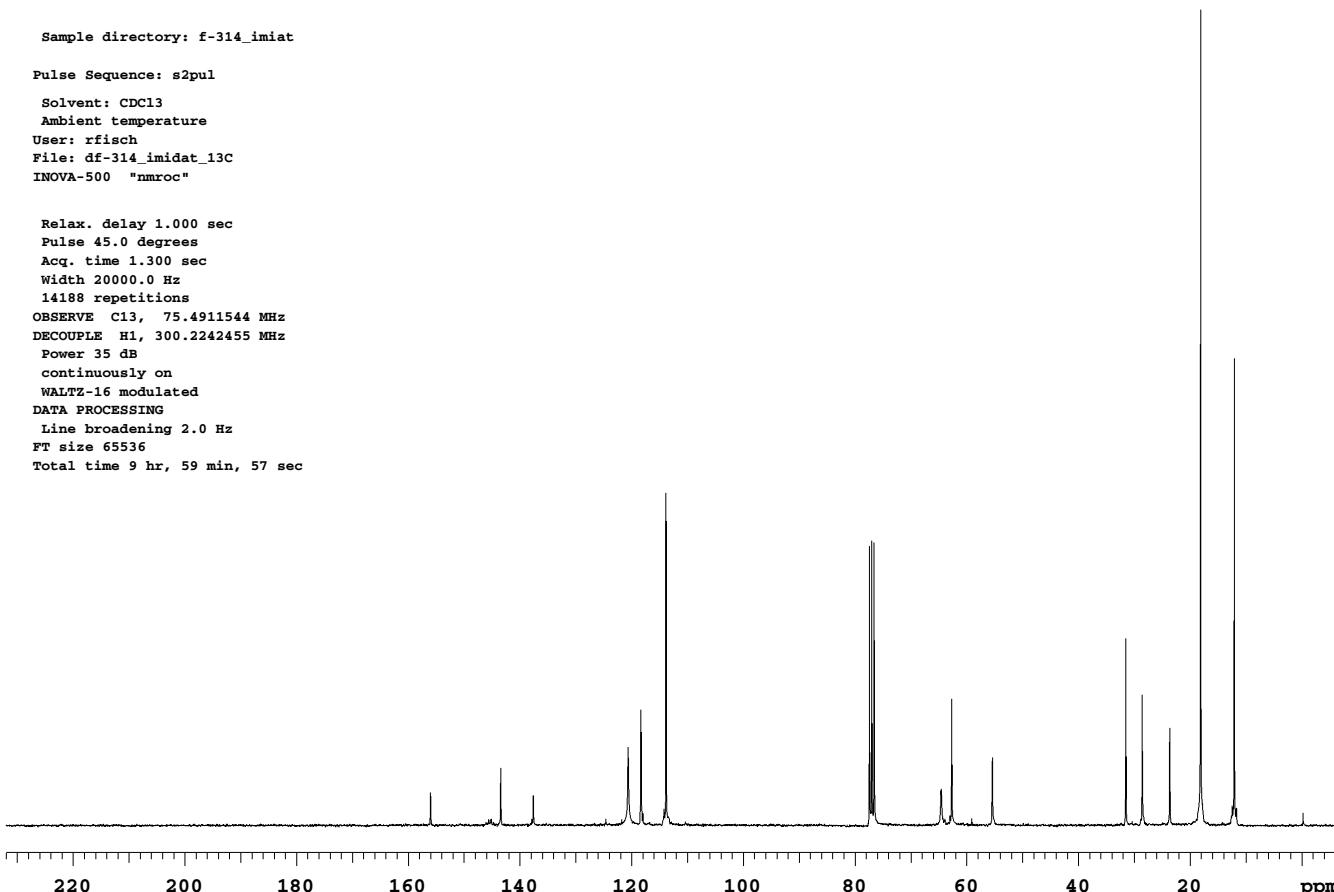
14188 repetitions

OBSERVE C13, 75.4911544 MHz

DECOUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 9 hr, 59 min, 57 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-314_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-314_imidat_160407_19F

INOVA-500 "nmrroc"

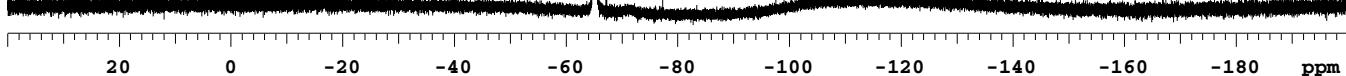
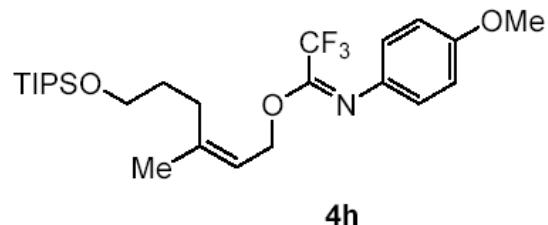
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions



OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

STANDARD 1H OBSERVE

Sample directory: X363PPF24

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

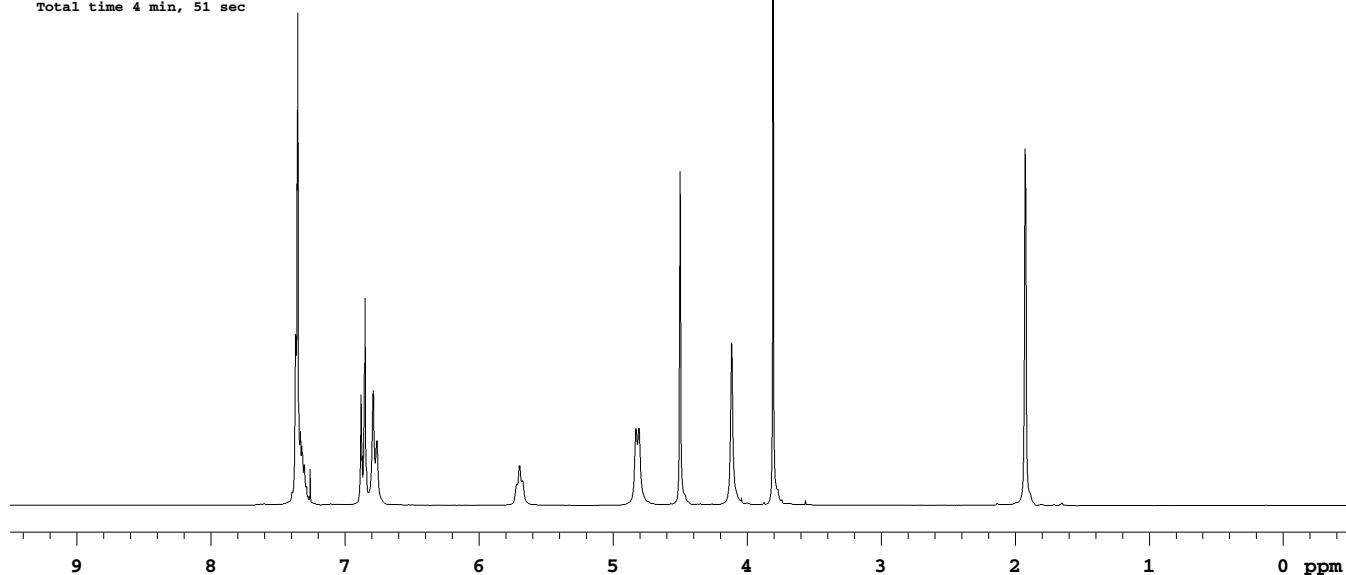
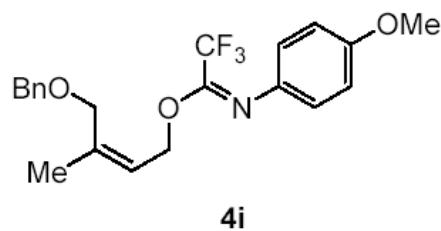
File: X363PPF24

INOVA-500 "nmroc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



88 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 51 sec

13C OBSERVE

Sample directory: X363PPF24-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X363PPF24-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

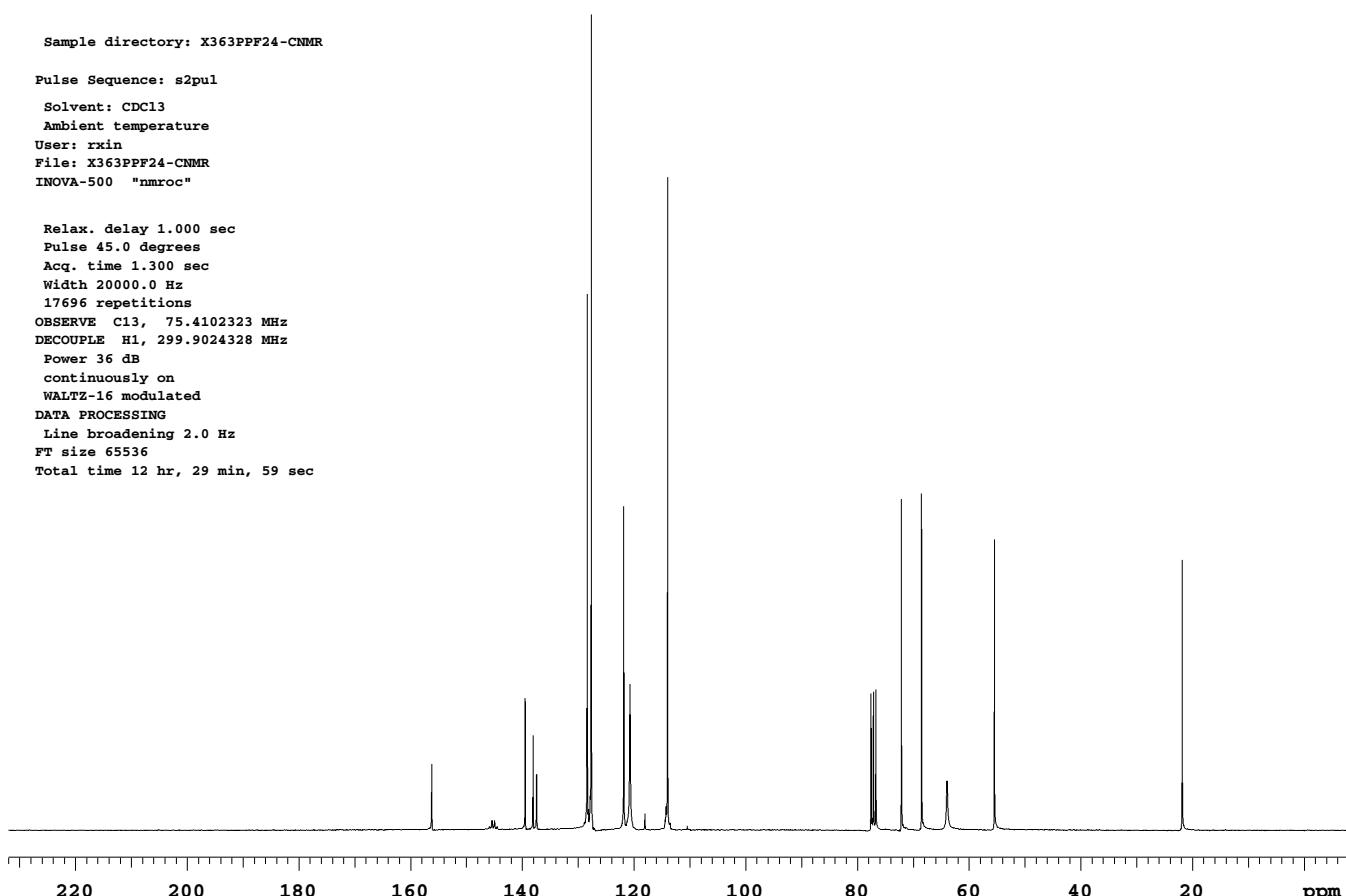
17696 repetitions

OBSERVE C13, 75.4102323 MHz

DECOUPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 12 hr, 29 min, 59 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: X363PPF24

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X363PPF24-FNMR

INOVA-500 "nmroc"

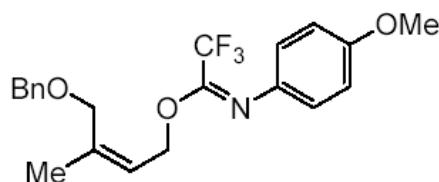
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

19 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 39 sec

4i

19F OBSERVE

STANDARD PARAMETERS

Sample directory: df-340_imidat

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-340_imidat_19F

INOVA-500 "nmroc"

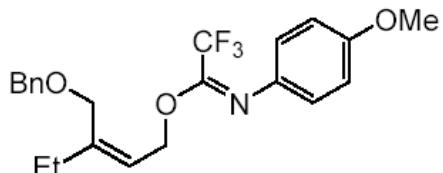
Relax. delay 4.000 sec

Pulse 45.0 degrees

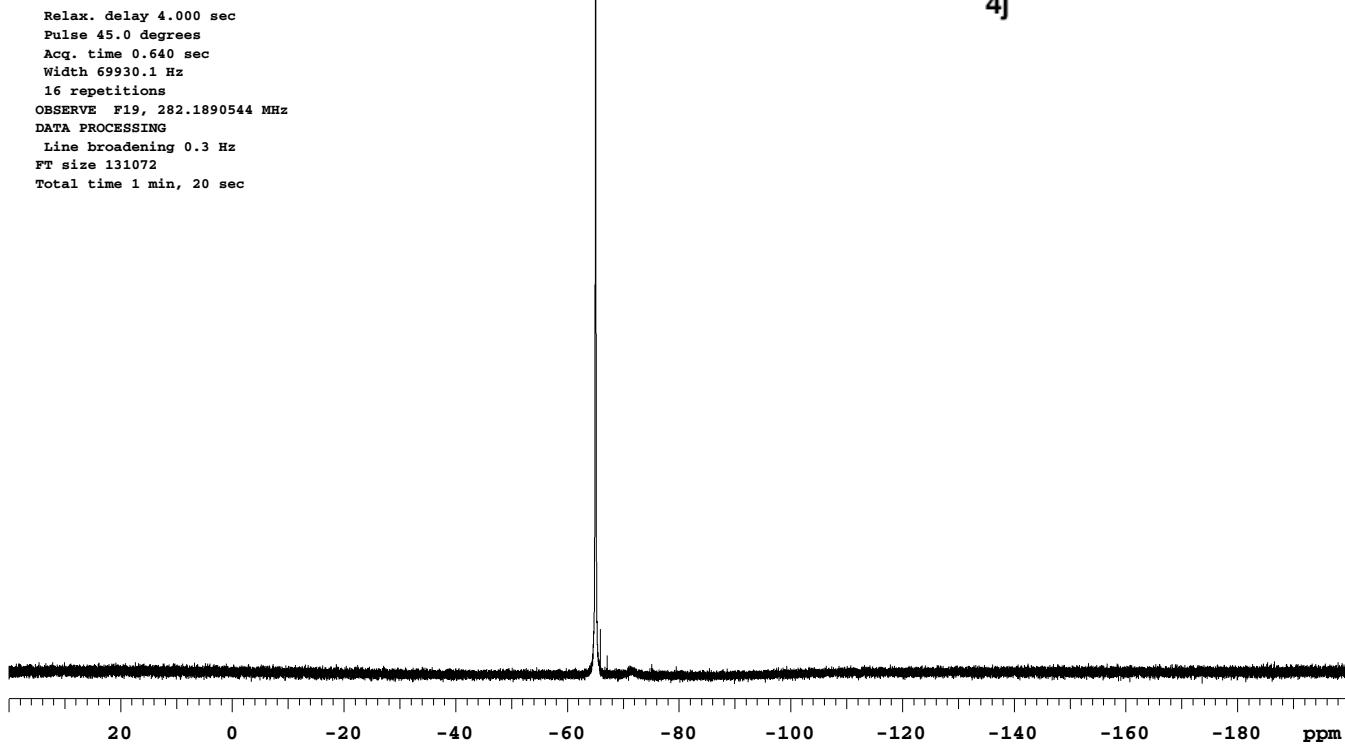
Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.1890544 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

4j

STANDARD 1H OBSERVE

Sample directory: df-339_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-339_imidat_130407_1H

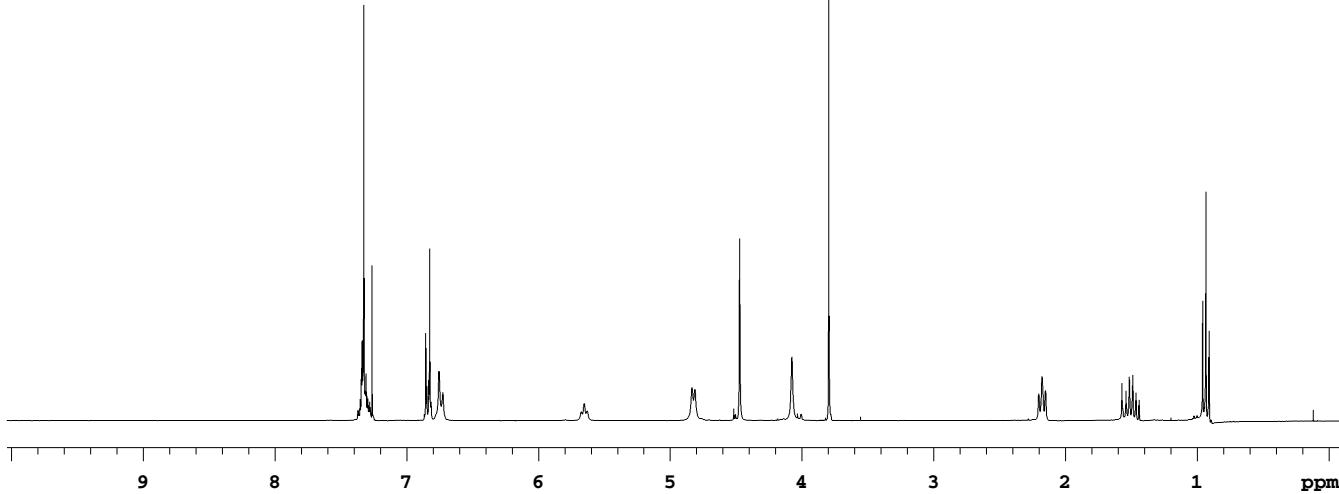
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz


16 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 8 sec

13C OBSERVE

Sample directory: df-339_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-339_imidat_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

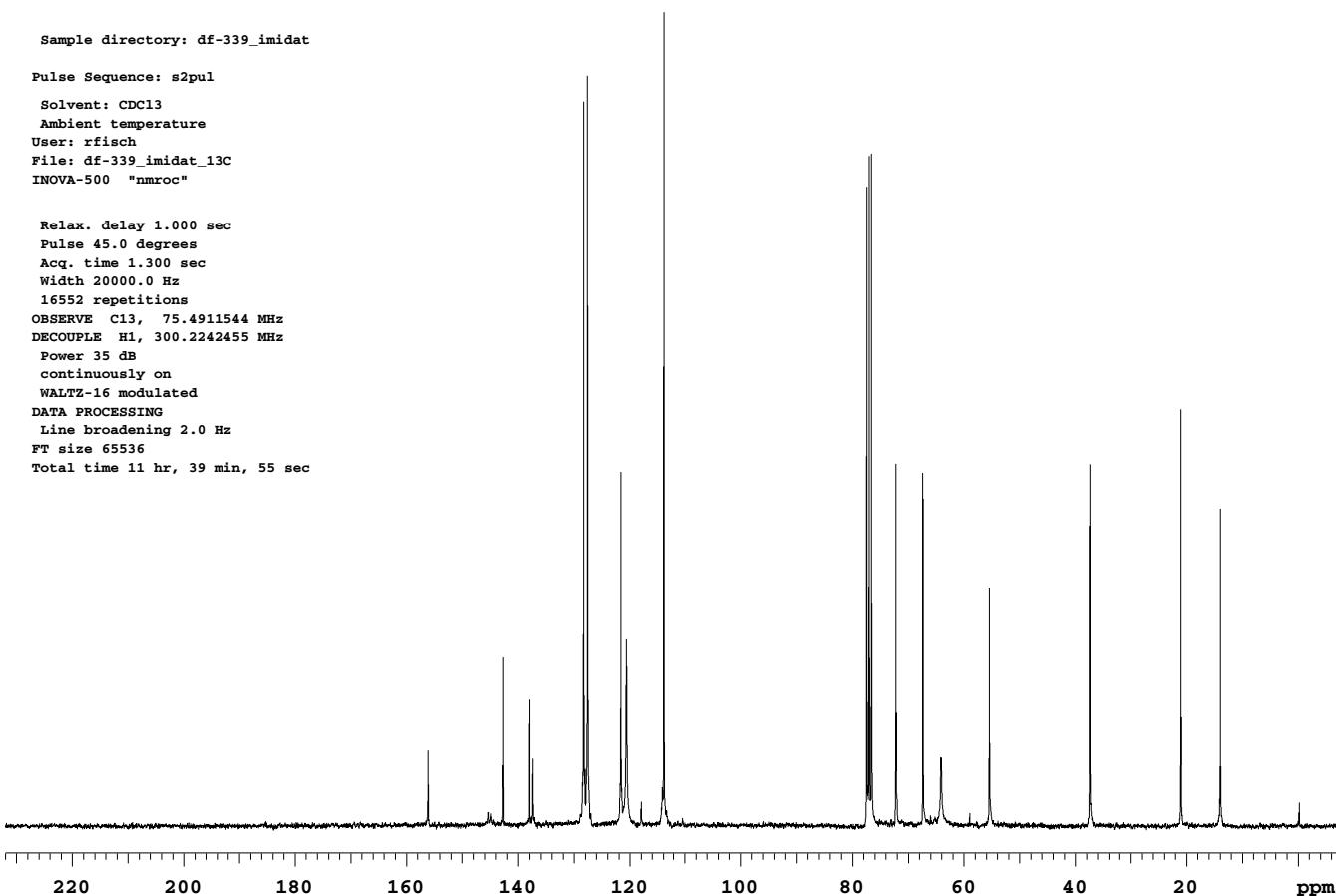
16552 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 11 hr, 39 min, 55 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-339_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-339_imidat_130407_19F

INOVA-500 "nmproc"

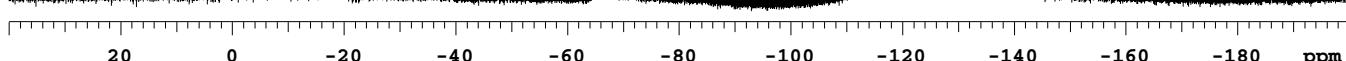
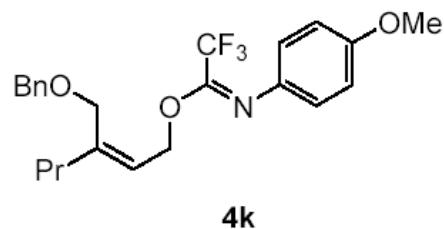
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions



OBSERVE F19, 282.0683162 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

STANDARD 1H OBSERVE

Sample directory: df-337_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

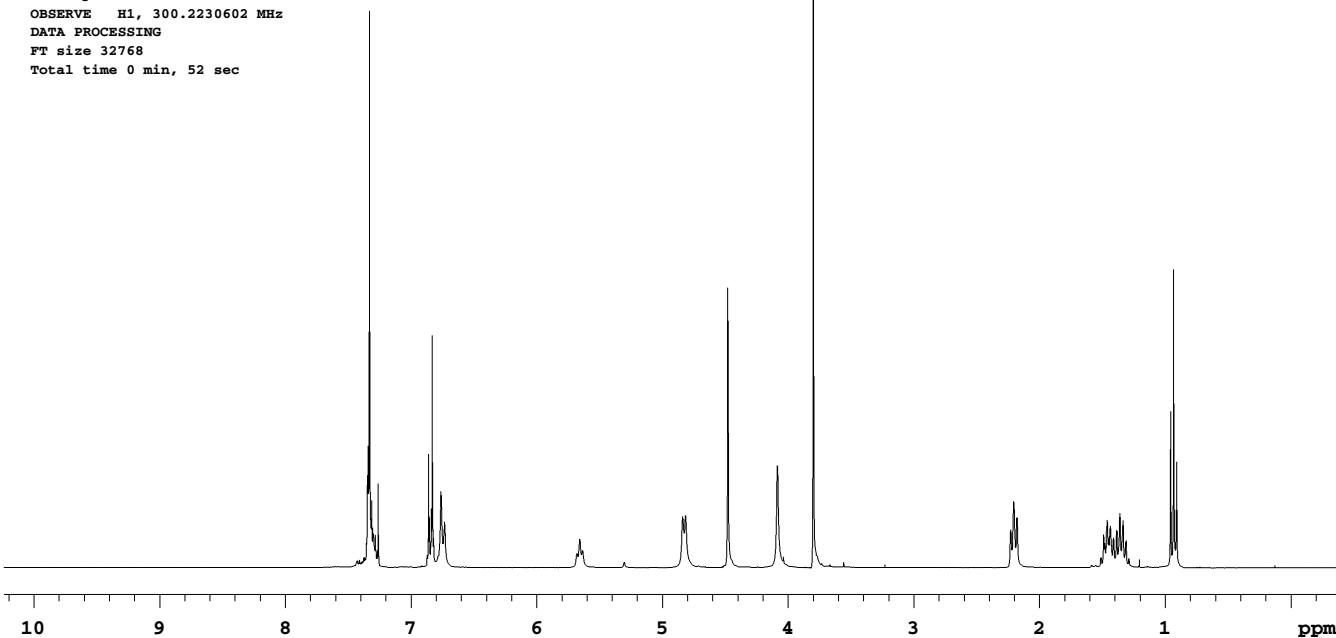
File: df-337_imidat_1H

INOVA-500 "nmroc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

4l

13C OBSERVE

Sample directory: df-337_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-337_jmidnt_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

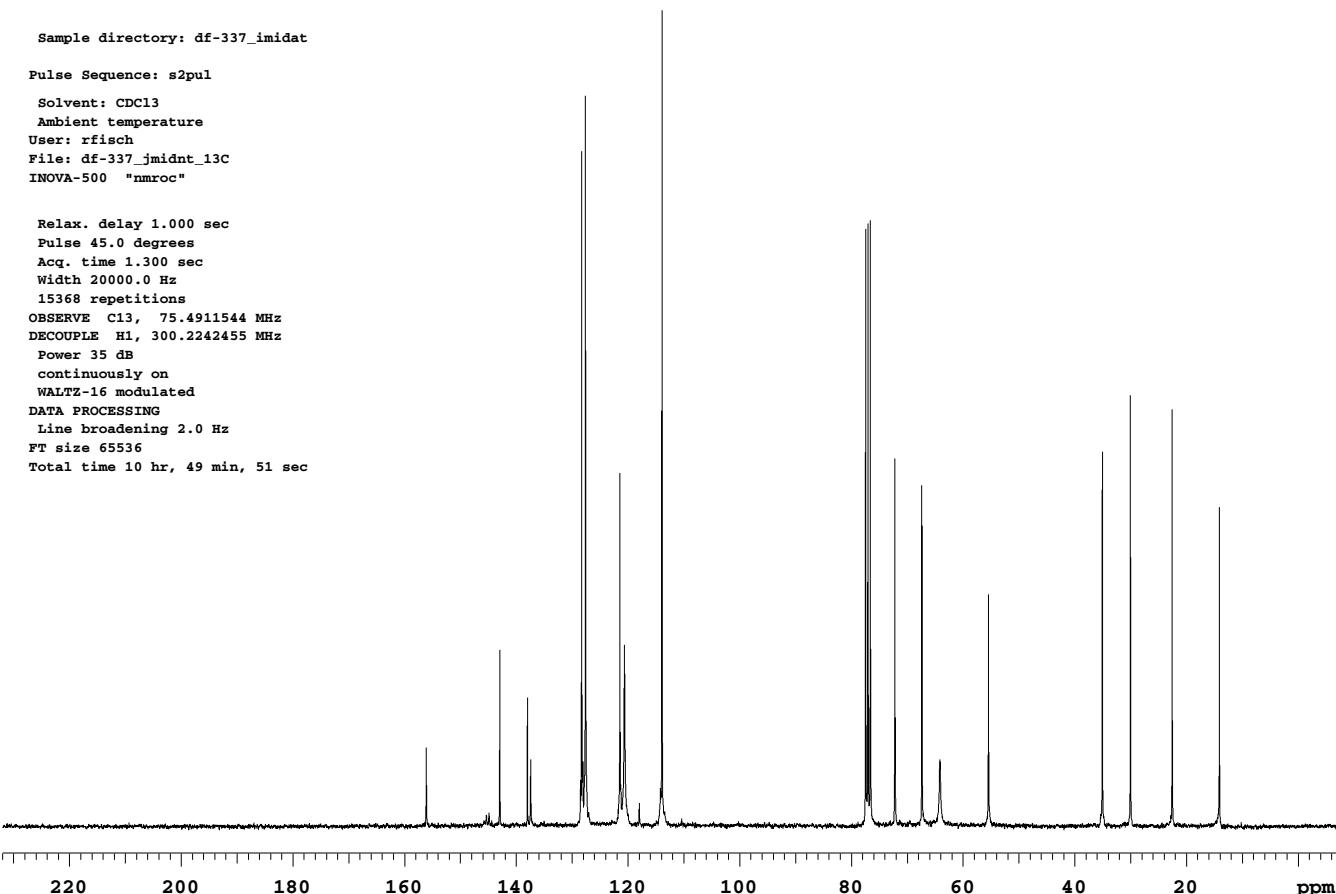
15368 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 10 hr, 49 min, 51 sec

19F OBSERVE

STANDARD PARAMETERS

Sample directory: df-337_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-337_imidat_130407_19F

INOVA-500 "nmrroc"

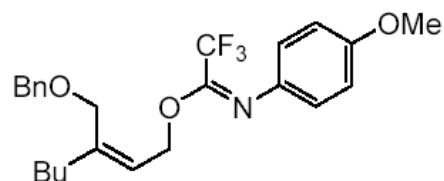
Relax. delay 4.000 sec

Pulse 45.0 degrees

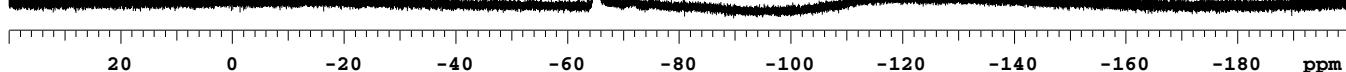
Acc. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.0683162 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

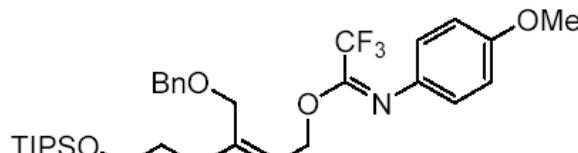
Total time 1 min, 20 sec

4l

STANDARD 1H OBSERVE

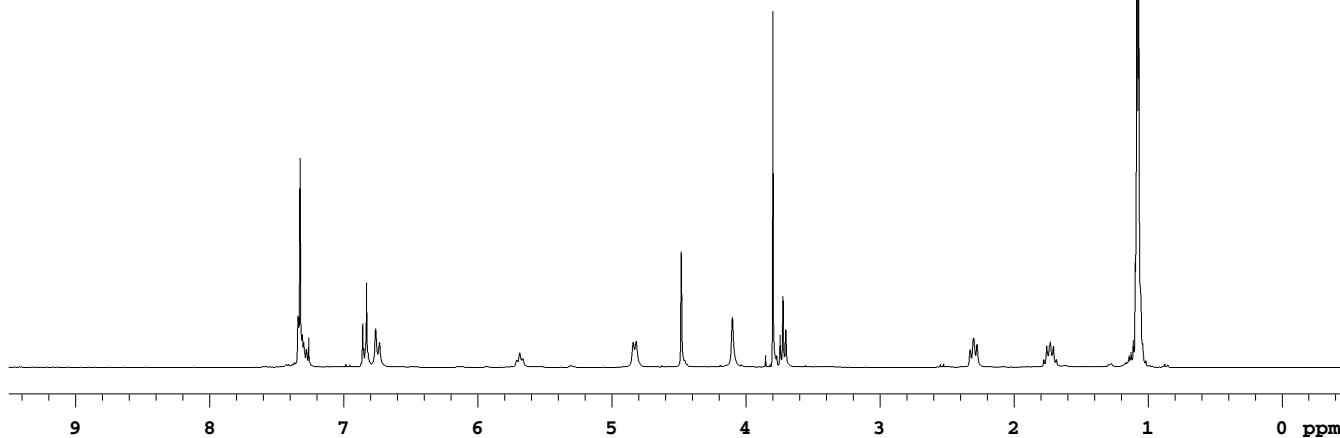
Sample directory: df-341_imidat

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch


File: df-341_imidat_1H

INOVA-500 "nmroc"

4m

Pulse 29.5 degrees
Acq. time 3.138 sec
Width 5099.4 Hz
8 repetitions
OBSERVE H1, 300.0836333 MHz
DATA PROCESSING
FT size 32768
Total time 0 min, 27 sec

13C OBSERVE

Sample directory: df-341_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-341-imidat_73c

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

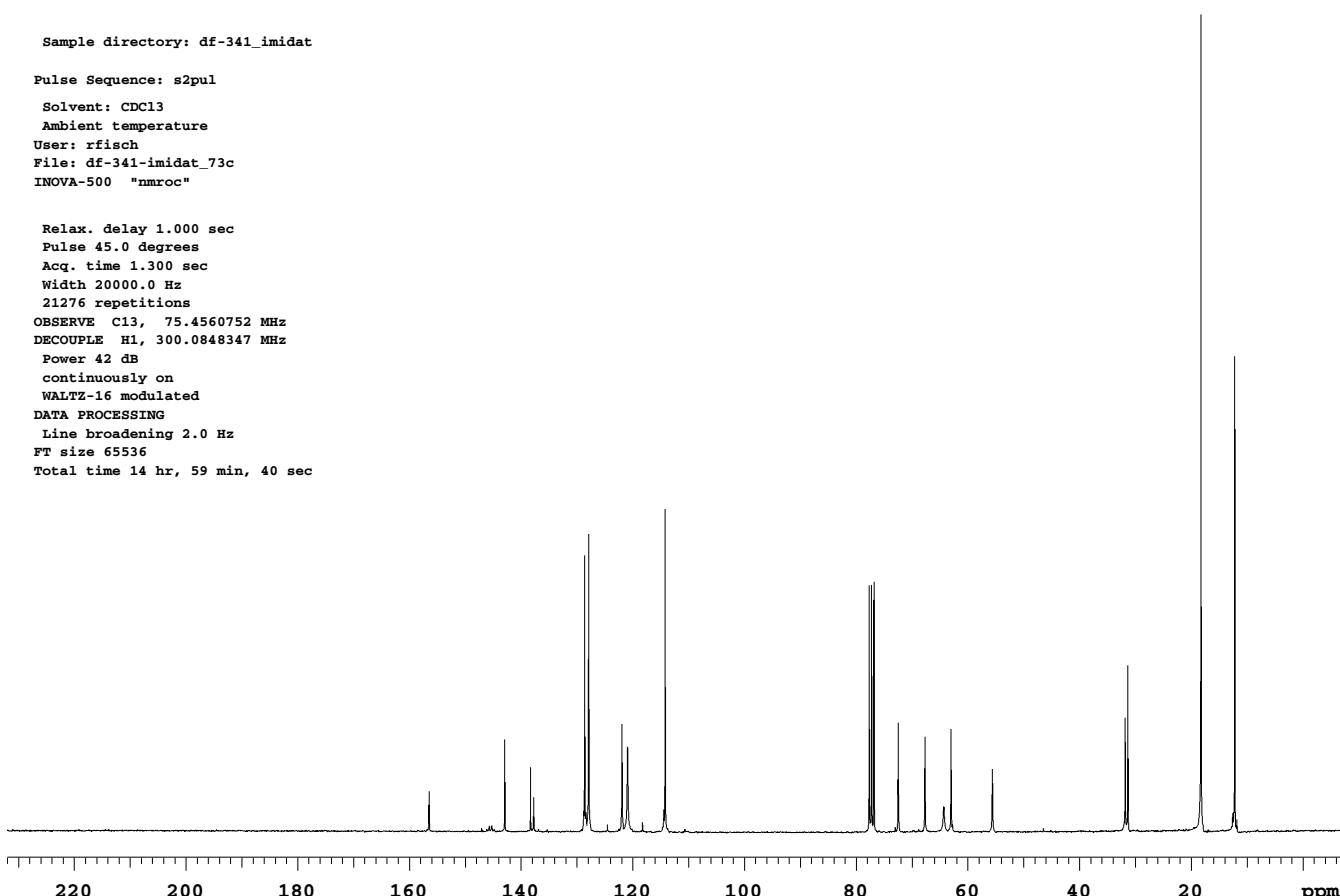
21276 repetitions

OBSERVE C13, 75.4560752 MHz

DECOUPLE H1, 300.0848347 MHz

Power 42 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 14 hr, 59 min, 40 sec

19F OBSERVE

STANDARD PARAMETERS

Sample directory: df-341_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-341_imidat_160407_19F

INOVA-500 "nmroc"

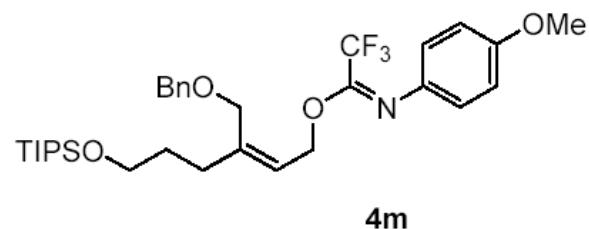
Relax. delay 4.000 sec

Pulse 45.0 degrees

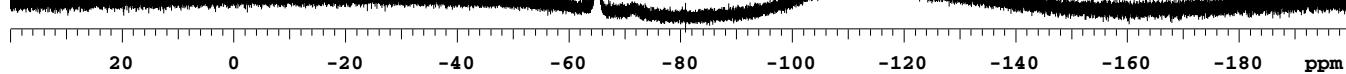
Acc. time 0.640 sec

Width 69930.1 Hz

48 repetitions

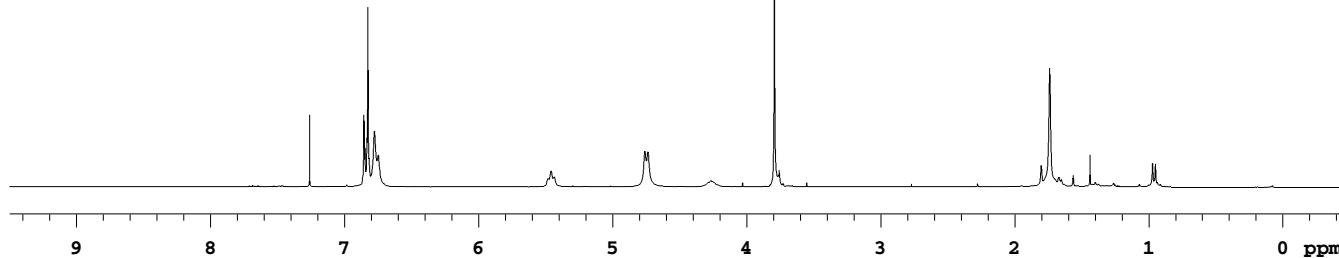
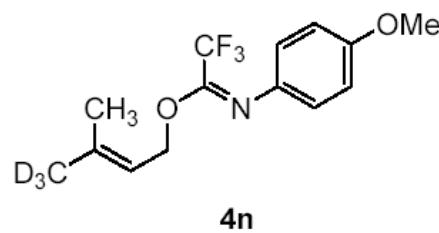

OBSERVE F19, 282.4918708 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 4 min, 0 sec



4m

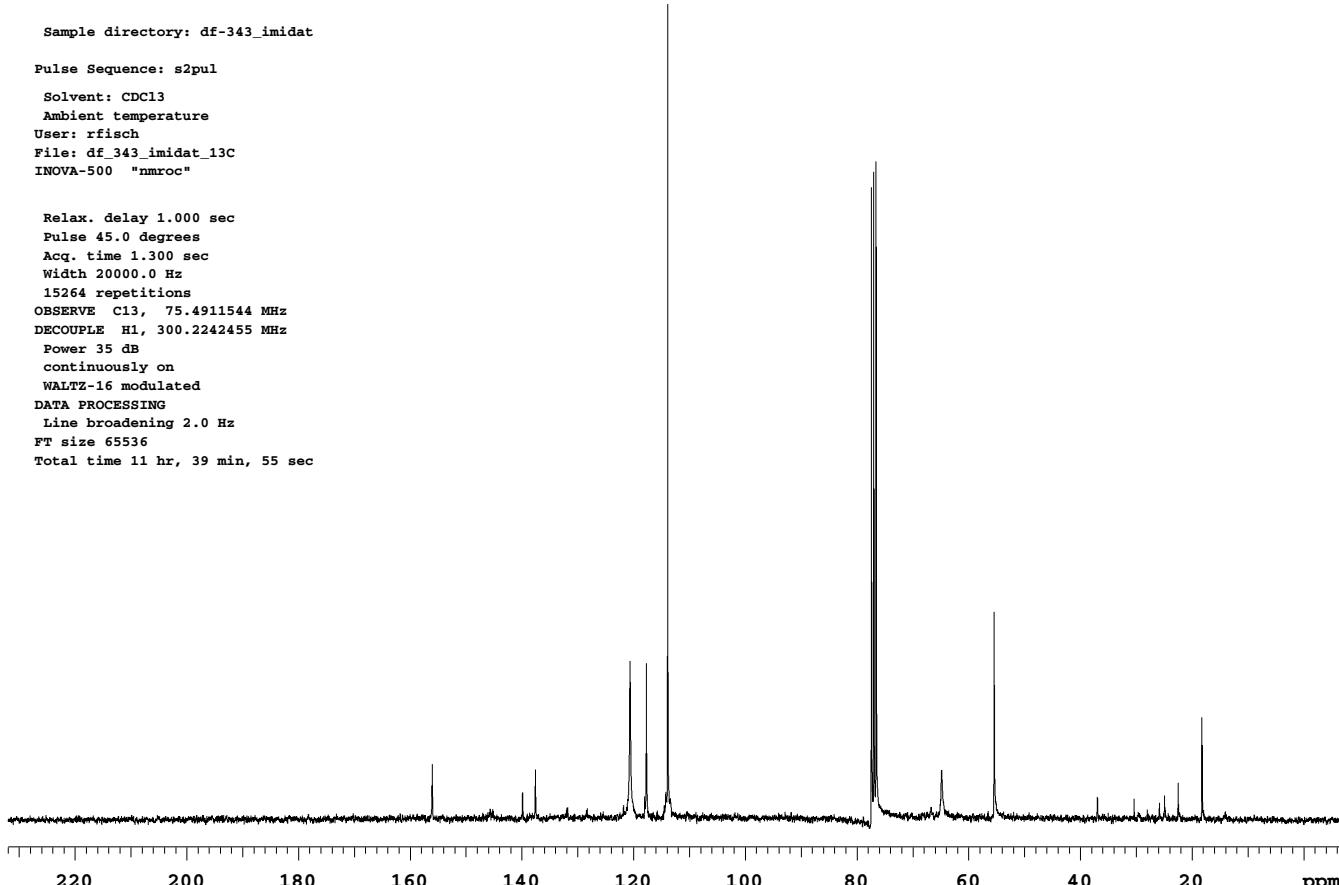
STANDARD 1H OBSERVE

```
Sample directory: df-343_imidat
Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature
User: rfisch
File: df-343_imidat_1H
INOVA-500 "nmroc"

Pulse 30.0 degrees
Acc. time 3.138 sec
Width 5099.4 Hz
16 repetitions
OBSERVE H1, 300.2230602 MHz
DATA PROCESSING
FT size 32768
Total time 0 min, 52 sec
```


13C OBSERVE

```


Sample directory: df-343_imidat

Pulse Sequence: s2pul

Solvent: CDCl3
Ambient temperature
User: rfisch
File: df_343_imidat_13C
INOVA-500 "nmroc"

Relax. delay 1.000 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 20000.0 Hz
15264 repetitions
OBSERVE C13, 75.4911544 MHz
DECOUPLE H1, 300.2242455 MHz
Power 35 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time 11 hr, 39 min, 55 sec

```


19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-343_imidat

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-343_imidat_19F

INOVA-500 "nmroc"

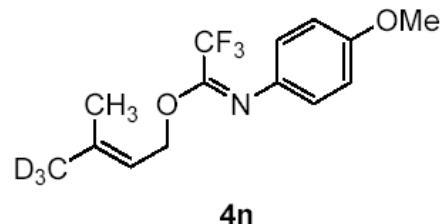
Relax. delay 4.000 sec

Pulse 45.0 degrees

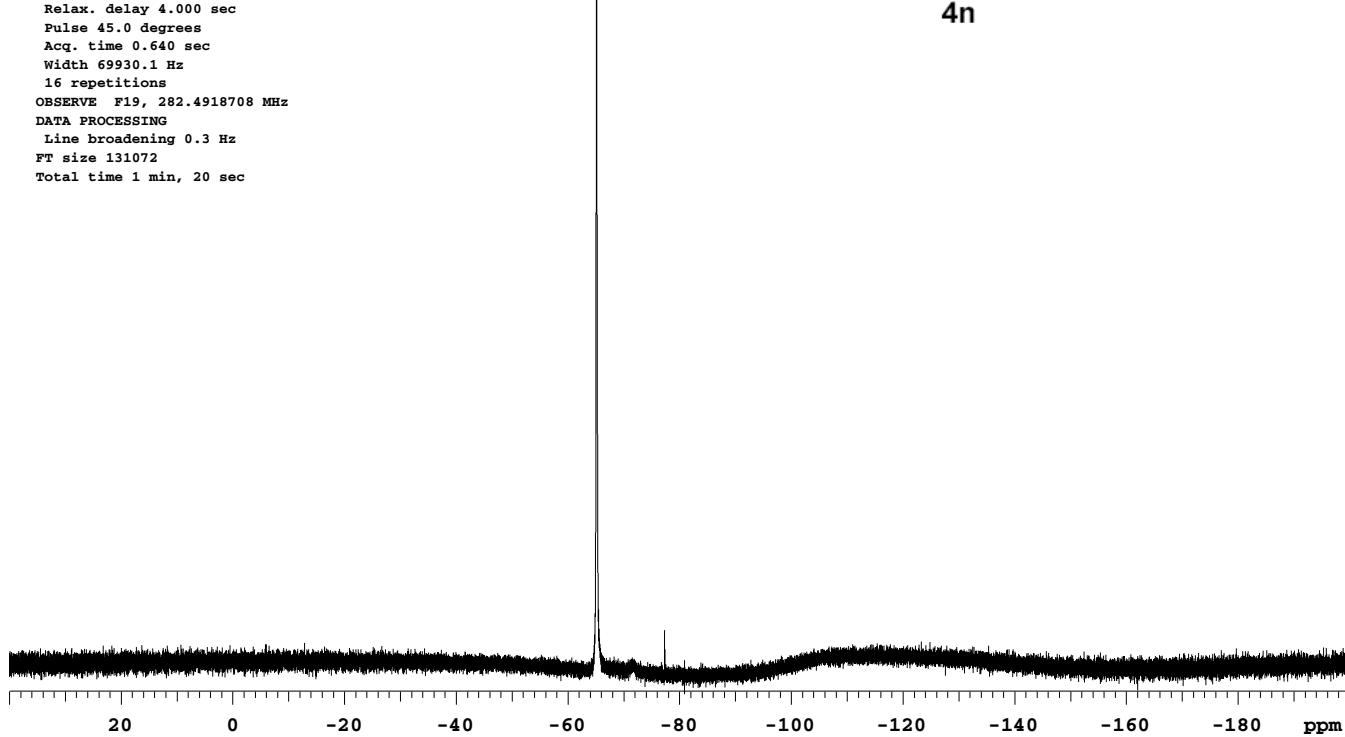
Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

4n

STANDARD 1H OBSERVE

Sample directory: X403-2-PP-2

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

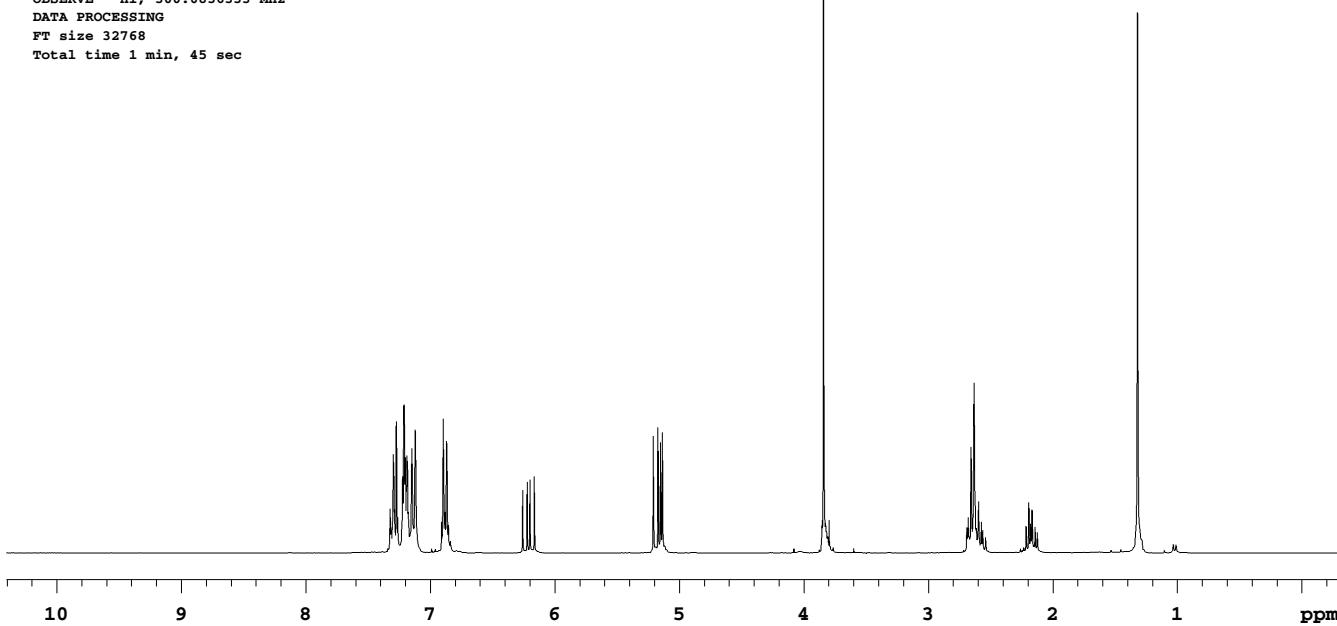
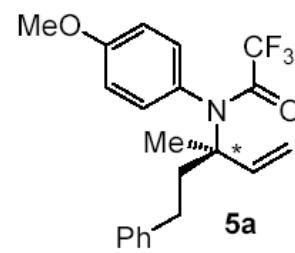
File: X403-2-PP-2_110507

INOVA-500 "nmroc"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



32 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 45 sec

13C OBSERVE

Sample directory: df-317_rearr

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df_317_REAR_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

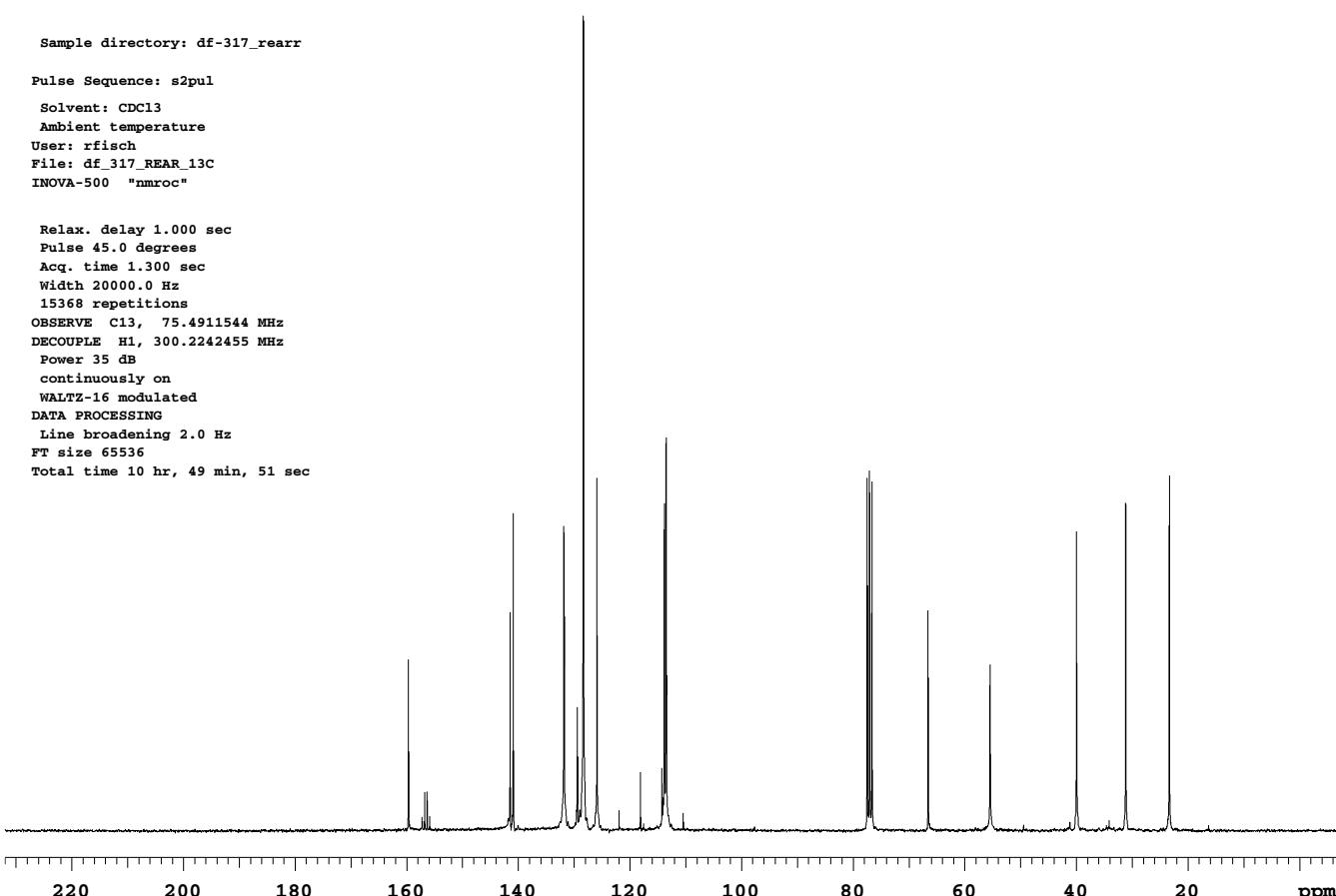
15368 repetitions

OBSERVE C13, 75.4911544 MHz

DECOUPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 10 hr, 49 min, 51 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-317_rearr

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-317_rearr_19F

INOVA-500 "nmroc"

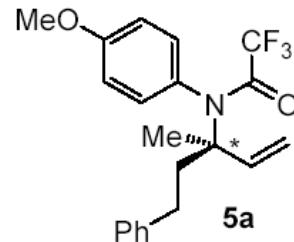
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

STANDARD 1H OBSERVE

Sample directory: df-338_rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

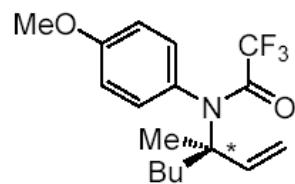
File: df-338_Rear_1H

INOVA-500 "nmproc"

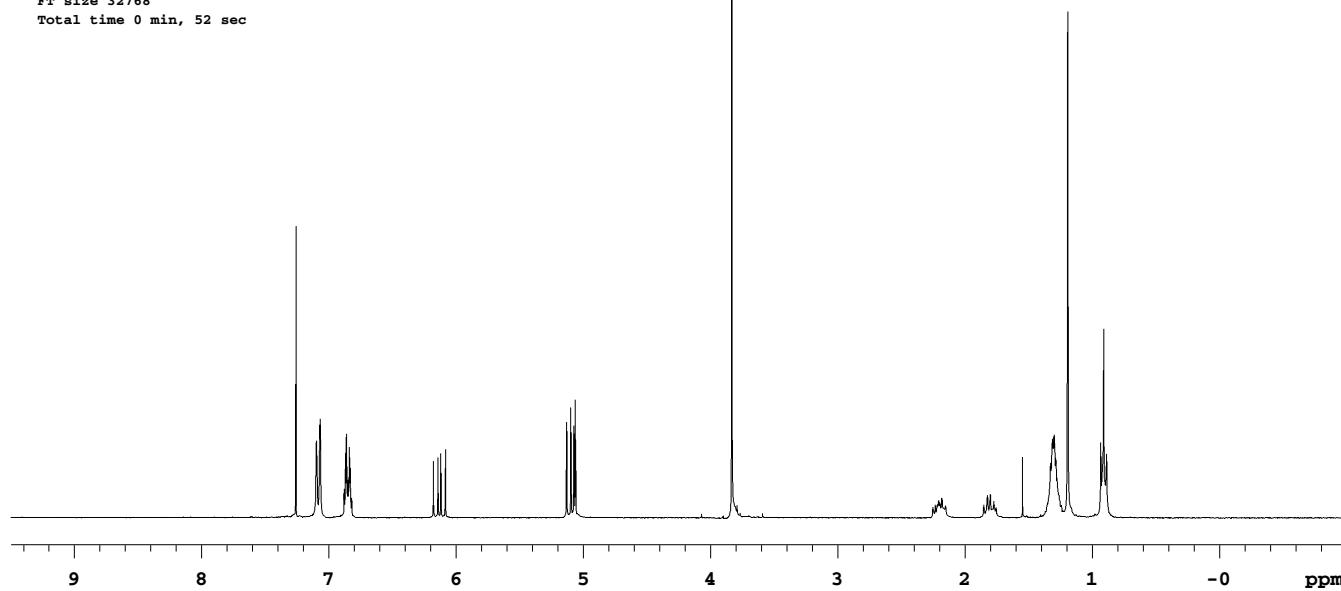
Pulse 30.0 degrees

Acc. time 3.138 sec

Width 5099.4 Hz


16 repetitions

OBSERVE H1, 300.2230602 MHz


DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

5b

13C OBSERVE

Sample directory: df-338_Rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-338_REAR_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acc. time 1.300 sec

Width 20000.0 Hz

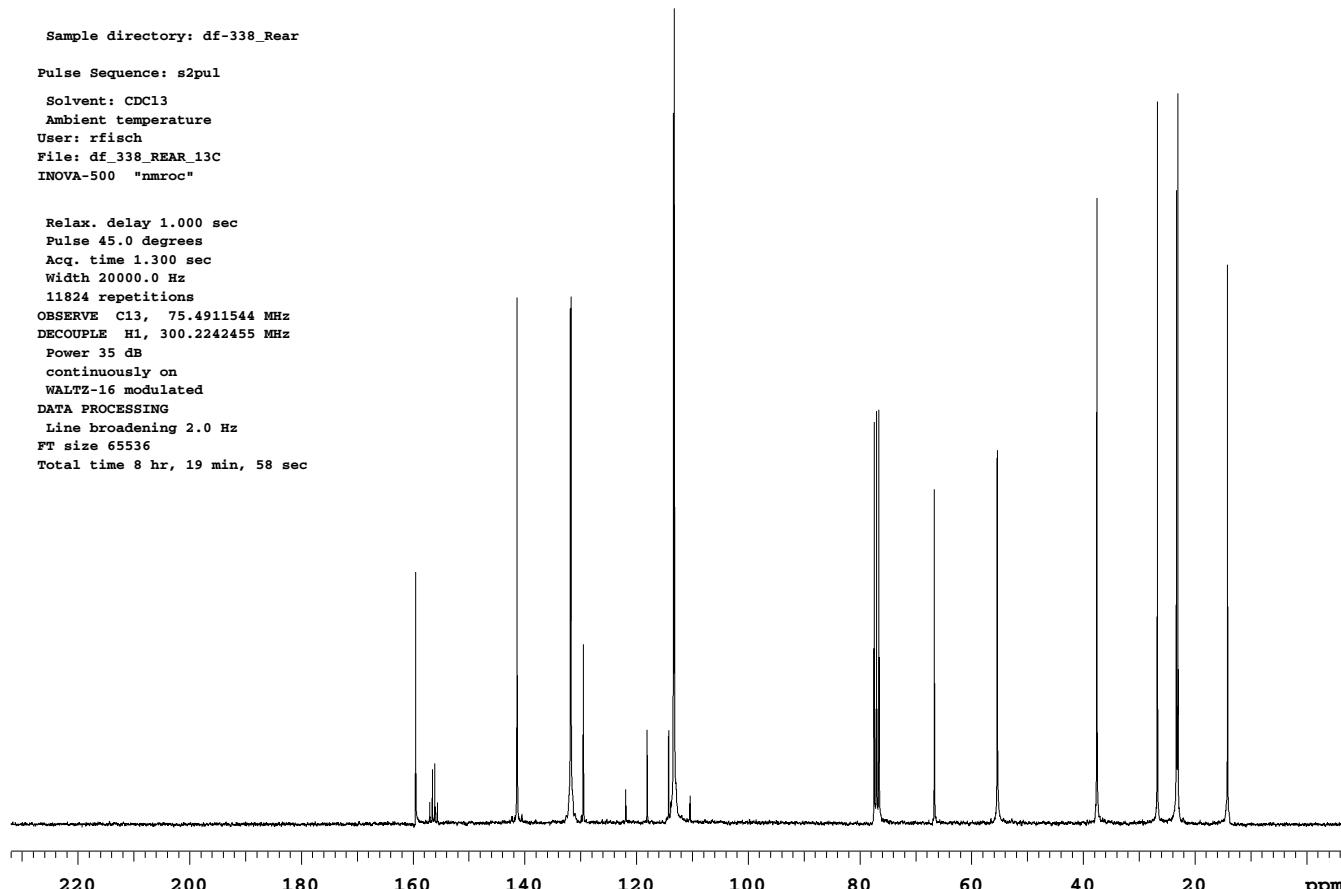
11824 repetitions

OBSERVE C13, 75.4911544 MHz

DECOPPLE H1, 300.2242455 MHz

Power 35 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 8 hr, 19 min, 58 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-338_rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-338_Rear_19F

INOVA-500 "nmrroc"

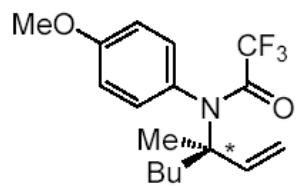
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

5b

STANDARD 1H OBSERVE

Sample directory: df-252b

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

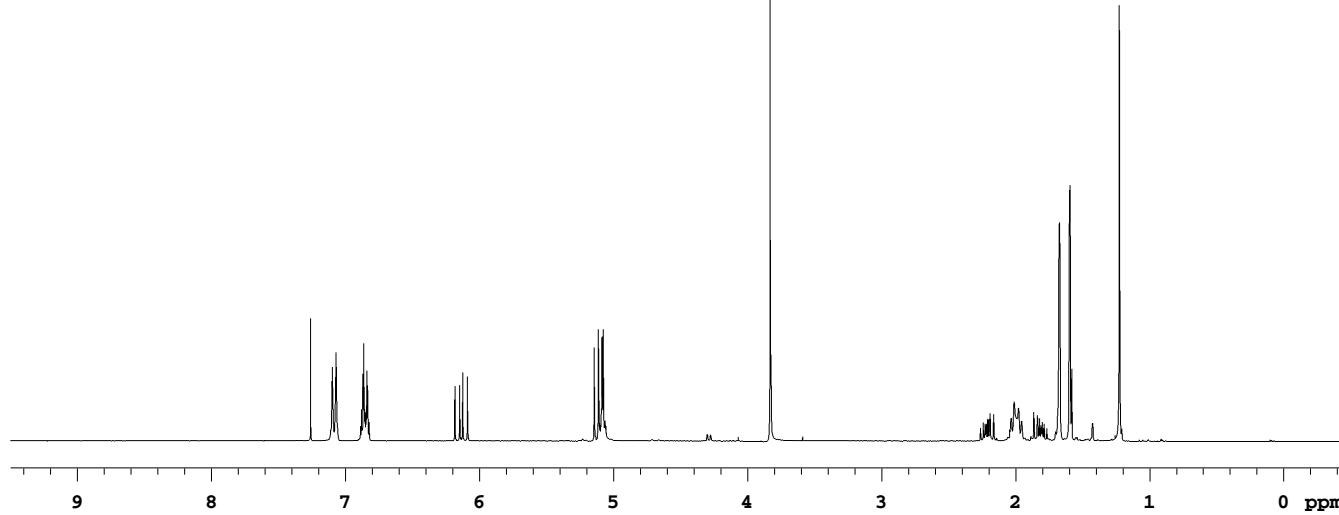
File: df-252b

INOVA-500 "nmproc"

Pulse 30.0 degrees

Acc. time 3.138 sec

Width 5099.4 Hz


16 repetitions

OBSERVE H1, 300.2230602 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-252b

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-252b-13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acc. time 1.300 sec

Width 20000.0 Hz

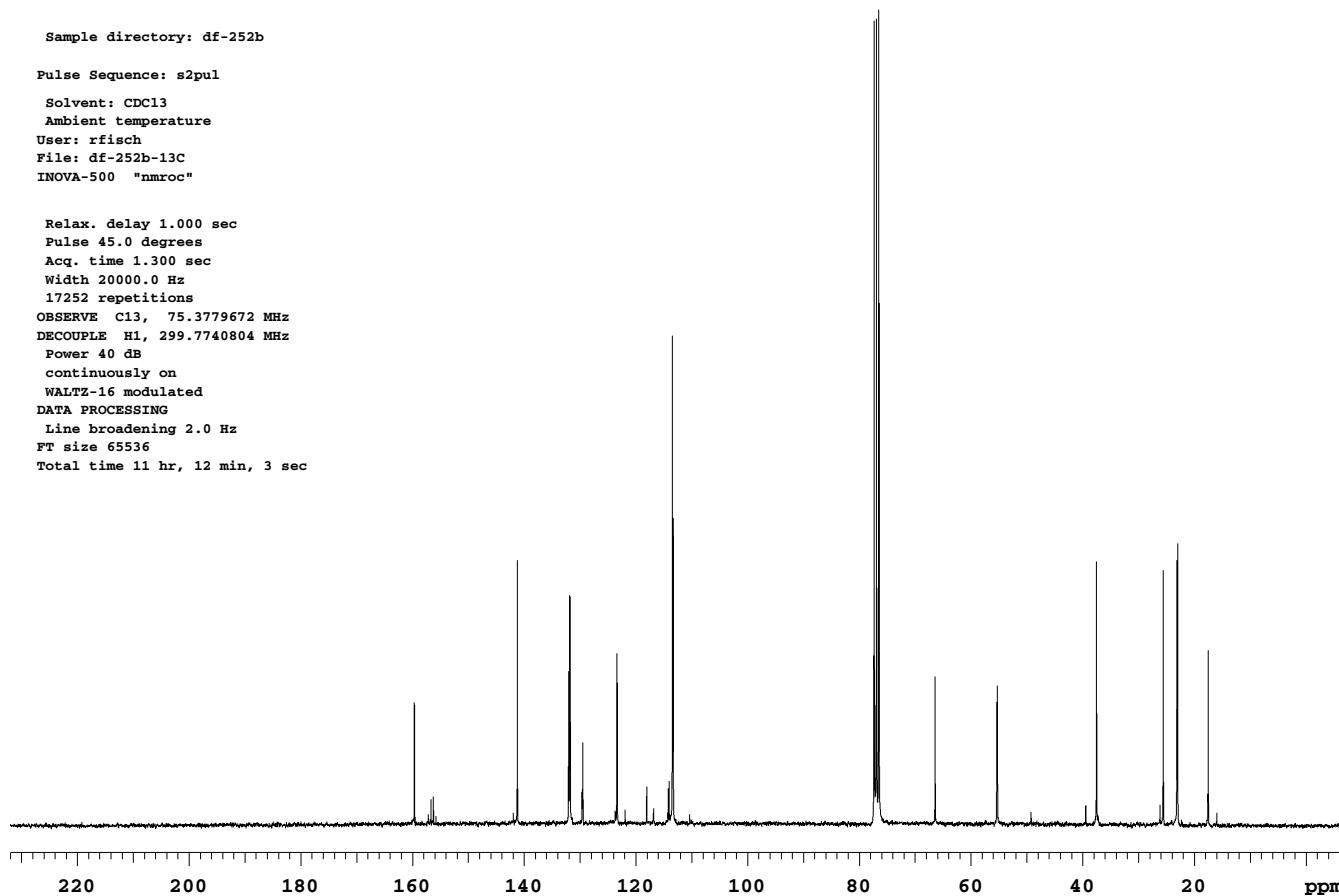
17252 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 11 hr, 12 min, 3 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-252b

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-252b_19F

INOVA-500 "nmroc"

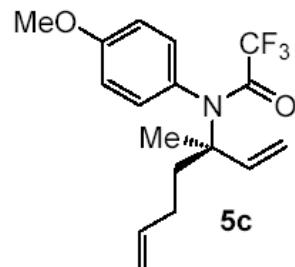
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

32 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 2 min, 40 sec

STANDARD 1H OBSERVE

Sample directory: X360PP

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

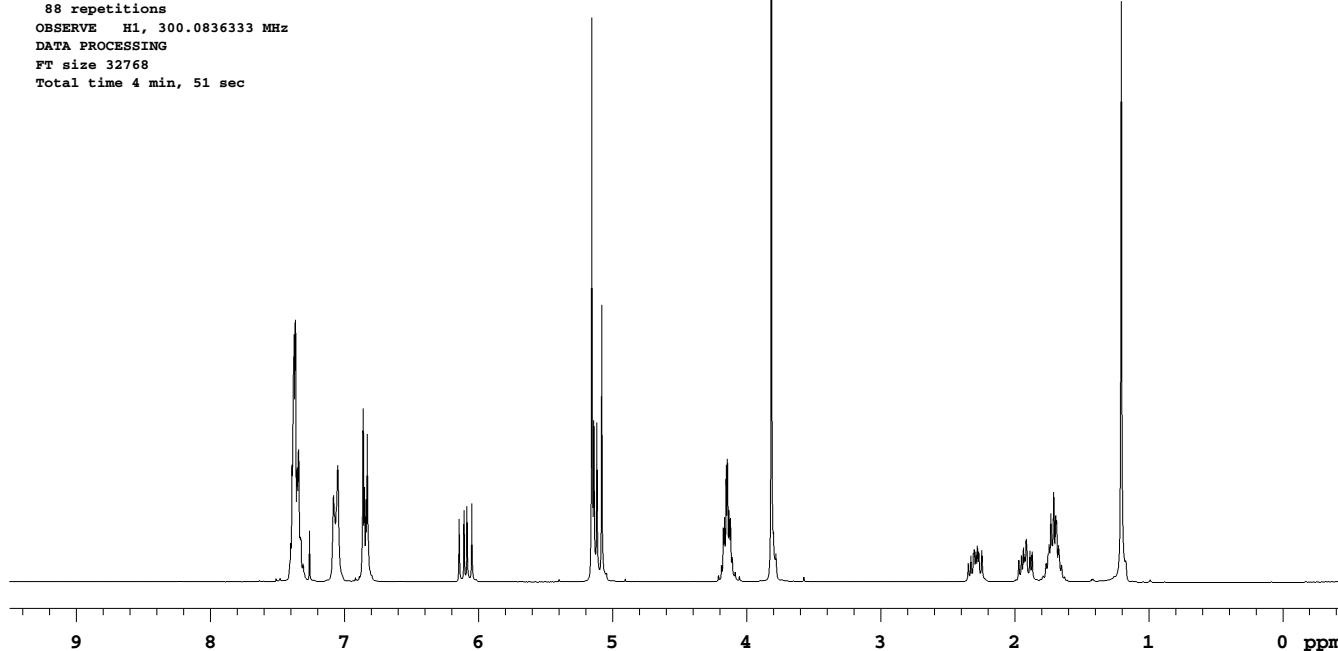
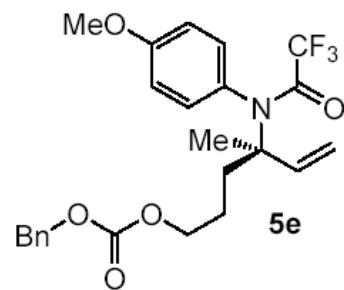
File: X360PP

INOVA-500 "nmroc"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



88 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 51 sec

13C OBSERVE

Sample directory: X360PP-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X360PP-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

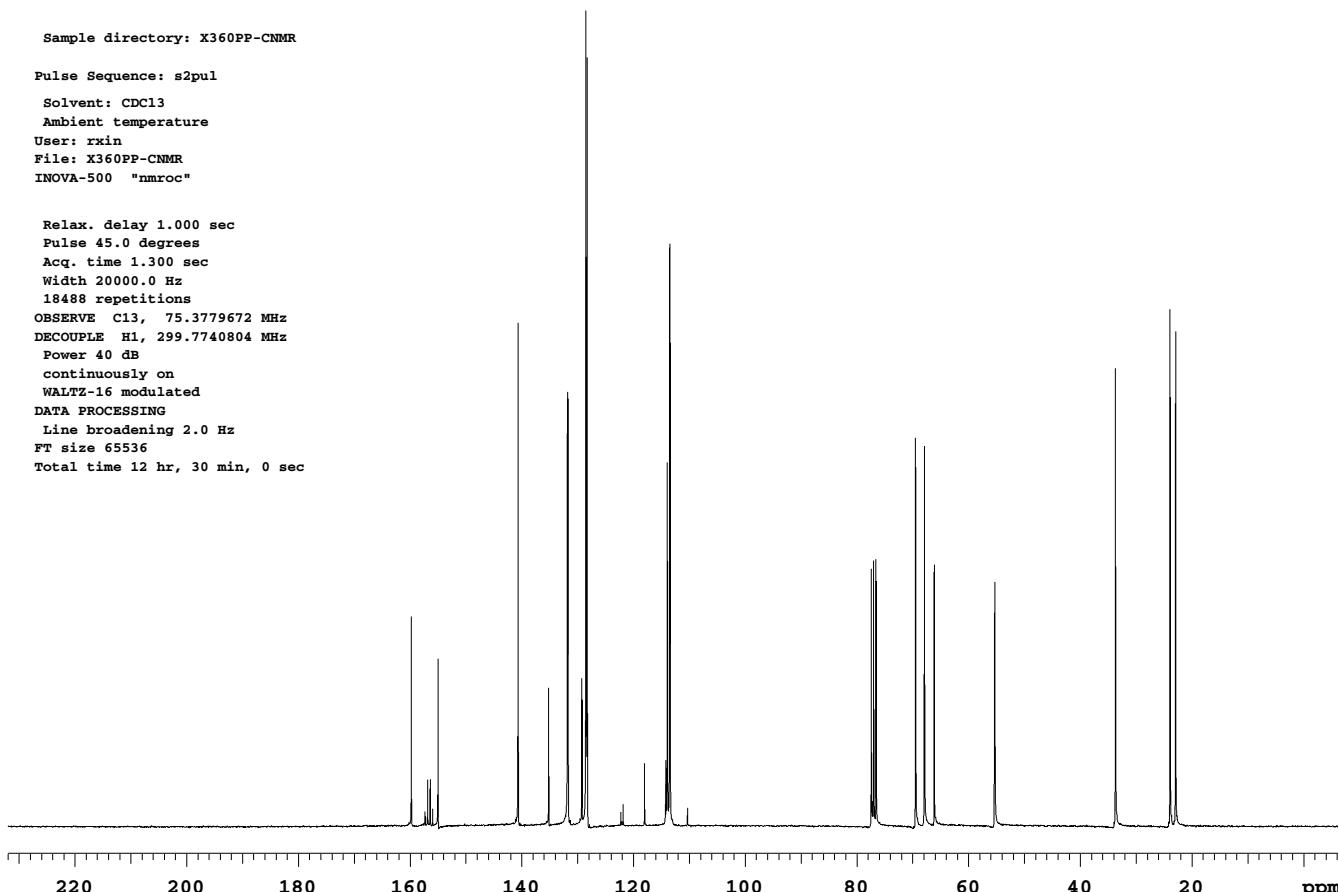
18488 repetitions

OBSERVE C13, 75.3779672 MHz

DECOPPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 12 hr, 30 min, 0 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: X360PP

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X360PP-FNMR

INOVA-500 "nmroc"

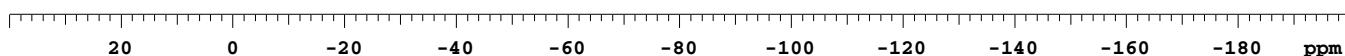
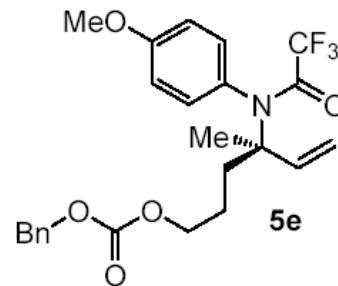
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acc. time 0.640 sec

Width 69930.1 Hz

38 repetitions



OBSERVE F19, 282.3608271 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 3 min, 13 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: X358PP

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rxin

File: X358PP-FNMR

INOVA-500 "nmroc"

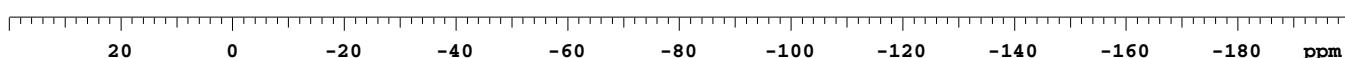
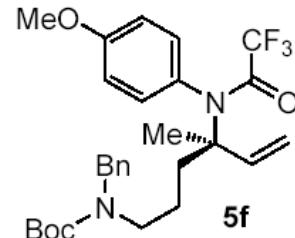
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

32 repetitions



OBSERVE F19, 282.3608271 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 2 min, 40 sec

STANDARD 1H OBSERVE

Sample directory: df-308_umlagerung

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-308_rearr_1H

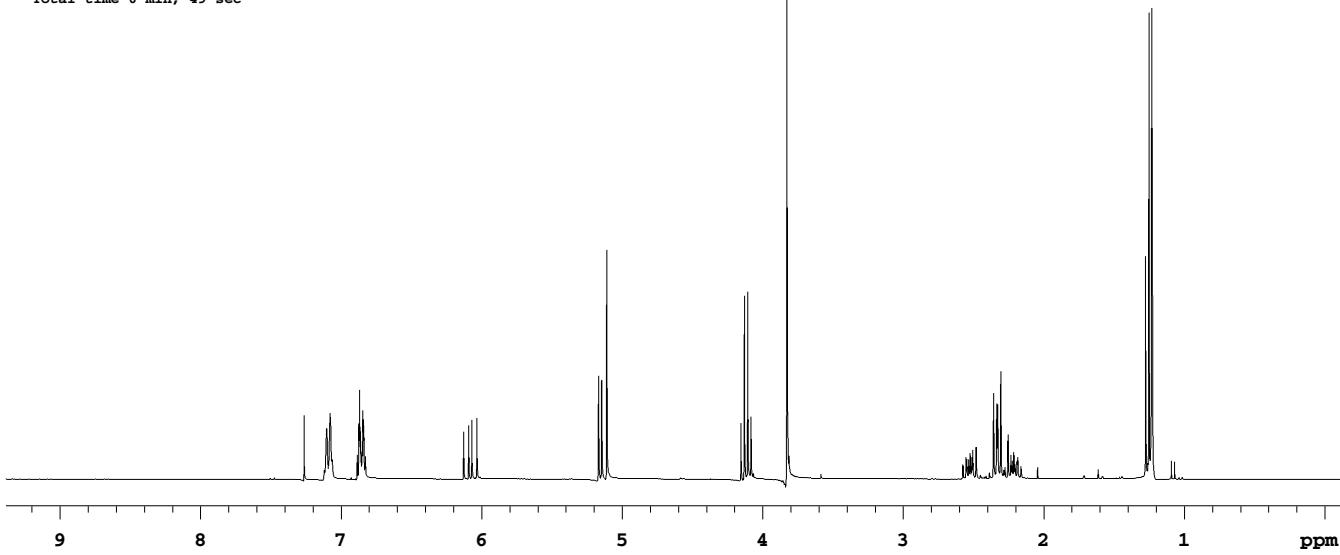
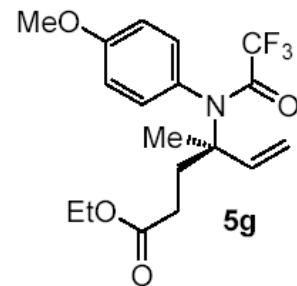
INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 56.2 degrees

Acq. time 1.998 sec

Width 4500.5 Hz



16 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 49 sec

13C OBSERVE

Sample directory: df-308_umlagerung

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-308_rearr_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

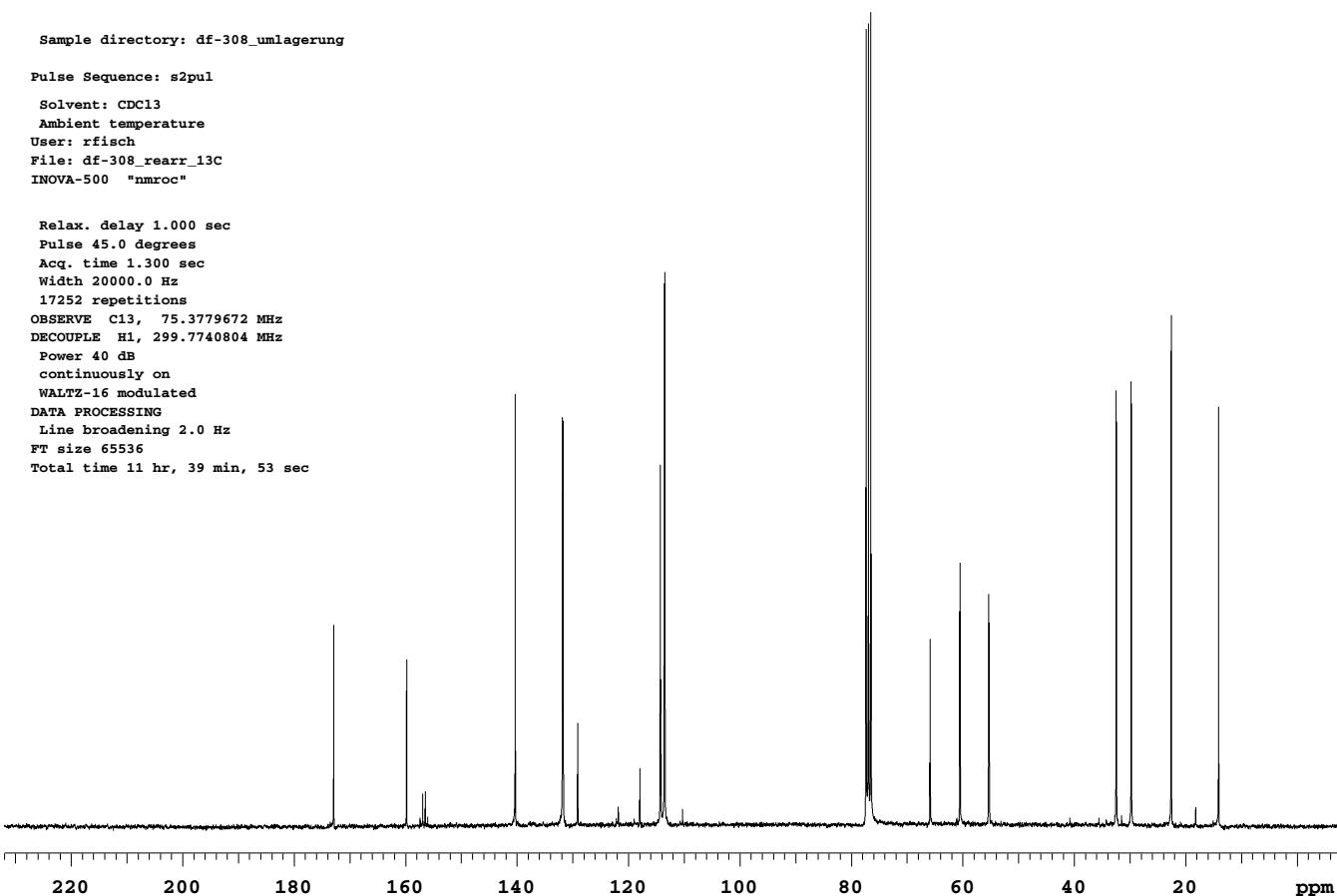
17252 repetitions

OBSERVE C13, 75.3779672 MHz

DECOPUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 11 hr, 39 min, 53 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-308_umlagerung

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-308_rearr_19F

INOVA-500 "nmroc"

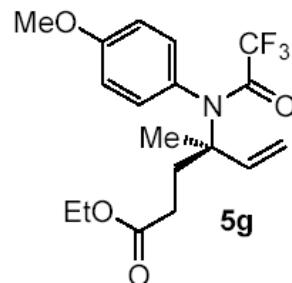
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.0683162 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

STANDARD 1H OBSERVE

Sample directory: df-314_rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

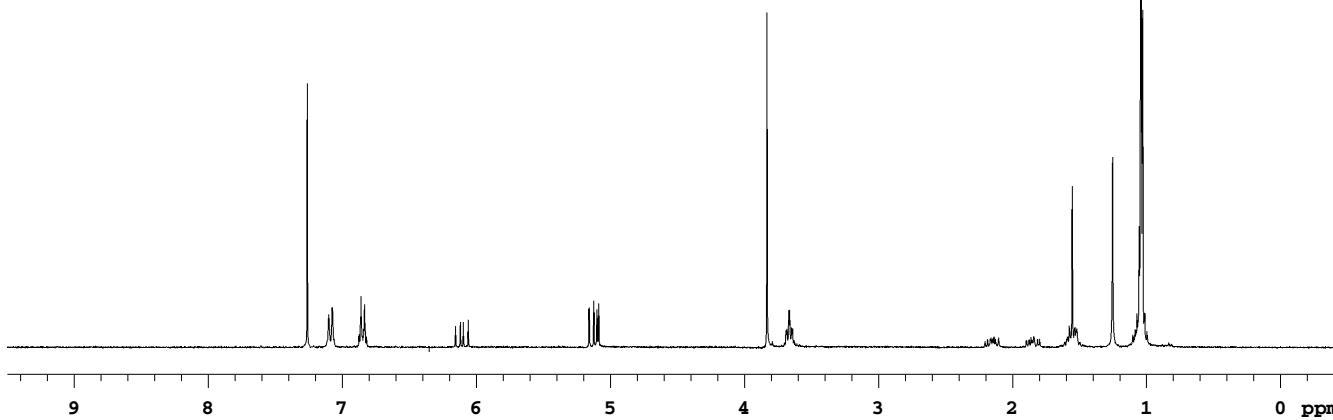
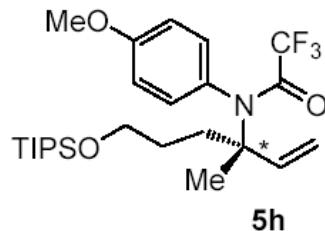
File: df-314_rear_1H

INOVA-500 "nmroc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-300_umlagerung

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-300_REARR_13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

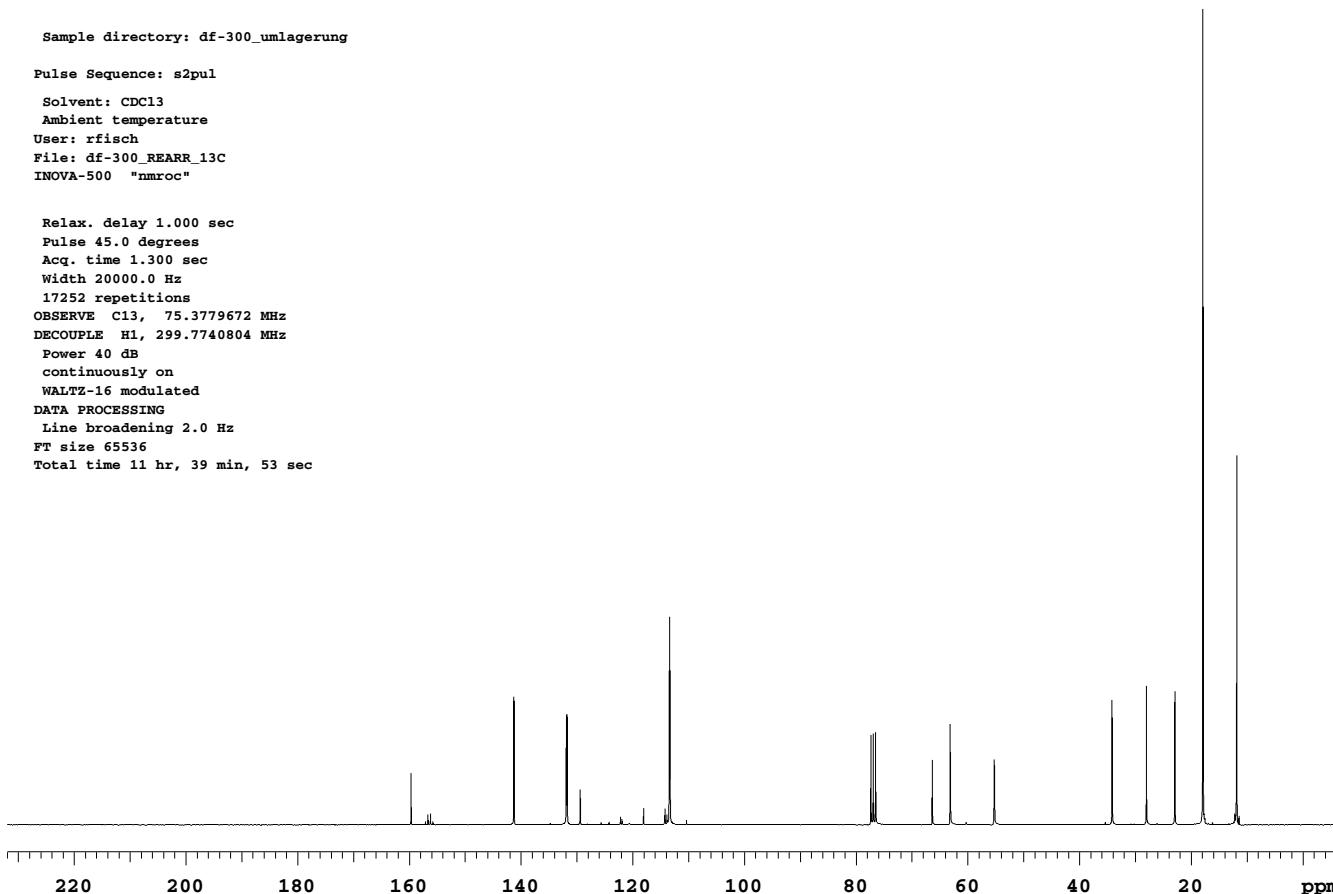
17252 repetitions

OBSERVE C13, 75.3779672 MHz

DECOUPLE H1, 299.7740804 MHz

Power 40 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

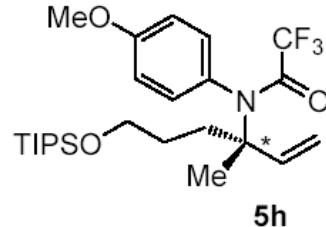
FT size 65536

Total time 11 hr, 39 min, 53 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-314_rear

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-314_rear_19F

INOVA-500 "nmroc"

5h

Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

24 repetitions

OBSERVE F19, 282.1890544 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 2 min, 3 sec

STANDARD 1H OBSERVE

Sample directory: X365PPF14

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X365PPF14

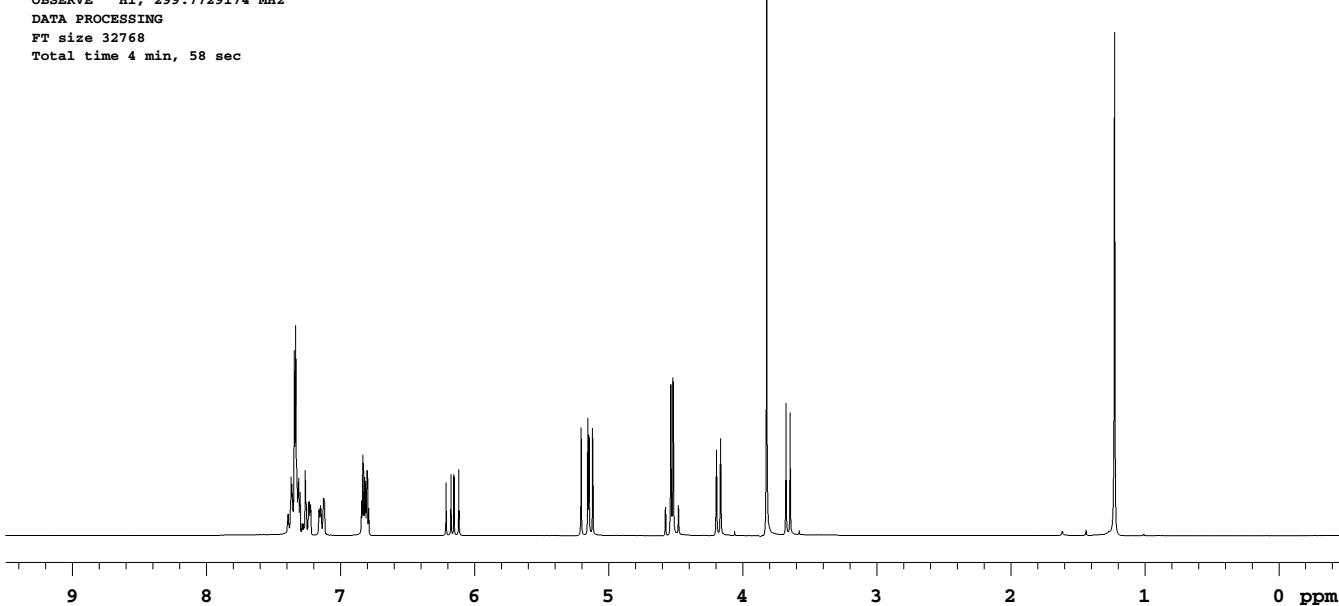
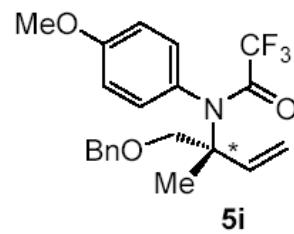
INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 56.2 degrees

Acq. time 1.998 sec

Width 4500.5 Hz



96 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 58 sec

13C OBSERVE

Sample directory: X365PPF14-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X365PPF14-CNMR

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

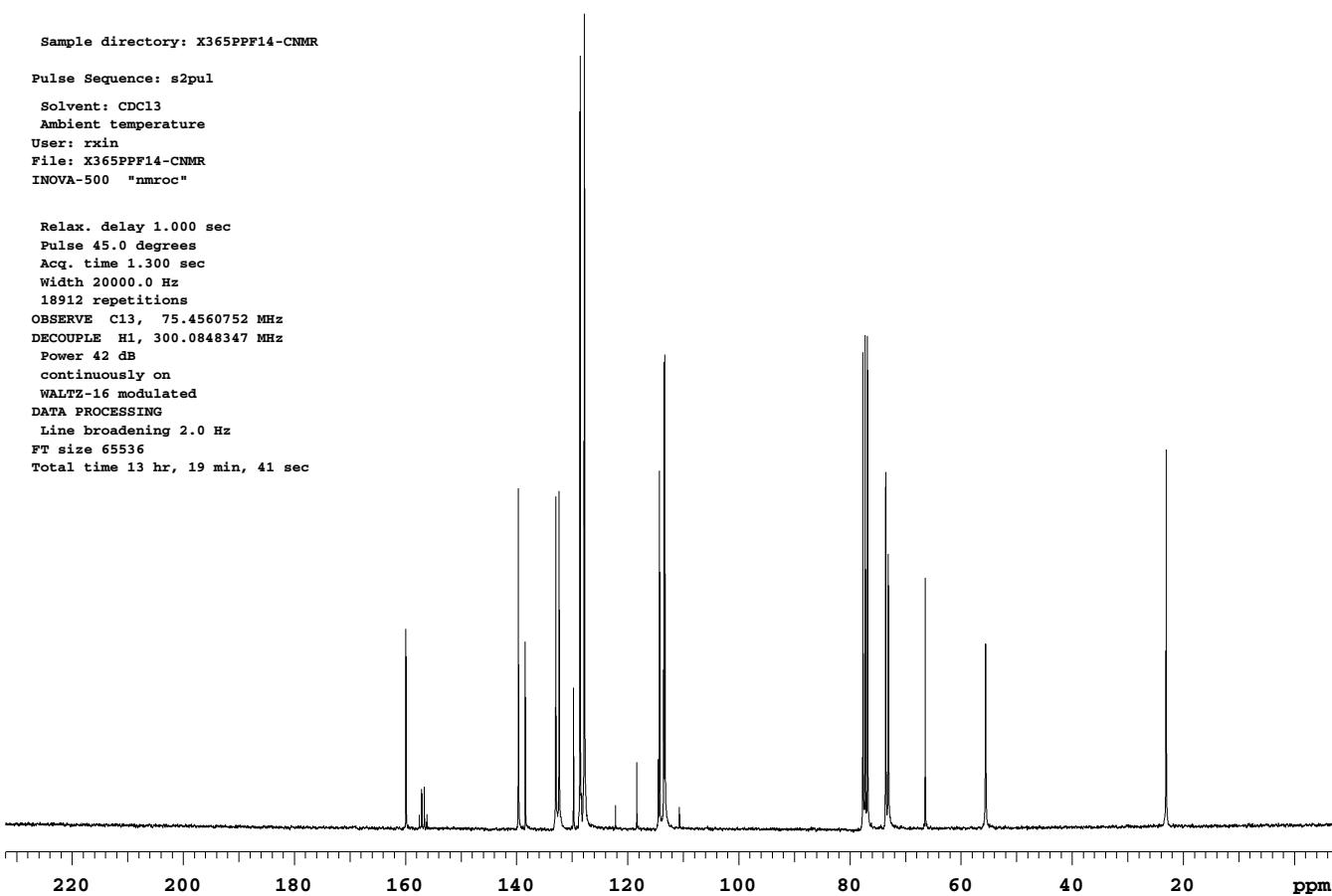
18912 repetitions

OBSERVE C13, 75.4560752 MHz

DECOPPLE H1, 300.0848347 MHz

Power 42 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 13 hr, 19 min, 41 sec

19F OBSERVE
STANDARD PARAMETERS
Sample directory: X365PPF14

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X365PPF14-FNMR

INOVA-500 "nmrroc"

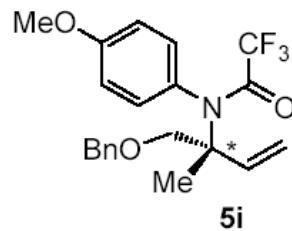
Relax. delay 4.000 sec

Pulse 45.0 degrees

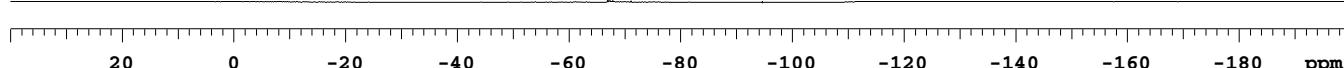
Acq. time 0.640 sec

Width 69930.1 Hz

19 repetitions


OBSERVE F19, 282.0683162 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 39 sec

5i

19F OBSERVE
STANDARD PARAMETERS

Sample directory: X408PP

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rxin

File: X408PP1-FNMR

INOVA-500 "nmroc"

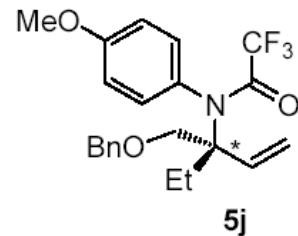
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

19 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 39 sec

5j

STANDARD 1H OBSERVE

Sample directory: df-339_Rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

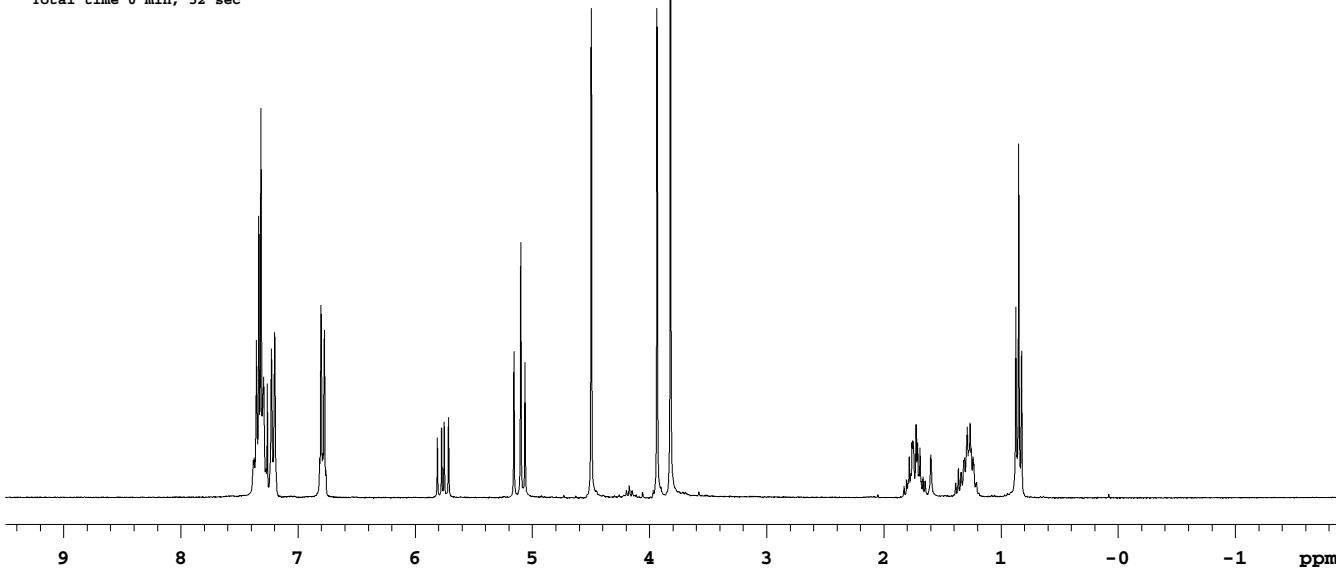
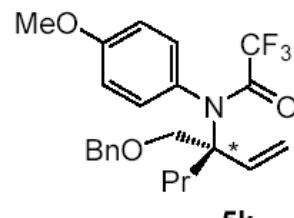
File: df-339_rear_1H

INOVA-500 "nmproc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



16 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-339_Rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df_339_REAR_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

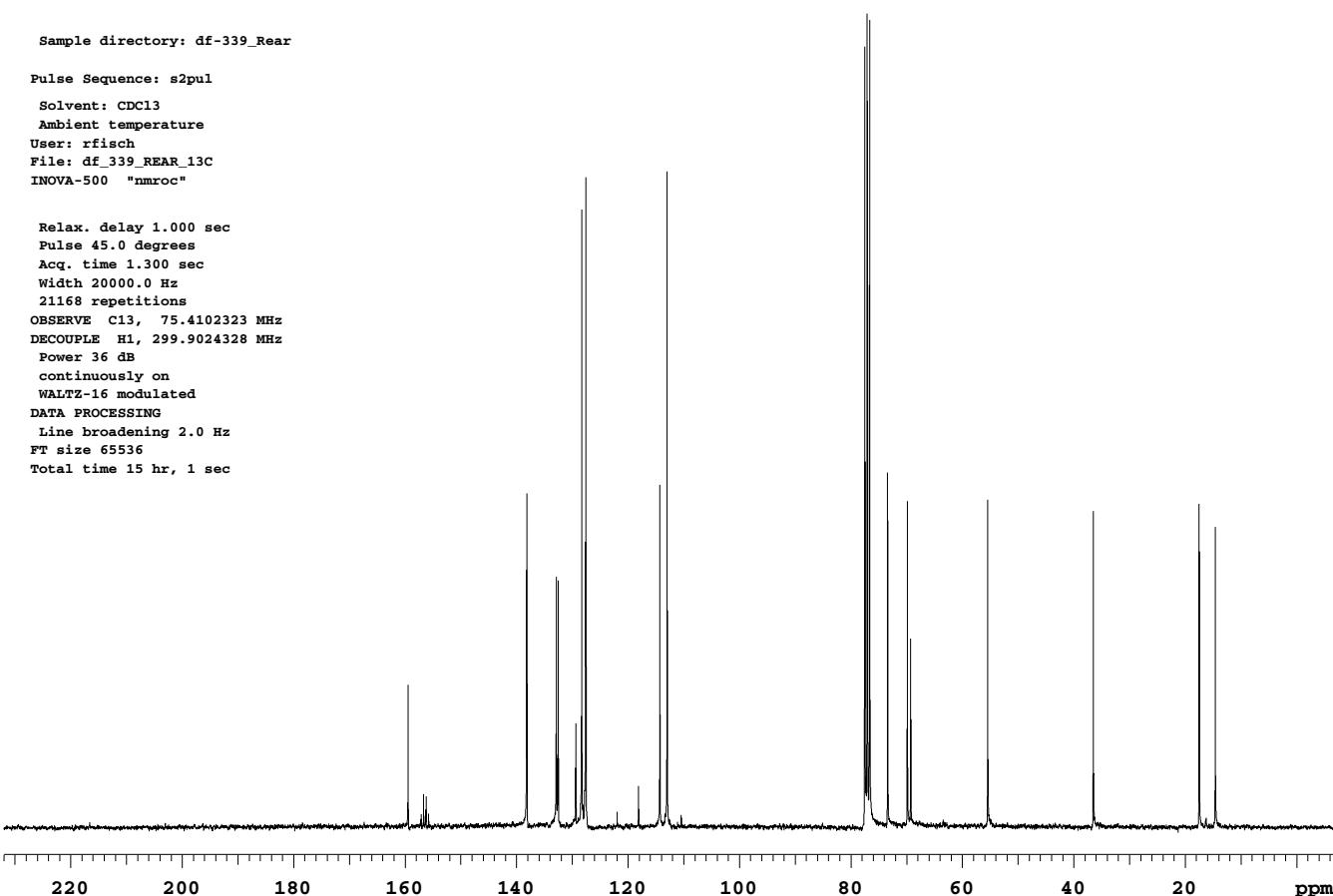
21168 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 15 hr, 1 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-339_Rear

Pulse Sequence: s2pul

Solvent: CDCl₃

Ambient temperature

User: rfisch

File: df-339_rear_19F

INOVA-500 "nmroc"

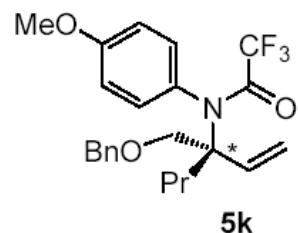
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

2 repetitions


OBSERVE F19, 282.1890544 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 0 min, 14 sec

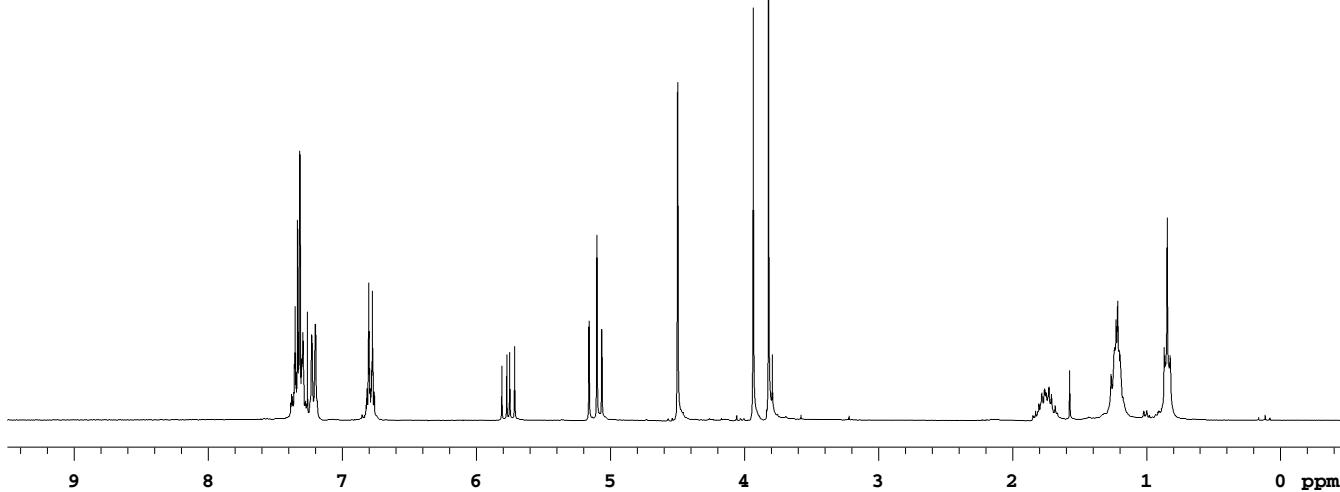
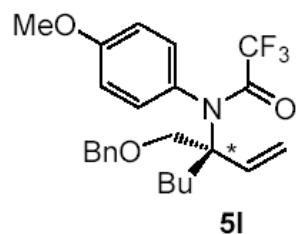
5k

STANDARD 1H OBSERVE

Sample directory: df-337_Rear

Pulse Sequence: s2pul

Solvent: CDCl3



Ambient temperature

User: rfisch

File: df-337_Rear_1H

INOVA-500 "nmroc"

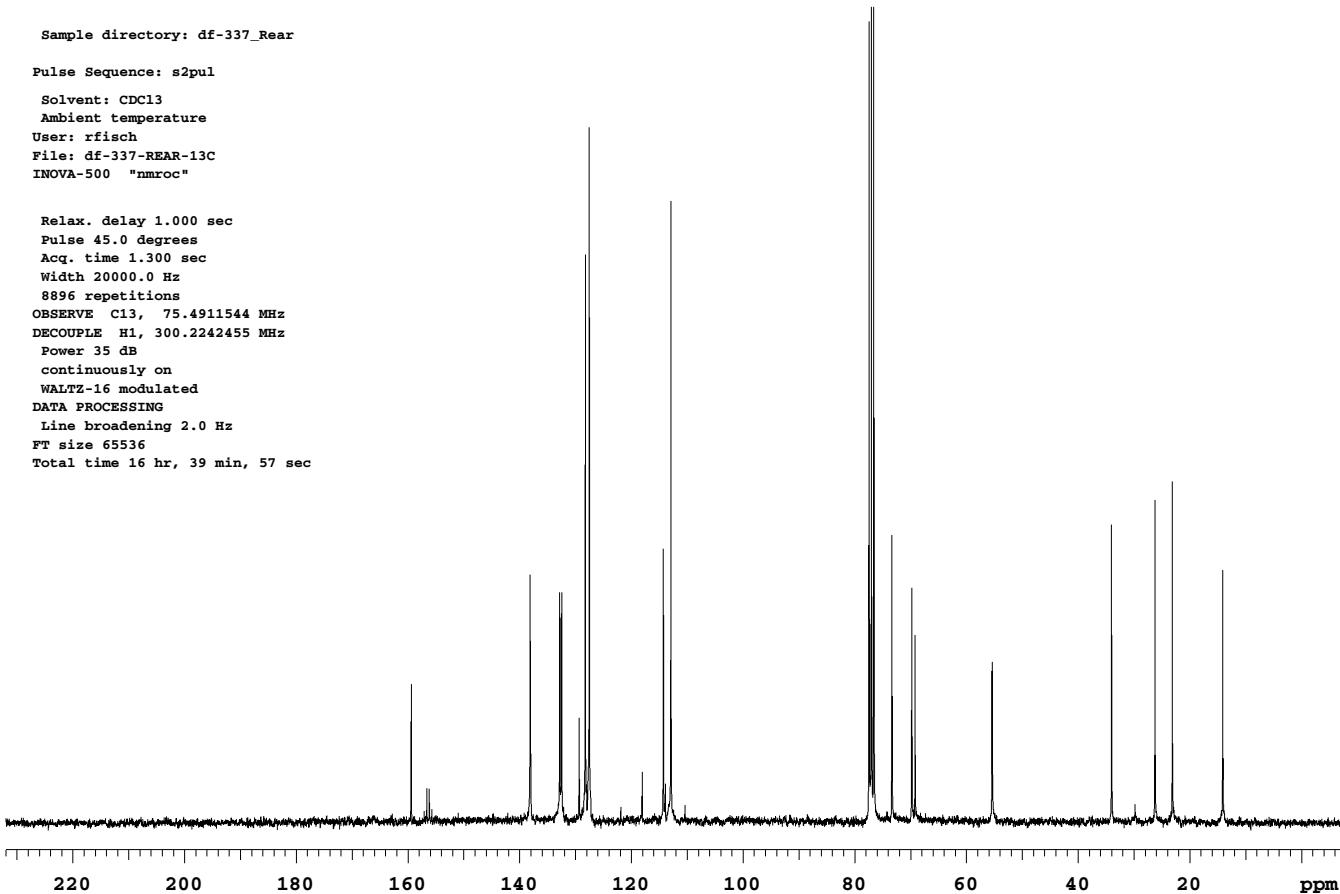
Pulse 30.0 degrees
 Acq. time 3.138 sec
 Width 5099.4 Hz
 16 repetitions
 OBSERVE H1, 300.2230602 MHz
 DATA PROCESSING
 FT size 32768
 Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-337_Rear

Pulse Sequence: s2pul

Solvent: CDCl3


Ambient temperature

User: rfisch

File: df-337-REAR-13C

INOVA-500 "nmroc"

Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.300 sec
 Width 20000.0 Hz
 8896 repetitions
 OBSERVE C13, 75.4911544 MHz
 DECOUPLE H1, 300.2242455 MHz
 Power 35 dB
 continuously on
 WALTZ-16 modulated
 DATA PROCESSING
 Line broadening 2.0 Hz
 FT size 65536
 Total time 16 hr, 39 min, 57 sec

19F OBSERVE

STANDARD PARAMETERS

Sample directory: df-337_Rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-337_Rear_19F

INOVA-500 "nmroc"

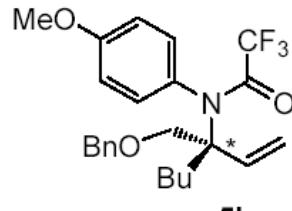
Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions


OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

5l

STANDARD 1H OBSERVE

Sample directory: X407PP2

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X407PP2

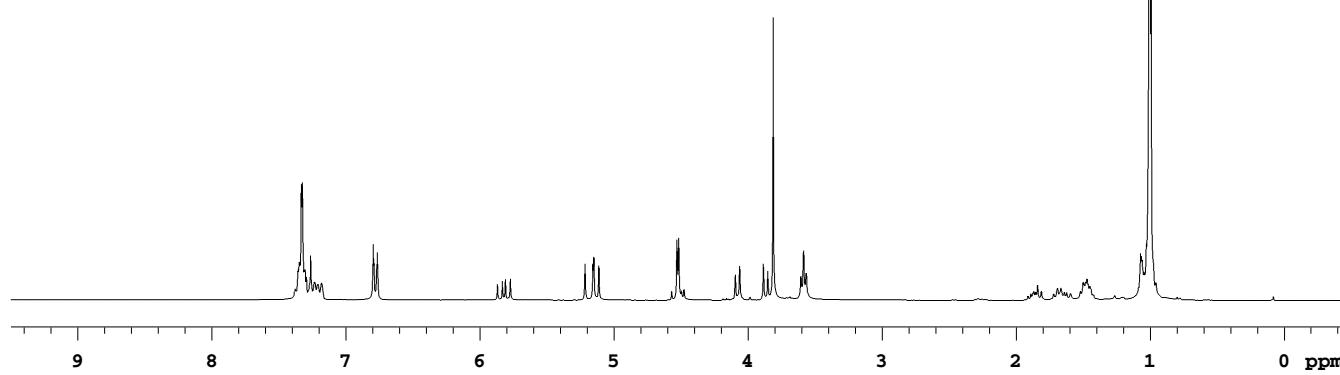
INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 30.2 degrees

Acq. time 3.138 sec

Width 4500.5 Hz


68 repetitions

OBSERVE H1, 299.7729174 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 53 sec

13C OBSERVE

Sample directory: X407PP2-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X407PP2-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

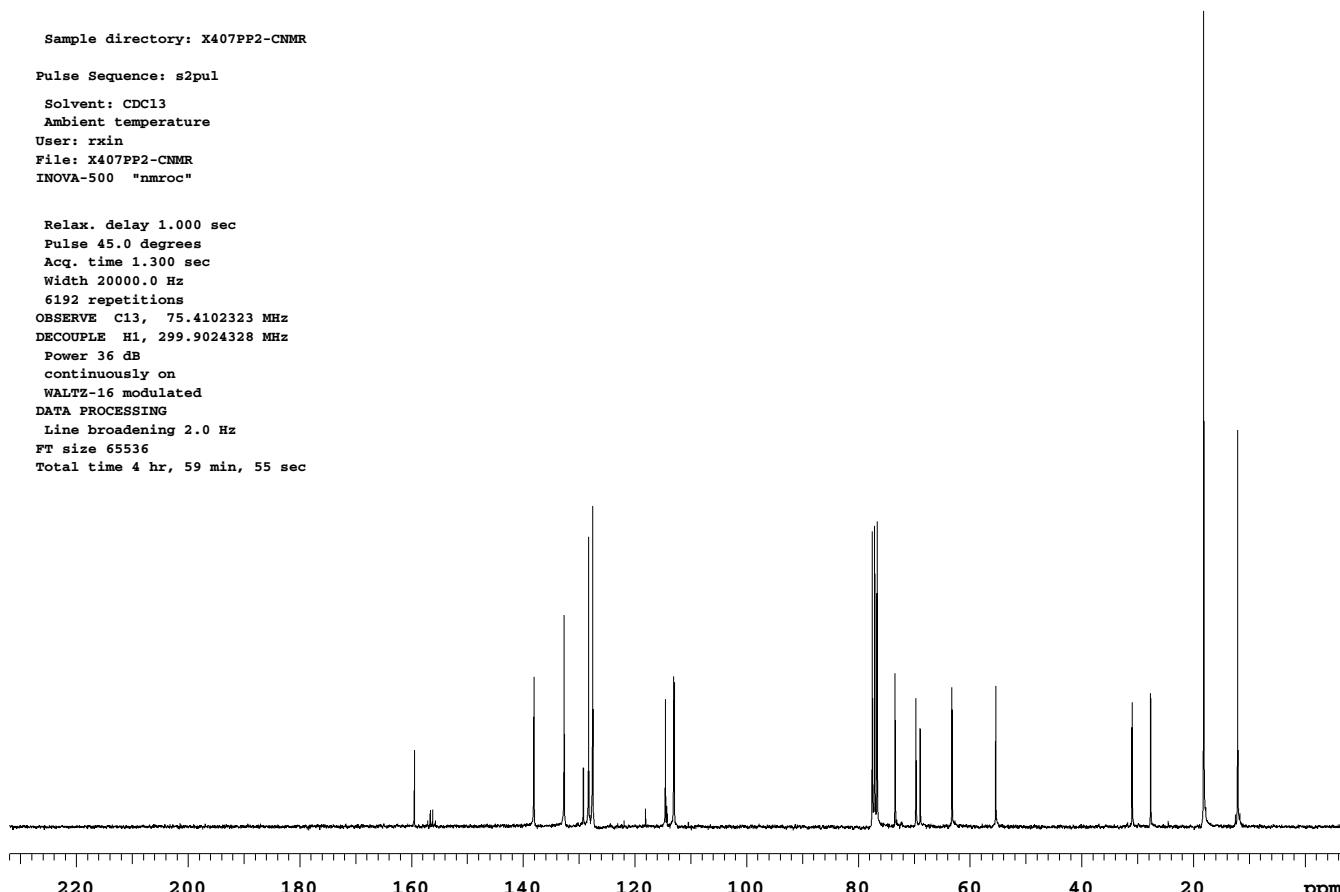
6192 repetitions

OBSERVE C13, 75.4102323 MHz

DECOUPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 4 hr, 59 min, 55 sec

19F OBSERVE

STANDARD PARAMETERS

Sample directory: X407PP

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X407PP1-FNMR

INOVA-500 "nmrroc"

Relax. delay 4.000 sec

Pulse 45.0 degrees

Acq. time 0.640 sec

Width 69930.1 Hz

19 repetitions

OBSERVE F19, 282.4918708 MHz

DATA PROCESSING

Line broadening 0.3 Hz

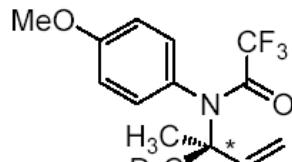
FT size 131072

Total time 1 min, 39 sec

STANDARD 1H OBSERVE

Sample directory: df-343_Rear

Pulse Sequence: s2pul


Solvent: CDCl3

Ambient temperature

User: rfisch

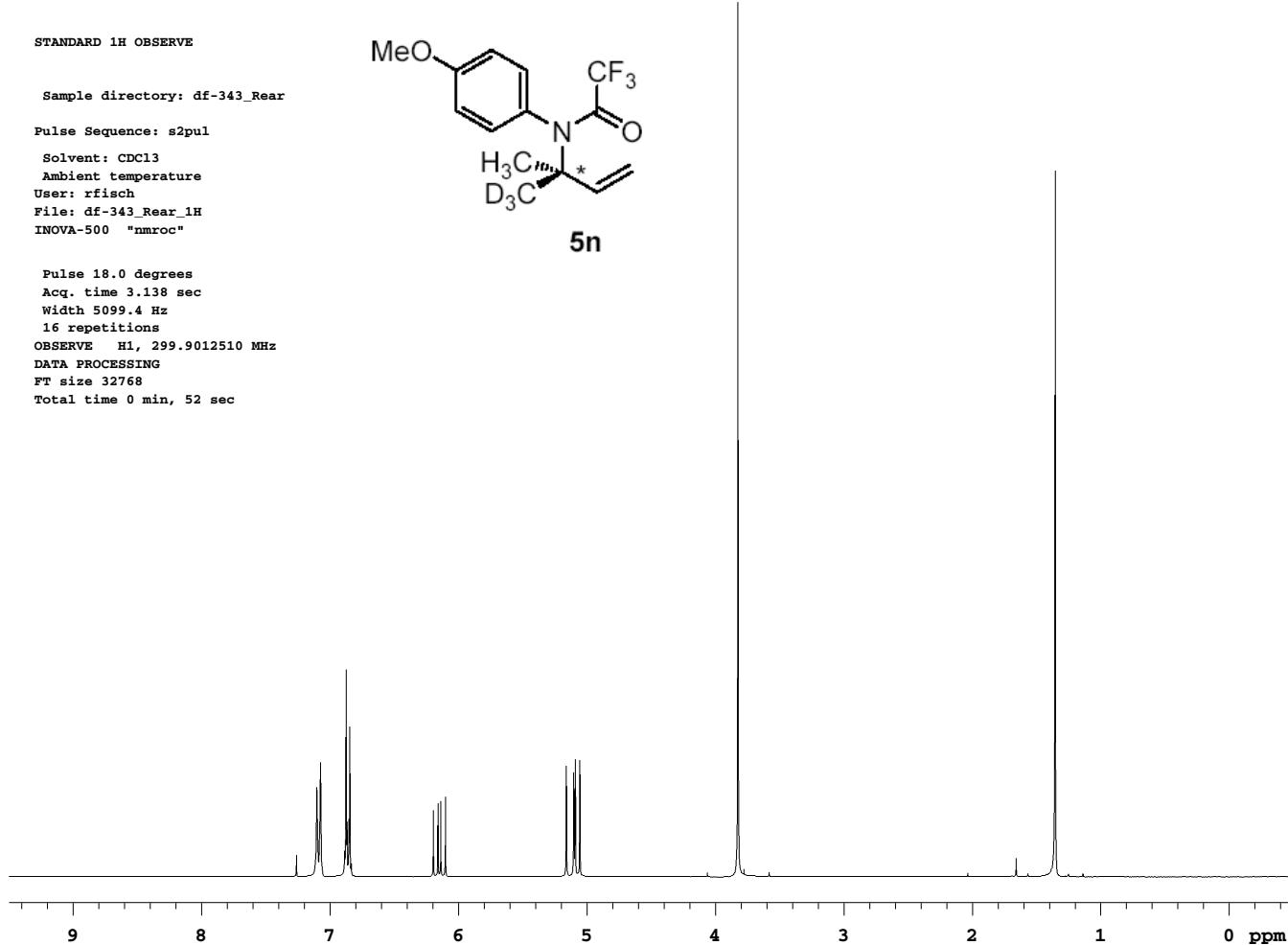
File: df-343_Rear_1H

INOVA-500 "nmproc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz


16 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 0 min, 52 sec

13C OBSERVE

Sample directory: df-343_Rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-343_Rear_13C

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

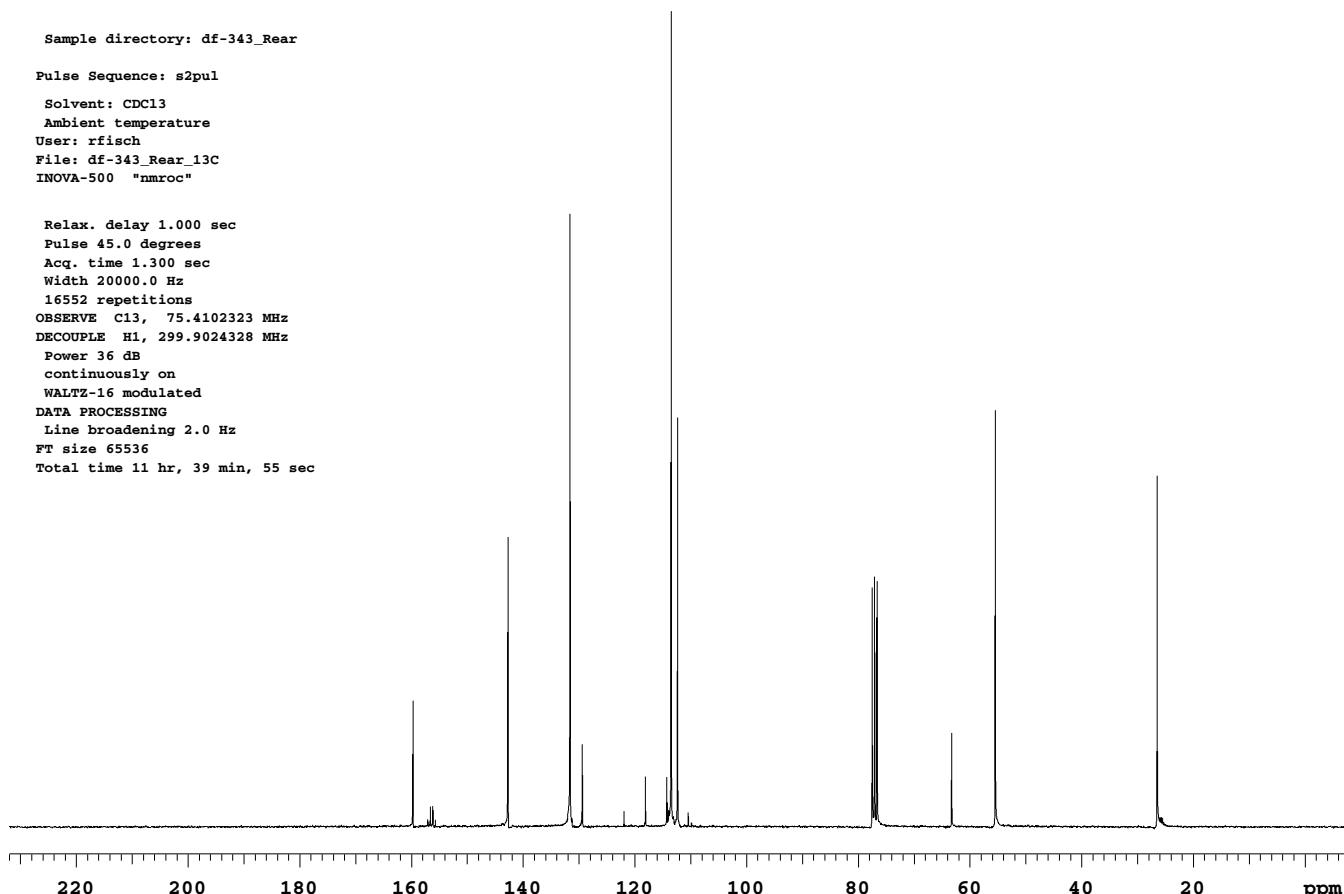
16552 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 11 hr, 39 min, 55 sec

19F OBSERVE
STANDARD PARAMETERS

Sample directory: df-343_Rear

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rfisch

File: df-343_Rear_19F

INOVA-500 "nmroc"

Relax. delay 4.000 sec

Pulse 45.0 degrees

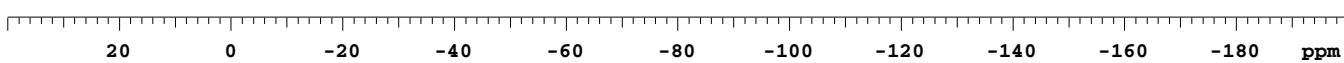
Acq. time 0.640 sec

Width 69930.1 Hz

16 repetitions

OBSERVE F19, 282.1890544 MHz

DATA PROCESSING


Line broadening 0.3 Hz

FT size 131072

Total time 1 min, 20 sec

5n

STANDARD 1H OBSERVE

Sample directory: X401PPF11

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

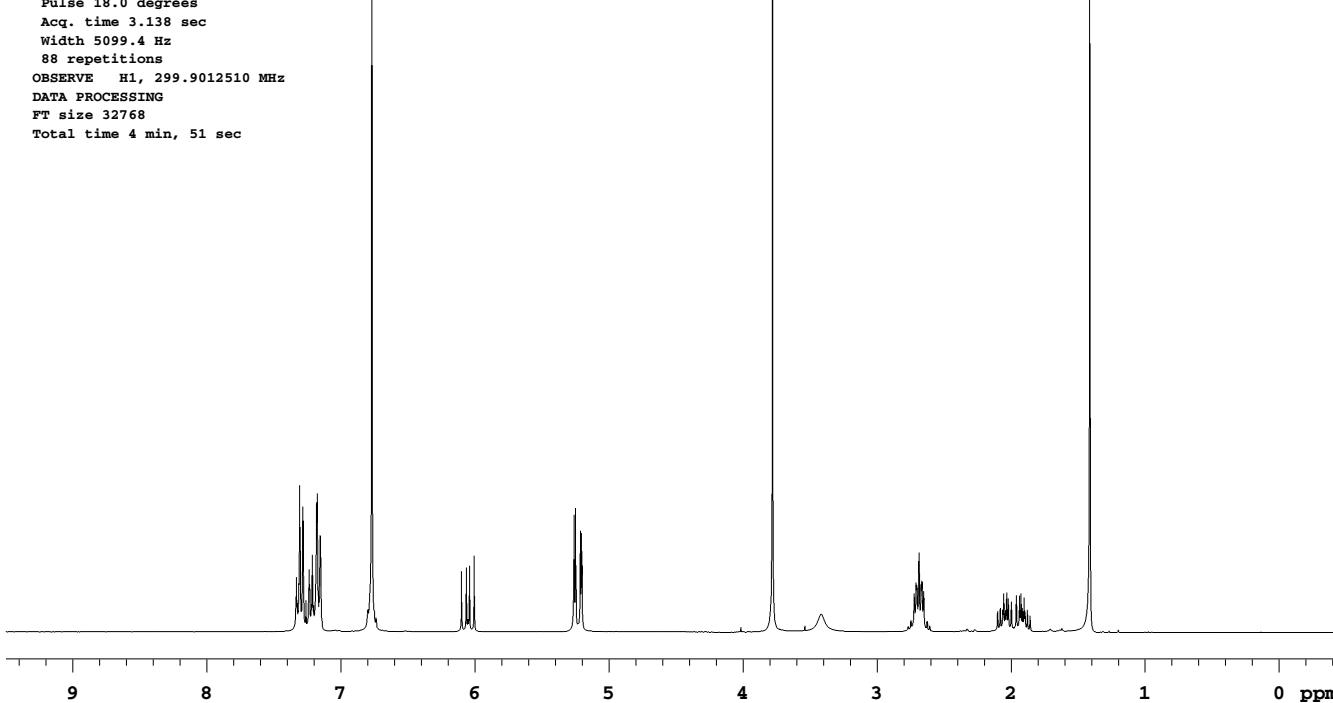
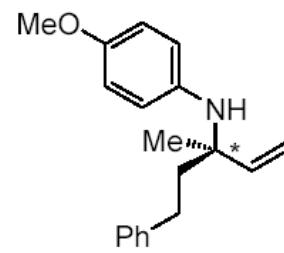
File: X401PPF11

INOVA-500 "nmroc"

Pulse 18.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



88 repetitions

OBSERVE H1, 299.9012510 MHz

DATA PROCESSING

FT size 32768

Total time 4 min, 51 sec

13C OBSERVE

Sample directory: X401PPF11-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X401PPF11-CNMR

INOVA-500 "nmroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

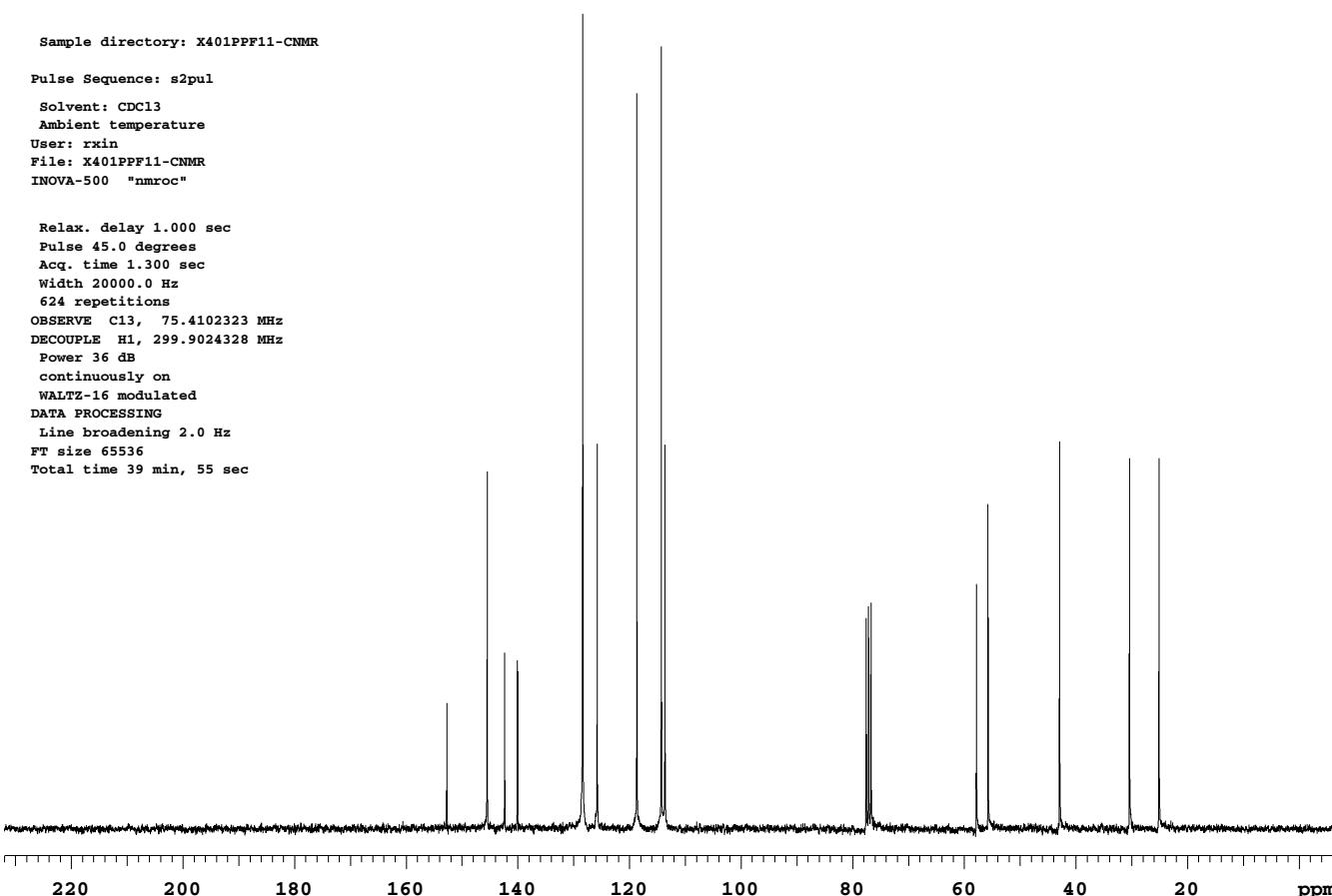
624 repetitions

OBSERVE C13, 75.4102323 MHz

DECOPUPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 39 min, 55 sec

STANDARD 1H OBSERVE

Sample directory: X406PP1

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

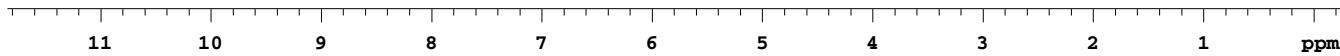
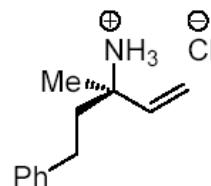
File: X406PP1

INOVA-500 "nmproc"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



52 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 2 min, 53 sec

13C OBSERVE

Sample directory: X406PP1-CNMR

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X406PP1-CNMR

INOVA-500 "nmproc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

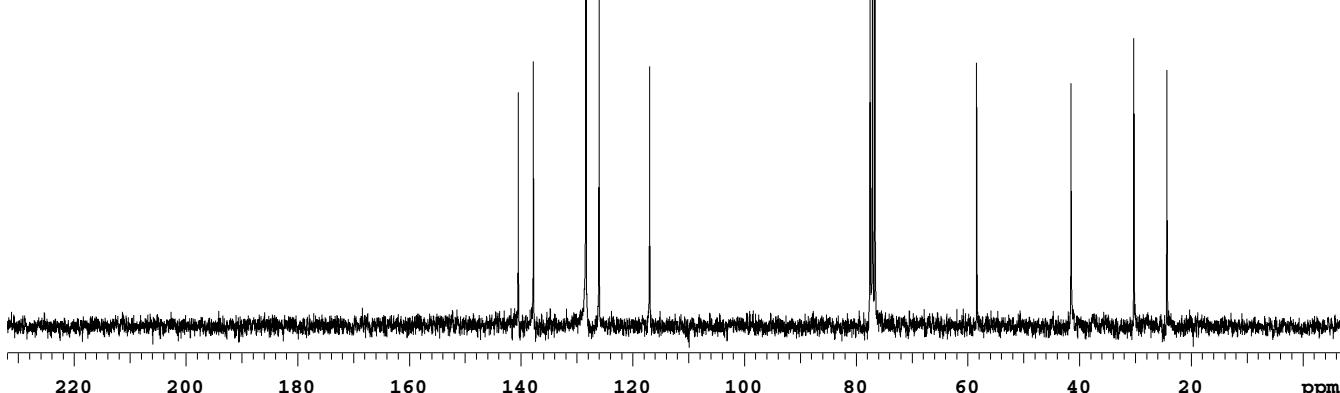
608 repetitions

OBSERVE C13, 75.4102323 MHz

DECOUPLE H1, 299.9024328 MHz

Power 36 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 29 min, 58 sec

STANDARD 1H OBSERVE

Sample directory: X412PP3

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

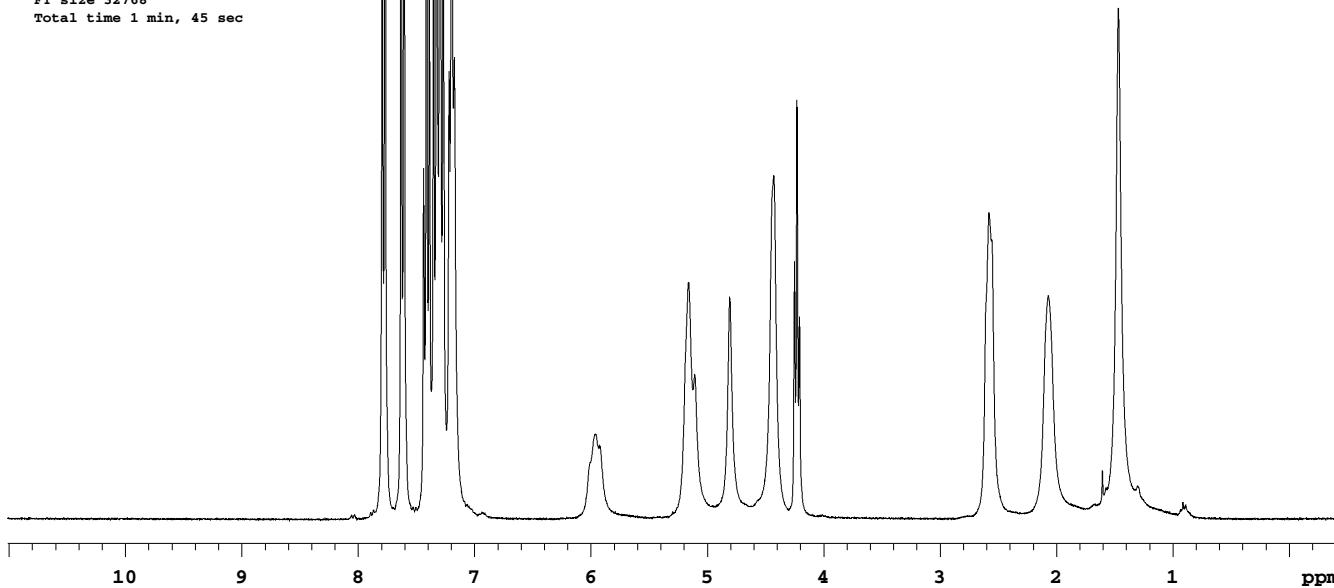
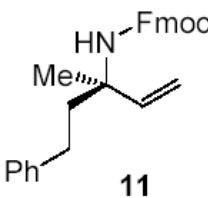
File: X412PP3

INOVA-500 "nmrroc"

Pulse 29.5 degrees

Acq. time 3.138 sec

Width 5099.4 Hz



32 repetitions

OBSERVE H1, 300.0836333 MHz

DATA PROCESSING

FT size 32768

Total time 1 min, 45 sec

13C OBSERVE

Sample directory: X412PP3

Pulse Sequence: s2pul

Solvent: CDCl3

Ambient temperature

User: rxin

File: X412pp3-CNMR

INOVA-500 "nmrroc"

Relax. delay 1.000 sec

Pulse 45.0 degrees

Acq. time 1.300 sec

Width 20000.0 Hz

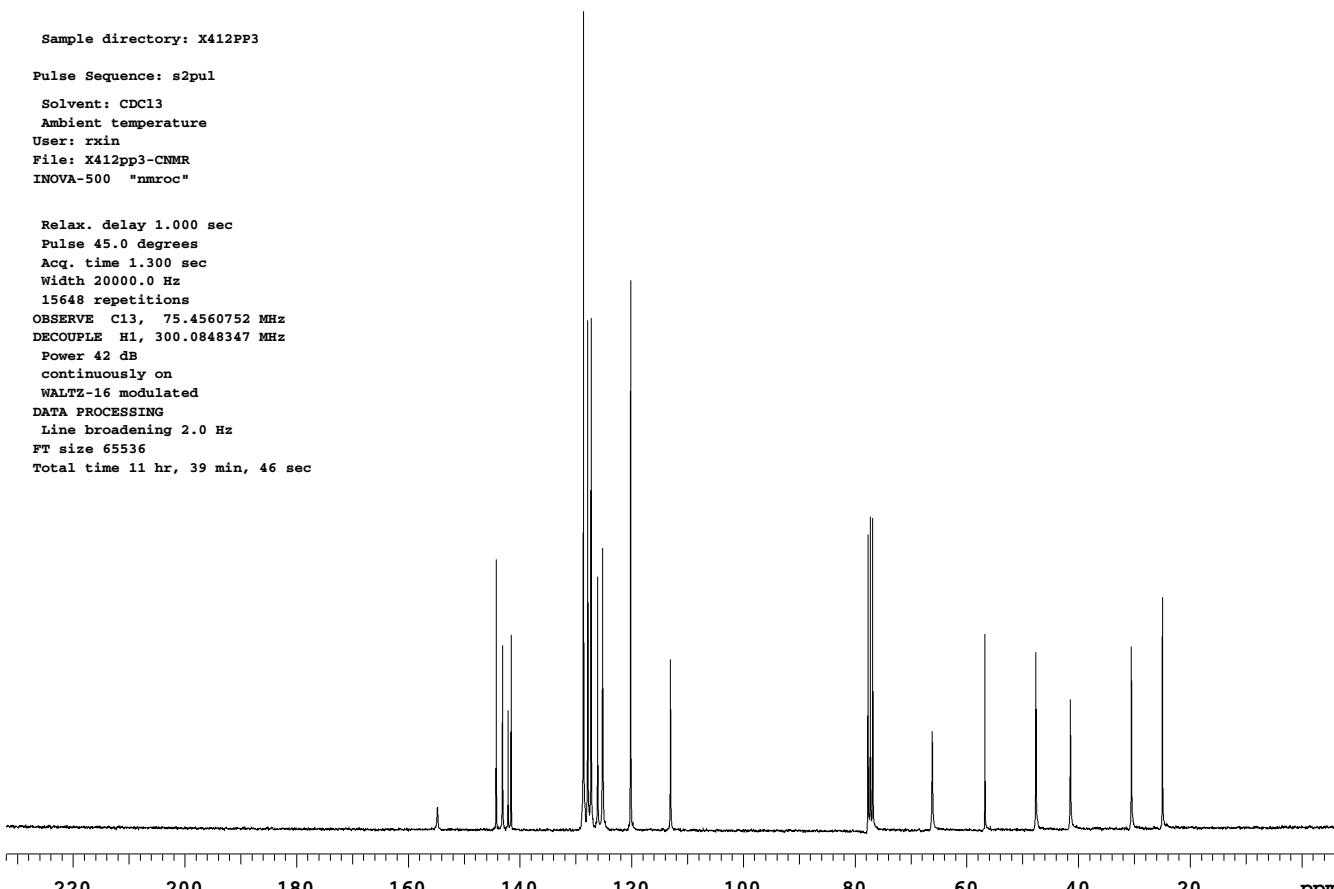
15648 repetitions

OBSERVE C13, 75.4560752 MHz

DECOUPLE H1, 300.0848347 MHz

Power 42 dB

continuously on


WALTZ-16 modulated

DATA PROCESSING

Line broadening 2.0 Hz

FT size 65536

Total time 11 hr, 39 min, 46 sec

STANDARD 1H OBSERVE

Sample directory: X440PP

Pulse Sequence: s2pul

Solvent: CD3OD

Ambient temperature

User: rxin

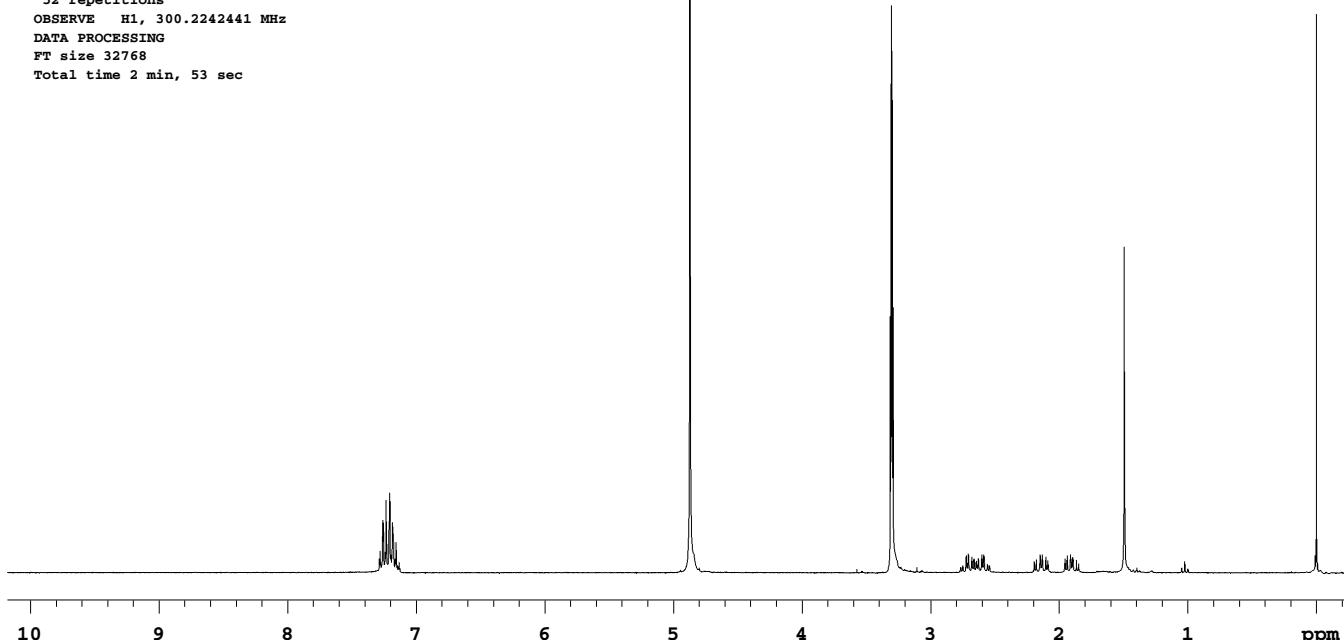
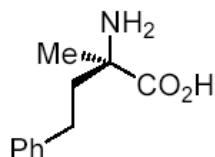
File: X440PP

INOVA-500 "nmproc"

Pulse 30.0 degrees

Acq. time 3.138 sec

Width 5099.4 Hz

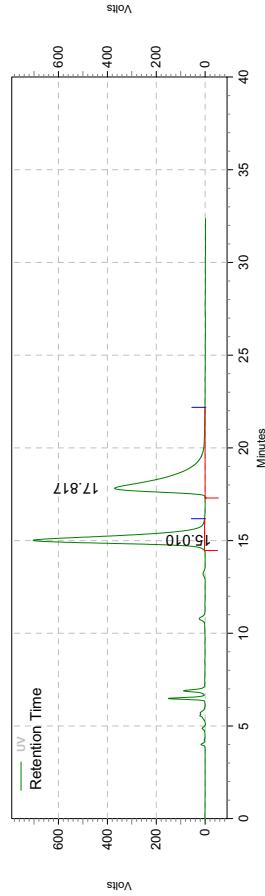


52 repetitions

OBSERVE H1, 300.2242441 MHz

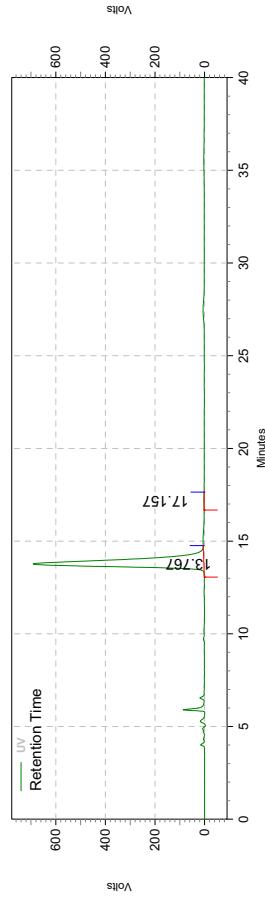
DATA PROCESSING

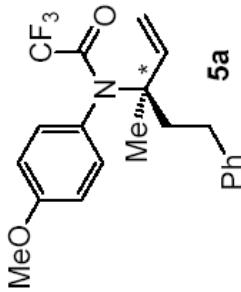
FT size 32768

Total time 2 min, 53 sec



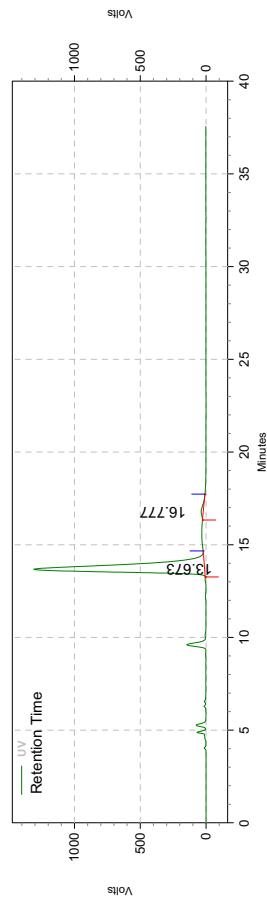
Area % Report


Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Folder\vacemat_PhEl_daniel_99to1_210nm.met.dat
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_99to1_210nm.met
Acquired: 1/16/2007 10:48:59 AM
Printed: 4/27/2007 10:24:24 AM


UV Results	
Retention Time	Area
15.010	79857039
17.817	76662328
Totals	156519367
	100.00
	4285164
	100.00

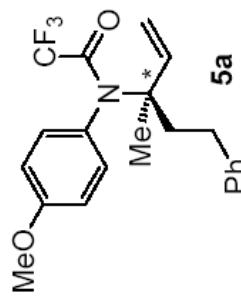
Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Folder: df-335_A_2daniel_99tol_210nm.met.dat
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_99tol_210nm.met
Acquired: 2/12/2007 4:21:42 PM
Printed: 4/27/2007 10:12:27 AM

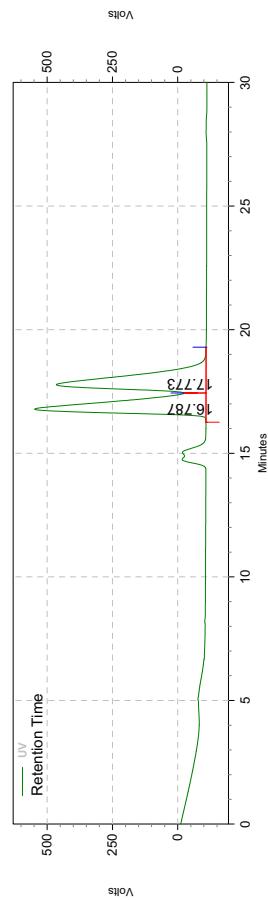

UV Results	Retention Time
	13.767
	17.157
	Totals

2 mol-% FIP-Cl

Area % Report


Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Folder: df-335G_verduent_daniel_99tol_210nm.met.dat
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_99tol_210nm.met
Acquired: 4/1/2007 6:08:39 PM
Printed: 4/27/2007 10:27:31 AM

UV Results

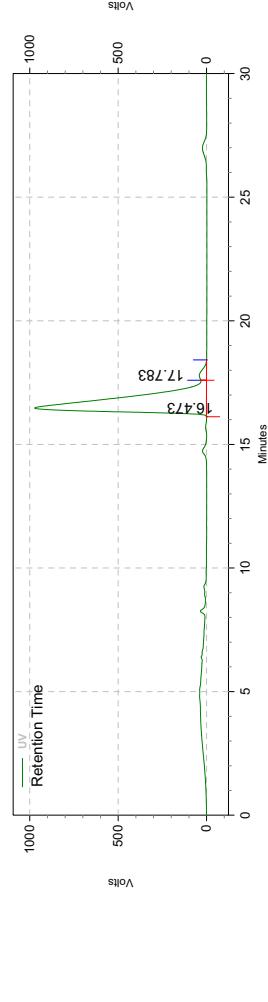

Retention Time	Area	Area %	Height	Height %
13.673	134315818	98.33	5191374	98.80
16.777	2278824	1.67	62799	1.20
Totals	136594642	100.00	5254173	100.00

0.5 mol-% FIP-Cl

Area % Report

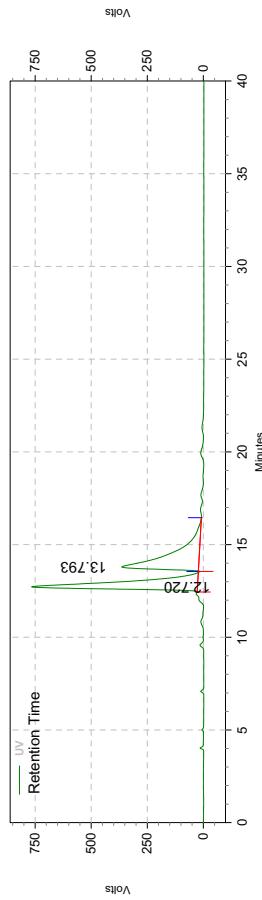
Data File: C:\EZChrom
 Elite\Enterprise\Projects\famamide\Projects\Neu\Racemat_df:338_Bu-Me_daniel_99.8_210nm.met.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\famamide\Projects\famamide\Method\daniel_99.8_210nm.met
 Acquired: 5/10/2007 8:17:09 PM
 Printed: 5/10/2007 9:16:39 PM

UV Results	Retention Time	Area	Area %	Height	Height %
	16.787	80284810	48.98	2623344	53.37
	17.73	83622884	51.02	229224	46.63

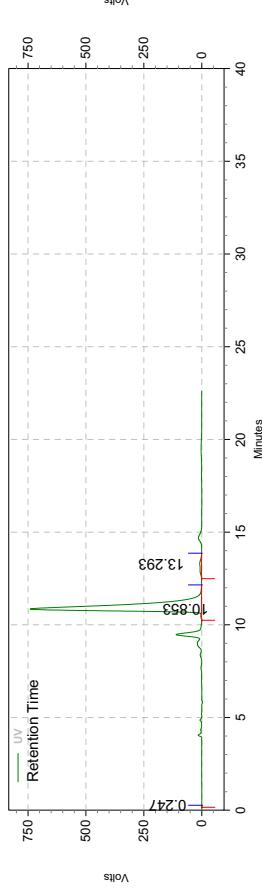
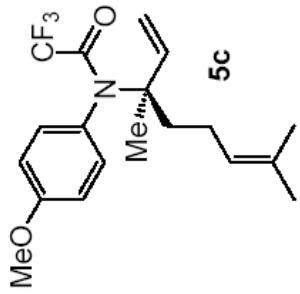

Totals	163907694	100.00	4915568	100.00
--------	-----------	--------	---------	--------

UV Results	Retention Time	Area	Area %	Height	Height %
	16.473	141752245	96.93	3886870	95.96
	17.783	4484575	3.07	163530	4.04

Totals	146236820	100.00	4050400	100.00
--------	-----------	--------	---------	--------

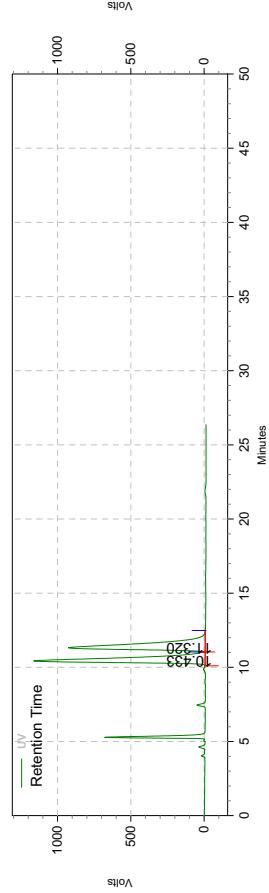


5b

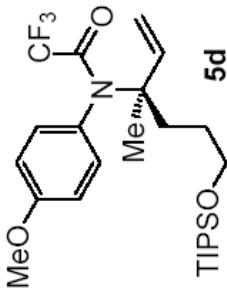
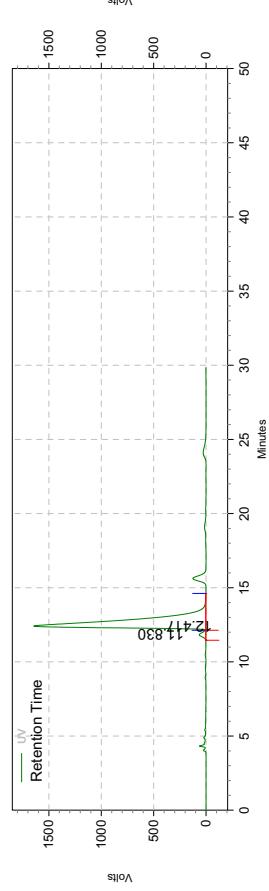


UV Results	Retention Time	Area	Area %	Height	Height %
	16.473	141752245	96.93	3886870	95.96
	17.783	4484575	3.07	163530	4.04

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
 Folder\tracemat_geraniol\99.8_210nm.met.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\fcamide\99.8_210nm.met
 Acquired: 1/16/2007 1:18:14 PM
 Printed: 4/27/2007 10:42:32 AM

Retention Time	Area	Area %	Height	Height %
12.720	71912491	51.83	2958043	68.34
13.793	66835831	48.17	1370268	31.66
Totals	138748322	100.00	4328311	100.00


UV Results	Retention Time	Area	Area %	Height	Height %
	0.247	111	0.00	36	0.00
	10.853	6390001	97.86	2957088	98.93
	13.293	1398782	2.14	31813	1.06
Totals		65298894	100.00	2988937	100.00

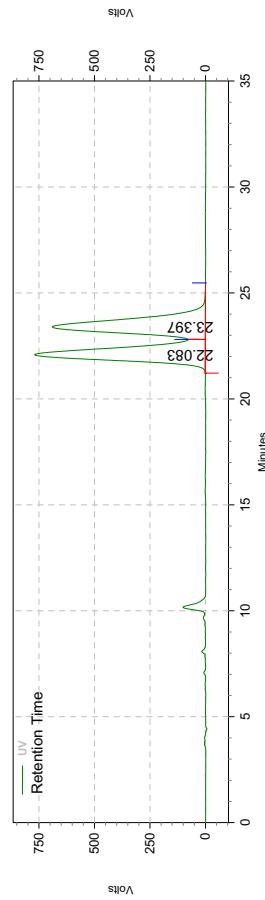
Area % Report**Area % Report**



Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New Folder\trac_TIPS_0,6promille_210mm_runi.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\test_0,6promille_iprOH_210mm.met

Acquired: 11/22/2006 11:37:47 AM
 Printed: 4/27/2007 10:57:57 AM

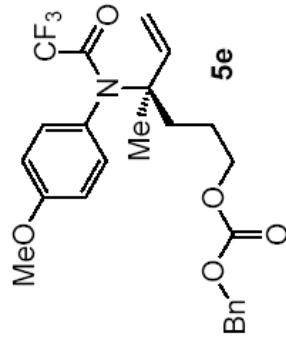
UV Results	Retention Time	Area	Area %	Height	Height %
	10.433	96953239	49.88	4674152	55.62
	11.320	97435357	50.12	3730204	44.38
Totals		194388596	100.00	8404356	100.00

UV Results	Retention Time	Area	Area %	Height	Height %
	11.830	4956860	2.18	249558	3.66
	12.417	222601582	97.82	6566214	96.34
Totals		227558442	100.00	6815772	100.00

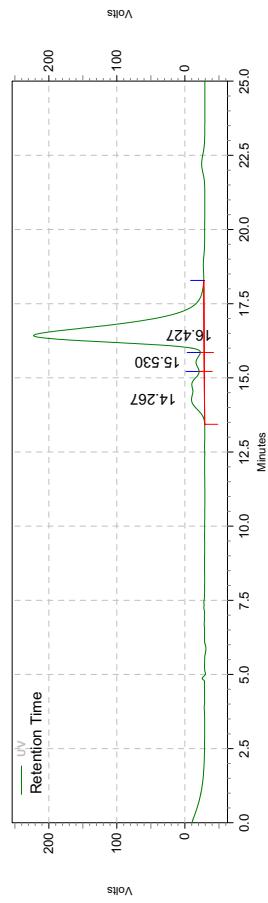
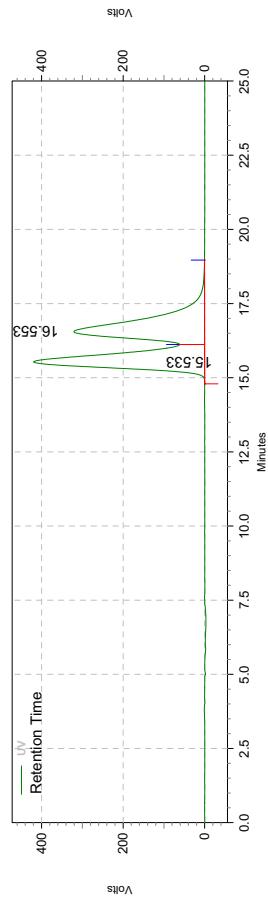

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New Folder\trac_TIPS_0,6promille_210mm_runi.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\test_0,6promille_iprOH_210mm.met

Acquired: 11/22/2006 3:37:41 PM
 Printed: 4/27/2007 11:37:52 AM

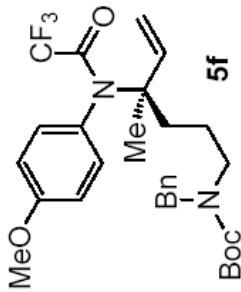
Area % Report


Area % Report

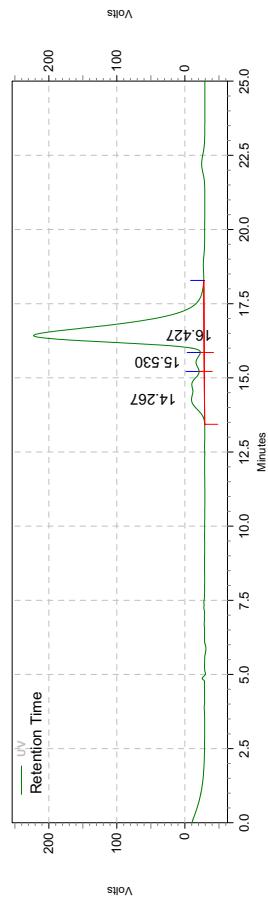
Data File: C:\EZChrom EliteEnterprise\Projects\fcamide\Data\New
 Folder\rf351T2_daniel-97to3-210nm.net.dat
 Method: C:\EZChrom EliteEnterprise\Projects\fcamide\Method\fcamide.M
 Acquired: 5/9/2007 3:32:12 PM
 Printed: 5/9/2007 5:23:49 PM



UV Results	Retention Time	Area	Area %	Height	Height %
	22.083	120930818	49.66	3075220	52.72
	23.397	122598823	50.34	2758178	47.28
Totals		243529641	100.00	5833398	100.00

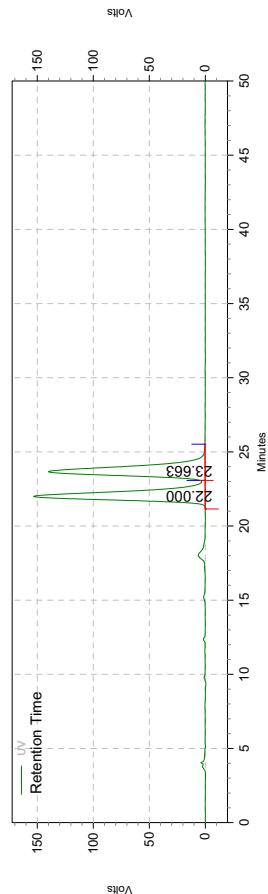
UV Results	Retention Time	Area	Area %	Height	Height %
	0.080			729	0.00
	22.217			711874	1.13
	23.503			62253714	98.87
Totals		62966317	100.00	1500867	100.00


Area % Report

Data File: C:\EZChrom
 Elite\Enterprise\Projects\fcamide\Neu\df-351UC_Neu\df-351UC_Neu.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\fcamideMethod.daniel_99to1_210nm.met
 Acquired: 5/11/2007 2:05:59 PM
 Printed: 5/11/2007 3:40:48 PM

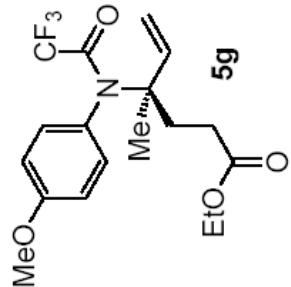

UV Results

Retention Time	Area	Area %	Height	Height %
14.267	5245379	10.66	76377	6.78
15.530	1461627	2.97	48283	4.29
16.427	42491277	86.37	1002105	88.94
Totals	49198283	100.00	1126765	100.00


Area % Report

Data File: C:\EZChrom
 Elite\Enterprise\Projects\fcamide\Neu\df-351UC_Neu\df-351UC_Neu.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\fcamideMethod.daniel_99to1_210nm.met
 Acquired: 5/11/2007 3:18:22 PM
 Printed: 5/11/2007 3:43:19 PM

Area % Report

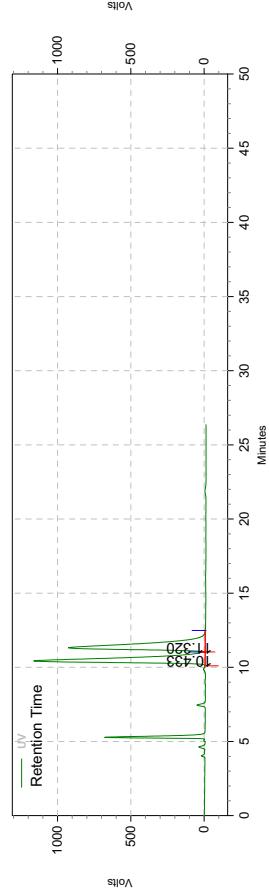

File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\data0507.d
Acquired: 5/9/2007 12:19:52 PM
Printed: 5/9/2007 1:12:58 PM

UV Results	
Retention Time	Area
22.000	23099694
23.663	23133742
Totals	46233436
	100.00
	1171452
	100.00
	559109
	612343
	49.96
	50.04
	47.73
	52.27
	Height %
	Height
	Area %
	Area
	Retention Time

UV Results

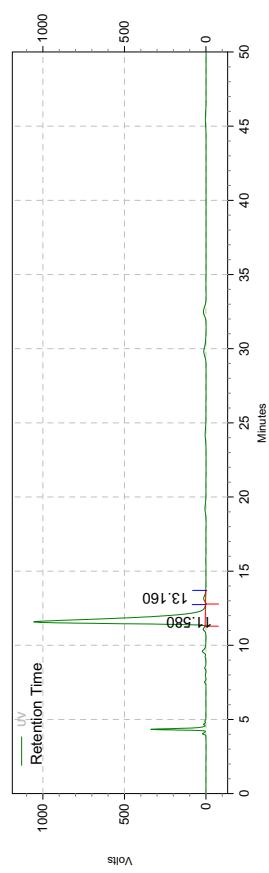
UV Results		Area	Area %	Height	Height %
Retention Time					
21.620		155084950	97.90	38.7074	97.58
23.720		3319910	2.10	94839	2.42
Totals					

Area % Report

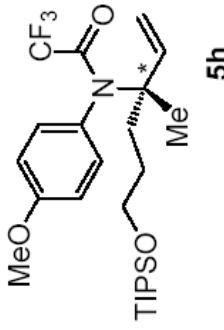

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Folder\df351C_daniel_99.5_to_0.5_210nm.met.dat
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_99.5_to_0.5_210nm.met
Acquired: 5/9/2007 1:11:00 PM
Printed: 5/9/2007 2:01:56 PM

Area % Report

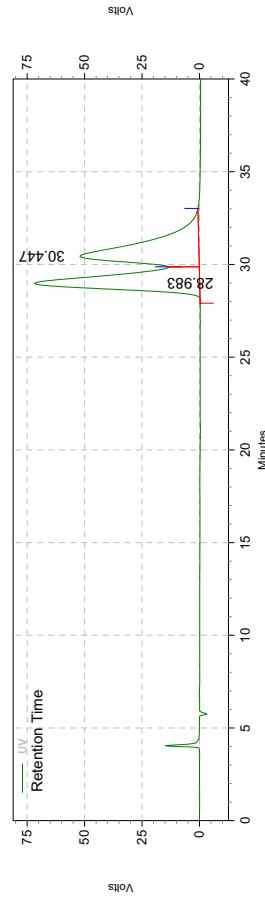
Area % Report


Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
 Folder\df_303Z.test_0,6promille_jPrOH_210nm.met.dat
 C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\test_0,6promille_jPrOH_210nm.met

Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\test_0,6promille_jPrOH_210nm.met
 Acquired: 11/22/2006 11:37:47 AM
 Printed: 4/27/2007 10:57:57 AM

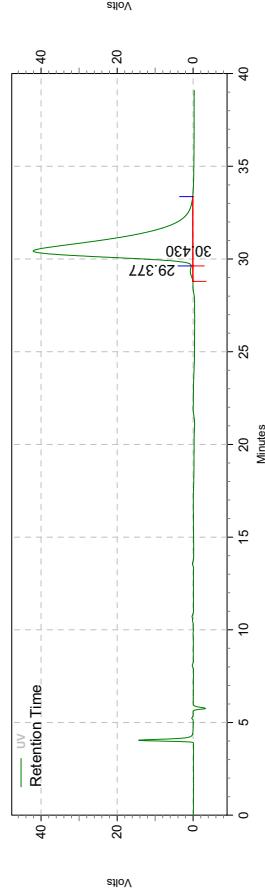

UV Results

Retention Time	Area	Area %	Height	Height %
11.580	102988326	98.90	420505	98.87
13.160	1140922	1.10	47954	1.13
Totals	104129248	100.00	4251459	100.00

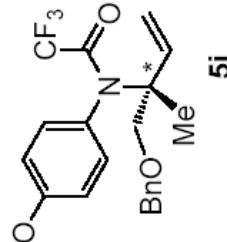


UV Results

Retention Time	Area	Area %	Height	Height %
11.580	102988326	98.90	420505	98.87
13.160	1140922	1.10	47954	1.13
Totals	104129248	100.00	4251459	100.00

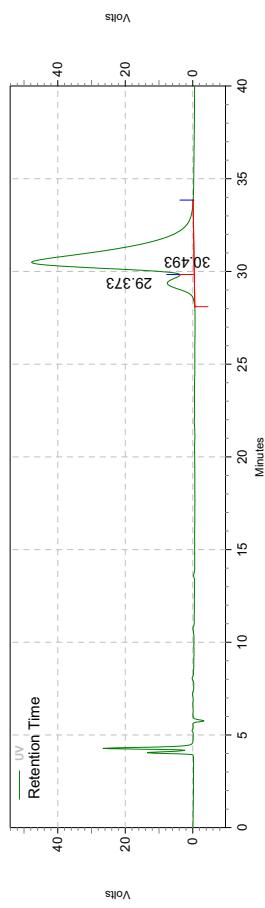


Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
 Folder\tracemat_CH2OBn_verducent_daniel_99,8_210nm.met.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\fcamide_99,8_210nm.met
 Acquired: 2/7/2007 4:39:13 PM
 Printed: 4/27/2007 10:56:35 AM



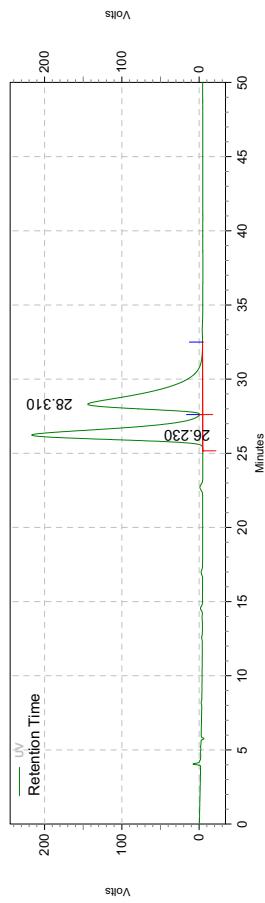
UV Results	Retention Time	Area	Area %	Height	Height %
	28.983	14450763	49.13	287298	58.09
	30.447	14962957	50.87	207242	41.91
	Totals	29413720	100.00	494540	100.00

UV Results	Retention Time	Area	Area %	Height	Height %
	29.377	85050	0.73	2678	1.57
	30.430	11557089	99.27	167961	98.43
	Totals	11642139	100.00	170639	100.00

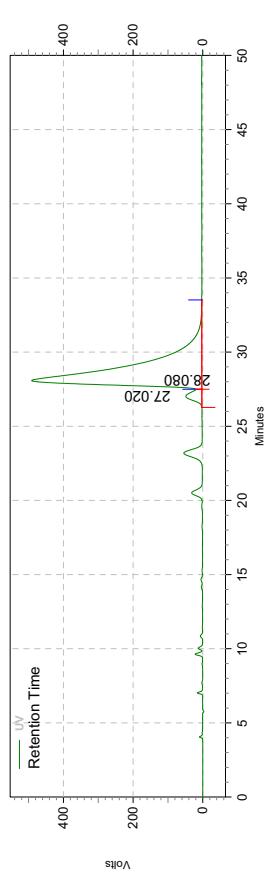


UV Results	Retention Time	Area	Area %	Height	Height %
	29.377	85050	0.73	2678	1.57
	30.430	11557089	99.27	167961	98.43
	Totals	11642139	100.00	170639	100.00

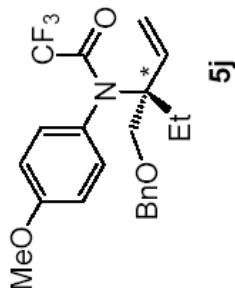
Area % Report


Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Folder df-327H+racemate\daniel_99,8,210nm.met.dat
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_99,8,210nm.met
Acquired: 2/7/2007 2:53:42 PM
Printed: 6/16/2007 7:57:10 PM

Totals	15141132	100.00	224673	100.00
--------	----------	--------	--------	--------

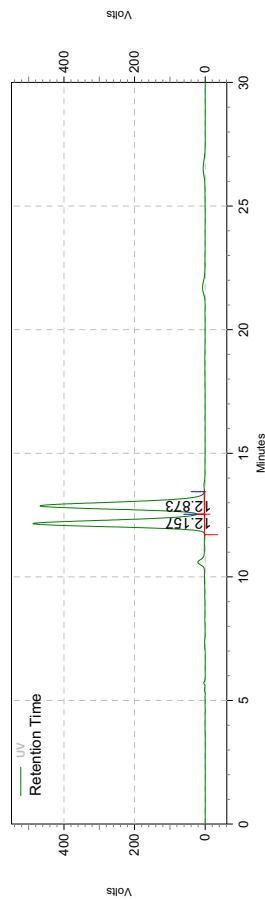

5i + racemate

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
 Folder\trac_CH2OBn-Et_110407_daniel_99.8_210nm.net.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_99.8_210nm.met
 Acquired: 4/11/2007 10:18:45 AM
 Printed: 4/29/2007 7:58:36 PM


UV Results

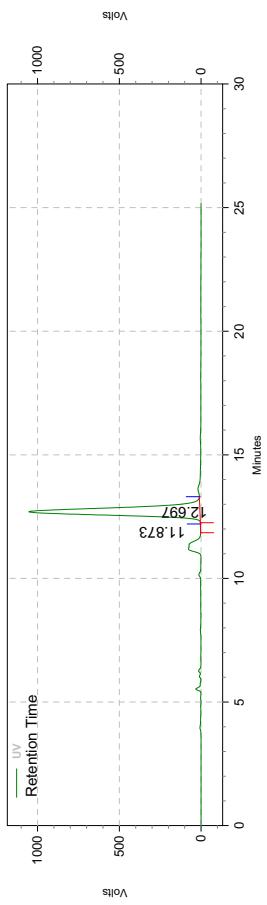
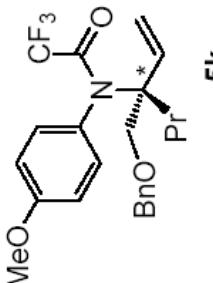
Retention Time	Area	Area %	Height	Height %
26.230	44480894	49.79	885611	59.81
28.310	44849254	50.21	595001	40.19
Totals	89330148	100.00	1480612	100.00

UV Results


Retention Time	Area	Area %	Height	Height %
27.020	7204169	4.26	184579	8.63
28.080	162014273	95.74	1953372	91.37
Totals	169218442	100.00	2137951	100.00

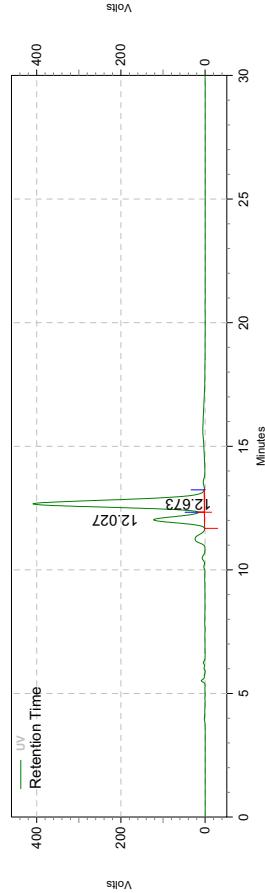
Area % Report

Area % Report



Data File: C:\EZChrom
 Elite\Enterprise\Projects\fcamide\vacemat_130607_CH2OBn-Pr_NH_daniel_99,5_to_0,5_250nm_30min.met.dat
 met.dat
 Method: C:\EZChrom
 Elite\Enterprise\Projects\fcamide\Method\daniel_99,5_to_0,5_250nm_30min.met
 Acquired: 6/13/2007 6:23:26 PM
 Printed: 6/13/2007 9:00:43 PM

UV Results	Retention Time	Area	Area %	Height	Height %
	12.157	36480867	49.70	1941524	51.06
	12.873	36916882	50.30	1861154	48.94
Totals		73397749	100.00	3802678	100.00

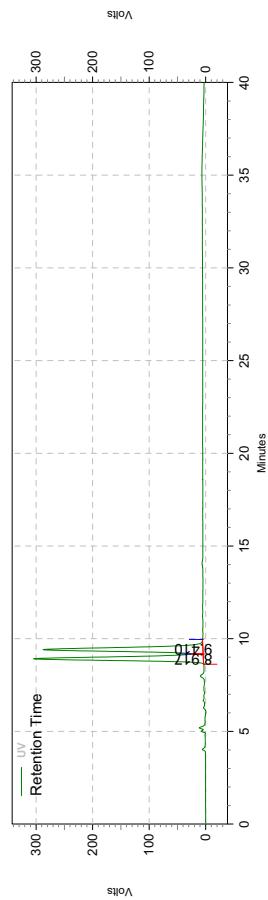
UV Results


UV Results	Retention Time	Area	Area %	Height	Height %
	11.873	8670	0.01	334	0.01
	12.697	82205848	99.99	4183923	99.99
Totals		82214518	100.00	4184257	100.00

Area % Report

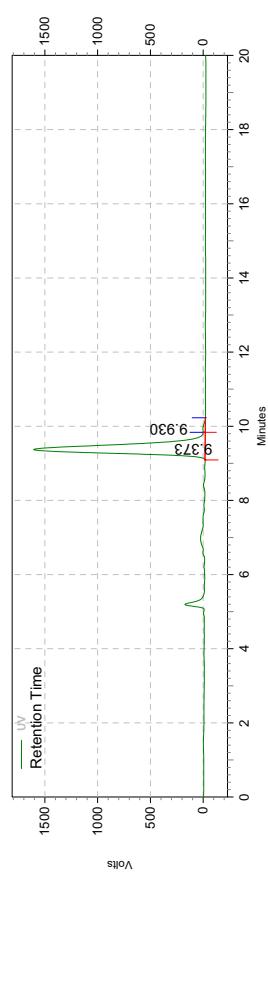
Page 1 of 1

Data File: C:\EZChrom
Elite\Enterprise\Projects\famamide\Datadf\344F_NH+racemat_130607_daniel_99,5_to_0,5_250nm_30min.met.
dat
Method: C:\EZChrom
Elite\Enterprise\Projects\famamide\Method\daniel_99,5_to_0,5_250nm_30min.met
Acquired: 6/13/2007 8:24:00 PM
Printed: 6/13/2007 8:59:06 PM

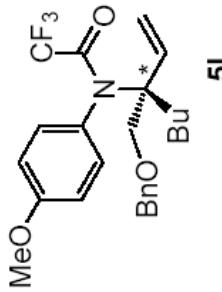

UV Results

Retention Time	Area	Area %	Height	Height %
12.027	8640951	20.63	483119	22.89
12.673	33251997	79.37	1627711	77.11
Totals	41892948	100.00	2110830	100.00

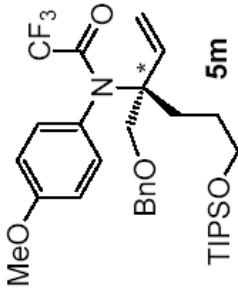
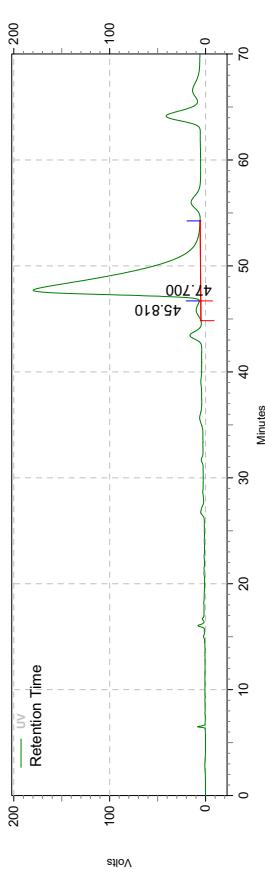
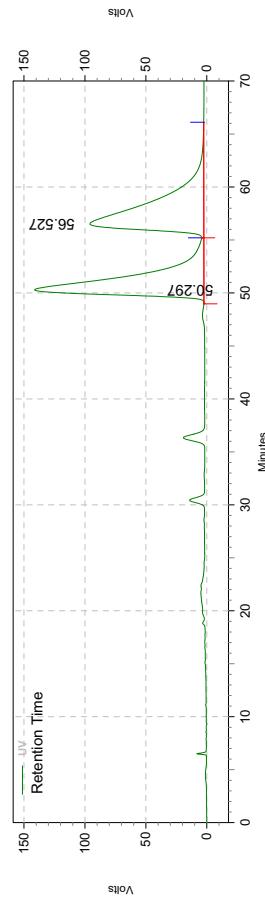
5k + racemate


Area % Report

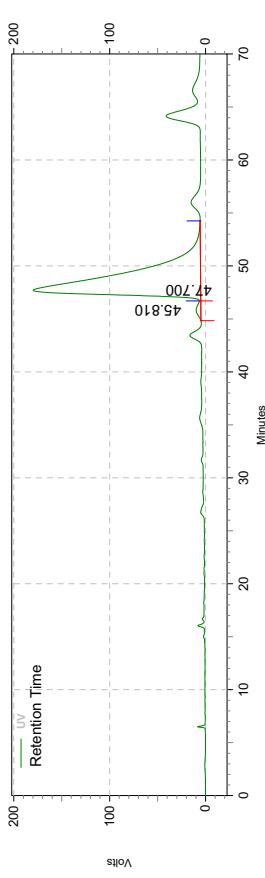
Data File: C:\EZChrom Elite\Enterprise\Projects\famide\Data\Lucas\racemate_CH2OBn-Bu_daniel_99tol_210nm.met.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\famide\Method\daniel_99tol_210nm.met
 Acquired: 4/29/2007 1:21:21 PM
 Printed: 4/29/2007 7:52:43 PM


UV Results

Retention Time	Area	Area %	Height	Height %
Totals	32505183	100.00	2333284	100.00

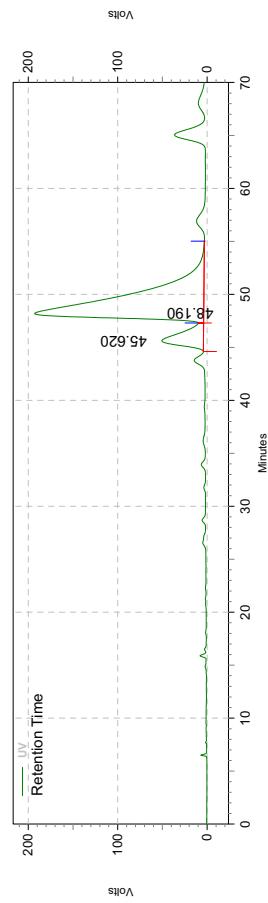



UV Results

Retention Time	Area	Area %	Height	Height %
Totals	102280276	100.00	6590487	100.00



Area % Report**Area % Report**

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
 Folder\tracemat_CH2OBn-POTIPS_daniel_300ppm_EtOH_70min_.met.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_300ppm_EtOH_70min_.met
 Acquired: 5/8/2007 8:07:03 PM
 Printed: 5/8/2007 9:18:15 PM


Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
 Folder\df-351M_daniel_300ppm_EtOH_70min_.met.dat
 Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_300ppm_EtOH_70min_.met
 Acquired: 5/8/2007 9:18:20 PM
 Printed: 5/8/2007 11:24:23 PM

Area % Report

Page 1 of 1

Data File: C:\EZChrom Elite\Enterprise\Projects\fcamide\Data\New
Folder\df-351M+racemat_daniel_300ppm_EtOH_70min_.met.dat
Method: C:\EZChrom Elite\Enterprise\Projects\fcamide\Method\daniel_300ppm_EtOH_70min_.met
Acquired: 5/8/2007 10:29:39 PM
Printed: 5/8/2007 11:46:15 PM

UV Results

Retention Time	Area	Area %	Height	Height %
45.620	15325561	12.81	186067	19.75
48.190	104300178	87.19	736167	80.25

Totals	119625739	100.00	942234	100.00

5m + racemate