

Supporting Information © Wiley-VCH 2007

● Wilcy-VOI1 2007

69451 Weinheim, Germany

Organocatalytic Asymmetric α -Selenenylation of Aldehydes

Marcello Tiecco¹, Armando Carlone², Silvia Sternativo¹, Francesca Marini¹,* Giuseppe Bartoli², and Paolo Melchiorre²*

¹Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Organica, Università di Perugia, 06123 Perugia, Italy

e-mail: marini@unipg.it

²Dipartimento di Chimica Organica "A. Mangini" Alma Mater Studiorum - Università di Bologna viale Risorgimento, 4 - 40136 Bologna, Italy e-mail: pm@ms.fci.unibo.it

Contents

General Methods	S2
Materials	s2
Determination of Enantiomeric Purity	s2
Determination of Absolute Configuration	s3
Experimental Procedures	.
General Procedure for the Organocatalytic Asymmetric α-Selenenylation of Aldehyde	
Synthesis of the 1,3-oxazolidinone 5S8	
Synthesis of the N-benzyl $lpha$ -seleno amine 6S8	
NMR Spectra	S10
Representative HPLC Traces	\$21

General Methods. The ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 400 MHz and 100 MHz, respectively. The chemical shifts (δ) are referenced to internal standard TMS (1H NMR) and to residual signals of the solvents (CHCl₃ - 77.0 ppm for ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; br, broad signal. Purification of reaction products was carried out by flash chromatography (FC) on silica gel (230-400 mesh) according to the method of Still. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Mass spectra were obtained from the Department of Organic Chemistry "A. Mangini" Mass Spectroscopy facility. Optical rotations are reported as follows: $[\alpha]^{rt}$ (c in g per 100 mL, solvent). All reactions were carried out in air undistilled solvent, without any precautions to exclude moisture unless otherwise noted.

Materials. Commercial grade reagents and solvents were used without further purification; otherwise, where necessary, they were purified as recommended. Aldehyde 1a-h were purchased from Aldrich or Alfa Aesar and used as received. Catalysts A, B, A0 and B0 were prepared according to literature procedure.

N-(Phenylseleno)-phthalimide 2 was purchased from Aldrich and used as received. Note that 2 is provided in 77% of purity (Technical grade) and the stoichiometry of the reaction was adjusted accordingly.

Determination of Enantiomeric Purity. Chiral HPLC analysis was performed on an Agilent 1100-series instrumentation. Daicel Chiralpak AD-H column and Daicel Chiralcel OD-H column with i-PrOH/hexane as the eluent were used.

HPLC traces were compared to racemic samples prepared by carrying out the reactions with racemic Proline as the catalyst.

¹ W. C. Still, M. Kahn, A. J. Mitra, J. Org. Chem. 1978, 43, 2923.

² W. L. F. Armarengo, D. D. Perrin, In *Purification of Laboratory Chemicals*, 4th ed.; Butterworth Heinemann: Oxford, 1996

³ a) K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, *J. Am Chem Soc.* **2000**, *122*, 4243. b) W. S. Jen, J. J. M. Wiener, D. W. C. MacMillan, *J. Am Chem Soc.* **2000**, *122*, 9874.

⁴ M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, *Angew. Chem. Int. Ed.* **2005**, *44*, 794.

⁵ The catalyst C can be easily prepared by protection of the commercial available α,α -diphenylprolinol with TMSOTf. See: J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard, K. A. Jørgensen *J. Am. Chem. Soc.* **2005**, *127*, 18296.

Determination of Absolute Configuration.

The absolute configuration of the optically active α -seleno aldehyde 3a was determined to be (S) on the basis of the measured optical rotation that was compared with the literature value. All other absolute configurations were assigned by analogy based on an uniform reaction mechanism.

The absolute configuration of the optically active 1,3-oxazolidinone $\mathbf{5}$ was determined to be (R) on the basis of the measured optical rotation that was compared with the literature value.

(S) -3a (Table 1, entry 9)^{6,8} - The reaction was carried out at -20 °C for 1 h using 10 mol% of (S)-5-benzyl-2,2,3,-trimethylimidazolidin-4-one dichloroacetic salt (A·DCA, 13.9 mg, 0.04 mmol) as the catalyst. To an ordinary vial equipped with a Teflon-coated stir bar and charged with catalyst A·DCA, 0.8 mL of CH₂Cl₂ was added. After addition of 0.6 mmol (1.5 equiv., 43 μ L) of propanal 1a, the solution was stirred for 5 minutes at -20 °C. Then N-(Phenylseleno)-phthalimide 2 (0.4 mmol, 157 mg) was added in one portion, the vial was capped with a rubber stopper and stirring was continued for 1 h, after which the reaction mixture was directly charged on column chromatography. The ee of the crude reaction mixture was determined by HPLC analysis to be 94%. The title compound was isolated as a yellowish oil in 99% yield (84 mg) after column chromatography (hexane/AcOEt = 92/8) with a slight racemization (80% ee).8 The ee was determined by HPLC analysis using a Chiralpak AD-H column (80/20 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_R = 6.2 min; τ_S = 6.7 min). $[\alpha]^{\text{rt}}_{\text{D}} = -205.6 \ (c = 1.02, \text{CH}_2\text{Cl}_2, 80\% \text{ ee. Lit.}^6 \ [\alpha]^{20}_{\text{D}} = +265-290,$ (R) - 3a, (C = 1.8, CH₂Cl₂, 95% ee). HRMS: m/z calcd for $C_9H_{10}OSe$: 213.98969; found: 213.9897. ¹H NMR: $\delta = 1.47$ (d, J = 6.8, 3H), 3.72 (dq, J = 2.8, 6.8 Hz, 1H), 7.26-7.38 (m, 3H), 7.50-7.55 (m, 2H),9.45 (d, J = 2.8, 1H); ¹³C NMR: $\delta = 13.4$ (CH₃), 45.6 (CH), 125.7 (C), 128.9 (CH), 129.3 (CH), 136.1 (C), 193.5 (C).

⁶ a) R. G. Shea, J. N. Fitzner, J. E. Fankhauser, A. Spaltenstein, P. A. Carpino, R. M. Peevey, D. V. Pratt, B. J. Tenge, P. B. Hopkins, *J. Org. Chem.* **1986**, *51*, 5243; b) W. Wang, J. Wang, H. Lao, *Org. Lett.* **2004**, *6*, 2817.

⁷ M. Feroci, A. Inesi, L. Palombi, L. Rossi, G. Sotgiu J. Org. Chem., **2001**, 66, 6185.

⁸ The authors in reference 6 stated that the α-seleno aldehyde 3a was prone to racemization and all the attempts to isolate the title compound following standard procedures resulted in a slight racemization.

Experimental Procedures

General Procedure for the Organocatalytic Asymmetric Selenenylation of Aldehydes. All the reactions were carried out in undistilled solvents without any precautions to exclude water. In an ordinary vial equipped with a Teflon-coated stir bar, catalyst B (0.02 mmol, 12.0 mg, 5 mol) and $pNO_2C_4H_4CO_2H$ (0.02 mmol, 3.3 mg, 5)mol%) were dissolved in 0.8 mL of toluene (0.5 M). After addition of 0.6 mmol (1.5 equiv.) of the aldehyde 1, the solution was stirred for 10 minutes at the indicated temperature (generally 0 °C). Then N-(Phenylseleno)-phthalimide 2 (0.4 mmol, 77% purity, 157 mg) was added in one portion, the vial was capped with a rubber stopper and stirring was continued for the indicated time (generally 40 h). Upon completion of the reaction, the mixture was cooled to 0 °C and diluted with 1.6 mL of MeOH; solid NaBH4 (0.7 mmol, 1.75 equiv) was added in one portion. Frothing occurs but is readily controllable through magnetic stirring of the solution. After 30 minutes the mixture was quenched with few drops of water. Brine (5 mL) was added and the resulting mixture extracted with AcOEt (3 \times 10 mL). The combined organics were washed with brine (5 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography (FC) to yield the desired α -seleno alcohol derivatives 4.

SePh (S)-4a (Table 2, entry 1) - The reaction was carried out Me OH at 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \mathrm{NO_2 PhCO_2 H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 95/5) in 99% yield and 95% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_S = 9.6 min; τ_R = 11.2 min). [α] $^{\mathrm{rt}}_{\mathrm{D}}$ = + 4.2 (c = 1.1, CHCl₃, 95% ee). HRMS: m/z calcd for $\mathrm{C_9H_{12}OSe}$: 216.00534; found: 216.0053. $^1\mathrm{H}$ NMR: δ = 1.41 (d, J = 7.2, 3H), 2.12 (br, OH), 3.33-3.41 (m, 1H), 3.48-3.63 (m, 2H), 7.26-7.32 (m, 3H), 7.55-7.59 (m, 2H); $^{13}\mathrm{C}$ NMR: δ = 18.1 (CH₃), 43.1 (CH), 60.0 (CH₂), 127.2 (C), 128.0 (CH), 129.1 (CH), 135.5 (C).

SePh (S)-4b (Table 2, entry 2) - The reaction was carried out at 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \text{NO}_2 \text{PhCO}_2 \text{H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 89% yield and 99% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_{minor} = 7.5 min; τ_{major} = 8.5 min). [α] τ_{D} = - 11.6 (c = 1.5, CHCl₃, 98.5% ee). HRMS: m/z calcd for τ_{D} = - 11.6 (τ_{D} = 1.5, CHCl₃, 98.5% ee). HRMS: τ_{D} = 6.8, 3H), 1.08 (d, τ_{D} = 6.8, 3H), 1.98-2.09 (m, 1H), 2.25 (br, OH), 3.14-3.20 (m, 1H), 3.63-3.71 (m, 1H), 3.71-3.78 (m, 1H), 7.25-7.28 (m, 3H), 7.56-7.59 (m, 2H); τ_{D} NMR: τ_{D} = 20.5 (CH₃), 21.1 (CH₃), 29.9 (CH), 60.0 (CH), 63.3 (CH₂), 127.5 (CH), 129.1 (CH), 134.5 (C).

SePh (S)-4c (Table 2, entry 4) - The reaction was carried out at Et OH 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \text{NO}_2 \text{PhCO}_2 \text{H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 84% yield and 97% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_S = 8.9 min; τ_R = 9.4 min). [α] τ_D - 23.5 (σ = 1.04, CHCl₃, 97% ee). HRMS: m/z calcd for σ Clohula Check 230.02099; found: 230.0211. τ_D NMR: σ = 1.09 (t, σ = 7.2, 3H), 1.56-1.78 (m, 2H), 2.17 (dd, σ = 5.6, 7.6, OH), 3.14-3.20 (m, 1H), 3.51-3.58 (m, 1H), 3.61-3.68 (m, 1H), 7.25-7.32 (m, 3H), 7.55-7.59 (m, 2H); τ_D NMR: σ = 12.5 (CH₃), 24.8 (CH₂), 52.4 (CH), 64.0 (CH₂), 127.4 (C), 127.9 (CH), 129.1 (CH), 135.4 (C).

SePh (S)-4d (Table 2, entry 5) - The reaction was carried out at Burnell OH 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \mathrm{NO_2PhCO_2H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 99% yield and 98% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_S = 7.5 min; τ_R = 7.9 min). [α] rt D = - 24.5 (α = 1.1,

CHCl₃, 98% ee). HRMS: m/z calcd for $C_{12}H_{18}OSe$: 258.05228; found: 258.0523. ¹H NMR: δ = 0.90 (t, J = 7.2, 3H), 1.25-1.70 (m, 6H), 2.21 (br, OH), 3.20-3.26 (m, 1H), 3.49-3.56 (m, 1H), 3.59-3.65 (m, 1H), 7.25-7.31 (m, 3H), 7.55-7.58 (m, 2H); ¹³C NMR: δ = 13.9 (CH₃), 22.5 (CH₂), 29.9 (CH₂), 31.4 (CH₂), 50.6 (CH), 64.3 (CH₂), 127.4 (C), 127.4 (C), 127.9 (CH), 129.1 (CH), 135.4 (C).

SePh (S)-4e (Table 2, entry 6) - The reaction was carried out at 0 °C for 40 h using 5 mol% of catalyst $B \cdot p NO_2 Ph CO_2 H$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 81% yield and 97.2% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_R = 11.3 min; τ_S = 12.5 min). [α] rt_D = - 14.9 (c = 1.4, CHCl₃, 97% ee). HRMS: m/z calcd for $C_{15}H_{16}OSe$: 292.03664; found: 292.0365. H NMR: δ = 2.14 (br, OH), 2.96-3.06 (m, 2H), 3.47-3.65 (m, 3H), 7.19-7.33 (m, 8H), 7.52-7.55 (m, 2H); HC NMR: δ = 38.2 (CH₂), 50.6 (CH), 63.1 (CH₂), 126.6 (CH), 127.7 (C), 128.0 (CH), 128.5 (CH), 129.1 (CH), 129.15 (CH), 135.2 (CH), 139.0 (C).

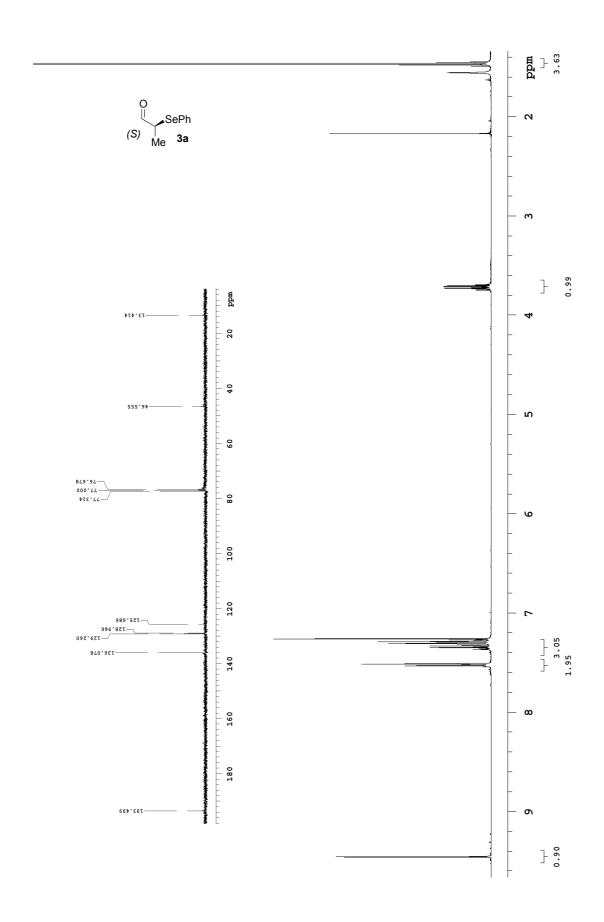
SePh (S)-4f (Table 2, entry 7) - The reaction was carried out at 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \text{NO}_2 \text{PhCO}_2 \text{H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 91% yield and 98% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_R = 8.9 min; τ_S = 9.4 min). [α] $^{\text{rt}}_{\text{D}}$ = -17.3 (c = 1.2, CHCl₃, 98% ee). HRMS: m/z calcd for $C_{11}H_{14}OSe$: 242.02099; found: 242.0209. ^{1}H NMR: δ = 2.11 (br, OH), 2.44-2.48 (m, 2H), 3.27-3.34 (m, 1H), 3.58 (dd, J = 6.0, 11.6 Hz, 1H), 3.66 (dd, J = 5.6, 11.6 Hz, 1H), 5.09-5.16 (m, 2H), 5.83-5.94 (m, 1H), 7.25-7.32 (m, 3H), 7.56-7.59 (m, 2H); ^{13}C NMR: δ = 36.3 (CH₂), 48.7 (CH), 63.9 (CH₂), 117.4 (CH), 127.3 (C), 128.0 (CH), 129.1 (CH), 135.4 (CH), 135.5 (C).

SePh (R)-4g (Table 2, entry 8) - The reaction was carried out at 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \text{NO}_2 \text{PhCO}_2 \text{H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 94% yield and 98% ee. The ee was determined by HPLC analysis using a Chiralcel OD-H column (90/10 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_S = 9.6 min; τ_R = 11.0 min). [α] $^{\text{rt}}_{\text{D}}$ = + 0.7 (c = 2.1, CHCl₃, 98% ee). HRMS: m/z calcd for $C_{10}H_{14}OSSe$: 261.99306; found: 261.9933. ^{1}H NMR: δ = 2.12 (s, 3H), 2.29 (t, J = 6.4, OH), 2.81 (dd, J = 9.6, 13.6 Hz, 1H), 2.94 (dd, J = 9.6, 13.6 Hz, 1H), 3.41-3.47 (m, 1H), 3.74-3.88 (m, 2H), 7.27-7.33 (m, 3H), 7.58-7.62 (m, 2H); ^{13}C NMR: δ = 16.1 (CH₃), 36.9 (CH₂), 47.4 (CH), 63.5 (CH₂), 127.1 (C), 128.3 (CH), 129.3 (CH), 135.5 (CH).

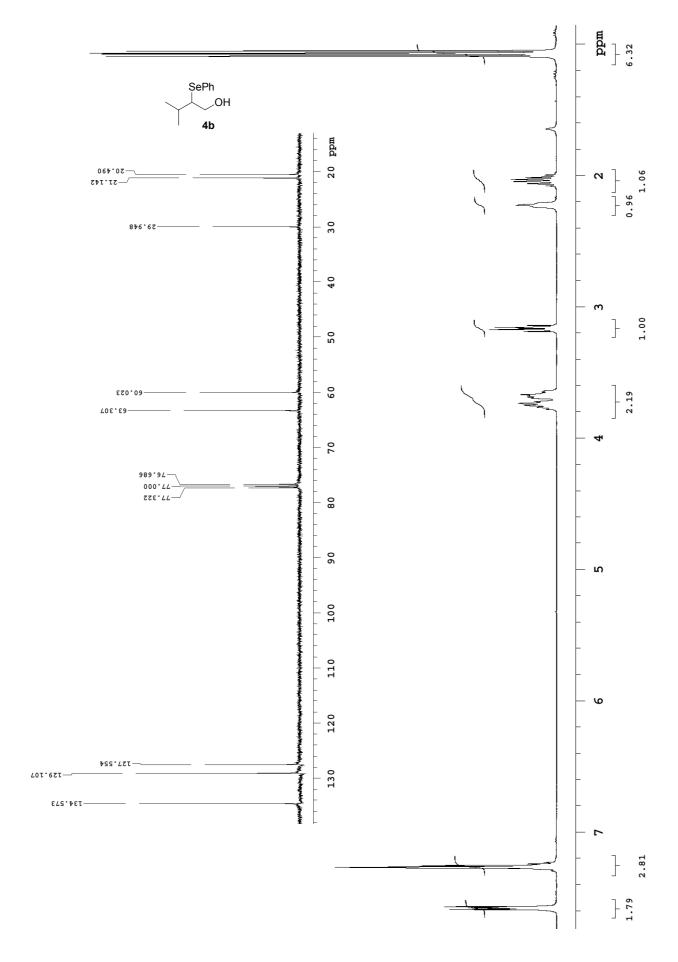
SePh (S)-4h (Table 2, entry 9) - The reaction was carried out at 0 °C for 40 h using 5 mol% of catalyst $\mathbf{B} \cdot p \text{NO}_2 \text{PhCO}_2 \text{H}$ following the general procedure. The title compound was isolated as a colourless oil by column chromatography (DCM/Et₂O = 97/3) in 99% yield and 99% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (80/20 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 214, 254 nm; τ_R = 5.7 min; τ_S = 6.4 min). [α] rt D= + 3.7 (α = 1.0, CHCl3, 99% ee). HRMS: α calcd for α ca

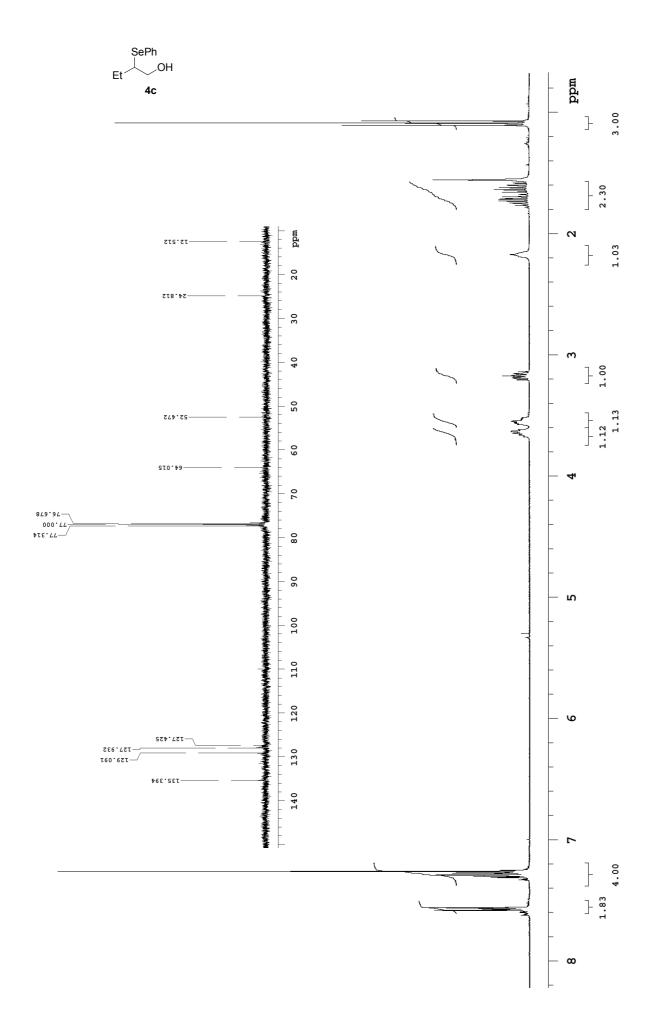
Synthesis of the 1,3-oxazolidinone 5

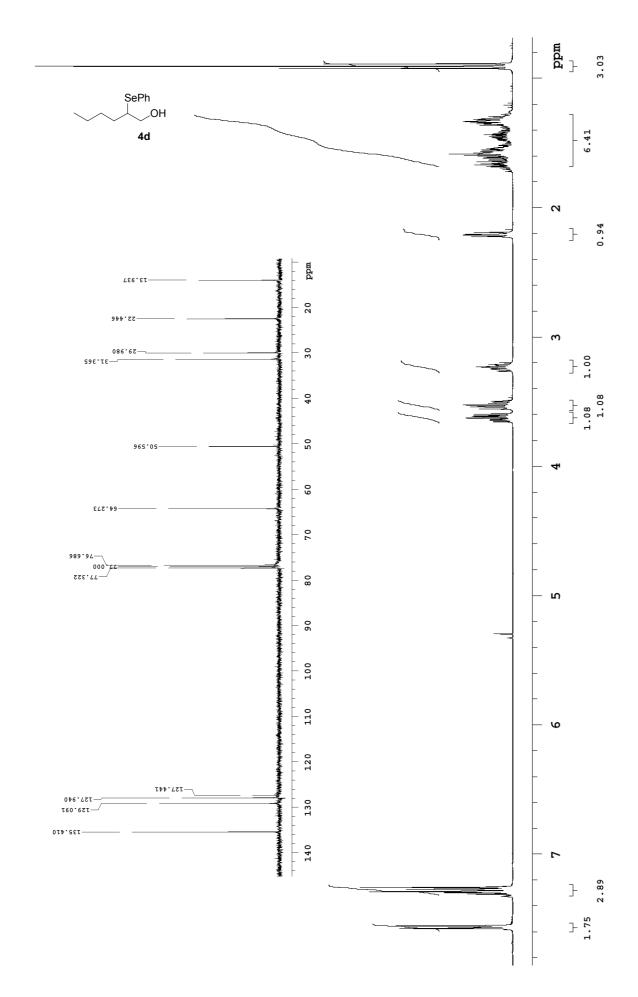
(R) -5 (Scheme 1) 7 - In a 10 mL vial equipped with a O Teflon-coated stir bar compound 4b (0.4 mmol, 98 mg) was dissolved in CH₂Cl₂ (2 mL) and treated with benzoyl isocyanate (90% of purity, 0.44 mmol, 72 mg). The vial was capped with a rubber septum and the reaction was stirred under nitrogen at room temperature overnight. Then, the mixture was diluted with 5.0 mL of CH_2Cl_2 and K_2HPO_4 (2 mmol, 0.35 g) and MCPBA, (77% of purity, 1.6 mmol, 0.36 g) were added. After 15 minutes KOH (2.8 mmol, 0.16 g) was added and the mixture was stirred for 2 h, then quenched with water (10 mL) and extracted with diethyl ether (3 x 10 mL). The organic layers were dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel (light petroleum/Et₂O = 60/40) to yield the (4R)-3-benzoyl-4isopropyl-1,3-oxazolidin-2-one 5 in 84% yield and 96% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (85/15 hexane/i-PrOH; flow rate 0.8 mL/min; λ = 230 nm; τ_S = 14.3 min; τ_R = 15.6 min). $[\alpha]^{\text{rt}}_{\text{D}} = -105.0 \ (c = 0.3, \text{AcOEt}, 96\% \text{ ee})$. Lit. $[\alpha]^{20}_{\text{D}} = +$ 155, (S) - 5, (c = 1.0, AcOEt, 99% ee). ¹H NMR: $\delta = 1.0$ (d, J = 6.9, C)3H), 1.01 (d, J = 6.9, 3H), 2.51 (dsept, J = 4.4, 7.0, 1H), 4.28 (dd, J = 5.5, 9.0, 1H), 4.42 (t, J = 9.0, 1H), 4.71 (ddd, J = 4.4,5.5, 9.0, 1H), 7.43-7.49 (m, 2H), 7.54-7.59 (m, 1H), 7.71-7.66 (m, 2H); 13 C NMR: δ = 15.1 (CH₃), 17.9 (CH₃), 28.3 (CH), 58.6 (CH), 63.4 (CH₂), 127.9 (CH), 129.1 (CH), 132.4 (CH), 133 2 (C), 153.8 (C), 169.8 (C).

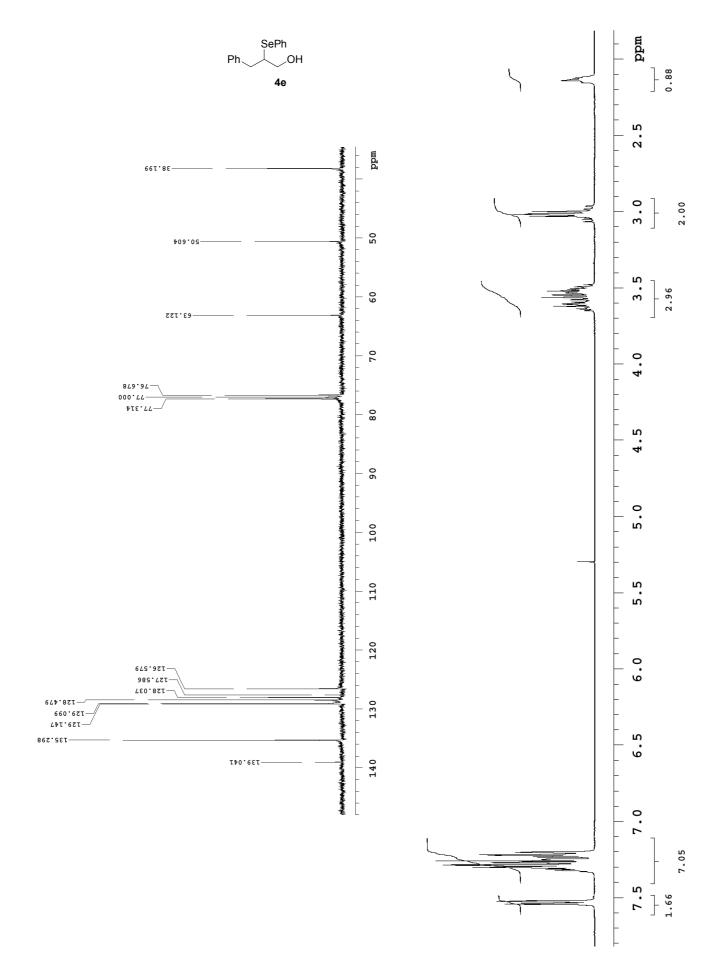

Synthesis of the N-benzyl seleno amine 6

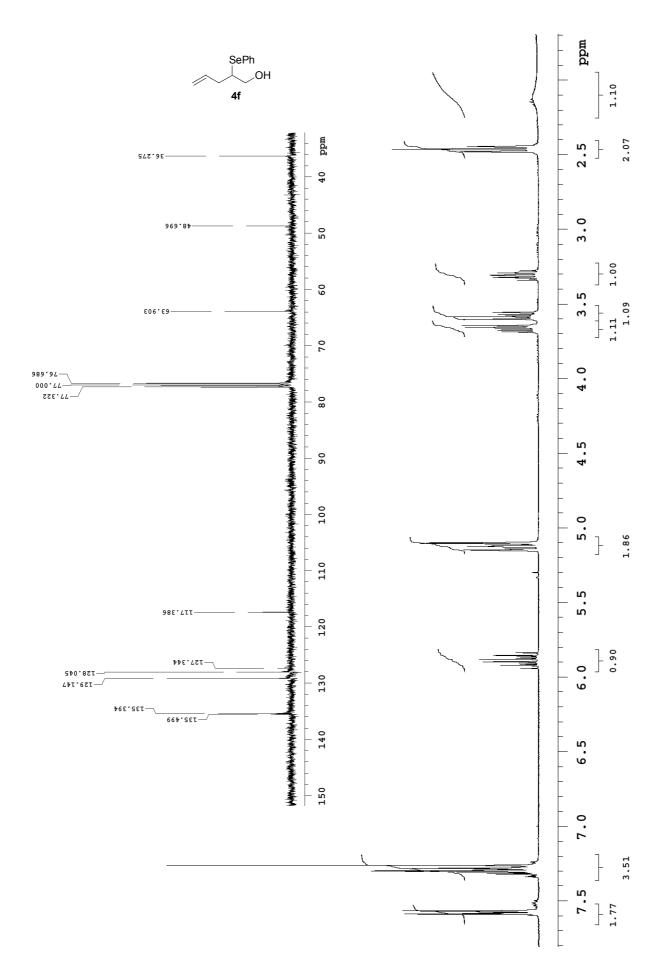
SePh (S)-6 (Scheme 1) - In a 10 mL vial equipped with a j-Pr NHBn Teflon-coated stir bar catalyst **B** (0.04 mmol, 24.0 mg) and pNO₂PhCO₂H (0.04 mmol, 6.7 mg) were dissolved in 0.8 mL of CH₂Cl₂. After addition of the aldehyde **1b** (0.6 mmol, 64.4 μ L), the solution was stirred for 5 minutes at -10 °C. Then, N-(Phenylseleno)-phthalimide **2** (0.4 mmol, 157 mg) was added and the vial was capped with a rubber stopper. Stirring was continued for 2.5 h then the reaction was diluted with CH₂Cl₂ (3 mL) and MgSO₄ (0.24 g) was added.

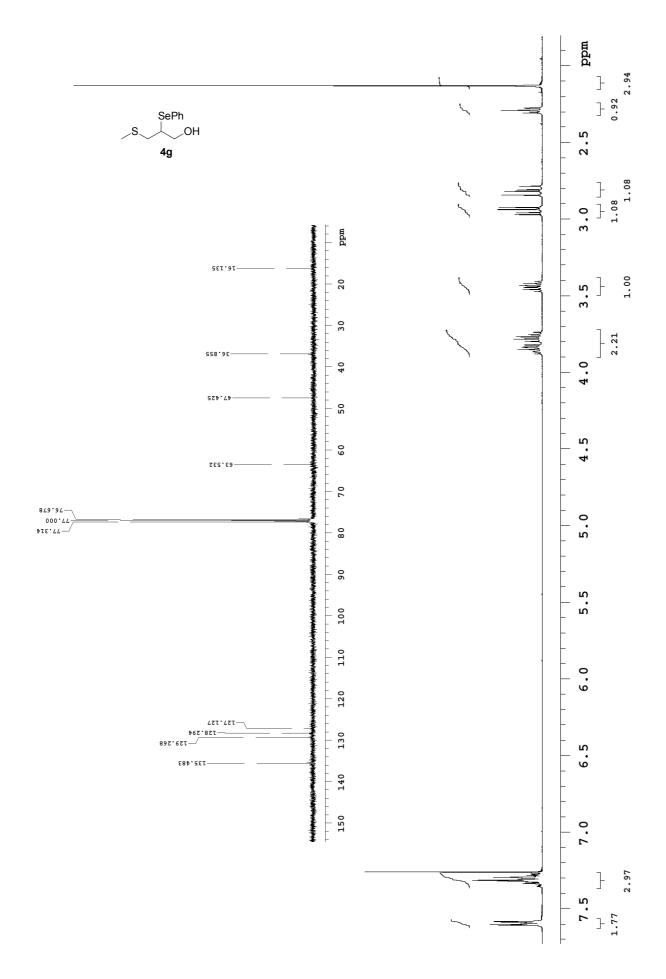

The ee of the aldehyde intermediate 3b was determined to be 98% by HPLC analysis of the crude reaction mixture (Chiralpak AS-H column, 85/15 hexane/i-PrOH; flow rate 0.75 mL/min; λ = 230 nm; τ_{minor} = 6.2 min; $\tau_{major} = 6.7$ min). The mixture was stirred for ten minutes and benzylamine (1 mmol, 109.0 μL) was added. After 4h vigorous stirring at room temperature EtOH (5 mL), NaCNBH₃ (0.25 mmol, 16 mg) and acetic acid (0.4 mmol, 23 $\mu \rm L)$ were added successively at -78 $^{\circ} \rm C$ under nitrogen. The temperature was allowed to rise to room temperature in one hour and then the reaction was quenched with water (10 mL) and extracted with CH_2Cl_2 (3 \times 10 mL). The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by flash chromatography (light petroleum/Et₂O = 80/20) to yield 6^9 in 60% overall yield and 98% ee. The ee was determined by HPLC analysis using a Chiralpak AD-H column (99.3/0.7 hexane/i-PrOH; flow rate 1.0 mL/min; λ = 230 nm; τ_S = 6.7 min; $\tau_R = 7.5 \text{ min}$). $[\alpha]^{\text{rt}}_{\text{D}} = -18.0 \text{ (}c = 3.2, \text{ CHCl}_3, 98\% \text{ ee}), ^1\text{H NMR}$: $\delta =$ 1.03 (d, J = 6.8, 3H), 1.07 (d, J = 6.8, 3H), 1.82 (br s, 1H), 1.99-2.09 (m, 1H), 2.83 (dd, J = 8.5, 12.6, 1H), 2.92 (dd, J = 5.1, 12.6, 1H), 3.29 (dt, J = 5.1, 8.5, 1H), 3.77 (d, J = 13.3, 1H), 3.82 (d, J= 13.3, 1H), 7.25-7.38 (m, 8H), 7.50-7.55 (m, 2H); 13 C NMR: δ = 20.1 (CH_3) , 21.0 (CH_3) , 31.3 (CH), 51.7 (CH_2) , 53.6 (CH_2) , 56.7 (CH), 126.9 (CH), 127.2 (CH), 128.0 (CH), 128.4 (CH), 129.0 (CH), 130.1 (C), 134 4 (CH), 140.2 (C).

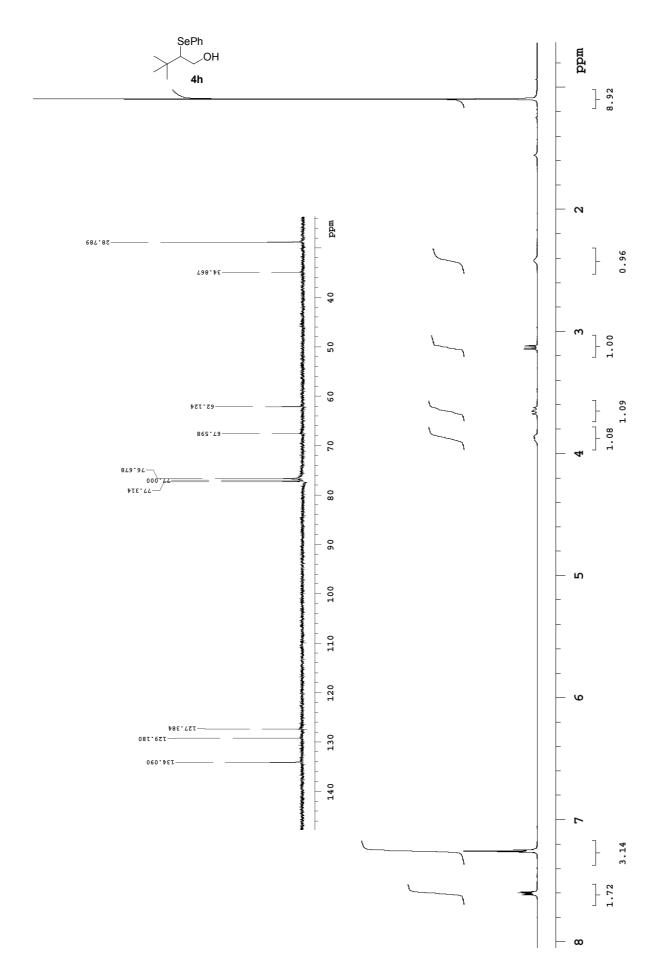

_

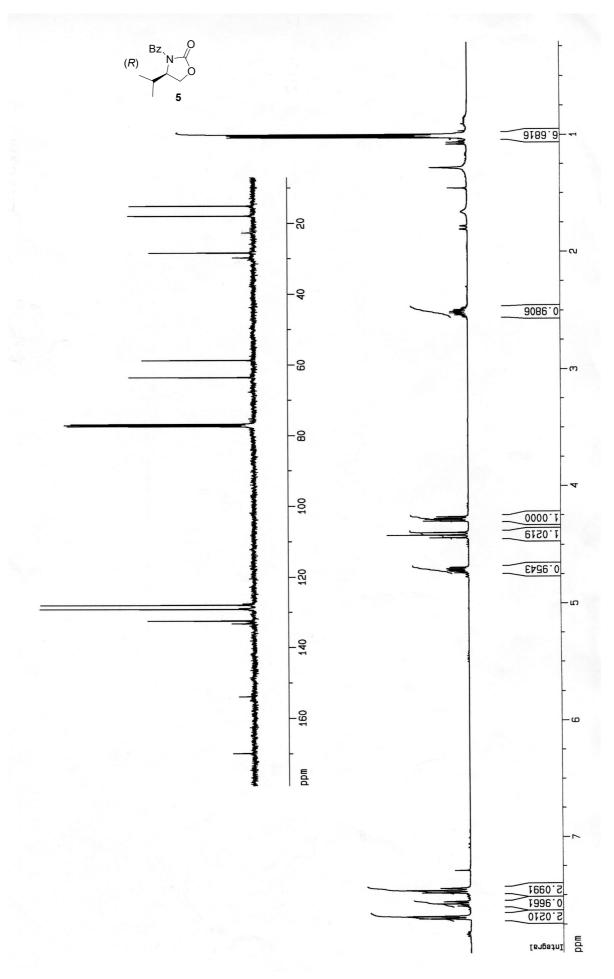

⁹ C. Miniejew, F. Outurquin, X. Pannecoucke *Tetrahedron*, **2005**, *61*, 447.

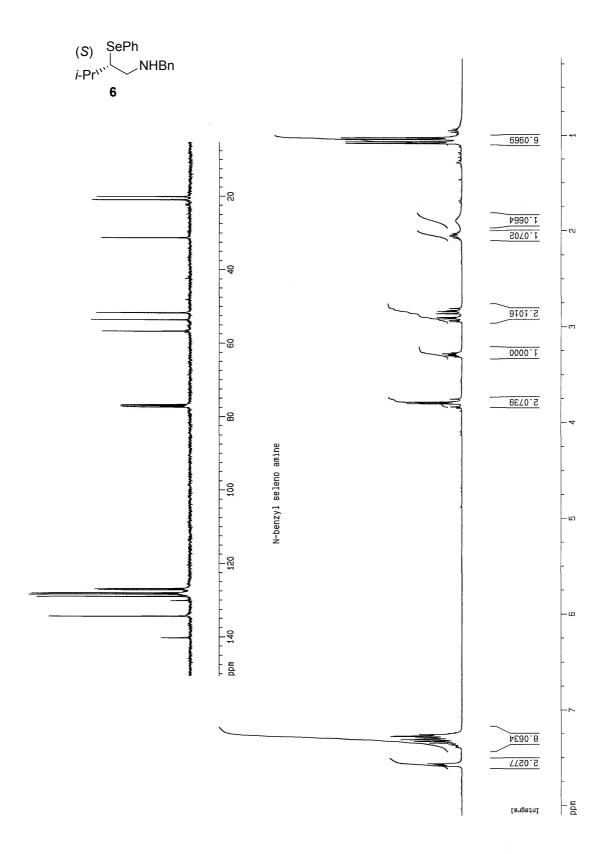


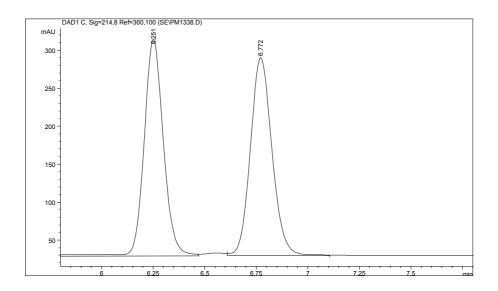


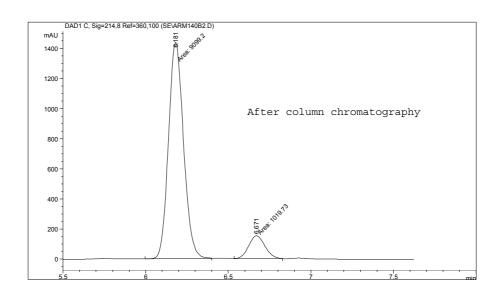




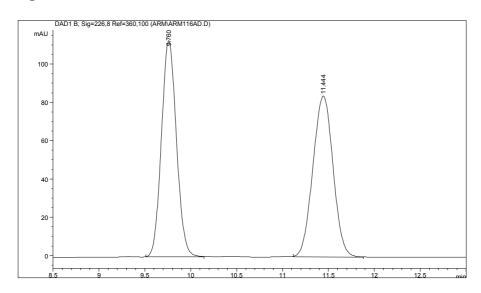


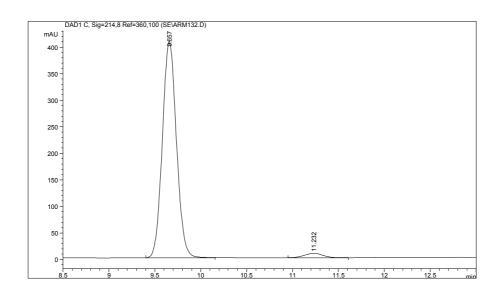




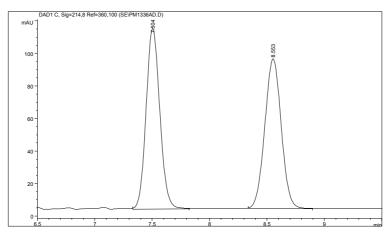


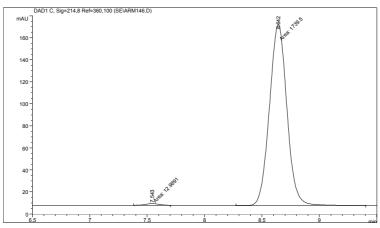
Representative HPLC Traces

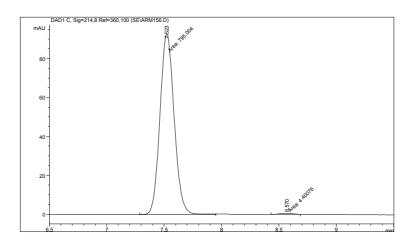

Chiralpak AD-H column (8/2 hexane/iPrOH - flow rate: 0.75 mL/min)



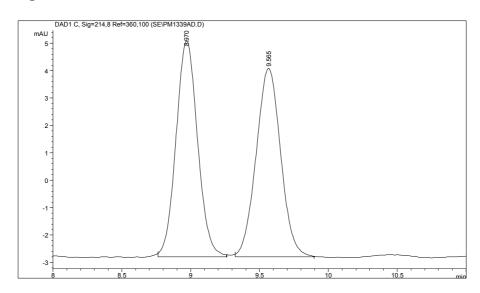
Peak	RetTime Typ	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	왕
-					
1	6.181 MM	0.1054	9099.20117	1438.42383	89.9225
2	6.671 MM	0.1126	1019.73090	150.90479	10.0775

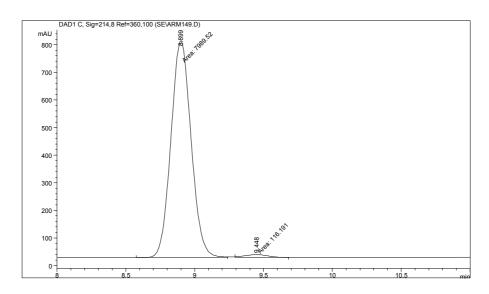

Chiralpak AD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)



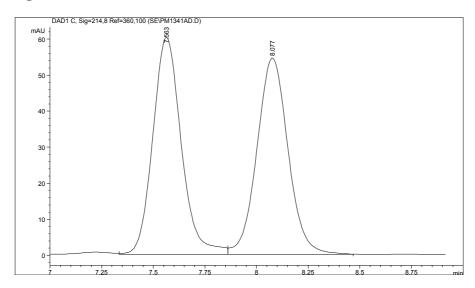

Peak	RetTime	e Type	Width	Area	Height	Area
•••			[min]		[mAU]	
-						
1	9.657	BB	0.1666	4353.00830	407.56747	97.4676
2	11.232	BP	0.2154	113.10140	8.17477	2.5324

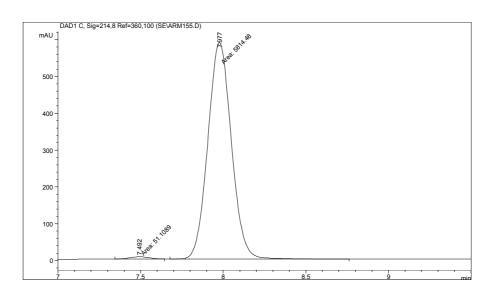
Chiralpak AD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)



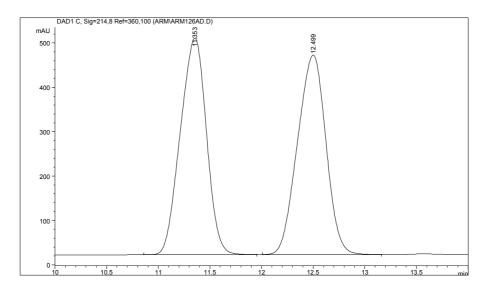

Peak	RetTime	: Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	7.543	MM	0.1412	12.98906	1.53269	0.7412
2	8.642	MM	0.1763	1739.49646	164.46425	99.2588

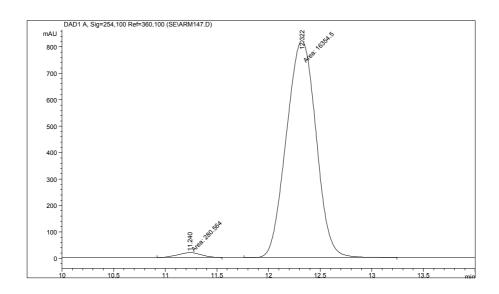
Peak	RetTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	왕
-		- -			
1	7.523 MM	0.1429	795.00409	92.74030	99.4495
2	8.570 MM	0.1416	4.40076	5.17930e-1	0.5505


Chiralpak AD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)

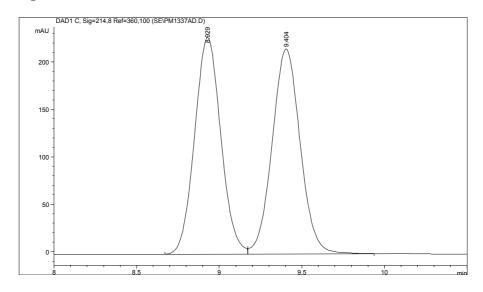


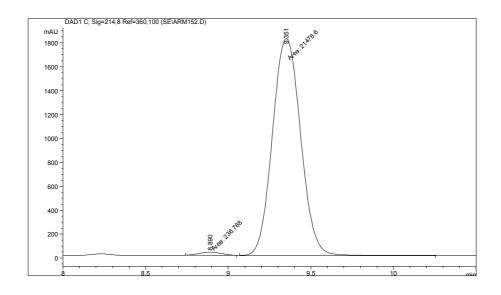
Peak	RetTime	e Type	Width	Area	Height	Area
			[min]		[mAU]	
-						
1	8.899	MM	0.1694	7989.51709	785.98401	98.5666
2	9.448	MM	0.1934	116.19065	10.01442	1.4334


Chiralpak AD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)

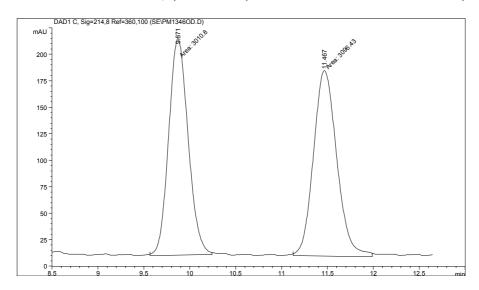


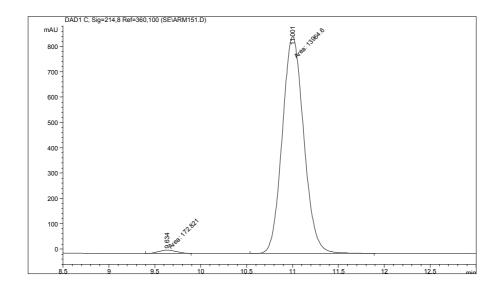
Peak	RetTime	e Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.492	MM	0.1408	51.10894	6.05022	0.8713
2	7.977	MM	0.1646	5814.48437	588.77167	99.1287


Chiralpak AD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)

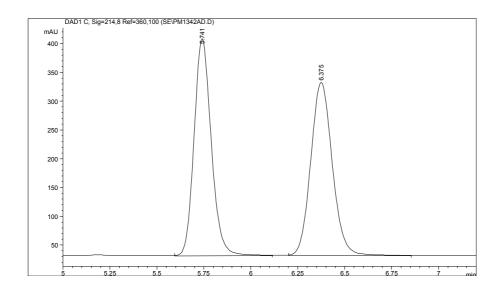


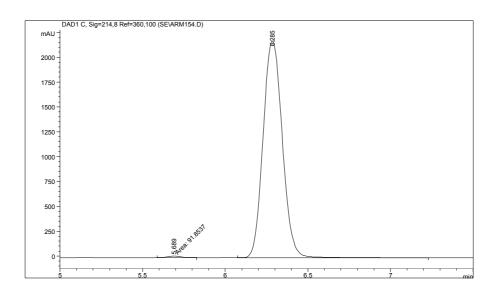
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	11.240	MM	0.2625	280.56375	17.81289	1.6866
2	12.322	MM	0.3322	1.63545e4	820.43994	98.3134


Chiralpak AD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)

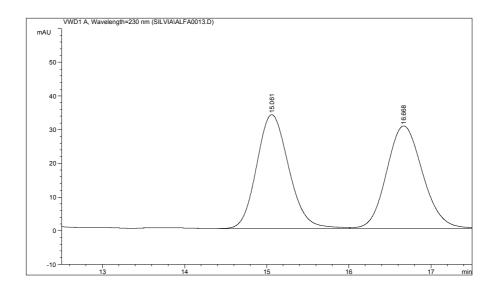


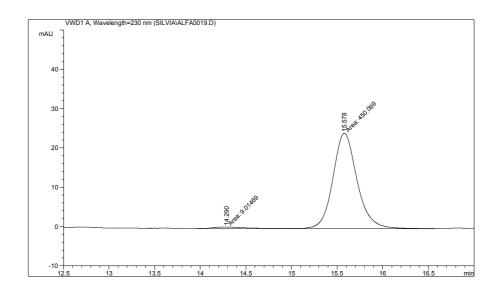
Peak	RetTime	e Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.890	MM	0.1540	236.78754	25.62654	1.0904
2	9.351	MM	0.1971	2.14786e4	1816.24890	98.9096

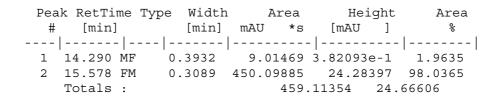

Chiralcel OD-H column (9/1 hexane/iPrOH - flow rate: 0.75 mL/min)



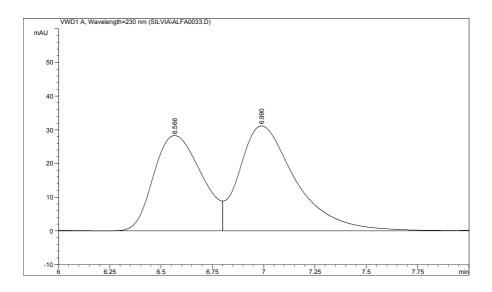
Peak	RetTime	e Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-		-				
1	9.634	MM	0.2234	172.82126	12.89050	1.2224
2	11.001	MM	0.2716	1.39646e4	856.99030	98.7776

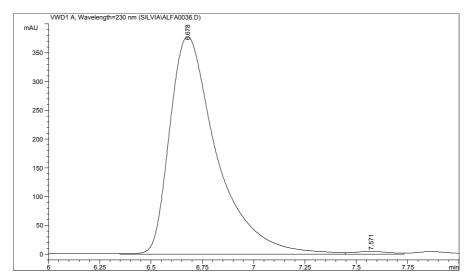

Chiralpak AD-H column (8/2 hexane/iPrOH - flow rate: 0.75 mL/min)

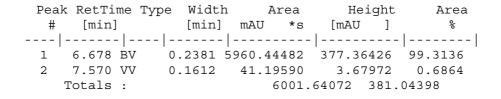




Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
-					
1	5.689 MM	0.0985	91.85374	15.53846	0.5180
2	6.285 VB	0.1283	1.76393e4	2183.11938	99.4820


HPLC conditions: Chiralpak AD-H, hexane/i-PrOH 85/15, Flow 0.8 mL/min





HPLC conditions: Chiralpak AD-H, hexane/i-PrOH 99.3/0.7, Flow 1.0 mL/min

