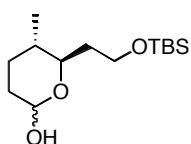


Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

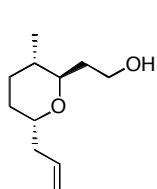

Oxidative Cleavage in the Construction of Complex Molecules. Synthesis of the Leucascandrolide A Macrolactone

Hyung Hoon Jung, John R. Seiders, II, and Paul E. Floreancig*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

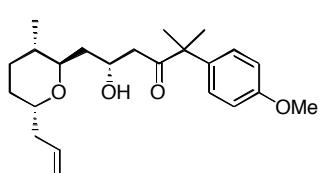
General

Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded on Bruker Avance 300 spectrometers at 300 MHz and 75 MHz, respectively; or Bruker Avance 500 spectrometers at 500 MHz and 125 MHz if specified. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak or the internal standard tetramethylsilane were used as reference values. For ¹H NMR: CDCl₃ = 7.26 ppm, C₆D₆ = 7.15 ppm, TMS = 0.00 ppm. For ¹³C NMR: CDCl₃ = 77.23, C₆D₆ = 128.0, TMS = 0.00. For proton data: s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets; dt = doublet of triplets; ddd = doublet of doublet of doublets; dddd = doublet of doublet of doublet of doublets; ddt = doublet of doublet of triplets; ddq = doublet of doublet of quartets; br = broad; m = multiplet; app t = apparent triplet; app q = apparent quartet; app p = apparent pentet. High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer. Infrared (IR) spectra were collected on a Mattson Gygnus 100 spectrometer. Analytical gas chromatography (GC) was performed using a Hewlett-Packard 6850 Series Gas Chromatograph fitted with a flame ionization detector. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Analytical thin layer chromatography (TLC) was performed on E. Merck pre-coated (25 nm) silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash column chromatography was performed using ICN SiliTech 32-63 60Å silica gel. Reagent grade ethyl acetate and hexanes (commercial mixture) were purchased from EM Science and used as is for chromatography. Reagent grade methylene chloride (CH₂Cl₂) was distilled from CaH₂. Diethyl ether (Et₂O) and tetrahydrofuran (THF) were dried by passing through aluminum drying column. Anhydrous methanol (CH₃OH), and acetonitrile (CH₃CN) were purchased from Aldrich and used as is. All reactions were conducted under argon or nitrogen atmosphere, unless otherwise specified.



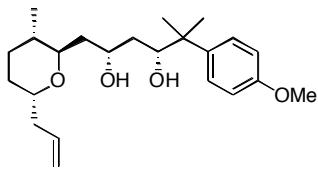
(5S,6R)-6-(2-(tert-Butyldimethylsilyloxy)ethyl)-5-methyltetrahydro-2H-pyran-2-ol (8).

In a two neck round-bottom flask connected to a three way adapter were placed [Rh(CO)₂acac] (42.2 mg, 0.164 mmol), 6-diphenylphosphanyl-2-pyridone (6-DPPon)¹ (229 mg, 0.818 mmol), and THF (5 mL). After stirring at room temperature for 10 min under an atmosphere of Ar gas, a solution of **7** (800 mg, 3.27 mmol) in THF (2.0 mL) was added. A CO balloon and a H₂ balloon were individually fitted into the three way adapter. The reaction mixture was saturated with a mixture of CO and H₂ gases applying three cycles of careful evacuation and refilling with a mixture of gases. The brown mixture was vigorously stirred at room temperature for 3 days. Then solvent was removed under a reduced pressure. The crude was purified by flash column chromatography on silica gel (1:10 to 1:4, EtOAc/Hexanes) to afford **8** (809 mg, 2.95 mmol, 90%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 5.27 (dd, *J* = 4.8, 2.7 Hz, 0.5H), 4.67 (ddd, *J* = 9.3, 5.7, 2.1 Hz, 0.5H), 3.78–3.67 (m, 2.5H), 3.20 (td, *J* = 9.6, 2.4 Hz, 0.5H), 2.79 (m, 0.5H), 2.33 (m, 0.5H), 1.93–1.23 (m, 7H), 0.89 (s, 9H), 0.86 (d, *J* = 6.3 Hz, 1.5H), 0.83 (d, *J* = 6.3 Hz, 1.5H), 0.05 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ


¹ B. Breit, W. Seiche, *J. Am. Chem. Soc.* **2003**, *125*, 6608.

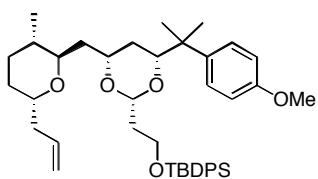
96.3, 91.4, 78.2, 71.3, 59.8, 59.4, 36.2, 36.1, 35.0, 34.4, 33.3, 31.6, 30.2, 26.3, 26.0, 18.3, 18.1, 17.2, -5.22, -5.24, -5.27, -5.32; IR (neat): 3402 (br), 2954, 2929, 2857, 1472, 1462, 1256, 1087 cm^{-1} ; HRMS (EI) m/z calcd. for $\text{C}_{14}\text{H}_{29}\text{O}_2\text{Si}$ ($\text{M}-\text{OH}$) $^+$ 257.1937 found 257.1945; $[\alpha]_D^{23} +56.2$ (c 1.54, CHCl_3).

2-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)ethanol (6).

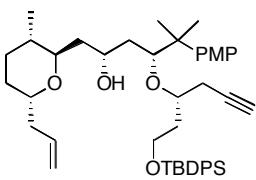

To a solution of **8** (3.00 g, 10.9 mmol) in acetonitrile (50 mL) was added allyltrimethylsilane (8.68 mL, 54.6 mmol). After stirring at room temperature for 5 min, bismuth(III) bromide (2.45 g, 5.45 mmol) was added with a portion. The clear yellow mixture was stirred at room temperature for 20 min. Aqueous saturated NaHCO_3 solution (20 mL) was then added. The resulting solution was stirred at same temperature for additional 20 min. The organic layer was extracted. The aqueous layer was reextracted with EtOAc . The combined organic layers were washed with brine, dried over MgSO_4 , filtered, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (1:4 to 1:2, $\text{EtOAc}/\text{hexanes}$) gave **6** (2.00 g, 10.9 mmol, 99%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 5.81 (m, 1H), 5.10 (m, 2H), 3.96 (m, 1H), 3.73 (m, 2H), 3.45 (td, $J = 9.0, 3.0$ Hz, 1H), 2.95 (m, 1H), 2.60 (m, 1H), 2.17 (m, 1H), 1.85-1.32 (m, 7H), 0.87 (d, $J = 6.3$ Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 135.3, 116.8, 76.4, 71.6, 61.6, 35.7, 34.8, 34.7, 27.7, 26.9, 18.0; IR (neat): 3421 (br), 3075, 2930, 2873, 1459, 1439, 1379, 1355, 1236, 1053 cm^{-1} ; HRMS (EI) m/z calcd. for $\text{C}_{11}\text{H}_{21}\text{O}_2$ ($\text{M}+\text{H}$) $^+$ 185.1541 found 185.1537; $[\alpha]_D^{23} +45.7$ (c 1.64, CHCl_3).

(S)-6-((2S,3R,6R)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-5-hydroxy-2-(4-methoxyphenyl)-2-methylhexan-3-one (10).

To a solution of **6** (413 mg, 2.24 mmol) in CH_2Cl_2 (5 mL) was added pyridine (0.73 mL, 9.02 mmol) followed by the addition of Dess-Martin periodinane (1.90 g, 4.48 mmol) at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 30 min. The reaction was quenched with a mixture of aqueous saturated $\text{Na}_2\text{S}_2\text{O}_3$ solution and aqueous saturated NaHCO_3 solution (v/v 1:5, 20 mL). The resulting milky solution was then stirred vigorously until the solution became clear (ca. 30 min). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 times). The combined organic layers were washed with aqueous saturated NH_4Cl solution and then brine, dried over MgSO_4 , filtered and concentrated under reduced pressure. Without further purification, the resulting residue was dissolved in CH_2Cl_2 . To a cooled solution of the crude aldehyde in CH_2Cl_2 at -78 °C was added freshly distilled $\text{BF}_3\text{-OEt}_2$ (0.43 mL, 3.4 mmol) dropwise followed by the addition of enolsilane **9**² (1.18 g, 4.46 mmol) dropwise. The reaction mixture was then stirred at -78 °C for 2 h and quenched with aqueous saturated NH_4Cl . The resulting mixture was warmed to room temperature. The mixture was then poured into water. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 times). The combined organic layers were washed with water and then brine, dried over MgSO_4 , filtered and concentrated under reduced pressure. The resulting residue was purified via flash chromatography on silica gel (1:4, $\text{EtOAc}/\text{hexanes}$) to provide ketone **10** (658 mg, 1.76 mmol, 78% over two steps) as an inseparable 4.5:1 mixture of diastereomers. ^1H NMR (300 MHz, CDCl_3): δ 7.16 (d, $J = 9.0$ Hz, 2H), 6.86 (d, $J = 9.0$, 2H), 5.76 (m, 1H), 5.05 (m, 2H), 4.17 (m, 1H), 3.83 (m, 1H), 3.79 (s, 3H), 3.39 (td, $J = 8.6, 2.7$ Hz, 1H), 2.45 (m, 1H), 2.40 (m, 2H), 2.13 (m, 1H), 1.69 (m, 1H), 1.60-1.25 (m, 6H), 1.48 (s, 3H), 1.43 (s, 3H), 0.83 (d, $J = 6.3$ Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 213.7, 158.5, 135.6, 127.2, 116.5, 114.1, 72.7, 71.7, 65.0, 55.2, 51.5, 44.3, 38.7, 35.6, 34.5, 27.6, 26.9, 25.4, 24.8, 18.0; ^{13}C NMR (75 MHz, C_6D_6): δ 212.7, 159.0, 136.22, 136.19, 127.5, 116.4, 114.4, 73.0, 71.6, 65.4, 54.7, 51.7, 45.0, 39.5, 36.1, 34.7, 27.9, 27.2, 25.6, 24.9, 18.1; IR (neat): 3489 (br), 2932, 1702, 1513, 1463, 1253, 1035 cm^{-1} ; HRMS (EI) m/z calcd. for $\text{C}_{23}\text{H}_{34}\text{O}_4$ (M) $^+$ 374.2457 found 374.2445.

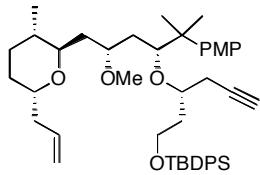

² A. Jönsson, *Acta Chim. Scand.* **1954**, 8, 1206.

(2S,4R)-1-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-5-(4-methoxyphenyl)-5-methylhexane-2,4-diol (11).

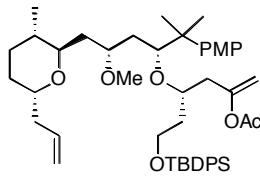

To a solution of **10** (1.65 g, 4.40 mmol) in THF/CH₃OH (v/v 10:1, 55 mL) at -78 °C was added Et₂BOMe (0.87 mL, 6.6 mmol) dropwise. The clear solution was stirred at the same temperature for 1 h and NaBH₄ (501 mg, 13.2 mmol)

was then added with several portions. The reaction mixture was stirred at -78 °C for 1 h and poured into an ice-cooled pH 7 buffer solution (100 mL) with caution (bubbling and eruption). After stirring at 0 °C for 30 min, hydrogen peroxide (wt. 30% solution in water, 10 mL) was added dropwise. The resulting mixture was vigorously stirred at room temperature overnight (ca. 10 h). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 times). The combined organic layers were washed with water, aqueous saturated Na₂SO₃ solution and then brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified *via* flash column chromatography (1:4, EtOAc/hexanes) to afford **11** (1.27 g, 3.37 mmol, 76%) as a single stereoisomer. ¹H NMR (300 MHz, CDCl₃): δ 7.29 (d, *J* = 9.0 Hz, 2H), 6.84 (d, *J* = 9.0, 2H), 5.81 (m, 1H), 5.09 (m, 2H), 3.97 (m, 2H), 3.87 (m, 1H), 3.78 (s, 3H), 3.75 (s, 1H), 3.60 (s, 1H), 3.40 (td, *J* = 8.7, 3.0 Hz, 1H), 2.57 (m, 1H), 2.13 (m, 1H), 1.78 (m, 1H), 1.66-1.30 (m, 8H), 1.31 (s, 3H), 1.29 (s, 3H), 0.81 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 157.6, 139.4, 136.0, 127.5, 116.8, 113.4, 80.2, 72.3, 71.9, 70.0, 55.2, 41.6, 39.9, 37.3, 35.2, 35.0, 27.9, 27.0, 25.2, 23.1, 17.9; IR (neat): 3444 (br), 3074, 2931, 1641, 1611, 1513, 1251, 1185 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₂₃H₃₆O₄Na (M+Na)⁺ 399.2511 found 399.2530; [α]_D²³ +33.2 (c 1.49, CHCl₃).

(2-((2R,4R,6R)-4-(((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)methyl)-6-(2-(4-methoxyphenyl)propan-2-yl)-1,3-dioxan-2-yl)ethoxy)(tert-butyl)diphenylsilane (13).

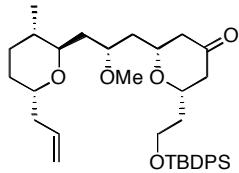

To a cooled solution of diol **11** (1.32 g, 3.50 mmol) in CH₂Cl₂ (35 mL) at -78 °C was added 2,6-lutidine (1.63 mL, 14.0 mmol) followed by the dropwise addition of TMSOTf (1.59 mL, 8.76 mmol). The reaction mixture was stirred at -78 °C for 2 h and poured into water. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 times). The combined organic layers were washed with HCl (wt. 10% solution in water), water and then brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Without further purification, the resulting residue was dissolved in CH₂Cl₂ (20 mL) and cooled down to -78 °C. Aldehyde **12** (1.31 g, 4.21 mmol) was added followed by the addition of TMSOTf (64 μ L, 0.35 mmol). The reaction mixture was then slowly warmed to -45 °C and stirred for 2 h. The reaction was quenched with pyridine (43 μ L, 0.52 mmol) and poured into water. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 times). The combined organic layers were washed with water and then brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified *via* flash column chromatography (1:20, EtOAc/hexanes) to afford **13** (2.05 g, 3.05 mmol, 87%). ¹H NMR (300 MHz, CDCl₃): δ 7.67 (m, 4H), 7.40 (m, 6H), 7.23 (d, *J* = 9.0 Hz, 2H), 6.78 (d, *J* = 9.0, 2H), 5.72 (m, 1H), 5.01 (m, 2H), 4.69 (dd, *J* = 6.6, 4.2 Hz, 1H), 3.85-3.65 (m, 4H), 3.77 (s, 3H), 3.52 (m, 1H), 3.42 (app t, *J* = 8.2 Hz, 1H), 2.49 (m, 1H), 2.08-1.82 (m, 3H), 1.73-1.55 (m, 3H), 1.46 (m, 1H), 1.34-1.27 (m, 3H), 1.28 (s, 3H), 1.26 (s, 3H), 1.07 (m, 2H), 1.05 (s, 9H), 0.84 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 157.6, 138.7, 135.54, 135.52, 135.47, 134.02, 133.99, 129.5, 127.7, 127.6, 116.4, 113.1, 99.1, 83.8, 72.9, 71.6, 71.2, 59.9, 55.1, 40.5, 39.6, 38.1, 35.9, 34.7, 32.2, 27.9, 27.1, 26.9, 26.1, 22.8, 19.2, 18.1; IR (neat): 3071, 2930, 1641, 1612, 1513, 1361, 1251, 1185 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₄₂H₅₈O₅SiNa (M+Na)⁺ 693.3951 found 693.3951; [α]_D²³ +24.6 (c 1.71, CHCl₃).

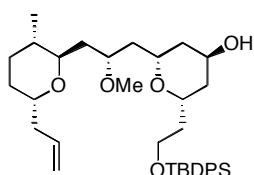
(2R,4R)-1-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-4-((R)-1-(tert-butyldiphenylsilyloxy)hex-5-yn-3-yloxy)-5-(4-methoxyphenyl)-5-methylhexan-2-ol (14).


To a cooled solution of acetal **13** (200 mg, 0.298 mmol) and allenyltributyltin (294 mg, 0.894 mmol) in CH₂Cl₂ (3 mL) at -78 °C was added a freshly prepared

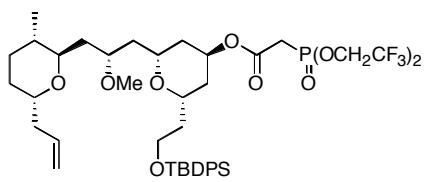
mixture of TiCl_4 (286 μL , 2.61 mmol) and $\text{Ti}(\text{O}^i\text{Pr})_4$ (260 μL , 0.89 mmol) in CH_2Cl_2 (5 mL). The reaction mixture was stirred at same temperature for 1 h and quenched with CH_3OH . The resulting mixture was poured into aqueous saturated NaHCO_3 . The organic layer was separated and the aqueous layer was extracted with EtOAc (3 times). The combined organic layers were washed with water and KF (wt. 10% solution in water), dried over MgSO_4 , filtered and concentrated under reduced pressure. The resulting residue was then purified *via* flash column chromatography (1:20 to 1:10, EtOAc/hexanes) to give **14** (188 mg, 0.265 mmol, 89%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 7.66 (m, 4H), 7.40 (m, 6H), 7.27 (d, J = 9.0 Hz, 2H), 6.78 (d, J = 9.0, 2H), 5.74 (m, 1H), 5.02 (m, 2H), 3.83-3.72 (m, 3H), 3.75 (s, 3H), 3.68 (m, 2H), 3.33 (m, 2H), 3.17 (d, J = 3.0 Hz, 1H), 2.45 (m, 1H), 2.39 (ddd, J = 16.5, 5.7, 3.0 Hz, 1H), 2.29 (ddd, J = 16.5, 3.6, 3.0 Hz, 1H), 2.07 (m, 1H), 1.96 (t, J = 2.6 Hz, 1H), 1.91 (app q, J = 6.3 Hz, 2H), 1.67 (m, 1H), 1.57-1.23 (m, 8H), 1.33 (s, 3H), 1.26 (s, 3H), 1.04 (s, 9H), 0.72 (d, J = 6.0 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 157.6, 139.7, 135.8, 135.6, 135.5, 133.9, 129.5, 127.7, 127.63, 127.61, 116.4, 113.2, 81.7, 81.5, 72.8, 71.8, 71.6, 70.1, 66.7, 60.6, 55.1, 42.2, 39.6, 39.5, 36.3, 35.4, 34.1, 27.8, 27.0, 26.9, 26.7, 23.2, 22.9, 19.2, 18.0; IR (neat): 3497 (br), 3309, 3071, 3031, 2118, 1611, 1513, 1428, 1251, 1098 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{45}\text{H}_{62}\text{O}_5\text{SiNa}$ ($\text{M}+\text{Na}$) $^+$ 733.4264 found 733.4268.

((R)-3-((3R,5R)-6-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-5-methoxy-2-(4-methoxyphenyl)-2-methylhexan-3-yloxy)hex-5-ynylsilane.

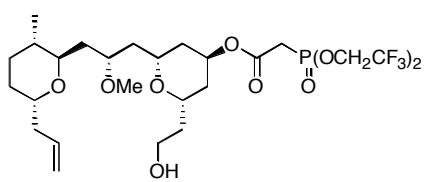

To a solution of alcohol **14** (369 mg, 0.519 mmol) in CH_2Cl_2 (4 mL) at 0 °C was added 2,6-di-*tert*-butylpyridine (459 mg, 2.08 mmol) followed by the addition of MeOTf (176 μL , 1.56 mmol). The reaction was then slowly warmed to room temperature and stirred for 24 h. The reaction was quenched with aqueous saturated NaHCO_3 solution. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 times). The combined organic layers were washed with water and then brine, dried over MgSO_4 , filtered and concentrated under reduced pressure. Flash chromatography on silica gel (1:20 to 1:10, EtOAc/hexanes) afforded the desired product (329 mg, 0.454 mmol, 87%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 7.67 (m, 4H), 7.38 (m, 6H), 7.26 (d, J = 9.0 Hz, 2H), 6.78 (d, J = 9.0, 2H), 5.72 (m, 1H), 5.01 (m, 2H), 3.78 (m, 3H), 3.76 (s, 3H), 3.67 (m, 1H), 3.41 (app t, J = 4.6 Hz, 1H), 3.24 (m, 1H), 3.16 (s, 3H), 2.94 (m, 1H), 2.41-2.27 (m, 3H), 2.17 (m, 1H), 1.95 (t, J = 2.6 Hz, 1H), 1.92 (m, 2H), 1.60-1.15 (m, 9H), 1.31 (s, 3H), 1.26 (s, 3H), 1.05 (s, 9H), 0.82 (d, J = 6.3 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 157.6, 139.6, 135.7, 135.6, 135.5, 134.0, 129.5, 127.9, 127.6, 116.3, 113.1, 81.9, 80.3, 72.8, 71.8, 70.9, 69.8, 60.9, 57.2, 55.1, 42.3, 38.5, 37.8, 37.2, 36.9, 34.0, 27.1, 26.9, 26.7, 26.5, 23.1, 23.0, 19.2, 18.2; IR (neat): 3309, 3071, 2930, 2119, 1611, 1513, 1428, 1251, 1111 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{46}\text{H}_{64}\text{O}_5\text{SiNa}$ ($\text{M}+\text{Na}$) $^+$ 747.4421 found 747.4431.


(S)-4-((3R,5R)-6-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-5-methoxy-2-(4-methoxyphenyl)-2-methylhexan-3-yloxy)-6-(tert-butylidiphenylsilyloxy)hex-1-en-2-yl acetate.

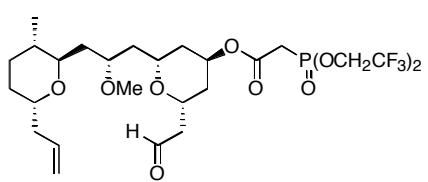
To a solution of the alkyne (316 mg, 0.435 mmol) in toluene (10 mL) was added Na_2CO_3 (7.0 mg, 66 μmol) followed by the addition of acetic acid (50 μL , 0.87 mmol) under an atmosphere of Ar gas. The mixture was stirred at room temperature for 10 min, and $[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2$ (5.3 mg, 8.7 μmol), tri(2-furyl)phosphine (4.0 mg, 17 μmol). The brown reaction mixture was stirred at 80 °C for 36 h. The color of reaction was slowly changed to green over 6 h. The mixture was cooled to room temperature and the solvent was then removed under reduced pressure. The resulting residue was purified *via* flash column chromatography (1:20 to 1:10, EtOAc/hexanes) to give **15** (245 mg, 0.312 mmol, 72%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 7.66 (m, 4H), 7.37 (m, 6H), 7.25 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.7, 2H), 5.71 (m, 1H), 5.01 (m, 2H), 4.78 (s, 1H), 4.73 (s, 1H), 3.77 (m, 3H), 3.76 (s, 3H), 3.67 (m, 1H), 3.39 (app t, J = 4.6 Hz, 1H), 3.22 (m, 1H), 3.15 (s, 3H), 2.90 (m, 1H), 2.55 (dd, J = 14.7, 4.2 Hz, 1H), 2.33 (m, 1H), 2.23-2.05 (m, 2H), 2.11 (s, 3H), 1.90-1.71 (m, 2H), 1.60-1.15 (m, 9H), 1.28 (s, 3H), 1.24 (s, 3H), 1.05 (s, 9H), 0.80 (d, J = 6.6 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3):


CDCl_3): δ 169.1, 157.6, 153.7, 139.7, 135.7, 135.6, 135.5, 134.0, 129.50, 129.48, 127.9, 127.6, 116.3, 113.1, 103.51, 80.0, 76.4, 72.6, 71.0, 60.8, 57.2, 55.1, 42.3, 38.7, 37.9, 37.7, 37.1, 36.7, 34.2, 27.0, 26.9, 26.7, 26.6, 23.0, 21.1, 19.2, 18.2; IR (neat): 3071, 2931, 2858, 1757, 1665, 1513, 1428, 1368, 1200, 1109 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{48}\text{H}_{68}\text{O}_7\text{SiNa}$ ($\text{M}+\text{Na}$) $^+$ 807.4632 found 807.4608; $[\alpha]_D^{23} +2.82$ (c 1.42, CHCl_3).

(2R,6S)-2-((S)-3-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-2-methoxypropyl)-6-(2-(tert-butyldiphenylsilyloxy)ethyl)tetrahydropyran-4-one.
 To a solution of enol acetate **15** (236 mg, 0.301 mmol) in 1,2-dichloroethane (6 mL) was added NaHCO_3 (472 mg) and 4 Å molecular sieves (472 mg). After stirring at room temperature for 20 min, a dark orange colored solution of ceric ammonium nitrate (CAN) (659 mg, 1.20 mmol) in acetonitrile (1 mL) was added dropwise. The dull green colored reaction mixture was stirred at room temperature for an additional 2 h. The resulting mixture was filtered through a small silica plug and washed with EtOAc . The filtrate was then concentrated under reduced pressure and the residue was purified *via* flash column chromatography (1:10 to 1:4, $\text{EtOAc}/\text{hexanes}$) to provide **17** (121 mg, 0.204 mmol, 68%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 7.64 (app d, J = 7.2 Hz, 4H), 7.40 (m, 6H), 5.78 (m, 1H), 5.05 (m, 2H), 3.87-3.68 (m, 5H), 3.56-3.44 (m, 2H), 3.30 (s, 3H), 2.48-2.34 (m, 3H), 2.30-2.16 (m, 3H), 1.98-1.84 (m, 2H), 1.81-1.44 (m, 7H), 1.40-1.23 (m, 2H), 1.03 (s, 9H), 0.89 (d, J = 6.3 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 207.4, 135.6, 135.5, 133.7, 133.6, 129.63, 129.62, 127.7, 116.4, 74.3, 73.91, 73.87, 72.6, 71.2, 60.1, 56.8, 48.1, 47.8, 40.6, 39.3, 38.6, 36.8, 34.2, 27.3, 26.8, 26.6, 19.1, 18.3; IR (neat): 3071, 2929, 2857, 1720, 1460, 1427, 1147, 1109, 1090 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{36}\text{H}_{52}\text{O}_5\text{SiNa}$ ($\text{M}+\text{Na}$) $^+$ 615.3482 found 615.3455; $[\alpha]_D^{23} +22.2$ (c 2.00, CHCl_3).



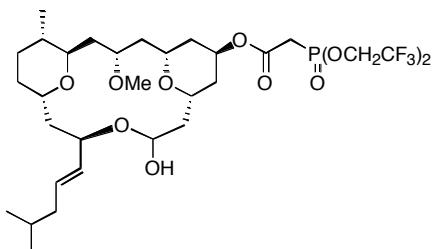
(2S,4S,6S)-2-((S)-3-((2S,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-2-methoxypropyl)-6-(2-(tert-butyldiphenylsilyloxy)ethyl)tetrahydro-2H-pyran-4-ol.
 To a cooled solution of ketone **17** (349 mg, 0.589 mmol) in THF (30 mL) at -90°C was slowly added L-Selectride® (1.0 M solution in THF, 0.88 mL, 0.88 mmol) over 5 min. The reaction mixture was stirred at -90°C for 1 h and quenched with aqueous saturated potassium sodium tartrate solution (30 mL). The solution was allowed to warm to room temperature. Diethyl ether (30 mL) was added and the resulting mixture was vigorously stirred for 1 h. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 times). The combined organic layers were washed with water and then brine, dried over MgSO_4 , filtered, and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel (1:2, $\text{EtOAc}/\text{hexanes}$) to afford **18** (266 mg, 0.447 mmol, 76%) and the epimer (30 mg, 0.050 mmol, 8%). ^1H NMR (300 MHz, CDCl_3): δ 7.66 (m, 4H), 7.38 (m, 6H), 5.79 (m, 1H), 5.04 (m, 2H), 4.20 (m, 1H), 3.95-3.81 (m, 2H), 3.79 (t, J = 6.6 Hz, 2H), 3.74 (m, 1H), 3.52 (m, 2H), 3.30 (s, 3H), 2.40 (m, 1H), 2.21 (m, 1H), 1.86-1.25 (m, 15H), 1.05 (s, 9H), 0.91 (d, J = 6.3 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 135.7, 135.5, 134.1, 134.0, 129.5, 127.6, 116.3, 74.4, 72.7, 70.8, 68.6, 68.4, 64.8, 60.8, 56.8, 40.4, 39.3, 39.0, 38.7, 38.5, 37.2, 33.9, 27.1, 26.9, 26.5, 19.2, 18.4; IR (neat): 3436 (br), 3071, 2931, 2858, 1460, 1428, 1109 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{36}\text{H}_{54}\text{O}_5\text{SiNa}$ ($\text{M}+\text{Na}$) $^+$ 617.3638 found 617.3591; $[\alpha]_D^{23} +25.8$ (c 2.05, CHCl_3).


(2R,4S,6S)-2-((S)-3-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-2-methoxypropyl)-6-(2-(tert-butyldiphenylsilyloxy)ethyl)tetrahydro-2H-pyran-4-yl 2-((bis(2,2,2-trifluoroethoxy))phosphoryl)acetate.

To a mixture of alcohol **18** (80.1 mg, 0.135 mmol) and bis-(2,2,2-trifluoroethyl)phosphonoacetic acid³ (82 mg, 0.27 mmol) in CH₂Cl₂ (10 mL) were added HOBr·H₂O (9.1 mg, 0.067 mmol) and then EDC·HCl (51.6 mg, 0.269 mmol). The reaction mixture was stirred at room temperature for 1.5 h and quenched with aqueous saturated NaHCO₃ solution. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 times). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified *via* flash chromatography on silica gel (1:3, EtOAc/hexanes) to afford **19** (109 mg, 0.124 mmol, 92%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.65 (m, 4H), 7.39 (m, 6H), 5.77 (m, 1H), 5.24 (m, 1H), 5.04 (m, 2H), 4.47 (qd, ³J(¹H,¹⁹F) = 8.1 Hz, ³J(¹H,³¹P) = 3.6 Hz, 2H), 4.44 (qd, ³J(¹H,¹⁹F) = 8.1 Hz, ³J(¹H,³¹P) = 3.6 Hz, 2H), 3.77 (m, 5H), 3.49 (m, 2H), 3.27 (s, 3H), 3.15 (d, ²J(¹H,³¹P) = 21.0 Hz, 1H), 3.14 (d, ²J(¹H,³¹P) = 21.0 Hz, 1H), 2.40 (m, 1H), 2.21 (m, 1H), 1.85-1.44 (m, 13H), 1.29 (m, 2H), 1.03 (s, 9H), 0.88 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.1 (d, ²J(¹³C,³¹P) = 4 Hz), 135.7, 135.5, 133.94, 133.89, 129.6, 127.6, 122.5 (q, ¹J(¹³C,¹⁹F) = 274 Hz), 122.4 (q, ¹J(¹³C,¹⁹F) = 274 Hz), 116.3, 74.4, 72.5, 71.0, 70.8, 69.2, 68.9, 62.6 (qm, ²J(¹³C,¹⁹F) = 37 Hz), 62.5 (qm, ²J(¹³C,¹⁹F) = 37 Hz), 60.6, 56.7, 40.1, 39.0, 38.5, 36.9, 35.7, 35.3, 34.2 (d, ¹J(¹³C,³¹P) = 143 Hz), 34.1, 27.2, 26.8, 26.6, 19.2, 18.3; IR (neat): 3072, 2931, 2858, 1737, 1460, 1427, 1299, 1269, 1175, 1101 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₄₂H₅₉O₉F₆PSiNa (M+Na)⁺ 903.3468 found 903.3495; [α]_D²³ 17.0 (c 2.56, CHCl₃).

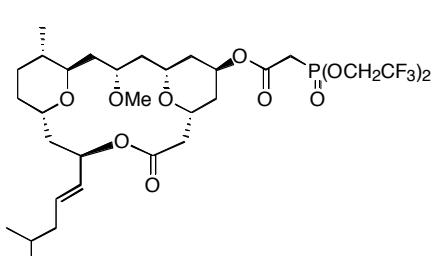
(2R,4S,6S)-2-((S)-3-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-2-methoxypropyl)-6-(2-hydroxyethyl)tetrahydro-2H-pyran-4-yl 2-((bis(2,2,2-trifluoroethoxy))phosphoryl)acetate.

A solution of **19** (108 mg, 0.122 mmol) in 3% HCl in CH₃OH (10 mL) was stirred at room temperature for 2 h. The reaction was quenched with aqueous saturated NaHCO₃. After adding EtOAc, the organic layer was separated and the aqueous layer was extracted with EtOAc (2 times). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was purified *via* flash chromatography on silica gel (1:1, EtOAc/hexanes) to give alcohol (77 mg, 0.12 mmol, 98%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 5.80 (m, 1H), 5.25 (m, 1H), 5.07 (m, 2H), 4.48 (q, ³J(¹H,¹⁹F) = 8.1 Hz, 2H), 4.45 (q, ³J(¹H,¹⁹F) = 8.1 Hz, 2H), 3.96-3.79 (m, 3H), 3.73-3.60 (m, 3H), 3.48 (tm, *J* = 8.1 Hz, 1H), 3.35 (br s, 1H), 3.32 (s, 3H), 3.19 (d, ²J(¹H,³¹P) = 21.3 Hz, 2H), 2.56 (m, 1H), 2.20 (m, 1H), 1.90 (m, 1H), 1.81-1.47 (m, 11H), 1.34 (m, 3H), 0.88 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 163.9 (d, ²J(¹³C,³¹P) = 5 Hz), 135.6, 122.4 (q, ¹J(¹³C,¹⁹F) = 275 Hz), 122.3 (q, ¹J(¹³C,¹⁹F) = 275 Hz), 116.5, 74.2, 72.1, 71.9, 70.6, 70.1, 69.6, 62.6 (qm, ²J(¹³C,¹⁹F) = 37 Hz), 62.5 (qm, ²J(¹³C,¹⁹F) = 37 Hz), 58.6, 56.6, 38.9, 37.9, 37.5, 35.8, 35.6, 35.4, 35.1, 34.4 (d, ¹J(¹³C,³¹P) = 143 Hz), 27.8, 27.1, 18.2; IR (neat): 3467 (br), 2927, 2858, 1737, 1459, 1269, 1174, 1073 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₂₆H₄₁O₉F₆PNa (M+Na)⁺ 665.2290 found 665.2281; [α]_D²³ +25.3 (c 1.70, CHCl₃).



(2R,4R,6R)-2-((S)-3-((2R,3S,6S)-6-Allyl-3-methyltetrahydro-2H-pyran-2-yl)-2-methoxypropyl)-6-(2-oxoethyl)tetrahydro-2H-pyran-4-yl 2-((bis(2,2,2-trifluoroethoxy))phosphoryl)acetate.

To a solution of alcohol (100 mg, 0.156 mmol) in CH₂Cl₂ was added pyridine (50 μL, 0.62 mmol) followed by the addition of Dess-Martin periodinane (132 mg, 0.311 mmol). The reaction mixture was stirred at room temperature for 2 h. The mixture was filtered through a short silica plug and washed with EtOAc.

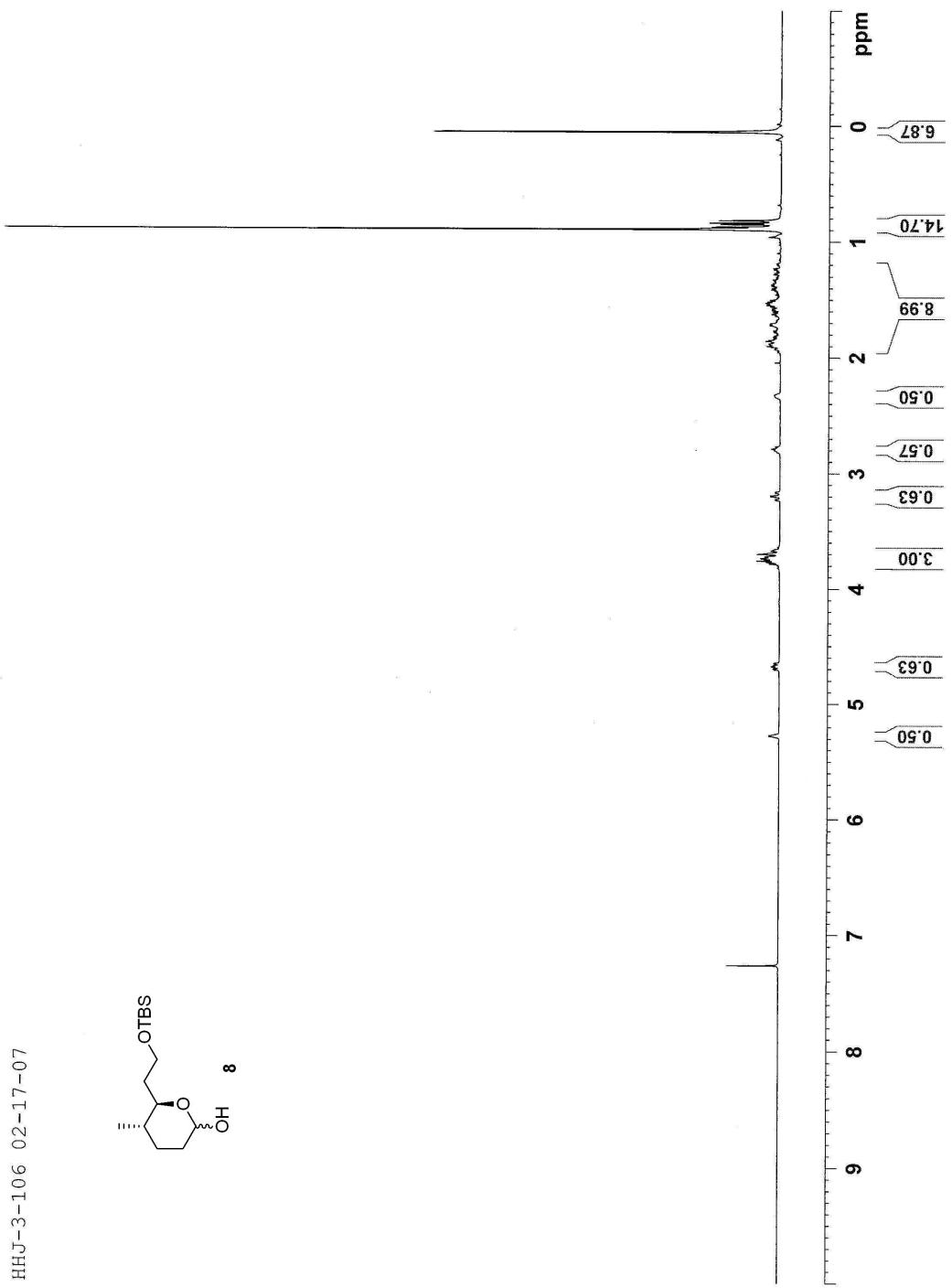
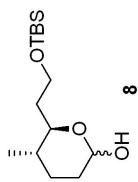

³ A. K. Ghosh, Y. Wang, J. T. Kim, *J. Org. Chem.* **2001**, *66*, 8973.

The filtrate was concentrated. The crude was purified *via* flash chromatography on silica gel (1:1, EtOAc/hexanes) to afford **20** (95 mg, 0.148 mmol, 95%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 9.77 (dd, J = 1.8, 2.7 Hz, 1H), 5.81 (m, 1H), 5.27 (m, 1H), 5.06 (m, 2H), 4.50 (qd, $^3J(^1\text{H}, ^19\text{F})$ = 8.1 Hz, $^3J(^1\text{H}, ^31\text{P})$ = 1.2 Hz, 2H), 4.47 (qd, $^3J(^1\text{H}, ^19\text{F})$ = 8.1 Hz, $^3J(^1\text{H}, ^31\text{P})$ = 1.2 Hz, 2H), 4.22 (m, 1H), 3.82 (m, 2H), 3.51 (m, 2H), 3.29 (s, 3H), 3.20 (d, $^2J(^1\text{H}, ^31\text{P})$ = 21.3 Hz, 2H), 2.55 (ddd, J = 16.2, 8.4, 2.7 Hz, 1H), 2.51-2.41 (m, 1H), 2.39 (ddd, J = 16.2, 4.5, 1.8 Hz, 1H), 2.28-2.17 (m, 1H), 1.87-1.47 (m, 11H), 1.35 (m, 2H), 0.93 (d, J = 6.0 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): δ 200.8, 163.8 (d, $^2J(^{13}\text{C}, ^31\text{P})$ = 5 Hz), 135.7, 122.4 (q, $^1J(^{13}\text{C}, ^19\text{F})$ = 276 Hz), 122.3 (q, $^1J(^{13}\text{C}, ^19\text{F})$ = 276 Hz), 116.3, 74.3, 72.5, 71.2, 70.1, 69.2, 67.6, 62.6 (qd, $^2J(^{13}\text{C}, ^19\text{F})$ = 37 Hz, $^2J(^{13}\text{C}, ^31\text{P})$ = 2 Hz), 62.5 (qd, $^2J(^{13}\text{C}, ^19\text{F})$ = 37 Hz, $^2J(^{13}\text{C}, ^31\text{P})$ = 2 Hz), 56.6, 49.3, 39.6, 38.5, 36.7, 35.4, 34.9, 34.4 (d, $^1J(^{13}\text{C}, ^31\text{P})$ = 142 Hz), 34.3, 27.4, 26.7, 18.3; IR (neat): 2928, 2876, 1731, 1420, 1299, 1270, 1174, 1074 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{26}\text{H}_{39}\text{O}_9\text{F}_6\text{PNa} (\text{M}+\text{Na})^+$ 663.2134 found 663.2106; $[\alpha]_{\text{D}}^{23}$ +25.1 (c 1.60, CHCl_3).

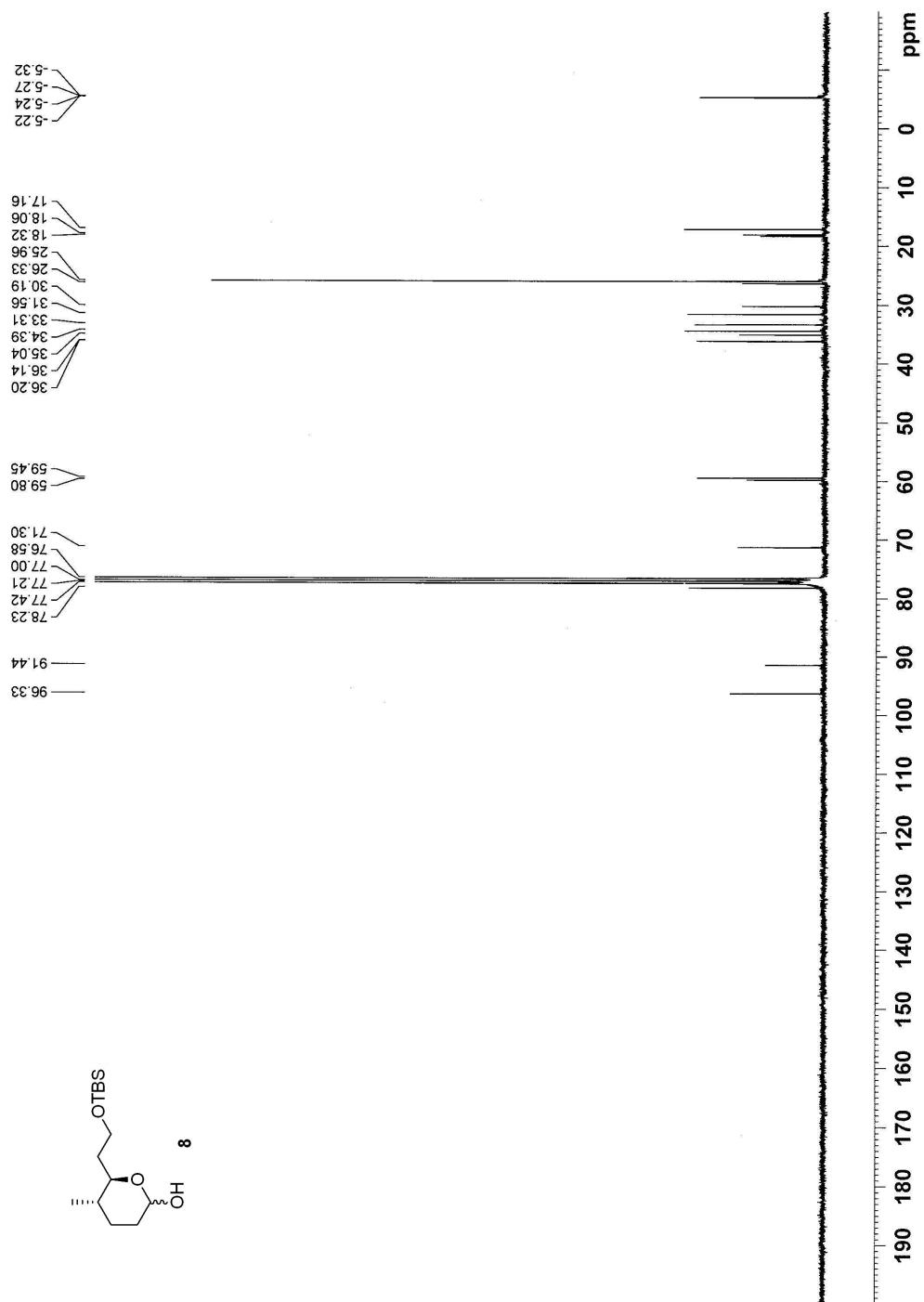
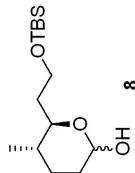
Macrocyclic lactol 23.

To a solution of alkene **20** (20 mg, 31 μ mol) and (S)-5-methylhex-1-en-3-ol⁴ (18 mg, 160 μ mol) in CH_2Cl_2 (3 mL) was added Hoveyda-Grubbs (2nd generation) (3.9 mg, 6.2 μ mol) followed by the addition of 1,4-benzoquinone (1.3 mg, 12 μ mol). The flask was fitted with a condenser and refluxed at 45 °C for 6 h under an atmosphere of N_2 gas. The greenish crude mixture was then concentrated under reduced pressure and purified by flash chromatography on silica gel (1:1 to 2:1, EtOAc/hexanes) to give **22** (15.9 mg, 21.9 μ mol, 70%) as a colorless oil that was used directly for the next reaction. To a solution of allylic alcohol **22** (14.5 mg, 19.9 μ mol) in diethyl ether (2 mL) was added Re_2O_7 (0.9 mg, 2 μ mol). The reaction mixture was stirred at room temperature for 2.5 h and then concentrated under reduced pressure. The resulting residue was purified *via* flash chromatography on silica gel (1:2 to 1:1, EtOAc/hexanes) to give **23** (10 mg, 14 μ mol, 69%) as a colorless oil. ^1H NMR (300 MHz, CDCl_3): δ 5.73 (dt, J = 15.3, 7.2 Hz, 1H), 5.26 (m, 1H), 5.10 (dd, J = 15.3, 8.7 Hz, 1H), 4.92 (dm, J = 10.2 Hz, 1H), 4.70 (m, 1H), 4.47 (q, $^3J(^1\text{H}, ^19\text{F})$ = 8.1 Hz, 2H), 4.44 (q, $^3J(^1\text{H}, ^19\text{F})$ = 8.1 Hz, 2H), 4.25 (m, 1H), 3.94 (dm, J = 11.4 Hz, 1H), 3.83 (m, 1H), 3.74 (tm, J = 11.7 Hz, 1H), 3.65 (tm, J = 11.7 Hz, 1H), 3.37 (s, 3H), 3.22 (d, $^2J(^1\text{H}, ^{31}\text{P})$ = 21.0 Hz, 1H), 3.21 (d, $^2J(^1\text{H}, ^{31}\text{P})$ = 21.0 Hz, 1H), 2.55 (ddm, J = 14.1, 12.6 Hz, 1H), 2.02–1.36 (m, 18H), 1.19 (d, J = 7.2 Hz, 3H), 1.05 (ddd, J = 14.1, 11.0, 2.1 Hz, 1H), 0.87 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H); ^{13}C NMR (75 MHz, CDCl_3): – 163.8 (d, $^2J(^{13}\text{C}, ^{31}\text{P})$ = 5 Hz), 134.1, 130.7, 122.4 (q, $^1J(^{13}\text{C}, ^{19}\text{F})$ = 276 Hz), 122.3 (q, $^1J(^{13}\text{C}, ^{19}\text{F})$ = 276 Hz), 90.94, 74.0, 73.8, 71.4, 70.7, 70.3, 68.8, 63.1, 62.6 (qd, $^2J(^{13}\text{C}, ^{19}\text{F})$ = 37 Hz, $^2J(^{13}\text{C}, ^{31}\text{P})$ = 2 Hz), 62.5 (qd, $^2J(^{13}\text{C}, ^{19}\text{F})$ = 37 Hz, $^2J(^{13}\text{C}, ^{31}\text{P})$ = 2 Hz), 57.1, 44.2, 41.7, 39.8, 38.7, 35.8, 35.6, 35.5, 34.4 (d, $^1J(^{13}\text{C}, ^{31}\text{P})$ = 142 Hz), 31.2, 28.1, 27.3, 24.2, 22.3, 22.2, 18.4; IR (neat): 3487 (br), 2927, 1740, 1457, 1271, 1173, 1097, 1075 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{31}\text{H}_{49}\text{O}_{10}\text{F}_6\text{PNa}(\text{M}+\text{Na})^+$ 749.2865 found 749.2833; $[\alpha]_{\text{D}}^{23}$ +39.3 (c 1.20, CHCl_3).

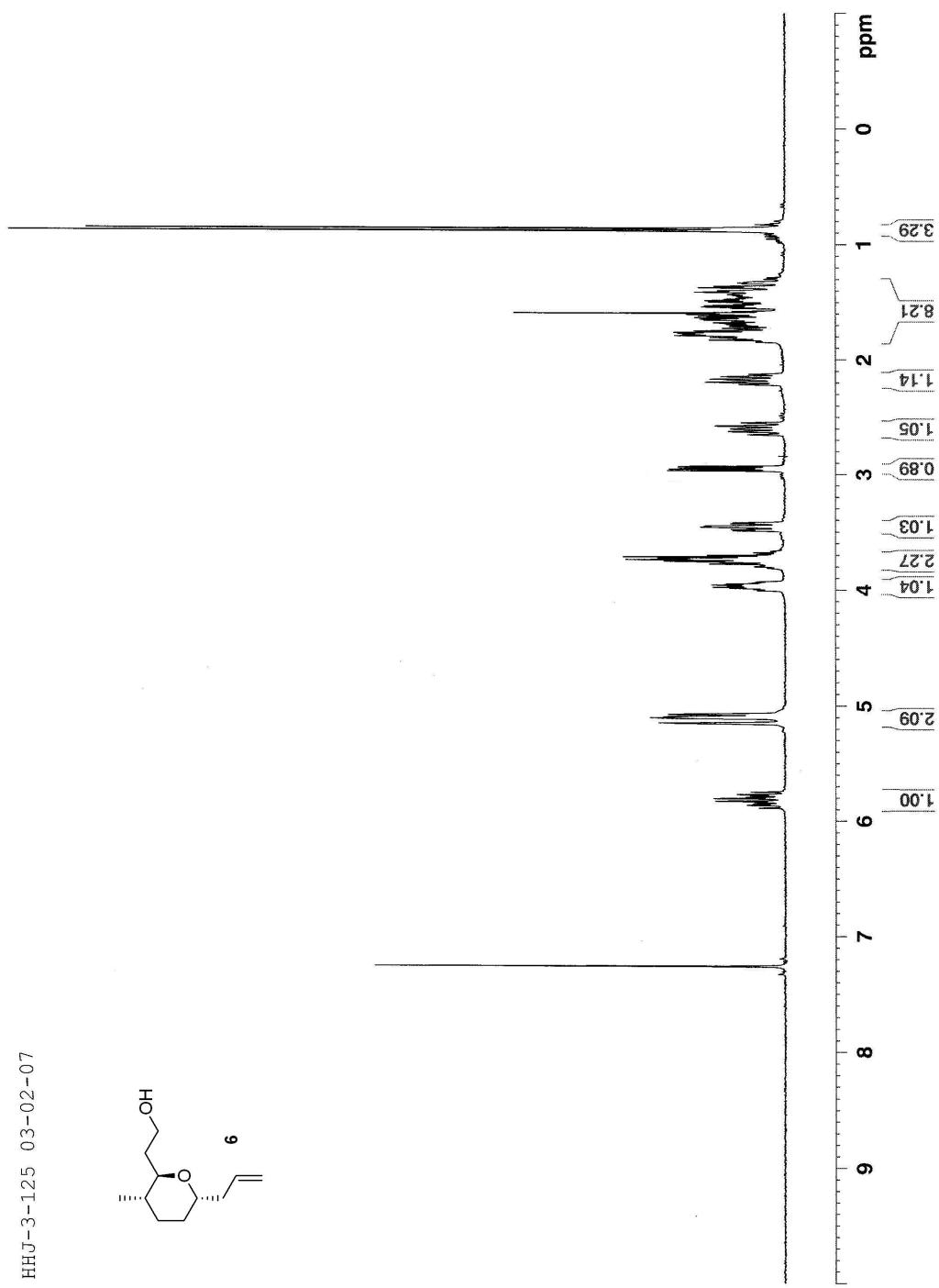
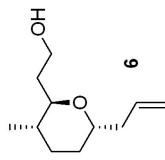
Macrocyclic lactone 24.

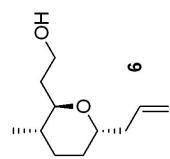
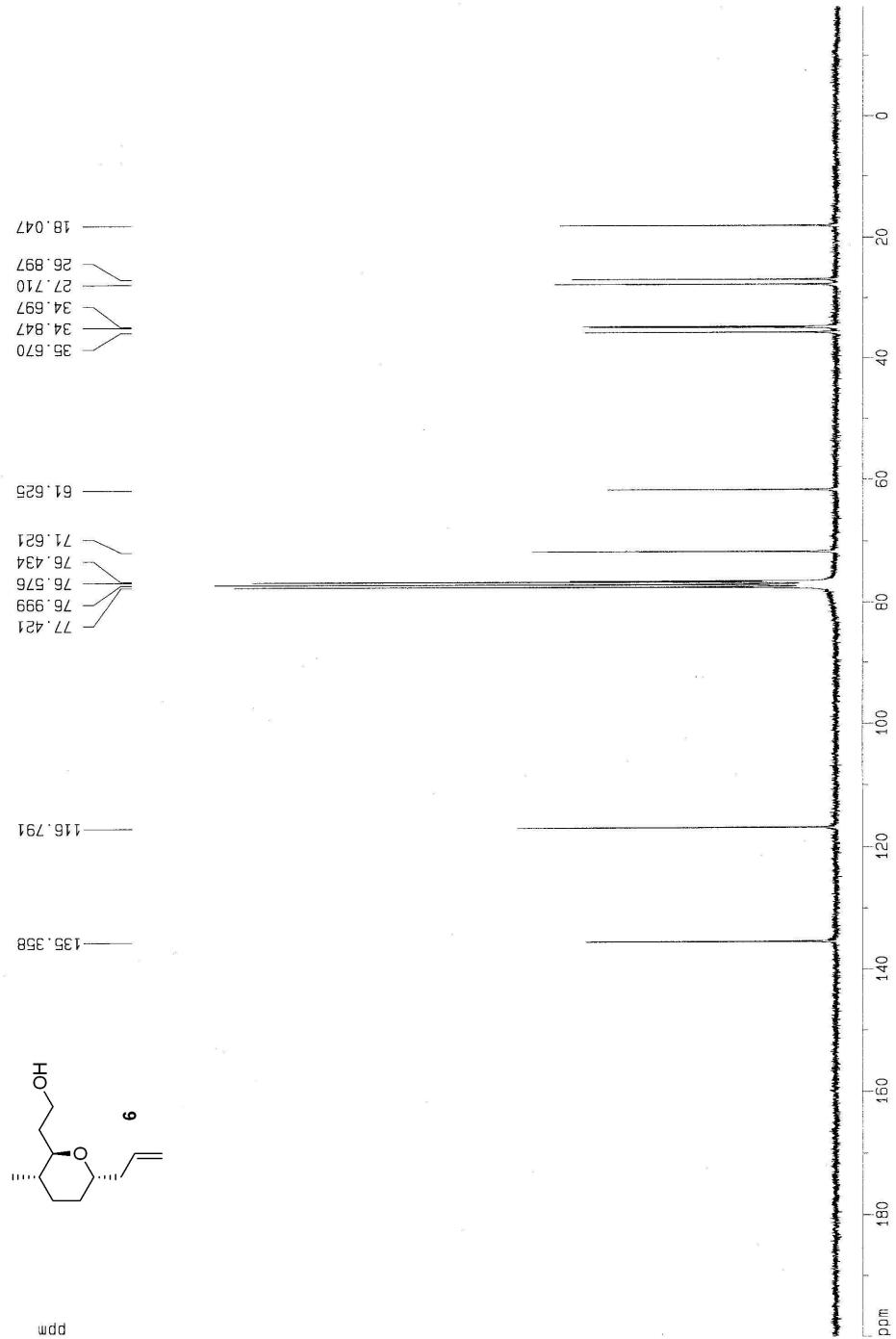


Macrocyclic lactone 24

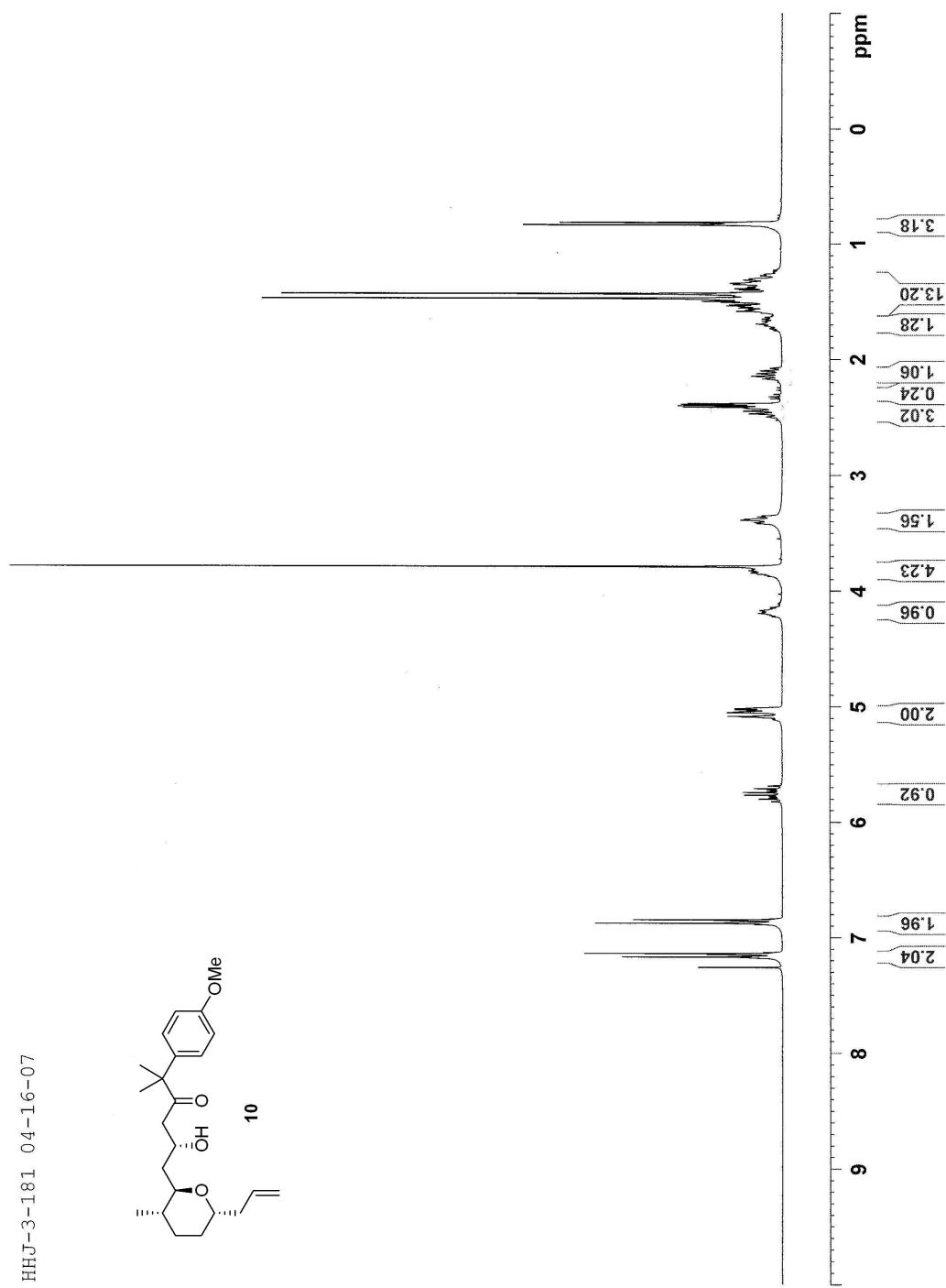
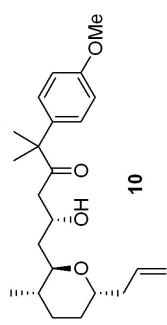
To a solution of lactol **23** (8.2 mg, 11 μ mol) in CH_2Cl_2 (3 mL) was added 4 \AA molecular sieves (8.2 mg). After gently stirring for 10 min, pyridinium chlorochromate (PCC) (4.9 mg, 23 μ mol) was added with a portion. The resulting mixture was stirred at room temperature for 2 h and concentrated under reduced pressure. The resulting residue was purified *via* flash chromatography on silica gel (1:10 to 1:4, EtOAc/hexanes) to provide **24** (6.6 mg, 9.1 μ mol, 81%) as a colorless oil. ^1H NMR (500 MHz, CDCl_3): δ 5.70 (m, 1H), 5.37 (m, 1H), 5.36 (m, 1H), 5.27 (m, 1H), 4.46 (m, 4H), 4.01 (tm, J = 11.5 Hz, 1H), 3.89 (dm, J = 11.5 Hz, 1H), 3.61 (tm, J = 11.5 Hz, 2H), 3.53 (tm, J = 11.0 Hz,

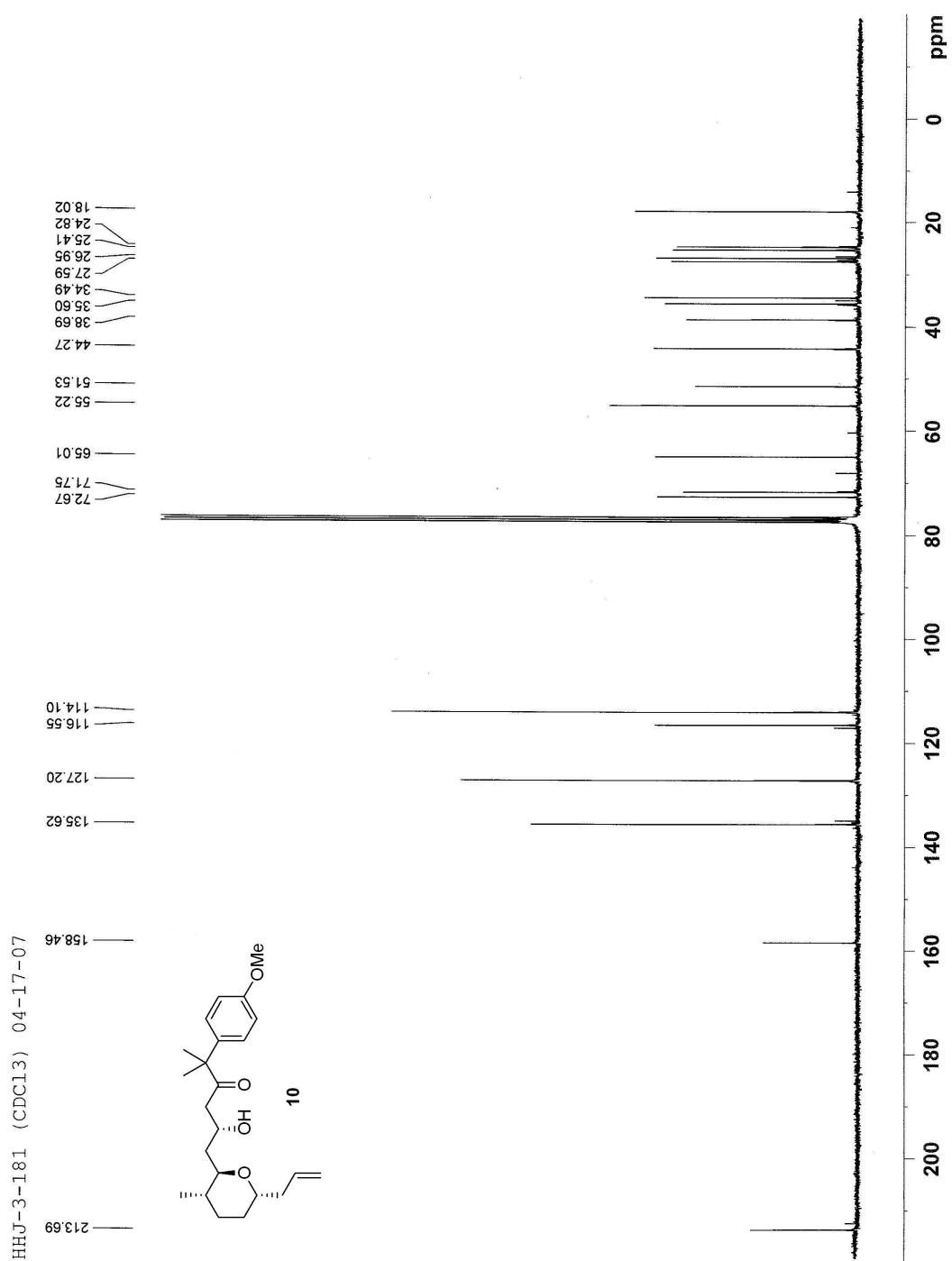


⁴ M. Bessodes, M. Saiah, K. Antonakis, *J. Org. Chem.* **1992**, 57, 4441.

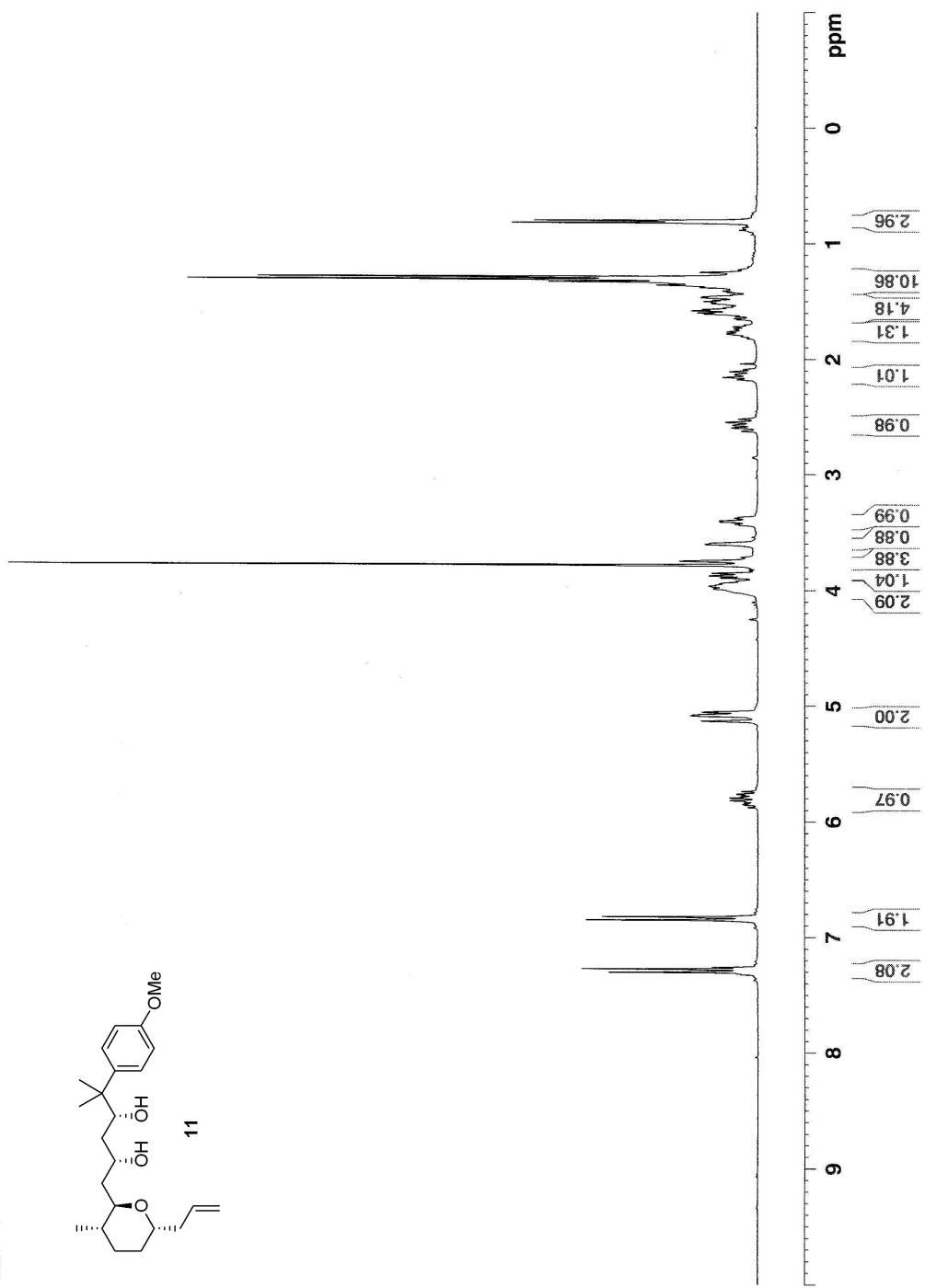
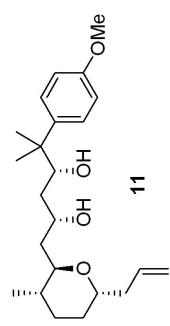
1H), 3.35 (s, 3H), 3.23 (d, $^2J(^1\text{H}, ^{31}\text{P}) = 21.0$ Hz, 1H), 3.22 (d, $^2J(^1\text{H}, ^{31}\text{P}) = 21.0$ Hz, 1H), 2.52 (dd, $J = 13.0, 4.0$ Hz, 1H), 2.45 (m, 1H), 2.31 (dd, $J = 13.0, 12.0$ Hz, 1H), 2.01-1.84 (m, 4H), 1.76-1.65 (m, 2H), 1.63-1.49 (m, 7H), 1.42 (dm, $J = 13.0$ Hz, 1H), 1.32 (dm, $J = 13.0$ Hz, 1H), 1.17 (d, $J = 7.0$ Hz, 3H), 1.01 (m, 1H), 0.85 (d, $J = 6.5$ Hz, 6H); ^{13}C NMR (125 MHz, CDCl_3): δ 169.2, 163.7 (d, $^2J(^{13}\text{C}, ^{31}\text{P}) = 5$ Hz), 132.4, 130.1, 122.4 (q, $^1J(^{13}\text{C}, ^{19}\text{F}) = 276$ Hz), 122.3 (q, $^1J(^{13}\text{C}, ^{19}\text{F}) = 276$ Hz), 73.7, 73.3, 70.9, 70.4, 69.7, 69.3, 63.0, 62.6 (m), 62.5 (m), 57.3, 43.2, 42.8, 41.6, 39.1, 35.5, 35.2, 35.1, 34.4 (d, $^1J(^{13}\text{C}, ^{31}\text{P}) = 142$ Hz), 31.0, 28.1, 27.2, 24.0, 22.2, 18.3; IR (neat): 2927, 1739, 1459, 1271, 1171, 1073 cm^{-1} ; HRMS (ESI) m/z calcd. for $\text{C}_{31}\text{H}_{47}\text{O}_{10}\text{F}_6\text{PNa} (\text{M}+\text{Na})^+$ 747.2709 found 747.2685; $[\alpha]_D^{23} +40$ (c 0.67, CHCl_3).

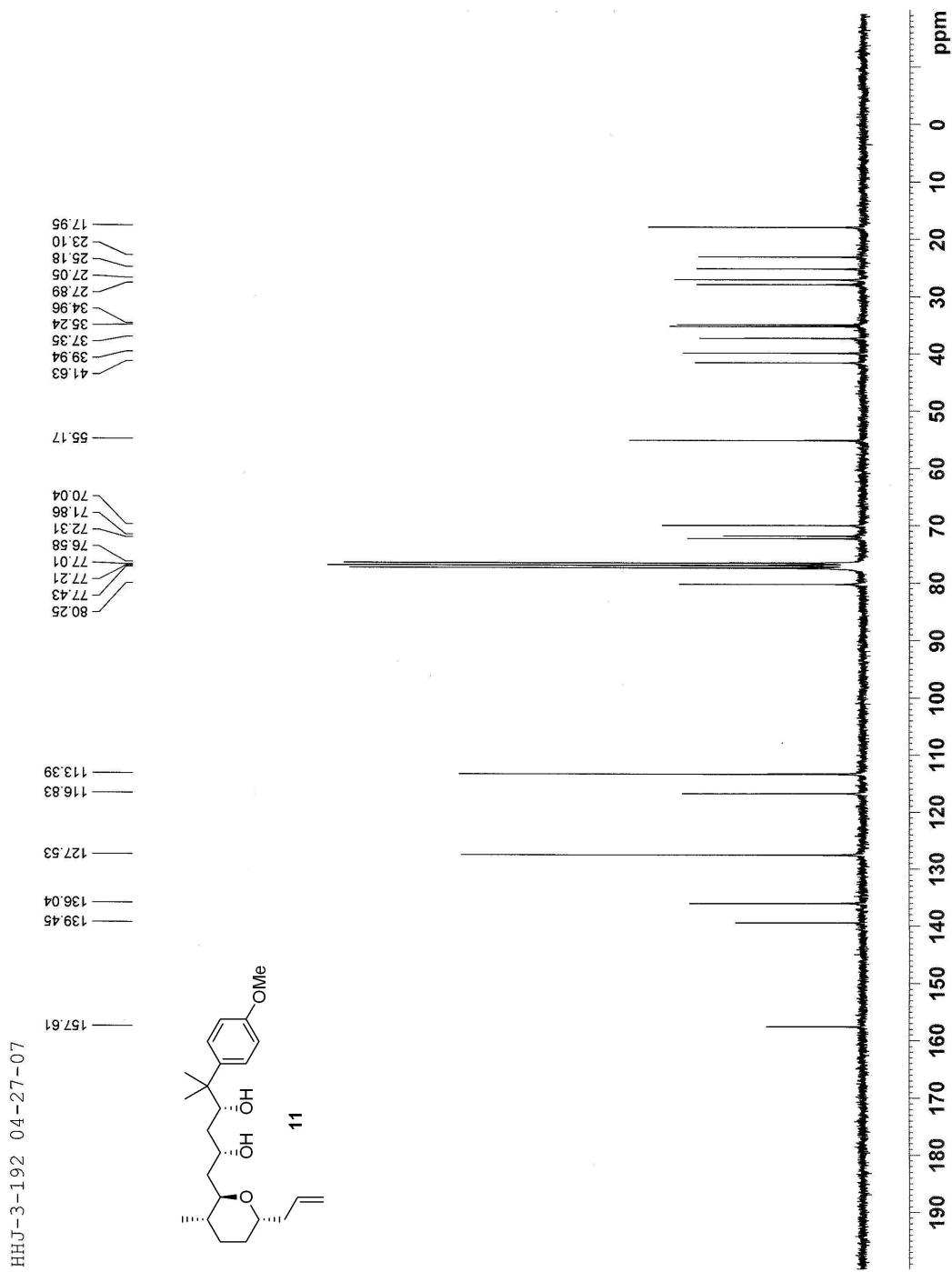


HHJ-3-106 02-17-07

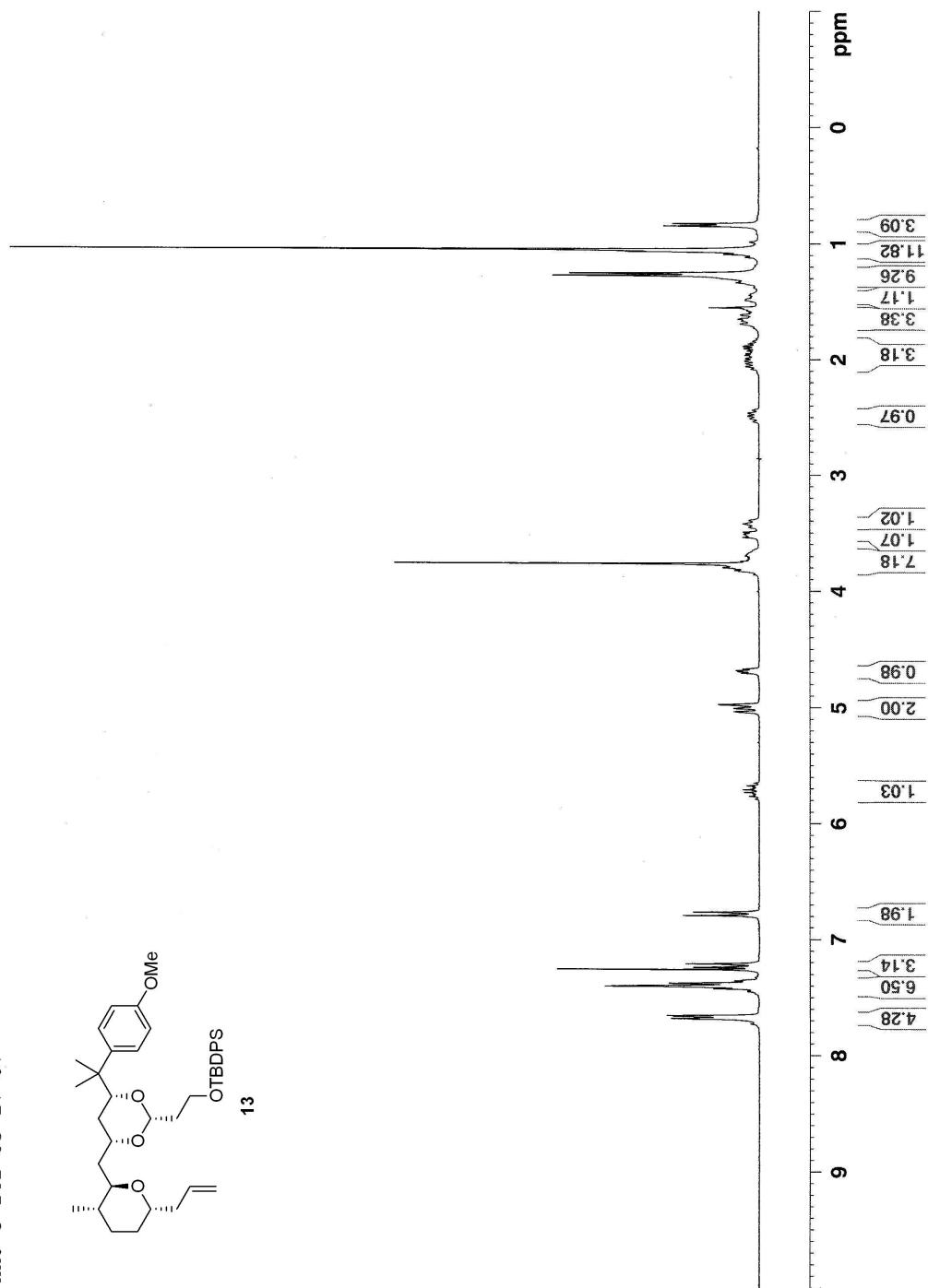
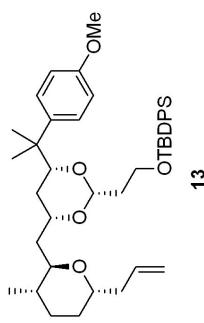


HHJ-3-106 02-17-07

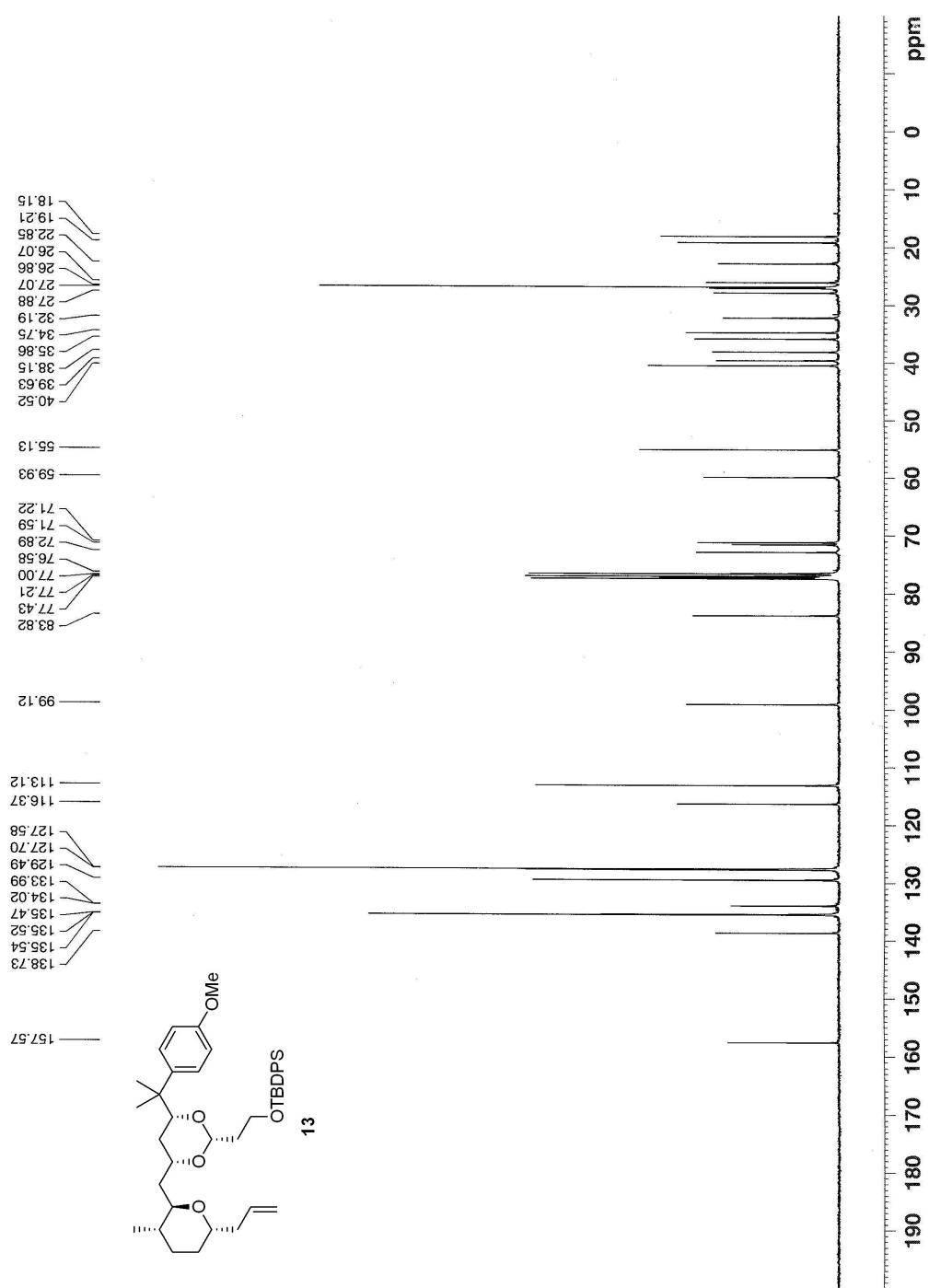



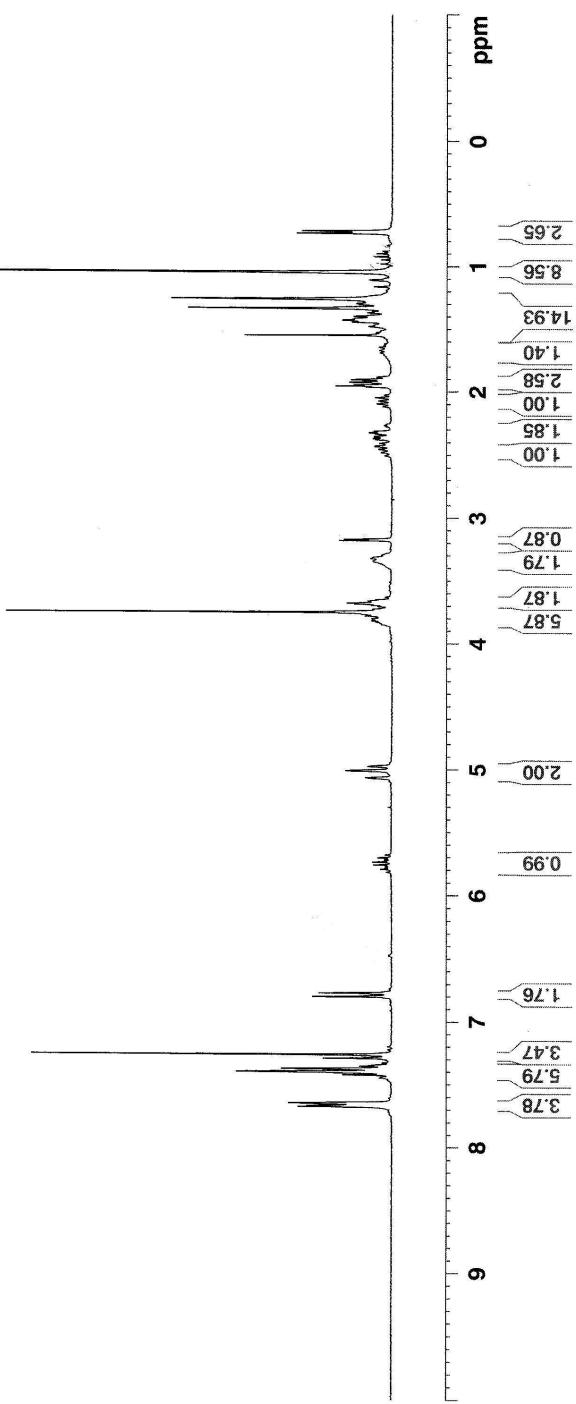
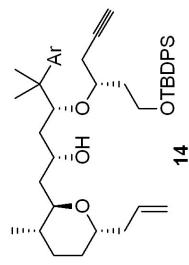

HHJ-3-125 03-02-07

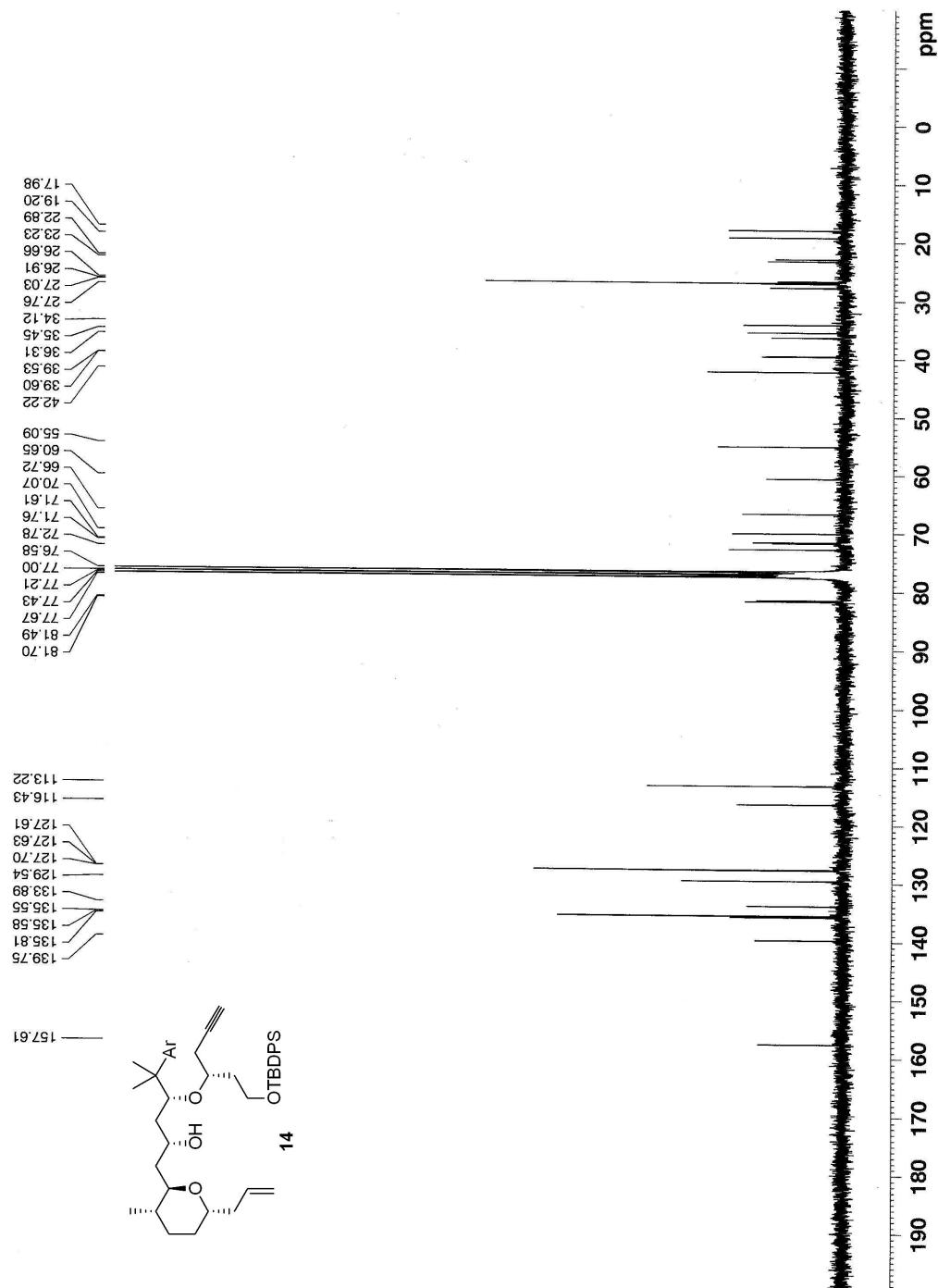


HHU-3-28 08-16-06

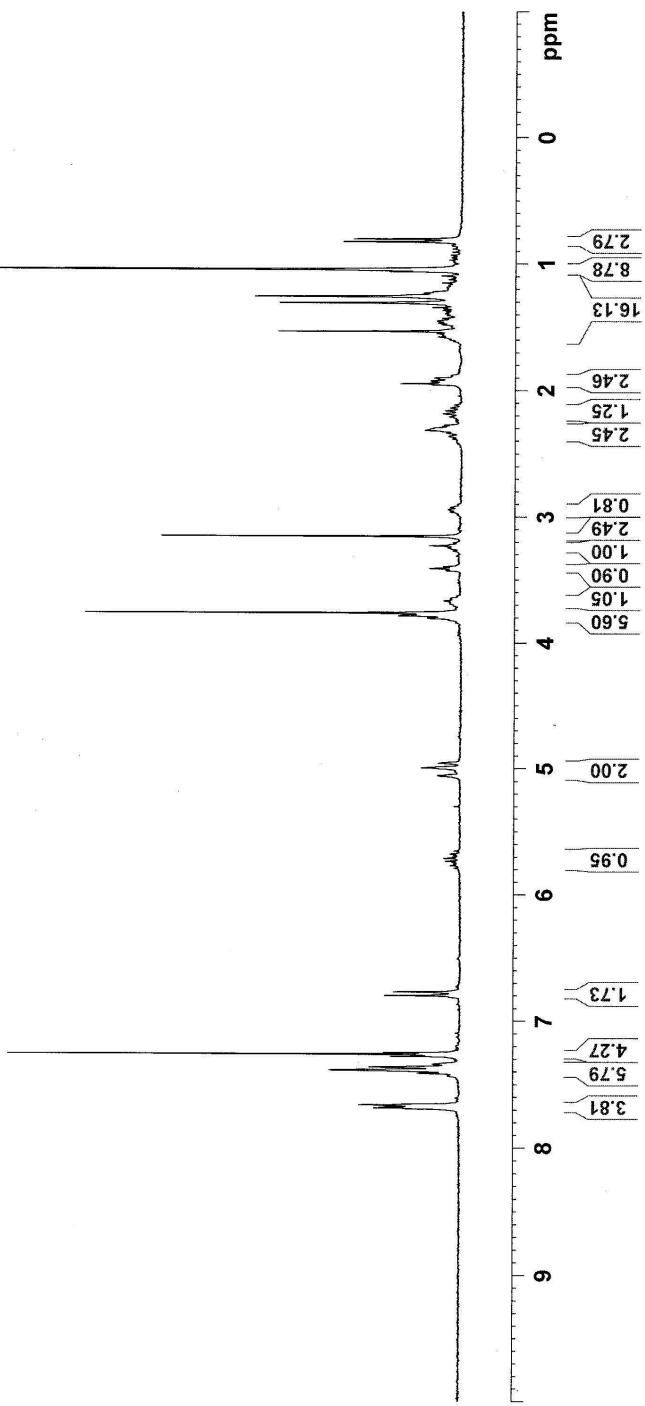
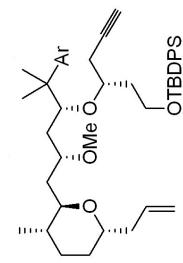


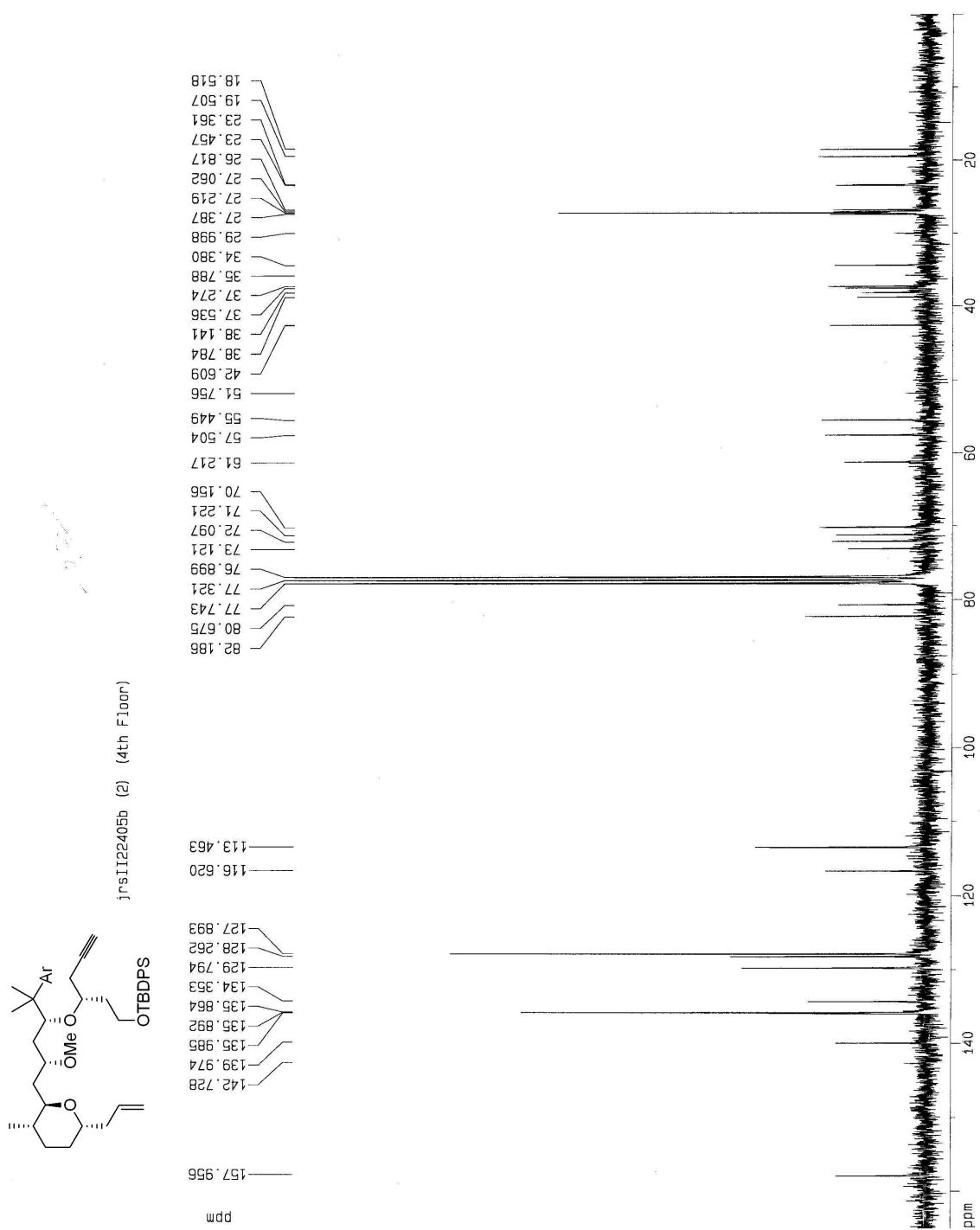




HHJ-3-141

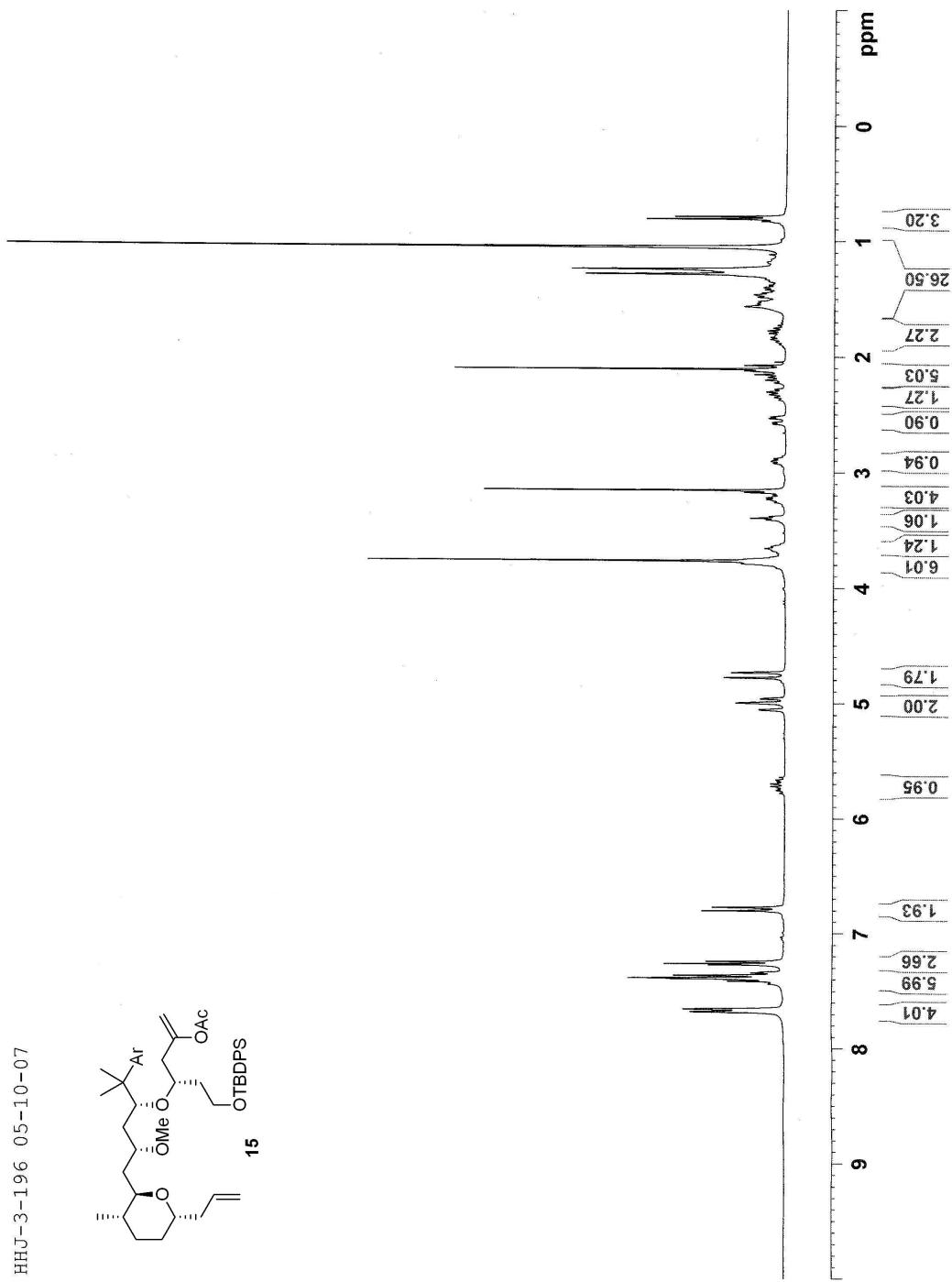
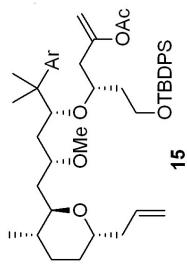




HHJ-3-193 05-01-07

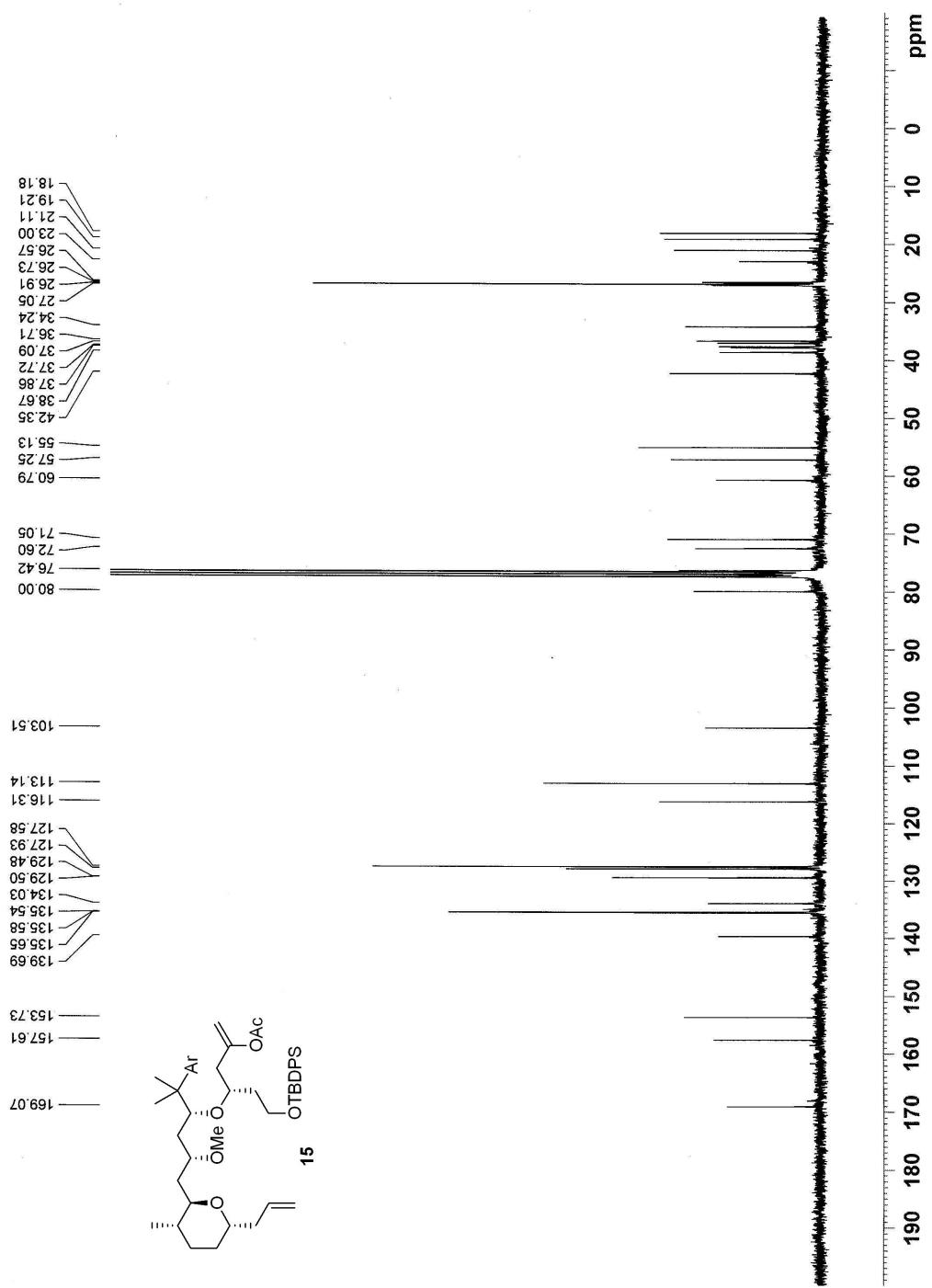


HHU-3-143 03-19-07

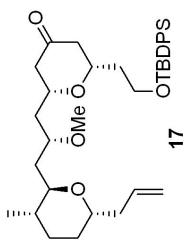


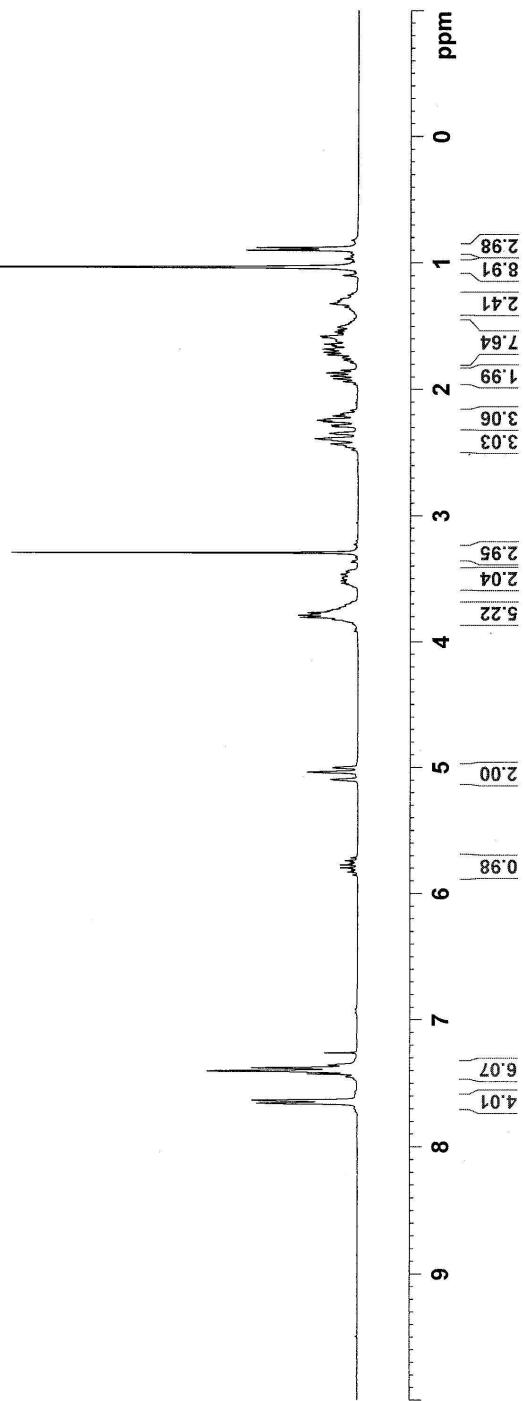
HHJ-3-143 03-19-07

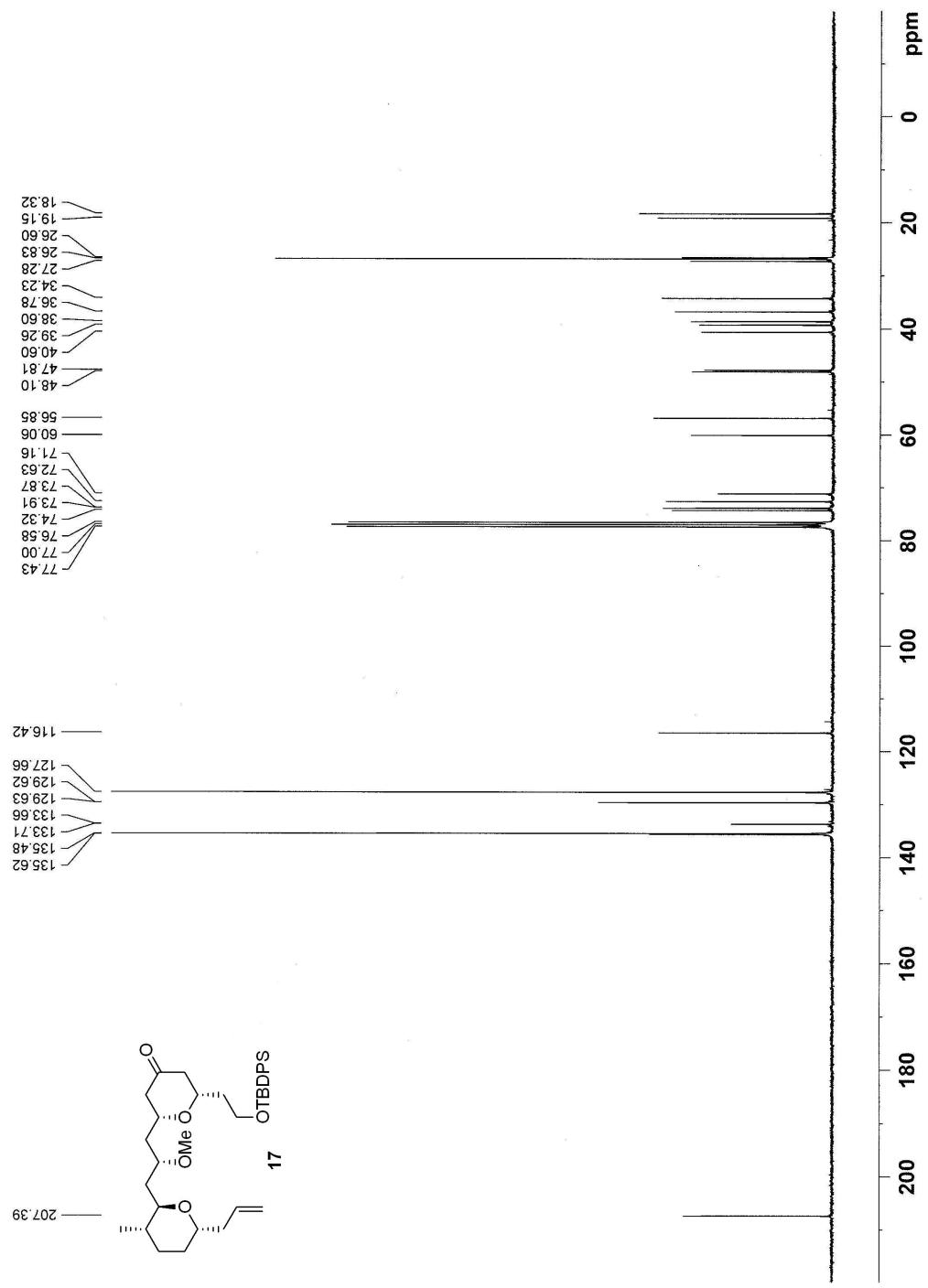



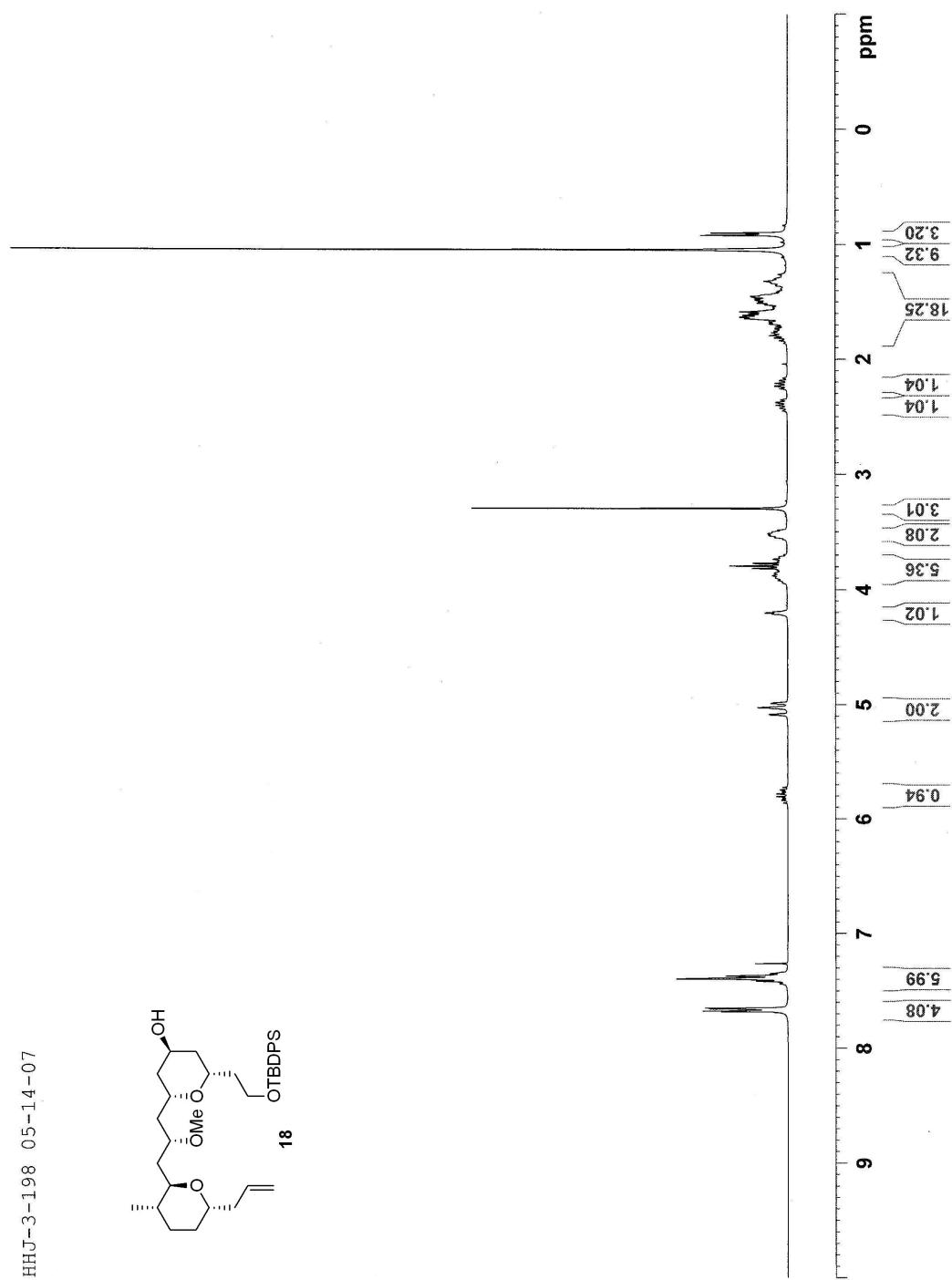
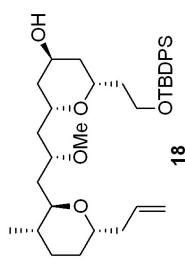
HHJ-3-144 03-21-07

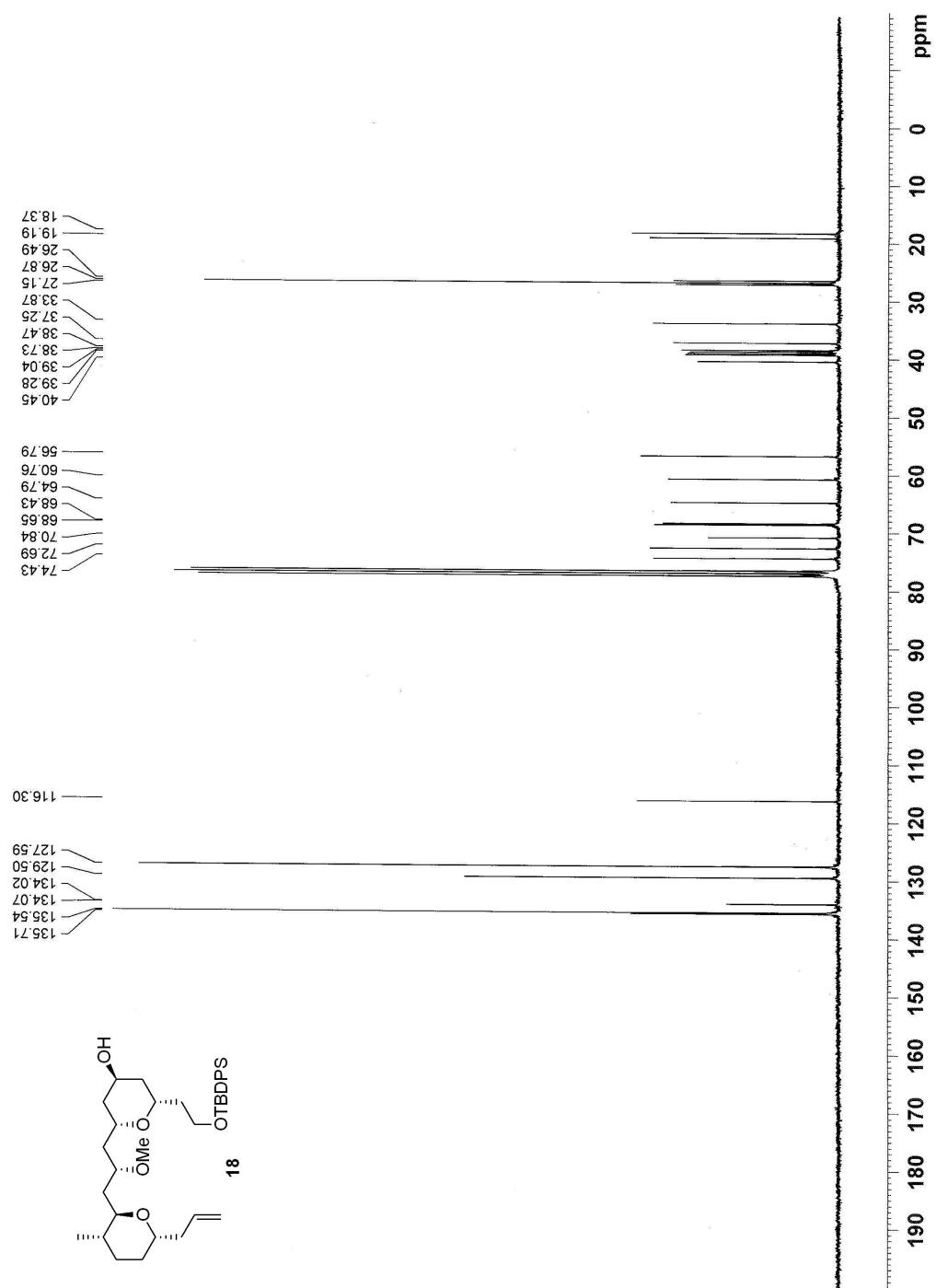


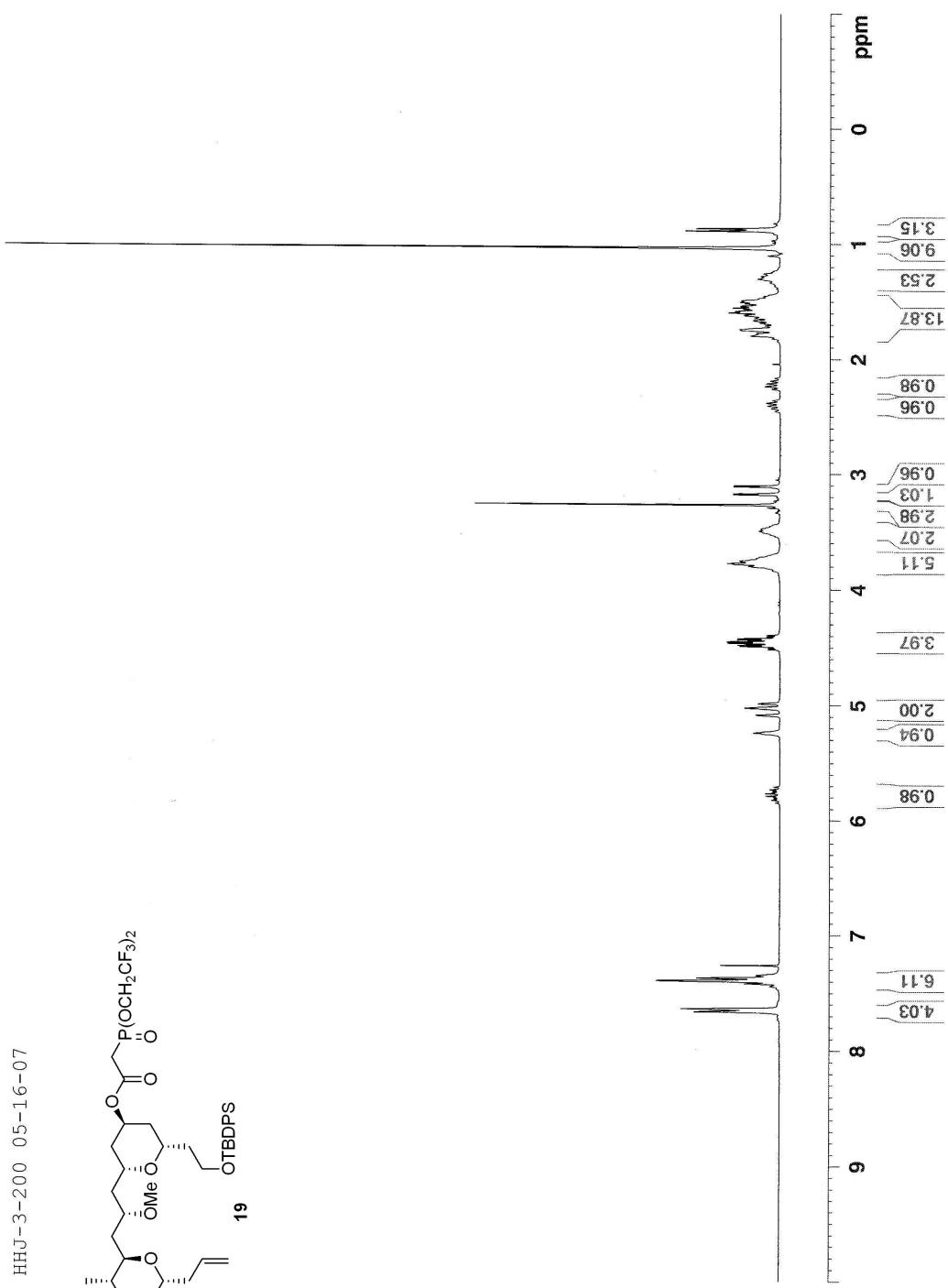
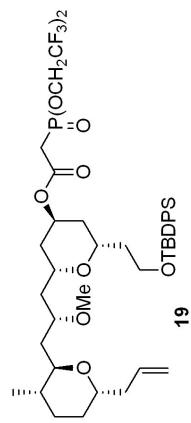

HHJ-3-196 05-10-07

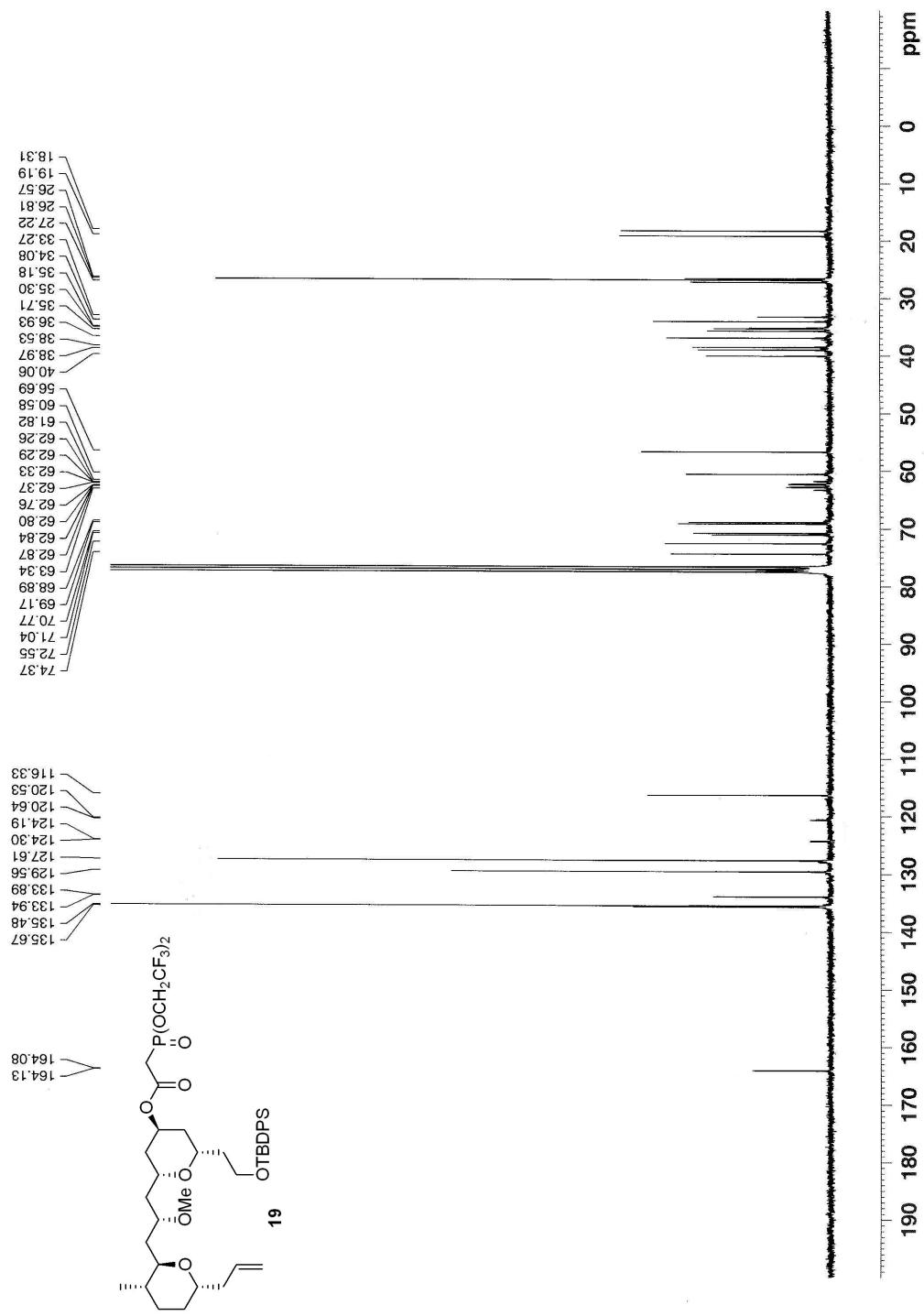

HHJ-3-196 05-10-07

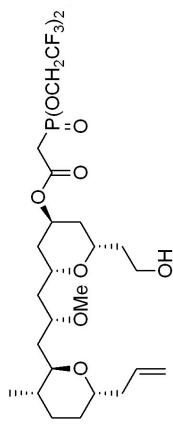

HHJ-3-197 05-12-07



17

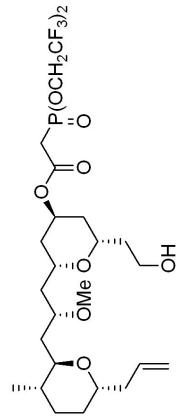

HHJ-3-197 05-12-07



HHJ-3-198 05-14-07

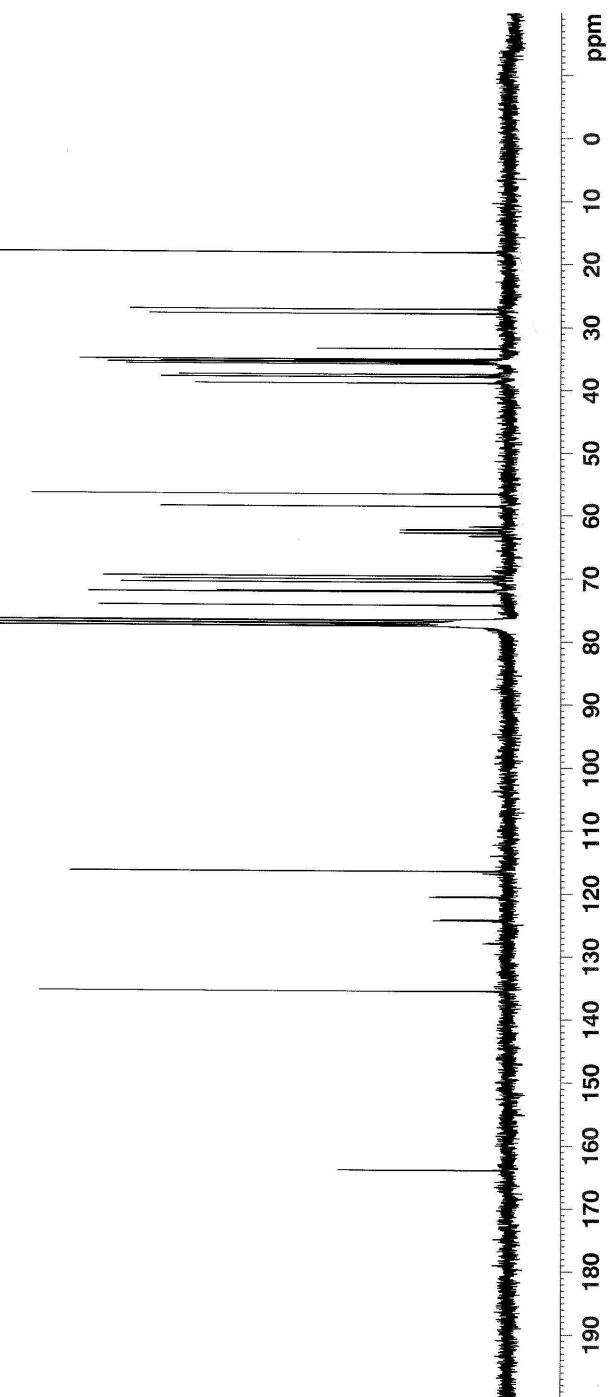

HHJ-3-198 05-14-07


HHJ-3-200 05-16-07

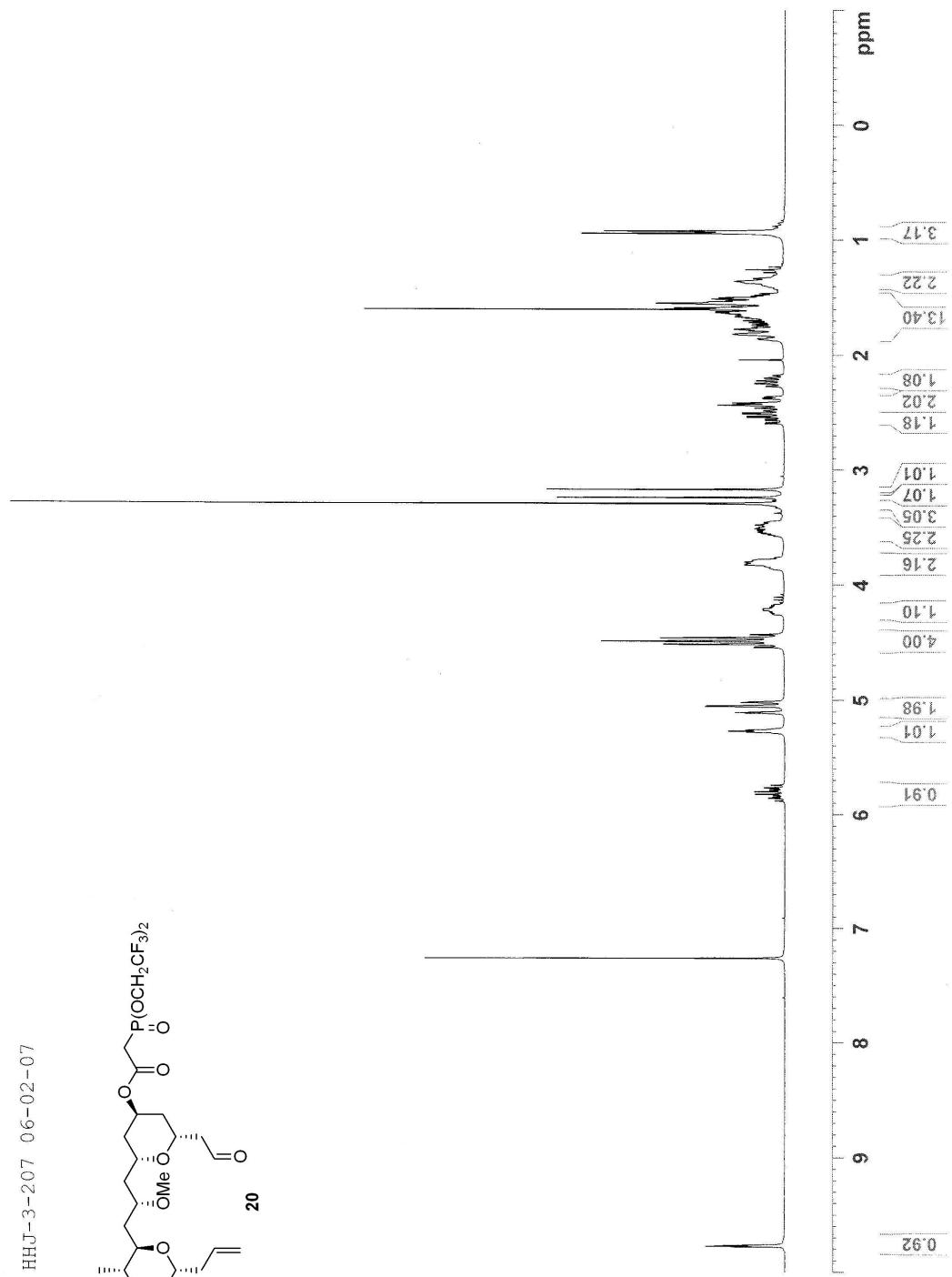
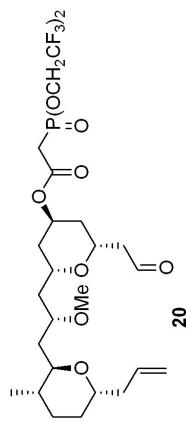
HHJ-3-200 05-16-07

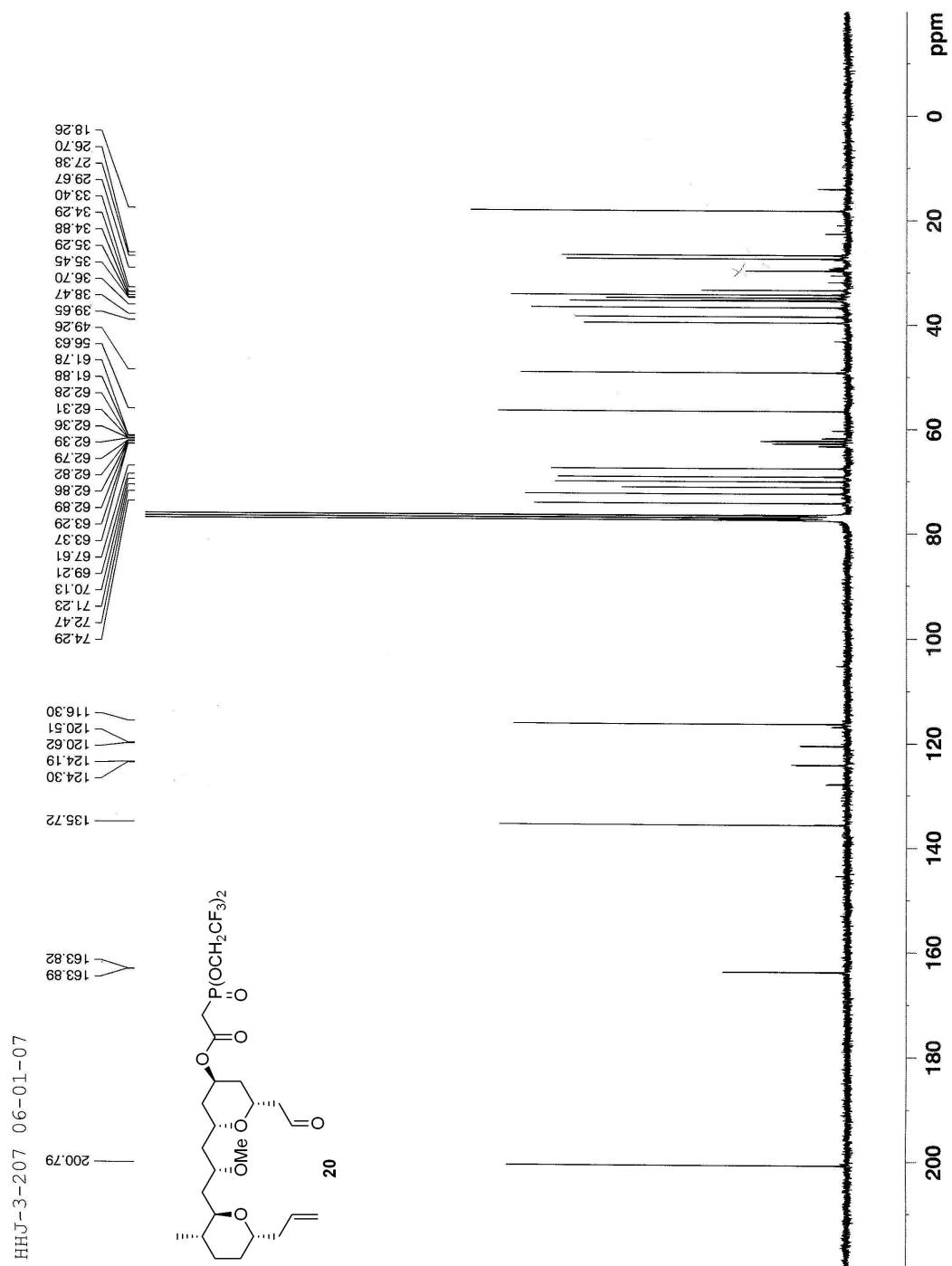


HHJ-3-160 03-29-07

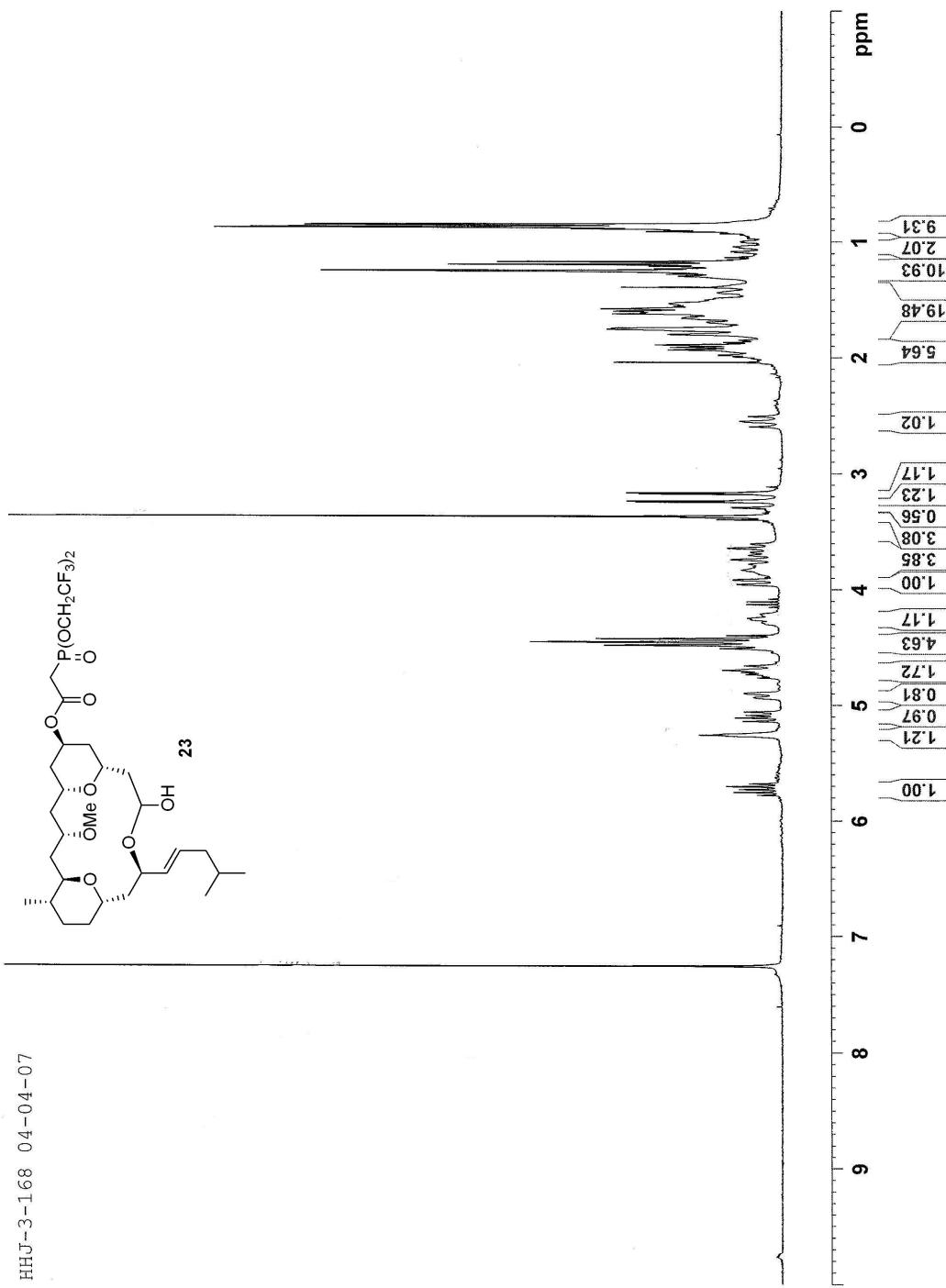


HHJ-3-201 05-26-07

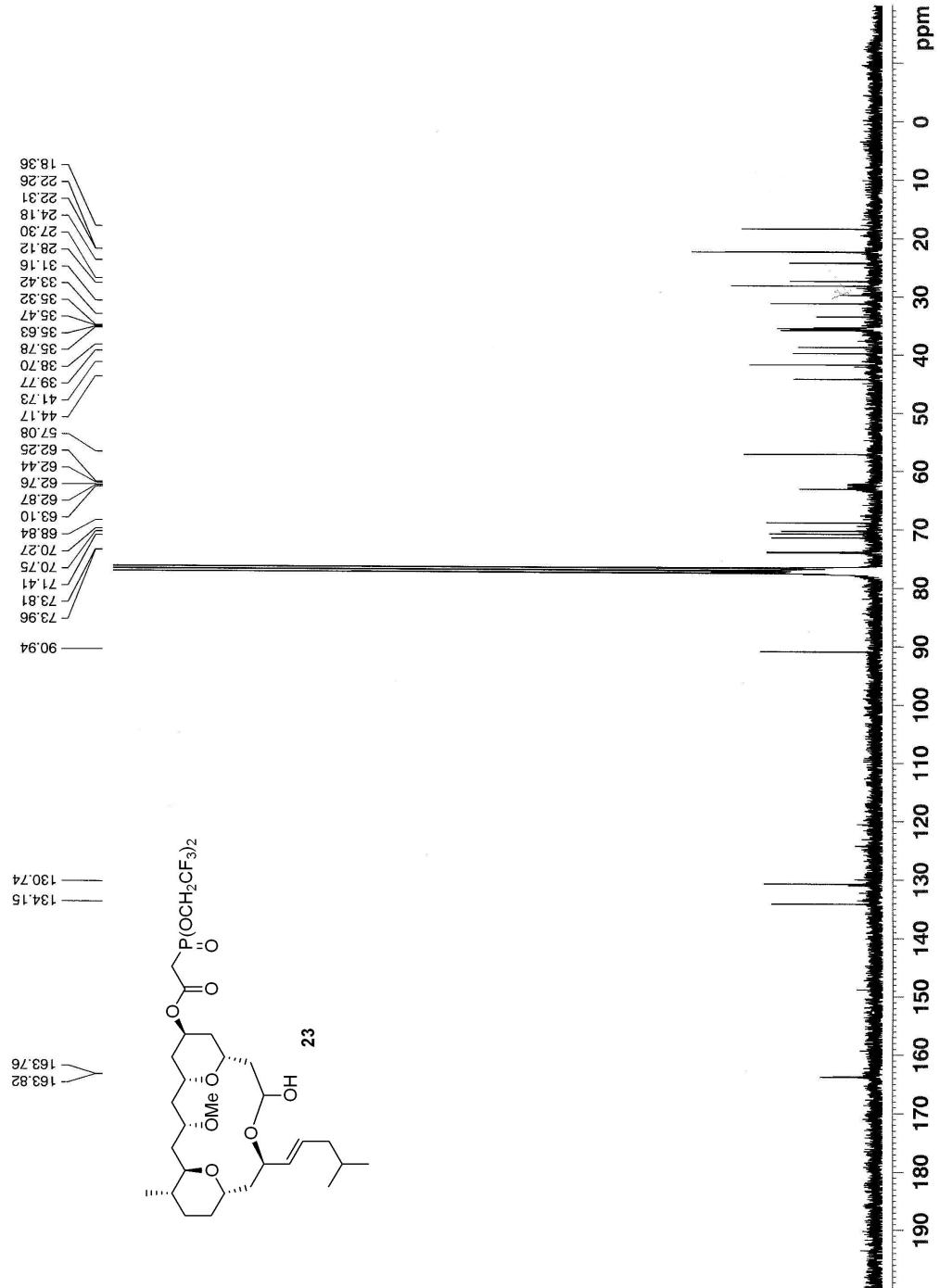


135.56
163.97
124.18
120.62
102.51
116.46

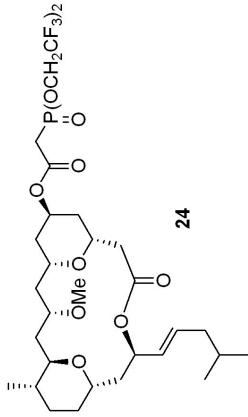


74.23
72.10
71.95
70.88
70.85
69.62
69.38
69.32
69.27
62.82
62.87
62.31
61.88
61.18
58.57
56.95
38.90
37.51
37.31
35.83
35.65
35.36
35.31
35.09
33.41
27.44
27.14
18.16




HHJ-3-207 06-02-07




HHJ-3-168 04-04-07

HHJ-3-209 06-06-07

HHJ-3-210 06-08-07

Current NAME	Data EXPNO	Parameters PROCNO
HHJ-3-210	2	1

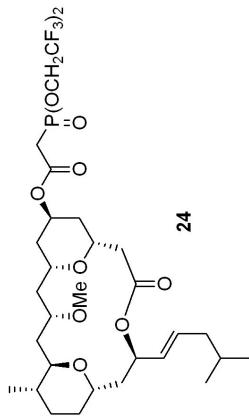
24

==== F2 - Acquisition Parameters

Date	2007/06/08
Time	21.21
INSTRUM	5 mm Multinucl
PROBHD	5 mm Multinucl
PULPROG	29
TD	65536
SOLVENT	CDC13
NS	32
DS	2
SWH	10330.578 Hz
FIDRES	0.157632 Hz
AQ	3.1719923 sec
RG	180.6
DW	48.400 usec
DE	6.00 usec
TE	298.2 K
D1	6.00000000 sec
TDO	1

===== CHANNEL f1 =====

NUC1	1H
P1	9.00 usec
PL1	0.00 dB
SRQ1	500.11330895 MHz


F2 - Processing parameters

SI	327.68
SF	500.11300135 MHz
WWD	EM
SSB	0
LB	0.10 Hz
GB	0
PC	1.00

HHU-3-210 06-08-07

BRUKER

169.22 163.74
121.24 123.52 121.31
130.09 132.42
123.42 125.00 127.26
123.52 125.75 127.00
121.31 125.75 127.26
119.32 119.68 119.93
117.29 117.50 117.75
115.32 115.63 115.88
113.27 113.49 113.75
111.24 111.56 111.82
109.22 109.54 109.80
107.24 107.56 107.82
105.22 105.54 105.80
103.21 103.53 103.79
101.21 101.53 101.79
99.20 99.52 99.78
97.20 97.52 97.78
95.20 95.52 95.78
93.20 93.52 93.78
91.20 91.52 91.78
89.20 89.52 89.78
87.20 87.52 87.78
85.20 85.52 85.78
83.20 83.52 83.78
81.20 81.52 81.78
79.20 79.52 79.78
77.20 77.52 77.78
75.20 75.52 75.78
73.20 73.52 73.78
71.20 71.52 71.78
69.20 69.52 69.78
67.20 67.52 67.78
65.20 65.52 65.78
63.20 63.52 63.78
61.20 61.52 61.78
59.20 59.52 59.78
57.20 57.52 57.78
55.20 55.52 55.78
53.20 53.52 53.78
51.20 51.52 51.78
49.20 49.52 49.78
47.20 47.52 47.78
45.20 45.52 45.78
43.20 43.52 43.78
41.20 41.52 41.78
39.20 39.52 39.78
37.20 37.52 37.78
35.20 35.52 35.78
33.20 33.52 33.78
31.20 31.52 31.78
29.69 29.78 29.88
27.21 27.51 27.71
24.03 24.33 24.53
22.21 22.51 22.71
18.26 18.56 18.76

Current Data Parameters
NAME HHU-3-210
EXPNO 3
PROCNO 1

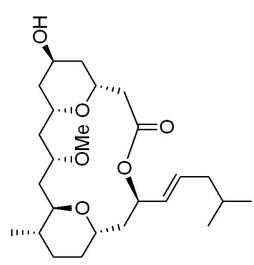
F2 - Acquisition Parameters

Time 20070609
9.37
INSTRUM spect
PROBHD 5 mm Multinucl
PULPROG zgpg
TD 65536
0.488222 Hz
SOLVENT DDC13
NS 6144
DS 300360.029 Hz
SWH 2
FIDRES 0.492244 sec
AQ 7398.2
RG 16.650 usec
DE 6.00 usec
TE 298.2 K
D1 6.000000 sec
d11 0.0300000 sec
DELTA 5.90000010 sec
TD0 1

===== CHANNEL f1 =====

NUC1 13C
P1 11.00 usec
PL1 125.7703643 MHz
SF01 waltz16

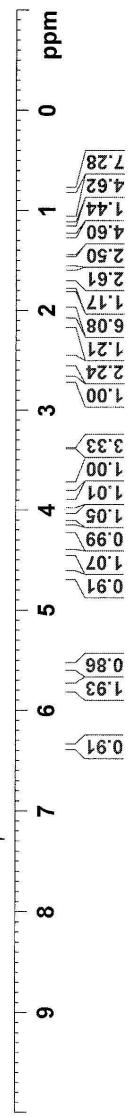
===== CHANNEL f2 =====


CPDPRG2 1H
NUC2 1H
PCPD2 100.00 usec
PL2 20.00 dB
PL12 20.00 dB
PL13 20.00 dB
SFO2 500.1320005 MHz

F2 - Processing parameters

SI 32768
SF 125.757919 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

BRUKER



HHJ-3-211 06-11-07

Current Data Parameters
NAME HHJ-3-211
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20070611
Time 16:50
INSTRUM spect
PROBID 5 mm Multinucl
PULPROG 29
TD 65536
SOLVENT Pyr
NS 32
DS 2
SWH 10330.578 Hz
FIDRES 0.15732 Hz
AQ 3.171923 sec
RG 101.6
DW 48.400 usec
DE 6.00 usec
TE 296.2 K
D1 2.0000000 sec
TDO 1

==== CHANNEL f1 =====
NUC1 1H
P1 9.00 usec
PL1 0.00 dB
SFO1 500.1330885 MHz
F2 - Processing parameters
SI 32768
SF 500.1305153 MHz
WDW EM
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

