

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Total Synthesis, Configuration and Biological Evaluation of Anguinomycin C

Simone Bonazzi, Stephan Güttinger, Ivo Zemp, Ulrike Kutay,* and Karl Gademann*

Prof. Dr. K. Gademann, S. Bonazzi, MSc Chemical Synthesis Laboratory Swiss Federal Institute of Technology (EPF Lausanne) CH-1015 Lausanne/Switzerland Fax: (+)41 21 693 97 00 E-mail: karl.gademann@epfl.ch Homepage: http://isic.epfl.ch/lsync

Prof. Dr. U. Kutay, Dr. S. Güttinger, Dipl. Natw. ETH Ivo Zemp Institut für Biochemie Swiss Federal Institute of Technology (ETH Zürich) CH-8093 Zürich/Switzerland ulrike.kutay@bc.biol.ethz.ch

Experimental Part

General Methods

Unless otherwise stated, chemicals were purchased from Fluka, ABCR or Acros and used without further purification. MeB(OH)₂ was purchased from Lancaster. Solvents for work-up and chromatography were distilled from technical quality. Solvents used for chemical transformations were either puriss quality or dried by filtration through activated aluminium oxide under argon (H₂O content < 30 ppm, *Karl-Fischer* titration). All non-aqueous reactions were run under Ar or N₂ in dry glassware. Concentration under reduced pressure was performed by rotary evaporation at 40 °C (unless otherwise specified). Yields are based on purified, dried and spectroscopically pure compounds.

Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates (0.25 mm thickness) precoated with fluorescent indicator. The developed plates were examined under UV light and stained with ceric ammonium molybdate followed by heating.

Flash chromatography was performed using silica gel 60 (230-240 mesh) from Fluka using a forced flow eluant at 0.3-0.5 bar pressure.

All ¹H and ¹³C NMR spectra were recorded using either Varian Gemini 300 MHz (¹H) or 75 MHz (¹³C), Varian Mercury 300 MHz (¹H) or 75 MHz (¹³C), Bruker DRX 500 MHz (¹H) or 125 MHz (¹³C), Bruker DPX 400 MHz (¹H) or 100 MHz (¹³C), Bruker DRX 600 MHz (¹H) or 150 MHz (¹³C) FT spectrometers at room temperature, chemical shift δ given in ppm and coupling constant *J* in Hz.

Analytical gas chromatography (GC) was performed on *Hewelett Packard, HP6810. Column*: supelco β dex 120, 30 m x 0.25 mm x 0.25 μ m. *Carrier gas*: H₂. *Temperature*: 120 °C isothermal. *Flow*: 2 mL/min. *Split ratio*: 40:1. *Detector*: FID.

Analytical high-performance liquid chromatography (HPLC) was performed on a *Dionex Chromatography System* (Interface Chromeleon, UV detector 170U, Pump P680, degaser). The *flow rate* was 1 ml / min and the detector wavelength was fixed at $\lambda = 241$ nm. *Column*:

Phenomenex Gemini (5 µm) (C18 (150 x 4.6 mm)), solvent A: H₂O, solvent B: MeOH).

Semi-preparative reversed-phase high-performance liquid chromatography (SP-HPLC) was performed on a *Dionex Chromatography System* (Interface Chromeleon, UV detector 170U, Pump P680, degaser). The *flow rate* was 5 ml / min and the detector wavelength was fixed at $\lambda = 241$ nm. *Column*: Phenomenex Gemini (5 µm) (C18 110A (150 x 10 mm)), solvent A: H₂O, solvent B: MeOH). All separations were performed at ambient temperature.

IR spectra were recorded as CHCl₃ solution using a *Varian 2000 FT-IR ATR Spectrometer* or *Varian 800 FT-IR ATR Spectrometer*. The absorptions are reported in cm⁻¹ and the IR bands were assigned as *s* (strong), *m* (medium) or *w* (weak).

Optical rotations $[\alpha]^{T}_{D}$ were measured at the sodium D line using a 1 mL cell with a 1 dm path length on a Jasco DIP 1000 digital polarimeter, Jasco P-1020 digital polarimeter, Jasco P-2000 digital polarimeter and the concentration *c* is given in g/100mL and the used solvent is CHCl₃.

Elemental analysis were performed by Mikroanalyse Labor of the Laboratorium für Organische Chemie der ETH Zürich or by Mr. Euro Solari in the Laboratory of Supramolecular Chemistry at the EPF Lausanne.

All mass spectra were recorded by the Mass spectroscopy Service of Laboratorium für Organische Chemie der ETH Zürich on VG-TRIBRID (EI-MS) spectrometer and spectra measured at 70 eV, on TSQ 7000 ESI or by the Mass spectroscopy Service of EPF Lausanne on MICROMASS (ESI) Q-TOF Ultima API. Fragment ions are given in m/z with relative intensities (%) in parentheses.

UV spectra were measured on a *Varian Cary 1 Bio* UV-Visible spectrophotometer in a *Starna* quartz cell (10 mm path length).

Lyophilisations were performed using a Christ Freeze Dryer Alpha 1-2 LD plus.

Melting points were determined using a Büchi B-545 apparatus in open capillaries and are uncorrected.

3-(Triethylsilyl)propionaldehyde (2) [1]

To a suspension of Mg (0.50 g, 20.0 mmol, 1.00 eq.) in dry THF (80 mL) was added EtBr (1.50 mL, 20.0 mmol, 1.00 eq.) and the mixture was stirred at rt until all Mg was consumed. The resultant solution was added dropwise to a solution of trimethylsilylacetylene (3.58 mL, 20.0 mmol, 1.00 eq.). The mixture was heated at reflux for 5 minutes and slowly added via canula to a solution of DMF (9.52 mL, 122 mmol, 6.10 eq.) in THF (80 mL) forming a white precipitate. The reaction was heated at reflux for 5 minutes, acidified to pH~7 with dilute HCl solution, diluted with water (200 mL) and extracted with Et₂O (3 x 100 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. The residue was diluted in Et₂O and washed with dilute CuSO₄ solution (pH \approx 5) and saturated NaHCO₃. The organic layer was dried (MgSO₄), filtered and concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/AcOEt 100:0 \rightarrow 98:2) to give 3-(triethylsilyl)propionaldehyde (**2**) (2.98 g, 13.5 mmol, 67%) as a pale yellow oil.

 $\mathbf{R_f} = 0.46$ (cyclohexane/AcOEt 9.5:0.5).

¹**H-NMR** (300 MHz, CDCl₃) δ 9.18 (s, 1 H), 1.01 (t, *J* = 7.8 Hz, 9 H), 0.68 (q, *J* = 7.8 Hz, 6 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 176.4, 103.4, 101.3, 7.3, 3.8.

IR Spectroscopy v 2959*m*, 2915*w*, 2879*m*, 2175*w*, 1689*s*, 1670*s*, 1461*w*, 1405*w*, 1262*m*, 1236*m*, 1002*m*, 913*w* cm⁻¹.

Triethyl(((2R,6S)-6-methoxy-3,6-dihydro-2H-pyran-2-yl)ethynyl)silane (3)

In a 10 mL flask under Ar was added 4Å molecular sieves (1.26 g), **4** (0.30 g, 0.29 mmol, 0.02 eq., 2.3 mol%), 3-(triethylsilyl)propionaldehyde (**2**) (2.12 g, 12.6 mmol, 1.00 eq.) and 1-methoxy-1,3-butadiene (1.28 mL, 12.6 mmol, 1.00 eq.) and the mixture was stirred at rt for 18 hours. The reaction was diluted with pentane, filtered through Celite and concentrated. The residue was purified by flash chromatography on SiO₂ (pentane/Et₂O 100:0 \rightarrow 98:2) to give triethyl(((2*R*,6*S*)-6-methoxy-3,6-dihydro-2*H*-pyran-2-yl)ethynyl)silane (**3**) (2.73 g, 10.8 mmol, 86%) as a colorless oil.

 $\mathbf{R_f} = 0.37$ (pentane/Et₂O 9.5:0.5).

Optical rotation $[\alpha]^{27.9}_{D}(c \ 0.92, \text{CHCl}_3) = +105.8^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 5.96-5.90 (m, 1 H), 5.66 (dq, $J_1 = 10.3$ Hz, $J_2 = 1.9$ Hz, 1 H), 5.01-4.98 (m, 1 H), 4.54 (dd, $J_1 = 7.3$ Hz, $J_2 = 4.9$ Hz, 1 H), 3.46 (s, 3 H), 2.42-2.20 (m, 2 H), 0.96 (t, J = 7.9 Hz, 9 H), 0.56 (q, J = 7.9 Hz, 6 H).

¹³C-NMR (75 MHz, CDCl₃) δ 127.5, 126.6, 105.5, 97.2, 86.1, 61.5, 55.2, 31.3, 7.5, 4.3.

GC (β -dex chiral column) (T = 120°C): $t_{R1(minor)} = 42.08$ minutes, $t_{R2 (major)} = 43.00$ minutes and ee = 96.2.

Elemental analysis calcd. for C₁₄H₂₄O₂Si: [C] 66.61 %, [H] 9.58 %, [O] 12.68 %, [Si] 11.13 %; found [C] 66.61 %, [H] 9.67 %.

ESI 275.3 (100, [M+Na]⁺).

IR Spectroscopy v 2956*m*, 2879*m*, 1982*w*, 1735*w*, 1336*w*, 1036*m*, 763*s*, 740*s* cm⁻¹.

Triethyl(((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)ethynyl)silane

To a solution of *p*-TsOH (76.0 mg, 0.40 mmol, 1.00 eq.) in ⁱPrOH (1.00 mL, 0.4M) was added triethyl(((2R,6S)-6-methoxy-3,6-dihydro-2*H*-pyran-2-yl)ethynyl)silane (**3**) (100 mg, 0.40 mmol, 1.00 eq.) and the solution was stirred at rt for 2 hours. The reaction was quenched with dilute NaHCO₃ and extracted with Et₂O (3 x 20 mL). The organic layer was dried (MgSO₄), filtered and concentrated to afford triethyl(((2R,6R)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)ethynyl)silane (96.0 mg, 0.34 mmol, 86%) as a colorless oil which was used without further purification.

Optical rotation $[\alpha]^{28.7}{}_{D}(c \ 0.795, \text{CHCl}_3) = +33.7^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 5.96 (dd, $J_1 = 10.0$ Hz, $J_2 = 5.4$ Hz, 1 H), 5.71 (dd, $J_1 = 10.1$ Hz, $J_2 = 1.1$ Hz, 1 H), 5.14 (br. s, 1 H), 4.71 (dd, $J_1 = 11.1$ Hz, $J_2 = 3.7$ Hz, 1 H), 4.07 (sept., J = 6.2 Hz, 1 H), 2.41 (dd, $J_1 = 17.7$ Hz, $J_2 = 11.2$ Hz, 1 H), 2.23 (dd, $J_1 = 17.7$ Hz, $J_2 = 4.1$ Hz, 1 H), 1.29 (d, J = 6.2 Hz, 3 H), 1.19 (d, J = 6.1 Hz, 3 H), 1.00 (t, J = 7.8 Hz, 9 H), 0.63 (q, J = 7.8 Hz, 6 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 128.2, 126.3, 106.1, 93.4, 87.0, 70.3, 58.0, 32.1, 24.2, 24.4, 7.8, 4.7.

ESI 303.2 (100, [M+Na]⁺).

IR Spectroscopy v 2957*m*, 2012*m*, 2877*m*, 2186*w*, 1697*w*, 1461*w*, 1380*w*, 1317*w*, 1182*w*, 1098*w*, 1059*w*, 1024*s*, 1000*s*, 799*w*, 726*s* cm⁻¹.

(2R,6R)-2-Ethynyl-6-isopropoxy-3,6-dihydro-2H-pyran (5)

To a solution of triethyl(((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)ethynyl)silane (2.97 g, 10.6 mmol, 1.00 eq.) in THF (26.0 mL) was was dropwise added at 0 °C TBAF (10.6 mL, 10.6 mmol, 1.0 eq., 1.0 M in THF). The reaction was stirred for 15 minutes, warmed to rt, stirred for 1 h and quenched with water (50 mL). The mixture was extracted with Et₂O (3 x 40 mL) and the combined organic layers were washed with brine (1 x 60 mL), dried (MgSO₄), filtered and carefully concentrated in vacuo at 0 °C. The residue was purified by flash chromatography on SiO₂ (pentane/Et₂O 100:0 \rightarrow 95:5) to give (2*R*,6*R*)-2-ethynyl-6-isopropoxy-3,6-dihydro-2*H*-pyran (**5**) (1.68 g, 10.1 mmol, 95%) as a colorless volatile oil.

The analytical data matched those reported in reference [2]

 $\mathbf{R}_{\mathbf{f}} = 0.45$ (cyclohexane/AcOEt 9:1).

Optical rotation $[\alpha]^{26.9}_{D}(c \ 0.58, \text{CHCl}_3) = +80.6^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 5.93 (dd, $J_1 = 10.1$ Hz, $J_2 = 5.7$ Hz 1 H), 5.68 (ddd, $J_1 = 10.2$ Hz, $J_2 = 2.9$ Hz, $J_3 = 1.3$ Hz, 1H), 5.10 (br. s, 1 H), 4.67 (dddd, $J_1 = 11.2$ Hz, $J_2 = 3.7$ Hz, $J_3 = 2.2$ Hz, $J_4 = 0.6$ Hz, 1 H), 4.03 (sept., J = 6.3 Hz, 1 H), 2.44 (d, J = 2.2 Hz, 1 H), 2.37 (ddd, $J_1 = 11.2$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.1$ Hz, $J_4 = 0.6$ Hz, 1 H), 2.19 (dddd, $J_1 = 17.8$ Hz, $J_2 = 5.2$ Hz, $J_3 = 3.8$ Hz, $J_4 = 1.3$ Hz, 1 H), 1.25 (d, J = 6.2 Hz, 3 H), 1.16 (d, J = 6.2 Hz, 3 H).

IR Spectroscopy v 3306*m*, 2971*m*, 2928*m*, 2053*w*, 1736*w*, 1380*w*, 1184*w*, 1023*m*, 1002*w*, 784*s* cm⁻¹.

(R)-methyl 2-methyl-3-(triisopropylsilyloxy)propanoate

To a cooled (0 °C) solution of (*R*)-methyl-3-hydroxy-2-methyl propionate (1.50 mL, 13.6 mmol, 1.00 eq.) in CH₂Cl₂ (13.6 mL) were added imidazole (2.04 g, 30.0 mmol, 2.20 eq.), TIPSCl (4.10 mL, 19.0 mmol, 1.40 eq.), DMAP (cat.). The reaction was allowed to return to RT and stirred overnight. The reaction was diluted with CH₂Cl₂, washed with diluted HCl (pH = 3) (3x), H₂O (2x), dried (MgSO₄). Purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 9.5:0.5) afford (*R*)-methyl 2-methyl-3-(triisopropylsilyloxy)propanoate (3.73 g, 13.6 mmol, quant.) as a colorless oil.

 $\mathbf{R_f} = 0.53$ (cyclohexane/AcOEt 9:1).

Optical rotation $[\alpha]^{24.1} {}_{D}(c \ 1.00, \text{CHCl}_{3}) = -19.6^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 3.85 (dd, $J_1 = 9.4$ Hz, $J_2 = 6.7$ Hz, 1 H), 3.75 (dd, $J_1 = 9.4$ Hz, $J_2 = 6.0$ Hz, 1 H), 3.66 (s, 3 H), 2.72-2.60 (m, 1 H), 1.15 (d, J = 7.0 Hz, 3 H), 1.05-1.00 (m, 21 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 175.7, 65.8, 51.6, 42.8, 18.1, 13.6, 12.1.

Elemental analysis calcd. for C₁₄H₃₀O₃Si: [C] 61.26 %, [H] 11.02 %, [O] 17.49 %, [Si] 10.23 %; found [C] 61.53 %, [H] 10.78 %.

MS EI calcd. for $C_{11}H_{23}O_3Si$: $[M-C_3H_7]^+$ 231.1411; found 231.1410.

IR Spectroscopy v 2943*s*, 2867*s*, 1743*s*, 1463*m*, 1435*w*, 1389*w*, 1250*m*, 1198*m*, 1176*m*, 1105*s*, 1068*m*, 1027*w*, 882*m*, 797*w*, 682*m* cm⁻¹.

(S)-2-methyl-3-(triisopropylsilyloxy)propan-1-ol

To a cooled (-78 °C) solution of (*R*)-methyl 2-methyl-3-(triisopropylsilyloxy)propanoate (12.35 g, 45.0 mmol, 1.00 eq.) in CH₂Cl₂ (230 mL), DIBAL-H (78.0 mL, 78.0 mmol, 2.00 eq, 1.0 M in hexanes) was added dropwise. The mixture was stirred for 1 hour at -78 °C, then between -20 °C and -15 °C for 30 minutes. The reaction was quenched by addition of MeOH and saturated Rochelle's salt. The mixture was vigorously stirred at RT for 1 hour. The aqueous phase was extracted with CH₂Cl₂ (3x) and the combined organic layers washed with brine (1x), dried (MgSO₄) and concentrated. Purification by flash chromatography on SiO₂ (cyclohexane/EtOAc 9.5:0.5 \rightarrow 7:3) afford (*S*)-2-methyl-3-(triisopropylsilyloxy)propanal (1.78 g, 7.3 mmol, 16%) as a colorless oils.

 $\mathbf{R_f} = 0.56$ (hexane/AcOEt 8:2).

Optical rotation $[\alpha]^{25.0}{}_{D}(c \ 0.25, \text{CHCl}_{3}) = -6.8^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 3.87 (dd, $J_1 = 9.7$ Hz, $J_2 = 4.3$ Hz, 1 H), 3.69-3.62 (m, 3 H), 3.03 (br. s, 1 H), 2.07-1.96 (m, 1 H), 1.17-1.03 (m, 21 H), 0.86 (d, J = 7.0 Hz, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 69.9, 69.0, 37.5, 18.3, 13.4, 12.1.

Elemental analysis calcd. for C₁₃H₃₀O₂Si: [C] 63.35 %, [H] 12.27 %, [O] 12.98 %, [Si] 11.40 %; found [C] 63.55 %, [H] 12.13 %.

MS EI calcd. for $C_{10}H_{23}O_2Si$: $[M-C_3H_7]^+$ 203.1462; found 203.1464.

IR Spectroscopy v 3368*m*, 2943*s*, 2866*s*, 1463*m*, 1384*w*, 1247*w*, 1096*s*, 1035*s*, 995*m*, 881*s*, 791*m*, 680*s*, 668*s*, 659*m* cm⁻¹.

(R)-2-methyl-3-(triisopropylsilyloxy)propanal

To a cooled (15 °C) solution of (*S*)-2-methyl-3-(triisopropylsilyloxy)propan-1-ol (10.1 g, 40.9 mmol, 1.00 eq.) in DMSO (225 mL) was sequentially added Et₃N (13.7 mL, 98.2 mmol, 2.40 eq) and pyridine sulfur trioxide (13.0 g, 81.8 mmol, 2.00 eq.). The solution was stirred for 5 minutes at 15 °C, then allowed to return to RT and stirred for 1.5 hours. The solution was cooled with an ice bath, quenched by addition of water (300 mL), diluted with hexane (750 mL) and stirred for 2 hours at RT. The aqueous layer was extracted with hexane (3x) and the combined organic layer washed with water (1x) and brine (1x), dried (MgSO₄) and concentrated. Purification by chromatography on SiO₂ (cyclohexane/EtOAc 97:3) afford (*R*)-2-methyl-3-(triisopropylsilyloxy)propanal (10.0 g, 40.9 mmol, quant.) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.83$ (hexane/AcOEt 8:2).

Optical rotation $[\alpha]^{25.0}{}_{D}(c \ 0.45, \text{CHCl}_{3}) = -35.6^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 9.80 (d, J = 1.5 Hz, 1 H), 4.00 (dd, $J_1 = 10.0$ Hz, $J_2 = 5.1$ Hz, 1 H), 3.92 (dd, $J_1 = 9.9$ Hz, $J_2 = 6.4$ Hz, 1 H), 2.61-2.53 (m, 1 H), 1.13 (d, J = 7.0 Hz, 3 H), 1.10-1.05 (m, 21 H).

¹³C-NMR (100 MHz, CDCl₃) δ 205.2, 64.4, 49.5, 18.4, 12.3, 10.7.

MS EI calcd. for $C_{13}H_{28}O_2NaSi: [M-Na]^+ 267.1756$; found 267.1762.

IR Spectroscopy v 2961*m*, 2930*m*, 2858*m*, 1782*m*, 1696*m*, 1461*w*, 1384*m*, 1251*w*, 1204*m*, 1100*w*, 1054*w*, 835*w*, 773*w* cm⁻¹.

(S)-(4,4-dibromo-2-methylbut-3-enyloxy)triisopropylsilane (6)

To a cooled (0 °C) solution of CBr₄ (16.0 g, 48.2 mmol, 2.20 eq.) in CH₂Cl₂ (87 mL), PPh₃ (25.3 g, 96.3 mmol, 4.40 eq.) was added in portion over 2 minutes. The solution turn from clear to brown and after 15 minutes at 0 °C, a solution of (R)-2-methyl-3-(triisopropylsilyloxy)propanal (5.35 g, 21.9 mmol, 1.00 eq.) and 2,6-lutidine (5.61 mL, 48.2 mmol, 2.20 eq.) in CH₂Cl₂ (87 mL) was added by canula over 20 minutes. The resulting dark-brown mixture was stirred at 0 °C for 2.5 hours. The reaction was quenched by addition of saturated NH₄Cl and stirred for 30 minutes at RT. The aqueous layer was extracted with CH_2Cl_2 (2x) and the combined organic layer washed with saturated NaHCO3 (1x) and brine (1x), dried (MgSO4) and concentrated. The residue was triturated in hexane and the filtered concentrated. Purification by flash (S)-(4,4-dibromo-2-methylbut-3chromatography on SiO₂ (hexane 100%) afford enyloxy)triisopropylsilane (6) (5.58 g, 14.0 mmol, 64%) as a colorless oil.

The analytical data matched those reported in reference [3]

 $\mathbf{R}_{\mathbf{f}} = 0.47$ (hexane 100%).

Optical rotation $[\alpha]^{27.6}{}_{D}(c \ 0.90, \text{CHCl}_{3}) = +12.9^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 6.31 (d, *J* = 9.2 Hz, 1 H), 3.62 (dd, *J*₁ = 9.5 Hz, *J*₂ = 5.8 Hz, 1 H), 3.58 (dd, *J*₁ = 9.5 Hz, *J*₂ = 5.8 Hz, 1 H), 2.71-2.58 (m, 1 H), 1.06-1.05 (m, 24 H).

Elemental analysis calcd. for C₁₇H₃₁Br₂OSi: [C] 42.01 %, [H] 7.05 %, [O] 4.00 %, [Si] 7.02 %, [Br] 39.93 %; found [C] 42.06 %, [H] 7.07 %, [Br] 40.02 %.

MS EI calcd. for $C_{14}H_{28}Br_2OSi: [M-C_3H_7]^+$ 354.9723; found 354.9720.

((*S*,3*Z*,5*E*)-4-bromo-6-((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2-methylhexa-3,5-dienyloxy)triisopropylsilane (7)

To a cooled (0 °C) solution of (2R,6R)-2-ethynyl-6-isopropoxy-3,6-dihydro-2H-pyran (5) (200 mg, 1.20 mmol, 1.00 eq.) in THF (6.00 mL, 0.2 M vs 5) was added Cp₂ZrHCl (374 mg, 1.44 mmol, 1.20 eq.). The flask was covered with an aluminium foil, stirred for 5 min at 0 °C and 45 minutes at rt. In a separate flask ZnCl₂ (229 mg, 1.68 mmol, 1.40 eq.) was fused and dissolved in THF (8.40 mL) and the solution was added to the solution of alkenylzirconocene at 0°C and the reaction was stirred at rt for 30 minutes. In a separate flask, to a mixture of Pd(PPh₃)₄ (70.0 mg, 0.06 mmol, 0.05 eq., 5 mol %) in THF (6.00 mL, 0.2 M vs 6) was added DIBAL-H (10% in hexane) (120 µL, 0.12 mmol, 0.10 eq., 10 %) and the mixture was stirred 30 minutes at rt and then (S)-(4,4-dibromo-2-methylbut-3-enyloxy)triisopropylsilane (6) (481 mg, 1.20 mmol, 1.00 eq.) was added. The dibromoolefin solution was stirred for 5 minutes at rt and then was added to the organozinc solution. The mixture was stirred 5 minutes at rt and then 10 hours at 40 °C. The reaction was quenched with water (30 mL) and extracted with Et₂O (3 x 40 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated. The residue was purified by flash chromatography on SiO₂ (cyclohexane/EtOAc 97.5:2.5) to give ((S,3Z,5E)-4-bromo-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2-methylhexa-3,5-dienyloxy)triisopropylsilane (7) (472 mg, 0.97 mmol, 81%) as a colorless oil.

 $\mathbf{R_f} = 0.39 \text{ (CH}_2\text{Cl}_2\text{/cyclohexane 7:3)}.$

Optical rotation $[\alpha]^{25.0}{}_{D}(c \ 0.97, \text{CHCl}_{3}) = +50.0^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 6.28 (dd, $J_1 = 14.8$ Hz, $J_2 = 1.2$ Hz, 1 H), 6.07 (dd, $J_1 = 14.8$ Hz, $J_2 = 5.3$ Hz, 1 H), 6.02-5.97 (m, 1 H), 5.88 (d, J = 8.9 Hz, 1 H), 5.72 (ddd, $J_1 = 10.0$ Hz, $J_2 = 4.3$ Hz, $J_3 = 2.6$ Hz, 1 H), 5.12 (d, J = 2.8 Hz, 1 H), 4.58-4.51 (m, 1 H), 4.00 (sept., J = 6.2 Hz, 1 H), 3.61 (ddd, $J_1 = 15.8$ Hz, $J_2 = 9.4$ Hz, $J_3 = 5.8$ Hz, 2 H), 2.99-2.86 (m, 1 H), 2.10-2.05 (m, 2 H), 1.22 (d, J = 6.2 Hz, 3 H), 1.17 (d, J = 6.1 Hz, 3 H), 1.05 (s, 24 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 137.3, 133.4, 129.3, 128.2, 126.0, 124.0, 93.1, 69.6, 66.8, 65.7, 39.5, 30.9, 24.0, 22.1, 18.1, 16.2, 12.1.

MS EI calcd. for $C_{44}H_{43}BrO_3Si: [M-C_3H_7]^+ 443.1612$; found 443.1610.

IR Spectroscopy v 2942*m*, 2893*m*, 2866*m*, 1463*w*, 1383*w*, 1180*w*, 1102*m*, 1028*s*, 1000*m*, 952*w*, 883*w*, 787*m*, 684*m* cm⁻¹.

((*S*,3*Z*,5*E*)-6-((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2,4-dimethylhexa-3,5dienyloxy)triisopropylsilane (8)

To a solution of ((S,3Z,5E)-4-bromo-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2methylhexa-3,5-dienyloxy)triisopropylsilane (**7**) (100 mg , 0.23 mmol, 1.00 eq.) in THF (1.00 mL, 0.23 M vs 16) was added Pd(PPh₃)₄ (24.0 mg, 0.02 mmol, 0.10 eq.). The solution was stirred for 10 minutes at rt, treated with Me₂Zn (0.21 mL, 0.42 mmol, 2.00 eq., 2.0 M in toluene) and the reaction was stirred at 45 °C for 24 hours. An additional portion of Me₂Zn (0.10 mL, 0.21 mmol, 1.00 eq.) was added and the solution was stirred at 45 °C for 14 hours. The reaction was quenched with dilute NH₄Cl and extracted with Et₂O (3 x 15 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated. The residue was purified by flash chromatography on SiO₂ (CH₂Cl₂/cyclohexane 7:3) to afford ((*S*,*3Z*,*5E*)-6-((*2R*,*6R*)-6isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2,4-dimethylhexa-3,5-dienyloxy)triisopropylsilane (**8**) (66.3 mg, 0.16 mmol, 68%) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.21 \text{ (CH}_2\text{Cl}_2\text{/cyclohexane 7:3)}.$

Optical rotation $[\alpha]^{28.2}{}_{D}(c \ 0.62, \text{CHCl}_{3}) = +37.9^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 6.69 (d, J = 15.7 Hz, 1 H), 6.01 (dddd, $J_1 = 7.7$ Hz, $J_2 = 5.3$ Hz, $J_3 = 1.9$ Hz, $J_4 = 0.9$ Hz, 1 H), 5.77-5.67 (m, 2 H), 5.19 (d, J = 9.6 Hz, 1 H), 5.13-5.12 (m, 1 H),

4.54-5.47 (m, 1 H), 4.02 (sept., J = 6.2 Hz, 1 H), 3.50 (ddd, $J_1 = 16.9$ Hz, $J_2 = 9.4$ Hz, $J_3 = 6.5$ Hz, 2 H), 2.87-2.74 (m, 1 H), 2.20-2.00 (m, 2 H), 1.82 (d, J = 1.2 Hz, 3 H), 1.24 (d, J = 6.2 Hz, 3 H), 1.18 (d, J = 6.1 Hz, 3 H), 1.05-1.04 (m, 24 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 134.2, 131.3, 129.3, 128.4, 128.1, 126.0, 93.0, 69.4, 68.0, 66.9, 34.9, 30.7, 23.8, 21.9, 20.4, 17.9, 17.5, 11.9.

Elemental analysis calcd. for C₂₅H₄₆O₃Si: [C] 71.03, [H] 10.97, [O] 11.35, [Si] 6.64; found [C] 71.11, [H] 10.99.

MS EI calcd. for $C_{25}H_{46}O_3Si: [M]^+ 422,3211$; found 422.3219.

IR Spectroscopy v 2942*m*, 2867*m*, 1462*w*, 1382*w*, 1182*w*, 1122*w*, 1101*w*, 1029*m*, 1000*w*, 780*s*, 683*m* cm⁻¹.

(*S*,3*Z*,5*E*)-6-((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2,4-dimethylhexa-3,5-dien-1-ol

To a cooled (0 °C) solution of ((*S*,3*Z*,5*E*)-6-((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2,4-dimethylhexa-3,5-dienyloxy)triisopropylsilane (**8**) (13.8 mg , 0.03 mmol, 1.00 eq.) in THF (160 μ L) was added TBAF (1.0 M in THF) (64 μ L, 0.06 mmol, 2.00 eq.). The reaction was stirred 1 hour at 0 °C and then 1 hour at RT. The reaction was quenched with water and extracted with Et₂O (3x). The combined organic layers were dried (MgSO₄), filtered and concentrated. The residue was purified by flash chromatography on SiO₂ (hexane/AcOEt 8:2) to give (*S*,3*Z*,5*E*)-6-((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2,4-dimethylhexa-3,5-dien-1-ol (8.4 mg, 0.03 mmol, 99%) as a colorless oil.

 $\mathbf{R_{f}} = 0.19 (CH_2Cl_2/AcOEt 9:1).$

Optical rotation $[\alpha]^{28.9}{}_{D}(c \ 0.49, \text{CHCl}_3) = +29.2^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 6.69 (d, J = 15.7 Hz, 1 H), 6.01 (ddd, $J_1 = 10.0$ Hz, $J_2 = 4.7$ Hz, $J_3 = 2.1$ Hz, 1 H), 5.77 (dd, $J_1 = 15.8$ Hz, $J_2 = 6.0$ Hz, 1 H), 5.76-5.70 (m, 1 H), 5.17-5.12 (m, 2 H), 4.52 (dt, $J_1 = 10.3$ Hz, $J_2 = 5.3$ Hz, 1 H), 4.01 (sept., J = 6.2 Hz, 1 H), 3.54-3.35 (m, 2 H), 2.94-2.79 (m, 1 H), 2.19-2.00 (m, 2 H), 1.86 (s, 3 H), 1.24 (d, J = 6.2 Hz, 3 H), 1.18 (d, J = 6.2 Hz, 3 H), 0.97 (d, J = 6.7 Hz, 3 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 133.6, 130.5, 128.5, 127.9, 127.8, 126.3, 93.3, 69.8, 67.9, 66.9, 34.9, 30.9, 24.0, 22.2, 20.8, 17.3.

MS EI calcd. for C₁₆H₂₆O₃: [M]⁺ 266.1877; found 266.1869.

IR Spectroscopy v 3416*m*, 2970*m*, 2925*m*, 1455*w*, 1379*w*, 1317*w*, 1126*w*, 1100*m*, 1027*s*, 999*s*, 774*m*, 670*m* cm⁻¹.

(2*R*,6*R*)-2-((*S*,1*E*,3*Z*)-6-iodo-3,5-dimethylhexa-1,3-dienyl)-6-isopropoxy-3,6-dihydro-2*H*pyran (9)

To a cooled (0 °C) solution of (S,3Z,5E)-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-2,4-dimethylhexa-3,5-dien-1-ol (4.0 mg , 0.015 mmol, 1.00 eq.) in a mixture toluene/Et₂O (375 μ L/100 μ L), imidazole (14.4 mg, 0.21 mmol, 14.1 eq.) and PPh₃ (21.2 mg, 0.08 mmol, 5.4 eq.) were added and the resulting mixture stirred at 0 °C for 15 minutes. A solution of I₂ (19.8 mg, 0.078 mmol, 5.2 eq.) in Et₂O (375 μ L) was added dropwise and the resulting mixture covered by an aluminium foil, stirred 10 minutes at 0 °C and then 2 hours at RT. The mixture was directly filtered over cotton and concentrated. The residue was diluted in pentane, the precipitate filtered and the filtrated concentrated. Purification by chromatography on SiO₂ (hexane/EtOAc 100:0 \rightarrow 99:1) afford (2*R*,6*R*)-2-((*S*,1*E*,3*Z*)-6-iodo-3,5-dimethylhexa-1,3-dienyl)-6-isopropoxy-3,6-dihydro-2*H*-pyran (**9**) (4.2 mg, 0.011 mmol, 75%) as a colorless oil. $\mathbf{R_f} = 0.48$ (hexane/AcOEt 8.5:1.5).

Optical rotation $[\alpha]^{25.0}_{D}(c \ 0.11, \text{CHCl}_3) = +6.4^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 6.64 (d, J = 15.7 Hz, 1 H), 6.05-6.02 (m, 1 H), 5.80 (dd, $J_1 = 15.7$ Hz, $J_2 = 5.8$ Hz, 1 H), 5.77-5.75 (m, 1 H), 5.17 (d, J = 9.5 Hz, 1 H), 5.16 (s, 1 H), 4.58-4.53 (m, 1 H), 4.05 (sept., J = 6.2 Hz, 1 H), 3.17 (dd, $J_1 = 9.4$ Hz, $J_2 = 5.7$ Hz, 1 H), 3.09 (dd, $J_1 = 9.4$ Hz, $J_2 = 7.3$ Hz, 1 H), 2.92-2.82 (m, 1 H), 2.20-2.03 (m, 2 H), 1.87 (s, 3 H), 1.29 (d, J = 6.1 Hz, 3 H), 1.13 (d, J = 6.6 Hz, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 134.3, 132.7, 131.1, 128.6, 128.0, 126.7, 93.7, 70.1, 67.2, 34.4, 31.2, 24.3, 22.5, 21.9, 20.7, 15.2.

MS EI calcd. for $C_{16}H_{25}O_2NaI$: $[M + Na]^+$ 399.0797; found 399.0801.

IR Spectroscopy v 3322*w*, 2968*w*, 2924*w*, 1659*w*, 1377*w*, 1454*w*, 1377*w*, 1180*w*, 1099*w*, 1028*m*, 1000*m*, 785*s* cm⁻¹.

(E)-2-methylbut-2-en-1-ol

In a 1L three-necked round bottom flask condenser equipped a suspension of LiAlH₄ (19.2 g, 510 mmol, 2.05 eq.) in Et₂O (100 mL) was cooled to 0 °C and a solution of tiglic acid (24.7 g, 246 mmol, 1.00 eq.) was slowly added over a period of 1 hours. The resulting solution was stirred 15 minutes at 0 °C and then 3 hours at RT. The reaction was cooled to 0 °C and quenched by carefully addition of H₂O (18 mL), NaOH (15 %) (18 mL) and H₂O (54 mL). The white granular aluminum salts were filtered over celite and washed with Et₂O (3x). The combined organic layers were washed with HCl (1N) (1x), NaHCO₃ (sat.) (1x) and brine (1x), dried (MgSO₄) and concentrated to afford (*E*)-2-methylbut-2-en-1-ol (18.2 g, 211 mmol, 86%) as a colorless oil.

¹**H-NMR** (300 MHz, CDCl₃) δ 5.51-5.44 (m, 1 H), 3.98 (m, 2 H), 1.65 (s, 3 H), 1.62-1.59 (m, 3 H).

IR Spectroscopy v 3335*s*, 2919*m*, 2863*m*, 1674*w*, 1447*w*, 1381*w*, 1003*s*, 829*w*, 774*w*, 668*m* cm⁻¹.

(*E*)-1-bromo-2-methylbut-2-ene

A solution of (*E*)-2-methylbut-2-en-1-ol (1.00 g, 11.6 mmol, 1.00 eq.) in Et₂O (23.0 mL, 0.5 M) was cooled to 0 °C and PBr₃ (0.55 mL, 5.80 mmol, 0.50 eq.) was added dropwise. The resulting solution was stirred at 0 °C for 30 minutes and then at RT for 3 hours. The reaction was quenched and washed with an aqueous K_2CO_3 solution (1x) and brine (1x), dried (MgSO₄) and carefully concentrated under reduce pressure to afford (*E*)-1-bromo-2-methylbut-2-ene (1.25 g, 8.41 mmol, 73%) as a colorless oil.

¹**H-NMR** (300 MHz, CDCl₃) δ 5.73-5.65 (m, 1 H), 3.98 (m, 2 H), 1.76-1.75 (m, 3 H), 1.63 (ddd, $J_1 = 6.8$ Hz, $J_2 = 1.6$ Hz, $J_3 = 0.8$ Hz, 3 H).

(R)-3-((S,E)-2,4-dimethylhex-4-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (11)

In a 1L double-necked round bottom flask a solution of DIPA (11.7 mL, 89.0 mmol, 1.25 eq.) in THF (200 mL) was cooled to 0 °C and n-BuLi (1.6 M in hexane) (55.7 mL, 89.0 mmol, 1.25 eq.) was slowly added. The resulting solution was stirred at 0 °C for 30 minutes and then cooled to - 78 °C. A precooled solution of **10** (24.0 g, 71.0 mmol, 1.00 eq.) in THF (130 mL) was slowly added and the resulting mixture stirred at -78 °C for 30 minutes followed by the slowly addition of a precooled solution of (*E*)-1-bromo-2-methylbut-2-ene (22.2 g, 149 mmol, 2.10 eq.) in THF

(60 mL). The reaction was stirred at -78 °C was continued for 5 minutes and then allowed to warm up to -10 °C where stirring was continued for 26 hours. The reaction was quenched by addition of saturated NH₄Cl solution and extracted with Et₂O (3x). The combined organic layers were dried (MgSO₄) and concentrated. The crude pale yellow solid was washed with a small amount of ice-cold pentane to afford (*R*)-3-((*S*,*E*)-2,4-dimethylhex-4-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (**11**) (26.4 g, 65.0 mmol, 92%, dr > 97:3) as a white crystalline solid.

 $\mathbf{R_f} = 0.50 \text{ (cyclohexane/EtOAc 9:1)}$

M.p. = 101-103 °C

Optical rotation $[\alpha]^{28.3}{}_{D}(c \ 1.00, \text{CHCl}_{3}) = +177.0^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 7.48-7.44 (m, 2 H), 7.42-7.26 (m, 8 H), 5.40 (d, J = 3.2 Hz, 1H), 5.30-5.22 (m, 1 H), 3.90 (sext., J = 7.2 Hz, 1 H), 2.54 (dd, $J_I = 13.4$ Hz, $J_I = 7.2$ Hz, 1 H), 2.01-1.89 (m, 2 H), 1.64 (m, 3 H), 1.55 (dd, $J_I = 6.7$ Hz, $J_2 = 1.0$ Hz, 3 H), 0.85 (d, J = 7.0 Hz, 3 H), 0.79 (d, J = 6.8 Hz, 3 H), 0.74 (d, J = 6.7 Hz, 3 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 176.7, 152.7, 142.2, 138.0, 132.8, 128.6, 128.4, 128.2, 127.7, 125.7, 125.5, 120.9, 89.0, 64.2, 43.6, 35.3, 29.6, 21.5, 16.1, 16.0, 15.3, 13.2.

Elemental analysis calcd. for C₂₆H₃₁NO₃: [C] 77.01 %, [H] 7.70 %, [N] 3.45 %; found: [C] 76.79 %, [H] 7.67 %, [N] 3.52 %.

HRMS EI calcd. for $[C_{26}H_{31}NO_3]^+$ $[M]^+$: 405.2299; found 405.2301.

IR Spectroscopy v 2968*w*, 2934*w*, 2888*w*, 1776*s*, 1698*s*, 1495*w*, 1450*m*, 1385*m*, 1371*m*, 1348*m*, 1312*m*, 1246*m*, 1207*s*, 1174*s*, 1149*m*, 1123*m*, 1094*m*, 1056*m*, 1035*w*, 986*s*, 949*m*, 764*s*, 750*s*, 703*s*, 694*s*, 668*s*, 636*m* cm⁻¹.

(S,E)-2,4-dimethylhex-4-en-1-ol

To a cooled (0 °C) suspension of LiAlH₄ (1.56 g, 41.2 mmol, 8 eq.) in Et₂O (20 mL), a solution of (*R*)-3-((*S*,*E*)-2,4-dimethylhex-4-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (**11**) (2.09 g, 5.15 mmol, 1 eq.) in Et₂O (48 mL) was slowly added. The resulting solution was stirred 30 minutes at 0 °C and then 3 hours at RT. The reaction was cooled to 0 °C and quenched by addition of H₂O (3 mL), NaOH (15 %) (3 mL) and H₂O (9 mL). The white granular aluminum salts were filtered over celite and washed with Et₂O (3x). The combined organic layers were dried (MgSO₄) and concentrated to afford (*S*,*E*)-2,4-dimethylhex-4-en-1-ol (0.66 g, 5.15 mmol, 100%) as a colorless oil.

The analytical data matched those reported in reference [4]

 $\mathbf{R}_{\mathbf{f}} = 0.19$ (cyclohexane/EtOAc 8.5:1.5)

Optical rotation $[\alpha]^{24.6}_{D}(c \ 0.55, \text{CHCl}_3) = -4.7^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 5.24 (qd, $J_1 = 6.6$ Hz, $J_2 = 1.2$ Hz, 1 H), 3.52-3.39 (m, 2 H), 2.11-2.02 (m, 1 H), 1.89-1.77 (m, 2 H), 1.61-1.57 (m, 6 H), 0.86 (d, J = 6.5 Hz, 3 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 134.3, 120.1, 68.5, 44.3, 33.7, 16.8, 15.7, 13.5.

IR Spectroscopy v 3320*m*, 2917*m*, 1456*w*, 1037*m*, 786*s*, 668*w* cm⁻¹.

(*S*,*E*)-2,4-dimethylhex-4-enal (12)

To a cooled (-78 °C) solution of (COCl)₂ (867 µL, 9.94 mmol, 2.00 eq.) in CH₂Cl₂ (10.5 mL) a solution of DMSO (1.41 mL, 20.0 mmol, 4.00 eq.) in CH₂Cl₂ (10.5 mL) was added dropwise. After 5 minutes a solution of (*S*,*E*)-2,4-dimethylhex-4-en-1-ol (637 mg, 4.97 mmol, 1.00 eq.) in CH₂Cl₂ (10.0 mL) was slowly added. Stirring at -78 °C was continued 15 minutes, followed by addition of a solution of NEt₃ (4.16 mL, 29.8 mmol, 6 eq.) in CH₂Cl₂ (10.5 mL). The resulting solution was stirred at -78 °C for 20 minutes and then at 0 °C for 30 minutes. The reaction was quenched by addition of buffer phosphate (pH = 7) (32 mL) and the solution stirred at RT for further 15 minutes. The organic phase was separated and the aqueous phase extracted with CH₂Cl₂ (3x). The combined organic layers were washed with water (2x) and brine (1x), dried (MgSO₄) and concentrated. Purification by chromatography on SiO₂ (CH₂Cl₂/cyclohexane 7:3) afford (*S*,*E*)-2,4-dimethylhex-4-enal (**12**) (619 mg, 4.91 mmol, 99%) as a colorless oil.

The analytical data matched those reported in reference [4]

 $\mathbf{R_f} = 0.42$ (pentane/Et₂O 9.5:0.5)

Optical rotation $[\alpha]^{22.0}{}_{D}(c \ 0.93, \text{CHCl}_{3}) = +9.9^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 9.61 (d, J = 2.1 Hz, 1 H), 5.29-5.23 (m, 1 H), 2.57-2.45 (m, 1 H), 2.41 (dd, $J_1 = 13.4$ Hz, $J_2 = 6.6$, Hz, 1 H), 1.98 (dd, $J_1 = 13.7$ Hz, $J_2 = 7.7$ Hz, 1 H), 1.59 (s, 3 H), 1.58 (d, J = 7.0 Hz, 3 H), 1.03 (d, J = 6.8 Hz, 3 H).

¹³C-NMR (75 MHz, CDCl₃) δ 205.5, 132.2, 121.6, 44.5, 40.9, 15.7, 13.5, 13.3.

IR Spectroscopy v 2922*m*, 1708*w*, 1442*w*, 1378*w*, 777*s* cm⁻¹.

(*S*)-3-((2*S*,3*R*,4*S*,*E*)-3-hydroxy-2,4,6-trimethyloct-6-enoyl)-4-isopropyl-5,5diphenyloxazolidin-2-one (13)

To a cooled (-5°C) solution of *ent*-10 (84.4 mg, 0.25 mmol, 1.00 eq.) in CH₂Cl₂ (0.30 mL), Bu₂BOTf (1M) (263 µL, 0.26 mmol, 1.05 eq.) was slowly added and the solution turn from colorless to pale green colored. NEt₃ (42 µL, 0.30 mmol, 1.20 eq.) was slowly added over a period of 5 minutes and the solution turn to pale yellow. Stirring at 0 °C was continued for 1 hours. The resulting solution was cooled to -78 °C and (S,E)-2,4-dimethylhex-4-enal (12) (63 mg, 0.50 mmol, 2.00 eq.) in CH₂Cl₂ (0.20 mL) was slowly added and the mixture stirred for 1 hour at -78 °C and finally for 1 further hour at 0 °C. The reaction was quenched at 0 °C by sequentially addition of buffer phosphate (pH = 7) (0.3 mL), MeOH (0.9 mL) and MeOH/H₂O₂ (2:1) (0.9 mL). The mixture was stirred for 1.5 hours at RT before to be diluted with Et₂O, washed with HCl (0.5 M) (1x), saturated NaHCO₃ solution (1x) and brine (1x), dried (MgSO₄) and concentrated. The residue was purified by chromatography on SiO₂ (Et₂O/pentane 8:2) to afford (S)-3-((2S,3R,4S,E)-3-hydroxy-2,4,6-trimethyloct-6-enoyl)-4-isopropyl-5,5diphenyloxazolidin-2-one (13) (89.2 mg, 0.19 mmol, 77%, dr > 87.13) as a colorless crystalline solid. An analytical sample was obtained by chromatography on SiO₂ (Et₂O/pentane 8.5:1.5 \rightarrow 8:2) as a pure diastereoisomer.

 $R_f = 0.33$ (pentane/Et₂O 7:3)

M.p. = 98-99 °C

Optical rotation $[\alpha]^{24.5}_{D}(c = 1.00, \text{CHCl}_{3}) = -103.6^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 7.53-7.50 (m, 2 H), 7.43-7.28 (m, 8 H), 5.37 (d, J = 3.6 Hz, 1 H), 5.18-5.11 (m, 1 H), 3.83-3.74 (m, 1 H), 3.43 (td, $J_I = 6.7$ Hz, $J_2 = 4.9$ Hz, 1 H), 2.06-1.90 (m, 2 H), 1.86 (d, J = 5.1 Hz, 1 H), 1.66-1.57 (m, 2 H), 1.56 (d, J = 6.6 Hz, 3 H), 1.51 (s, 3 H), 1.31 (d, J = 6.9 Hz, 3 H), 0.86 (d, J = 6.9 Hz, 3 H), 0.78 (d, J = 6.8 Hz, 3 H), 0.41 (d, J = 6.7 Hz, 3 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 176.1, 152.4, 142.2, 137.6, 133.6, 128.7, 128.4, 128.3, 127.8, 125.6, 125.2, 120.3, 89.4, 64.6, 44.0, 40.4, 33.0, 29.8, 21.7, 16.5, 15.4, 13.9, 13.5, 13.4.

Elemental analysis calcd. for C₂₉H₃₇NO₄ : [C] 74.57 %, [H] 8.19 %, [N] 2.91 %; found: [C] 74.68 %, [H] 8.03 %, [N] 2.91 %.

HRMS EI calcd. for $[C_{29}H_{35}NO_3]^+$ [M-H₂O]⁺: 445.2611; found 445.2611.

IR Spectroscopy v 3475*m*, 2965*m*, 2931*m*, 1781*s*, 1697*m*, 1494*w*, 1450*m*, 1374*m*, 1316*w*, 1254*w*, 1208*s*, 1176*s*, 1050*m*, 987*m*, 954*w*, 760*m*, 704*m*, 668*m* cm⁻¹.

(2S,3R,4S,E)-3-hydroxy-N-methoxy-N,2,4,6-tetramethyloct-6-enamide

To a cooled (0 °C) suspension of MeONHMe·HCl (503 mg, 5.16 mmol, 6.00 eq.) in CH₂Cl₂ (5.2 mL) was added AlMe₃ (2 M in toluene) (2.10 mL, 5.16 mmol, 6.00 eq). The resulting solution was stirred at 0 °C for 5 minutes, then at RT for 1 hour. The clear solution was cooled to 0 °C and (*S*)-3-((2*S*,3*R*,4*S*,*E*)-3-hydroxy-2,4,6-trimethyloct-6-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (**13**) (400 mg, 0.86 mmol, 1.00 eq.) in CH₂Cl₂ (1.0 mL) was transferred by canula. Stirring at 0 °C was continued for 5 minutes, then at RT for 15 hours. The reaction mixture was slowly transferred in a diluted HCl (27.0 mL, 0.5 M) solution, diluted with more CH₂Cl₂ (and stirred at RT for 1hour. The aqueous layer was separated and extracted with CH₂Cl₂ (3x). The combined organic phases were washed with saturated NaHCO₃ (1x) and brine(1x), dried (MgSO₄) and concentrated. The residue was diluted in ice-cold Et₂O, the precipitated cleaved auxiliary was filtered and the filtrate was concentrated. Purification by chromatography on SiO₂ (pentane/Et₂O 4:6) afford (2*S*,3*R*,4*S*,*E*)-3-hydroxy-*N*-methoxy-*N*,2,4,6-tetramethyloct-6-enamide (179 mg, 0.74 mmol, 86%) as white crystalline solid.

 $R_{f} = 0.21$ (pentane/Et₂O 4:6)

M.p. = 54-55 $^{\circ}$ C

Optical rotation $[\alpha]^{22.4}_{D}(c = 0.50, \text{CHCl}_3) = +6.7^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 5.23 (q, J = 6.2 Hz, 1 H), 3.70 (s, 3 H), 3.57-3.53 (m, 1 H), 3.33 (d, J = 2.5 Hz, 1 H), 3.19 (s, 3 H), 3.12 (br. s, 1 H), 2.08 (d, J = 8.5 Hz, 1 H), 1.82-1.68 (m, 2 H), 1.60-1.58 (m, 6 H), 1.19 (d, J = 7.0 Hz, 3 H), 0.90 (d, J = 6.3 Hz, 3 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 178.0, 133.8, 120.4, 75.3, 61.4, 43.7, 36.3, 33.0, 31.9, 15.2, 14.7, 13.2, 11.2.

Elemental analysis calcd. for C₁₃H₂₅NO₃ : [C] 64.17 %, [H] 10.35 %, [N] 5.76 %, [O] 19.72 %; found: [C] 64.23 %, [H] 10.46 %, [N] 5.67 %.

ESI 266.2 $(100, [M + Na]^+)$.

IR Spectroscopy v 3452*m*, 2965*s*, 2934*s*, 1640*s*, 1513*w*, 1457*s*, 1382*s*, 1300*m*, 1249*m*, 1176*m*, 1122*m*, 993*s*, 826*w* cm⁻¹.

Crystallographic data is given at the end of the supporting information.

(2S,3R,4S,E)-3-(tert-butyldimethylsilyloxy)-N-methoxy-N,2,4,6-tetramethyloct-6-enamide

To a cooled (-20 °C) solution of (2*S*,3*R*,4*S*,*E*)-3-hydroxy-*N*-methoxy-*N*,2,4,6-tetramethyloct-6enamide (467 mg, 1.92 mmol, 1.00 eq.) in CH₂Cl₂ (4.0 mL) was sequentially added 2,6-lutidine (257 μ L, 2.21 mmol, 1.15 eq.) and TBSOTf (354 μ L, 2.02 mmol, 1.05 eq.). The resulting solution was stirred for 15 min at -20 °C; then at 0 °C for 45 min. The reaction mixture was diluted in more CH₂Cl₂ and washed with diluted citric acid (pH = 4) (1x), saturated NaHCO₃ (1x), brine (1x), dried (MgSO₄) and concentrated. Purification by chromatography on SiO₂ (pentane/Et₂O 9:1) afford (2*S*,3*R*,4*S*,*E*)-3-(*tert*-butyldimethylsilyloxy)-*N*-methoxy-*N*,2,4,6tetramethyloct-6-enamide (680 mg, 1.90 mmol, 99%) as a clear oil.

 $\mathbf{R}_{\mathbf{f}} = 0.38$ (hexane/EtOAc 9:1)

Optical rotation $[\alpha]^{24.3}_{D}(c = 1.00, \text{ CHCl}_{3}) = +6.8^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 5.17 (q, J = 6.6 Hz, 1 H), 3.85 (dd, $J_1 = 8.5$ Hz, $J_2 = 2.3$ Hz, 1 H), 3.69 (s, 3 H), 3.16 (s, 3 H), 3.06 (br. s, 1 H), 2.14 (d, J = 12.4 Hz, 1 H), 1.86-1.78 (m, 1 H), 1.71-1.61 (m, 1 H), 1.56 (d, J = 6.6 Hz, 3 H), 1.52 (s, 3 H), 1.14 (d, J = 7.0 Hz, 3 H), 0.92 (s, 9 H), 0.73 (d, J = 6.8 Hz, 3 H), 0.08 (s, 6 H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 176.9, 134.3, 119.7, 77.3, 61.4, 44.2, 39.0, 35.9, 32.4, 26.3, 18.6, 15.9, 15.4, 13.4, 13.3, -3.4, -3.5.

Elemental analysis calcd. for C₁₉H₃₉NO₃Si : [C] 63.82 %, [H] 10.99 %, [N] 3.92 %, [O] 13.42 %, [Si] 7.85 %; found [C] 63.79 %, [H] 11.00 %, [N] 4.10 %.

ESI 380.2 $(100, [M + Na]^+)$.

IR Spectroscopy v 3369*s*, 2959*m*, 2931*m*, 2857*m*, 1662*s*, 1461*m*, 1382*m*, 1252*m*, 1176*w*, 1108*m*, 1049*s*, 997*s*, 869*m*, 833*s*, 773*s*, 668*s* cm⁻¹.

(2S,3R,4S,E)-3-(tert-butyldimethylsilyloxy)-2,4,6-trimethyloct-6-enal

To a cooled (-78 °C) solution of (2S,3R,4S,E)-3-(*tert*-butyldimethylsilyloxy)-*N*-methoxy-*N*,2,4,6-tetramethyloct-6-enamide (663 mg, 1.85 mmol, 1.00 eq.) in THF (13.2 mL) was added DIBAL-H (1M) (3.60 mL, 3.60 mmol, 2.00 eq.). The resulting solution was stirred at -78 °C for 1 hour; then quenched by addition of saturated Rochelle's salt, diluted in Et₂O and vigorously stirred at RT for 1h. The aqueous layer was extracted with Et₂O (3x) and the combined organic phase dried (MgSO₄) and concentrated (bath T < 20 °C). Purification by chromatography on SiO₂ (hexane/EtOAc 9.5:0.5) afford (2*S*,3*R*,4*S*,*E*)-3-(*tert*-butyldimethylsilyloxy)-2,4,6trimethyloct-6-enal (551 mg, 1.85 mmol, 100%) as a clear oil.

 $\mathbf{R_f} = 0.70$ (cyclohexane/EtOAc 9:1)

Optical rotation $[\alpha]^{25.0}_{D}(c = 0.20, \text{CHCl}_3) = +53.5^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 9.85 (s, 1 H), 5.22 (q, J = 6.5 Hz, 1 H), 4.00-3.98 (m, 1 H), 2.59-2.53 (m, 1 H), 2.16-2.09 (m, 1 H), 1.85-1.78 (m, 2 H), 1.60 (d, J = 6.7 Hz, 3 H), 1.57 (s, 3 H), 1.10 (d, J = 7.0 Hz, 3 H), 0.92 (s, 9 H), 0.78 (d, J = 6.1 Hz, 3 H), 0.11 (s, 3 H), 0.06 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 205.7, 134.2, 120.9, 75.9, 51.4, 44.7, 35.1, 26.3, 18.7, 15.8, 14.7, 13.7, 9.7, -3.5, -3.7.

HRMS ESI calcd. for $[C_{17}H_{35}O_2Si]^+ [M + H]^+$: 299.2406, found 299.2419.

(*S*)-3-((2*S*,3*R*,4*R*,5*R*,6*S*,*E*)-5-(*tert*-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8-tetramethyldec-8-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (14)

To a cooled (-5°C) solution of *ent*-**10** (81.0 mg, 0.24 mmol, 1.20 eq.) in CH₂Cl₂ (0.48 mL) was sequentially added Bu₂BOTf (1 M) (240 μ L, 0.24 mmol, 1.20 eq.) and NEt₃ (39 μ L, 0.28 mmol, 1.40 eq.). Stirring at 0 °C was continued for 45 minutes; then the resulting solution was cooled to -78 °C and (2*S*,3*R*,4*S*,*E*)-3-(*tert*-butyldimethylsilyloxy)-2,4,6-trimethyloct-6-enal (59 mg, 0.20 mmol, 1.00 eq.) in CH₂Cl₂ (0.45 mL) was slowly transferred by canula. The reaction was stirred for 45 minutes at -78 °C, then allowed to return to 0 °C over 3 hour. The reaction was quenched at 0 °C by sequentially addition of buffer phosphate (pH = 7) (0.24 mL), MeOH (0.72 mL) and MeOH/H₂O₂ (2:1) (0.72 mL). The mixture was stirred at RT for 30 minutes before to be diluted with Et₂O, washed with HCl (0.5 M) (1x), saturated NaHCO₃ (1x) and brine (1x), dried (MgSO₄) and concentrated. The residue was purified by chromatography on SiO₂ (hexane/EtOAc 9.5:0.5) to afford (*S*)-3-((*2S*,3*R*,4*R*,5*R*,6*S*,*E*)-5-(*tert*-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8-tetramethyldec-8-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (**14**) (77.0 mg, 0.12 mmol, 61%, dr > 97:3) as a white crystalline solid.

 $R_f = 0.60$ (pentane/Et₂O 7:3)

M.p. = 105-107 °C

Optical rotation $[\alpha]^{25.0}_{D}(c = 0.29, \text{CHCl}_3) = -118.6^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 7.52-7.51 (m, 2 H arom.), 7.43-7.41 (m, 2 H arom.), 7.37-7.26 (m, 6 H), 5.44 (d, J = 3.5 Hz, 1 H), 5.24 (q, J = 6.3 Hz, 1 H), 3.79-3.78 (m, 2 H), 3.50 (t, J = 3.8 Hz, 1 H), 2.49 (br. s, 1 H), 2.12 (d, J = 12.3 Hz, 1 H), 2.05-1.98 (m, 1 H), 1.82-1.76 (m, 1 H), 1.73-1.68 (m, 1 H), 1.62 (d, J = 6.6 Hz, 3 H), 1.58 (s, 3 H), 1.53-1.49 (m, 1 H), 1.36 (d, J = 6.4 Hz, 3 H), 0.89 (d, J = 7.1 Hz, 3 H), 0.87 (s, 9 H), 0.80 (d, J = 6.8 Hz, 3 H), 0.76 (d, J = 6.6 Hz, 3 H), 0.67 (d, J = 6.9 Hz, 3 H), 0.01 (s, 3 H), -0.24 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 177.3, 152.7, 142.6, 138.3, 134.8, 129.3, 129.0, 128.8, 128.4, 126.2, 125.8, 120.4, 89.7, 77.1, 74.0, 64.3, 44.2, 40.9, 38.4, 35.9, 30.3, 26.5, 22.1, 18.8, 16.7, 15.9, 15.3, 13.9, 13.8, 9.4, -3.0, -3.9.

HRMS ESI calcd. for $[C_{38}H_{57}NO_5NaSi]^+$ $[M + Na]^+$: 658.3904, found 658.3911.

IR Spectroscopy v 3360*w*, 2928*m*, 2857*m*, 1786*m*, 1693*w*, 1458*w*, 1374*w*, 1253*w*, 1210*w*, 1044*w*, 892*w*, 766*w*, 689*w* cm⁻¹.

(2*S*,3*R*,4*R*,5*R*,6*S*,*E*)-5-(*tert*-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8-tetramethyldec-8-enal (15)

To a cooled (-17 °C) solution of (*S*)-3-((2*S*,3*R*,4*R*,5*R*,6*S*,*E*)-5-(*tert*-butyldimethylsilyloxy)-3hydroxy-2,4,6,8-tetramethyldec-8-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (**14**) (320 mg, 0.50 mmol, 1.00 eq.) in toluene (10 mL) a solution of LiAlH₄ (1M in Et₂O) (1.00 mL, 1.00 mmol, 2.00 eq.) was slowly added. The resulting solution was stirred for 20 minutes, then quenched at -17 °C by dropwise addition of saturated Rochelle's salt and diluted in Et₂O. The mixture was vigorously stirred at RT for 2 hours, then extracted with Et₂O (3x) and the combined organic phase dried (MgSO₄) and concentrated (bath T < 20 °C). The residue was diluted in Et₂O and the precipitated cleaved auxiliary recovered. The filtered was concentrated and the residue purified by chromatography on SiO₂ (pentane/Et₂O 9:1) to afford (2*S*,3*R*,4*R*,5*R*,6*S*,*E*)-5-(*tert*-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8-tetramethyldec-8-enal (**15**) (149 mg, 0.42 mmol, 83%) as a colorless oil.

 $R_{f} = 0.28$ (pentane/Et₂O 7:3)

Optical rotation $[\alpha]^{25.0}_{D}(c = 0.08, \text{CHCl}_3) = -23.8^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 9.73 (d, J = 1.2 Hz, 1 H), 5.21 (q, J = 6.4 Hz, 1 H), 4.03 (q, J = 5.2 Hz, 1 H), 3.58 (dd, $J_1 = 4.2$ Hz, $J_2 = 2.9$ Hz, 1 H), 2.68-2.62 (m, 1 H), 2.20 (d, J = 12.3 Hz, 1

H), 1.97 (d, *J* = 4.4 Hz, 1 H), 1.89-1.77 (m, 2 H), 1.76-1.67 (m, 1 H), 1.60 (d, *J* = 6.8 Hz, 3 H), 1.57 (s, 3 H), 1.17 (d, *J* = 7.1 Hz, 3 H), 1.00 (d, *J* = 6.9 Hz, 3 H), 0.94 (s, 9 H), 0.81 (d, *J* = 6.7 Hz, 3 H), 0.11 (s, 3 H), 0.09 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 204.8, 134.5, 120.7, 78.2, 73.2, 50.1, 44.3, 39.3, 36.1, 26.5, 18.8, 15.8, 13.7, 10.0, 8.8, -2.8, -3.5.

HRMS ESI calcd. for $[C_{20}H_{40}O_3NaSi]^+$ $[M + Na]^+$: 379.2644, found 379.2639.

IR Spectroscopy v 2957*m*, 2931*m*, 2859*m*, 1727*w*, 1462*w*, 1384*w*, 1255*w*, 1096*w*, 1032*w*, 837*w*, 775*w* cm⁻¹.

(2E,4R,5S,6R,7R,8S,10E)-ethyl 7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10pentamethyldodeca-2,10-dienoate

To a solution of (2S,3R,4R,5R,6S,E)-5-(*tert*-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8tetramethyldec-8-enal (**15**) (61.1 mg, 0.17 mmol, 1.00 eq.) in toluene (1.7 mL) was added 1carbethoxyethylidentriphenylphosphorane (123.2 mg, 0.34 mmol, 2.00 eq.) and the mixture was stirred at 35 °C for 5 hours. The reaction was diluted in pentane, filtered over cotton and concentrated. The residue was purified by chromatography on SiO₂ (pentane/Et₂O 9:1) to afford (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-ethyl 7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10pentamethyldodeca-2,10-dienoate (73.8 mg, 0.17 mmol, 99%, dr > 97:3).

 $R_f = 0.39$ (pentane/Et₂O 8:2)

Optical rotation $[\alpha]^{25.0}_{D}(c = 0.09, \text{CHCl}_3) = +24.7^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 6.53 (dd, $J_1 = 10.5$ Hz, $J_2 = 1.2$ Hz, 1 H), 5.21 (q, J = 6.2 Hz, 1 H), 4.27-4.15 (m, 2 H), 3.65 (t, J = 3.9 Hz, 1 H), 3.53-3.49 (m, 1 H), 2.70-2.60 (m, 1 H), 2.17 (d, J = 12.6 Hz, 1 H), 1.93 (d, J = 4.3 Hz, 1 H), 1.89 (d, J = 1.1 Hz, 3 H), 1.87-1.82 (m, 1 H), 1.80-

1.74 (m, 1 H), 1.72-1.66 (m, 1 H), 1.59 (d, J = 6.6 Hz, 3 H), 1.57 (s, 3 H), 1.31 (t, J = 7.1 Hz, 3 H), 1.10 (d, J = 6.6 Hz, 3 H), 0.94 (s, 9 H), 0.87 (d, J = 7.0 Hz, 3 H), 0.77 (d, J = 6.7 Hz, 3 H), 0.12 (s, 3 H), 0.11 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 168.5, 144.0, 134.7, 127.7, 120.5, 79.9, 78.6, 60.9, 44.1, 39.0, 38.0, 35.7, 26.5, 18.7, 16.9, 15.9, 15.0, 14.6, 13.7, 13.0, 8.8, -2.8, -3.7.

HRMS ESI calcd. for $[C_{25}H_{49}O_4Si]^+$ $[M + H]^+$: 441.3400, found 441.3404.

IR Spectroscopy v 3519*w*, 2959*m*, 2923*m*, 2858*m*, 1712*m*, 1650*w*, 1462*w*, 1369*w*, 1252*m*, 1094*m*, 1038*m*, 835*m*, 773*m*, 675*m* cm⁻¹.

(2E,4R,5S,6R,7R,8S,10E)-7-(*tert*-butyldimethylsilyloxy)-2,4,6,8,10-pentamethyldodeca-2,10-diene-1,5-diol

To a cooled (-78 °C) solution of (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-ethyl 7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienoate (67.0 mg, 0.15 mmol, 1.00 eq.) in THF (1.6 mL) was slowly added DIBAL-H (1M) (800 μ L, 0.80 mmol, 5.30 eq.). The resulting solution was stirred for 5 minutes at -78 °C, then between at -15 and -5 °C for 1.5 hours. The reaction was quenched by the addition of MeOH, diluted in saturated Rochelle's salt and Et₂O and vigorously stirred at RT for 1 hour. The aqueous layer was extracted with Et₂O (3x) and the combined organic phase dried (MgSO₄) and concentrated (bath T < 25 °C). Purification by chromatography on SiO₂ (pentane/Et₂O 9:1 \rightarrow 7:3) afford (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*butyldimethylsilyloxy)-2,4,6,8,10-pentamethyldodeca-2,10-diene-1,5-diol (56.3 mg, 0.14 mmol, 93%) as a colorless oil.

 $R_{f} = 0.15$ (pentane/Et₂O 7:3)

Optical rotation $[\alpha]^{22.5}_{D}(c = 0.0041, \text{CHCl}_3) = -1.0^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 5.23-5.17 (m, 2 H), 4.01 (s, 2 H), 3.63-3.60 (m, 1 H), 3.39 (d, J = 8.8 Hz, 1 H), 2.59-2.49 (m, 1 H), 2.16 (d, J = 12.2 Hz, 1 H), 1.91-1.75 (m, 4 H), 1.71 (d, J = 0.5 Hz, 3 H), 1.59 (d, J = 7.0 Hz, 3 H), 1.57 (s, 3 H), 1.41 (s, 1 H), 1.04 (d, J = 6.6 Hz, 3 H), 0.93 (s, 9 H), 0.88 (d, J = 7.0 Hz, 3 H), 0.76 (d, J = 6.6 Hz, 3 H), 0.11 (s, 3 H), 0.10 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 135.0, 134.8, 129.1, 120.4, 79.9, 78.9, 69.2, 44.3, 38.5, 36.8, 35.6, 26.5, 18.8, 17.8, 15.9, 14.9, 14.3, 13.8, 9.0, -2.8, -3.6.

HRMS ESI calcd. for $[C_{23}H_{46}O_3NaSi]^+$ $[M + Na]^+$: 421.3114, found 421.3116.

IR Spectroscopy v 3349*m*, 2956*m*, 2930*m*, 2860*m*, 1459*w*, 1383*w*, 1253*m*, 1070*m*, 1035*m*, 1011*m*, 836*m*, 775*m*, 676*m* cm⁻¹.

(2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10pentamethyldodeca-2,10-dienal (16)

To a solution of (2E,4R,5S,6R,7R,8S,10E)-7-(*tert*-butyldimethylsilyloxy)-2,4,6,8,10pentamethyldodeca-2,10-diene-1,5-diol (121 mg, 0.30 mmol, 1.00 eq.) in CH₂Cl₂ (3.0 mL), MnO₂ (396 mg, 4.50 mmol, 15.0 eq.) was added. The mixture was stirred at RT for 2.5 hours; then filtered over celite, rinsed with CH₂Cl₂ and concentrated (bath T < 25 °C). The product (2E,4R,5S,6R,7R,8S,10E)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10pentamethyldodeca-2,10-dienal (**16**) (103 mg, 0.26 mmol, 86%) crystallize under high vacuum.

An analytical sample was recrystallized (hexane) for X-ray analysis and the rest directly used in the next step without further purification.

 $R_{f} = 0.37$ (pentane/Et₂O 7:3)

M.p. = 75-77 °C

Optical rotation $[\alpha]^{22.5}{}_{D}(c = 0.0082, \text{CHCl}_{3}) = -10.9^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 9.42 (s, 1 H), 6.27 (dd, $J_1 = 10.3$ Hz, $J_2 = 1.0$ Hz, 1 H), 5.21 (q, J = 6.3 Hz, 1 H), 3.65 (t, J = 3.8 Hz, 1 H), 3.59-3.56 (m, 1 H), 2.92-2.82 (m, 1 H), 2.18 (d, J = 12.8 Hz, 1 H), 2.00 (d, J = 4.2 Hz, 1 H), 1.92-1.83 (m, 1 H), 1.81 (d, J = 0.9 Hz, 3 H), 1.79-1.73 (m, 1 H), 1.66-1.63 (m, 1 H), 1.60 (d, J = 7.1 Hz, 3 H), 1.57 (s, 3 H), 1.16 (d, J = 6.6 Hz, 3 H), 0.94 (s, 9 H), 0.90 (d, J = 7.0 Hz, 3 H), 0.77 (d, J = 6.8 Hz, 3 H), 0.13 (s, 3 H), 0.11 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 195.6, 156.4, 139.1, 134.5, 120.6, 79.8, 78.1, 44.1, 39.3, 38.3, 35.7, 26.5, 18.7, 16.7, 15.9, 15.2, 13.8, 9.9, 8.9, -2.8, -3.7.

HRMS ESI calcd. for $[C_{23}H_{44}O_3NaSi]^+$ $[M + Na]^+$: 419.2957, found 419.2960.

IR Spectroscopy v 3520*w*, 2961*m*, 2928*m*, 2889*m*, 2885*m*, 1667*m*, 1635*w*, 1459*w*, 1378*w*, 1251*w*, 1096*w*, 1073*w*, 1040*w*, 1011*m*, 974*w*, 883*m*, 772*m*, 681*m* cm⁻¹.

Crystallographic data is given at the end of the supporting information.

(1*E*,3*E*,5*R*,6*S*,7*R*,8*R*,9*S*,11*E*)-8-(*tert*-butyldimethylsilyloxy)-1-iodo-3,5,7,9,11pentamethyltrideca-1,3,11-trien-6-ol (17)

$$\begin{array}{c} H & \underline{O}H & \underline{O}TBS \\ O & & \vdots & \vdots \\ CH_3 & \underline{C}H_3 & \underline{C}H_3 & CH_3 \end{array} \xrightarrow{} CH_3 & CH_3 \end{array} \xrightarrow{} \begin{array}{c} O H & \underline{O}TBS \\ I & & \vdots & \vdots \\ CH_3 & \underline{C}H_3 & \underline{C}H_3 & \underline{C}H_3 & CH_3 \end{array} \xrightarrow{} CH_3 & CH_3 \\ \end{array}$$

To a cooled (-5 °C) suspension of CrCl₂ (446 mg, 3.63 mmol, 24.00 eq.) in dry THF (4.4 mL), a solution of (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10pentamethyldodeca-2,10-dienal (**16**) (60.0 mg, 0.15 mmol, 1.00 eq.) and CHI₃ (358 mg, 0.91 mmol, 6.00 eq.) in THF (4.4 mL) was slowly added. The dark brown mixture was covered with an aluminium foil and stirred between -5 and 0 °C for 2.5 hours. The mixture was quenched by addition of water and extracted with Et₂O (3x). The combined organic layer was washed with saturated sodium thiosulfate (1x), water (1x), dried (MgSO₄) and concentrated (bath T < 20 °C). Purification by chromatography on SiO₂ (pentane/Et₂O 9:1) afford (1*E*,3*E*,5*R*,6*S*,7*R*,8*R*,9*S*,11*E*)- 8-(tert-butyldimethylsilyloxy)-1-iodo-3,5,7,9,11-pentamethyltrideca-1,3,11-trien-6-ol (17) (78.4 mg, 0.15 mmol, quant., dr > 97:3) as a colorless oil.

 $\mathbf{R_f} = 0.68 \text{ (pentane/Et_2O 7:3)}$

Optical rotation $[\alpha]^{22.4}{}_{D}(c = 0.006, \text{CHCl}_{3}) = +25.4^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 7.04 (d, J = 14.6 Hz, 1 H), 6.20 (d, J = 14.6 Hz, 1 H), 5.24-5.19 (m, 2 H), 3.63 (t, J = 3.9 Hz, 1 H), 3.43-3.40 (m, 1 H), 2.65-2.56 (m, 1 H), 2.17 (d, J = 12.3 Hz, 1 H), 1.87 (d, J = 4.3 Hz, 1 H), 1.86-1.82 (m, 1 H), 1.77 (d, J = 0.7 Hz, 3 H), 1.76-1.70 (m, 2 H), 1.60 (d, J = 6.9 Hz, 3 H), 1.58 (s, 3 H), 1.06 (d, J = 6.6 Hz, 3 H), 0.94 (s, 9 H), 0.86 (d, J = 7.0 Hz, 3 H), 0.77 (d, J = 6.6 Hz, 3 H), 0.12 (s, 3 H), 0.11 (s, 3 H).

¹³**C-NMR** (100 MHz, CDCl₃) δ 150.0, 137.0, 134.7, 134.3, 120.5, 80.0, 78.8, 74.1, 44.2, 38.8, 37.4, 35.7, 26.5, 18.8, 17.6, 15.9, 15.0, 13.8, 12.6, 8.8, -2.7, -3.6.

HRMS ESI calcd. for $[C_{24}H_{45}O_2NaSiI]^+$ $[M + Na]^+$: 543.2131, found 543.2133.

IR Spectroscopy v 3482*w*, 2958*m*, 2929*m*, 2858*m*, 1461*w*, 1387*w*, 1254*w*, 1091*w*, 1039*w*, 980*w*, 950*w*, 836*w*, 774*w*, 678*w* cm⁻¹.

(2*E*,5*S*,6*R*,7*R*,8*S*,9*R*,10*E*,12*E*,15*R*,16*Z*,18*E*)-6-(*tert*-butyldimethylsilyloxy)-19-((2*R*,6*R*)-6isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-3,5,7,9,11,15,17-heptamethylnonadeca-2,10,12,16,18-pentaen-8-ol

To a solution of (2R,6R)-2-((S,1E,3Z)-6-iodo-3,5-dimethylhexa-1,3-dienyl)-6-isopropoxy-3,6-dihydro-2*H*-pyran (**9**) (29.0 mg, 0.077 mmol, 1.30 eq.) in Et₂O (850 µL), 9-MeO-9-BBN (1M in

hexane) (202 μ L, 0.202 mmol, 3.42 eq.) was added. The resulting solution was cooled to -78 °C and treated with ^tBuLi (1.5 M in pentane) (118 μ L, 0.177 mmol, 3.00 eq.). After 5 minutes THF (850 μ L) was added and the solution allowed to return to RT; stirring was continued for 1 hour. Separately in another flask (1*E*,3*E*,5*R*,6*S*,7*R*,8*R*,9*S*,11*E*)-8-(*tert*-butyldimethylsilyloxy)-1-iodo-3,5,7,9,11-pentamethyltrideca-1,3,11-trien-6-ol (**17**) (30.7 mg, 0.059 mmol, 1.00 eq.) was taken up in DMF (850 μ L) to which Pd(dppf)Cl₂ (2.2 mg, 0.003 mmol, 0.05 eq.), AsPh₃ (2.8 mg, 0.009, 0.15 eq.), CsCO₃ (77.0 mg, 0.236 mmol, 4.0 eq.) and H₂O (26 μ L, 1.416 mmol, 24 eq.) were sequentially added. The alkyl boronate solution was transferred in the DMF solution and the resulting red-brown mixture stirred at RT overnight. The reaction was diluted with water and extracted with Et₂O (3x). The combined organic layer was washed with water (1x) and brine (1x), dried (MgSO₄) and concentrated. Purification by chromatography on SiO₂ (pentane/Et₂O 92.5:7.5) afford (2*E*,5*S*,6*R*,7*R*,8*S*,9*R*,10*E*,12*E*,15*R*,16*Z*,18*E*)-6-(*tert*-butyldimethylsilyloxy)-19-((2*R*,6*R*)-6-isopropoxy-3,6-dihydro-2*H*-pyran-2-yl)-3,5,7,9,11,15,17-heptamethylnonadeca-2,10,12,16,18-pentaen-8-ol (**19**) (30.2 mg, 0.047 mmol, 80%) as a pale vellow oil.

 $R_f = 0.13$ (pentane/Et₂O 9:1)

Optical rotation $[\alpha]^{22.0}_{D}(c = 0.0034, \text{CHCl}_3) = +52.1^{\circ}.$

¹**H-NMR** (400 MHz, CDCl₃) δ 6.70 (d, J = 15.7 Hz, 1 H), 6.06-6.02 (m, 1 H), 6.02 (d, J = 15.5 Hz, 1 H), 5.77-5.70 (m, 2 H), 5.53 (dt, $J_I = 15.5$ Hz, $J_2 = 7.2$ Hz, 1 H), 5.24-5.18 (m, 2 H), 5.15 (s, 1 H), 5.09 (d, J = 9.9 Hz, 1 H), 4.57-4.51 (m, 1 H), 4.05 (sept., J = 6.2 Hz 1 H), 3.63-3.61 (m, 1H), 3.39 (dd, $J_I = 8.86$, $J_2 = 2.57$ Hz, 1H), 2.75-2.68 (m, 1H), 2.65-2.55 (m, 1H), 2.20-2.02 (m, 5H), 1.90-1.86 (m, 1H), 1.84 (s, 3H), 1.81-1.78. (m, 3H), 1.75 (s, 3H), 1.59 (d, J = 5.5 Hz, 3H), 1.57 (s, 3H), 1.27 (d, J = 6.2 Hz, 3H), 1.21 (d, J = 6.1 Hz, 3H), 1.05 (d, J = 6.5 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.94 (s, 9H), 0.86 (d, J = 7.0 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H), 0.11 (s, 3H), 0.10 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃) δ 137.9, 136.5, 134.8, 133.5, 133.4, 130.4, 129.6, 128.9, 128.6, 126.5, 126.3, 120.3, 93.7, 79.9, 79.1, 70.0, 67.4, 44.3, 41.2, 38.6, 37.3, 35.6, 32.5, 31.2, 26.6, 24.3, 22.5, 20.9, 20.8, 18.8, 18.0, 15.9, 14.9, 13.8, 13.2, 8.9, -2.8, -3.6.

HRMS ESI calcd. for $[C_{40}H_{70}O_4NaSi]^+$ $[M + Na]^+$: 665.4941, found 665.4946.

IR Spectroscopy v 3503*w*, 2962*m*, 2928*m*, 2859*m*, 1459*w*, 1381*w*, 1317*w*, 1253*w*, 1181*w*, 1099*m*, 1029*m*, 1001*m*, 964*m*, 836*w*, 774*w*, 718*w*, 678*w* cm⁻¹.

(2*R*,6*R*)-6-((1*E*,3*Z*,5*R*,7*E*,9*E*,11*R*,12*S*,13*R*,14*R*,15*S*,17*E*)-14-(*tert*-butyldimethylsilyloxy)-12hydroxy-3,5,9,11,13,15,17-heptamethylnonadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2*H*pyran-2-ol

To a solution of (2E,5S,6R,7R,8S,9R,10E,12E,15R,16Z,18E)-6-(tert-butyldimethylsilyloxy)-19-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-3,5,7,9,11,15,17-heptamethylnonadeca-2,10,12,16,18-pentaen-8-ol (19) (6.8 mg, 0.011 mmol, 1.00 eq.) in a mixture of acetone/water (3/1) (220 µL), PPTS (1.3 mg, 0.005 mmol, 0.5 eq.) was added and the resulting solution stirred at RT for 22 hours. The reaction was diluted with water, extracted with Et₂O (3x) and the combined organic layer dried (MgSO₄) and concentrated. Purification by chromatography on SiO₂ $(pentane/Et_2O)$ 9:1 7:3) afforded (2R, 6R)-6-((1E,3Z,5R,7E,9E,11R,12S,13R,14R,15S,17E)-14-(*tert*-butyldimethylsilyloxy)-12-hydroxy-3.5.9.11.13.15.17-heptamethylnonadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2*H*-pyran-2-ol (6.3 mg, 0.010 mmol, 95%) as a pale yellow oil.

 $R_{f} = 0.20$ (pentane/Et₂O 7:3)

Optical rotation $[\alpha]^{22.8}{}_{D}(c = 0.001, \text{CHCl}_3) = +53.1^{\circ}.$

¹**H-NMR** (300 MHz, CDCl₃) δ 6.73 (d, J = 15.7 Hz, 1H), 6.11-6.07 (m, 1H), 6.02 (d, J = 15.5 Hz, 1H), 5.85 (dd, $J_1 = 10.1$ Hz, $J_2 = 0.8$ Hz, 1H), 5.73 (dd, $J_1 = 15.7$ Hz, $J_2 = 6.5$ Hz, 1H), 5.53 (dt, $J_1 = 15.5$ Hz, $J_2 = 7.3$ Hz, 1H), 5.48 (br. s, 1H), 5.24 (d, J = 9.7 Hz, 1H), 5.23-5.18 (m, 1H), 5.10 (d, J = 9.9 Hz, 1H), 4.61-4.56 (m, 1H), 3.63-3.61 (m, 1H), 3.42-3.39 (m, 1H), 2.79-2.69 (m, 2H), 2.66-2.56 (m, 1H), 2.21-2.01 (m, 5H), 1.91-1.86 (m, 1H), 1.84 (s, 3H), 1.82-1.78 (m, 3H), 1.75 (s, 3H), 1.59-1.57 (m, 6H), 1.05 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.94 (s, 9H), 0.87 (d, J = 7.0 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H), 0.11 (s, 3H), 0.10 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃) δ 138.2, 136.5, 134.9, 133.6, 133.4, 130.2, 129.2, 129.1, 126.4, 126.3, 120.3, 89.7, 79.9, 79.1, 67.8, 44.3, 41.2, 38.6, 37.3, 35.6, 32.5, 31.2, 26.6, 21.0, 20.8, 18.8, 17.9, 15.9, 14.9, 13.8, 13.3, 9.0, -2.8, -3.6.

HRMS ESI calcd. for $[C_{37}H_{64}O_4NaSi]^+$ $[M + Na]^+$: 623.4472, found 623.4475.

IR Spectroscopy v 3396*w*, 2959*m*, 2928*m*, 2859*w*, 1684*w*, 1457*w*, 1382*w*, 1253*w*, 1094*w*, 1033*w*, 964*w*, 835*w*, 772*w*, 680*m* cm⁻¹.

(*R*)-6-((1*E*,3*Z*,5*R*,7*E*,9*E*,11*R*,13*S*,14*R*,15*S*,17*E*)-14-(*tert*-butyldimethylsilyloxy)-3,5,9,11,13,15, 17-heptamethyl-12-oxononadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2*H*pyran-2-one

То solution of (2R,6R)-6-((1E,3Z,5R,7E,9E,11R,12S,13R,14R,15S,17E)-14-(tertа butyldimethylsilyloxy)-12-hydroxy-3,5,9,11,13,15,17-heptamethylnonadeca-1,3,7,9,17pentaenyl)-5,6-dihydro-2H-pyran-2-ol (3.2 mg, 0.005 mmol, 1.00 eq.) in CH₂Cl₂ (100 µL), DMP (5.6 mg, 0.013 mmol, 1.00 eq.) was added and the resulting mixture stirred at RT for 4 hours. The mixture was directly loaded over a pipette column of silica and eluted with pentane/Et₂O $9.5/0.5 \rightarrow 7/3$. The reaction mixture was concentrated and directly treated with MnO₂ (7.0 mg, 0.080 mmol, 15.0 eq.) in CH₂Cl₂ (300 µL) at RT for 14 hours. The mixture was filtered over celite. washed with CH₂Cl₂ and concentrated to afford (*R*)-6-((1E,3Z,5R,7E,9E,11R,13S,14R,15S,17E)-14-(*tert*-butyldimethylsilyloxy)-3,5,9,11,13,15,17heptamethyl-12-oxononadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2H-pyran-2-one (1.5 mg, 0.003

mmol, 47%) as a pale yellow oil, which was directly used in the next step without further purification.

 $R_{f} = 0.19$ (pentane/Et₂O 7:3)
(*R*)-6-((1*E*,3*Z*,5*R*,7*E*,9*E*,11*R*,13*S*,14*R*,15*S*,17*E*)-14-hydroxy-3,5,9,11,13,15,17-heptamethyl-12-oxononadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2*H*-pyran-2-one (20)

In a 10 ml plastic vial under Ar, a solution of (*R*)-6-((1*E*,3*Z*,5*R*,7*E*,9*E*,11*R*,13*S*,14*R*,15*S*,17*E*)-14-(*tert*-butyldimethylsilyloxy)-3,5,9,11,13,15,17-heptamethyl-12-oxononadeca-1,3,7,9,17pentaenyl)-5,6-dihydro-2*H*-pyran-2-one (1.4 mg, 0.002 mmol, 1.00 eq.) in THF (300 μ L) was cooled to 0 °C and treated dropwise with a solution of HF·pyridine (120 μ L) and pyridine (60 μ L) in THF (200 μ L). After addition the resulting pale yellow solution was allowed to return to RT and stirred for 4.5 days. The reaction mixture was diluted in Et₂O and transferred by canula in a saturated NaHCO₃ solution and extracted with Et₂O (3x). The combined organic layers were washed with saturated NH₄Cl (1x), dried (MgSO₄) and concentrated. The crude mixture was directly purified by HPLC to afford anguinomycin C (**20**) (0.9 mg, 0.0019 mmol, 82%) as a colorless oil.

Optical rotation $[\alpha]^{23.1}{}_{D}(c = 0.00012, \text{CHCl}_{3}) = -116.7^{\circ}.$

Optical rotation $[\alpha]^{22.5}_{D}(c = 0.0000642, \text{MeOH}) = -101.2^{\circ}.$

¹**H-NMR** (600 MHz, CDCl₃) δ 6.93 (dt, $J_1 = 9.8$ Hz, $J_2 = 4.3$ Hz, 1 H), 6.76 (d, J = 15.6 Hz, 1 H), 6.09 (td, $J_1 = 9.7$ Hz, $J_2 = 1.8$ Hz, 1 H), 6.04 (d, J = 15.6 Hz, 1 H), 5.75 (dd, $J_1 = 15.6$ Hz, $J_2 = 6.9$ Hz, 1 H), 5.61 (dt, $J_1 = 15.5$ Hz, $J_2 = 7.4$ Hz, 1 H), 5.30 (d, J = 9.8 Hz, 1 H), 5.22 (qd, $J_1 = 6.6$ Hz, $J_2 = 1.1$ Hz, 1 H), 5.15 (d, J = 10.1 Hz, 1 H), 5.01 (dt, $J_1 = 7.3$ Hz, $J_2 = 7.1$ Hz, 1 H), 3.69 (dq, $J_1 = 10.1$ Hz, $J_2 = 6.7$ Hz, 1 H), 3.59 (ddd, $J_1 = 5.5$ Hz, $J_2 = 5.5$ Hz, $J_3 = 4.0$ Hz, 1 H), 2.88 (qd, $J_1 = 7.1$ Hz, $J_2 = 5.7$ Hz, 1 H), 2.74-2.67 (m, 1 H), 2.51-2.49 (m, 2 H), 2.40 (d, J = 4.0 Hz, 1 H), 2.15-2.06 (m, 2 H), 2.02 (dd, $J_1 = 13.0$ Hz, $J_2 = 6.1$ Hz, 1 H), 1.85 (d, J = 1.1 Hz, 3 H), 1.74 (dd, $J_1 = 13.0$ Hz, $J_2 = 8.8$ Hz, 1 H), 1.69-1.64 (m, 1 H), 1.60 (dd, $J_1 = 6.8$ Hz, $J_2 = 0.5$ Hz, 3 H), 1.58 (s, 3 H), 1.17 (d, J = 7.1 Hz, 3 H), 1.16 (d, J = 6.6 Hz, 3 H), 0.99 (d, J = 6.7 Hz, 3 H), 0.80 (d, J = 6.6 Hz, 3 H).

¹³**C-NMR** (150 MHz, CDCl₃) δ 215.4, 163.7, 144.3, 138.7, 135.8, 135.1, 133.6, 130.4, 129.1, 128.1, 127.3, 125.0, 121.3, 120.1, 78.3, 74.0, 46.1, 45.3, 43.7, 40.4, 32.8, 31.9, 29.7, 20.3, 20.0, 15.8, 14.9, 13.8, 13.0, 12.7, 11.8.

HRMS ESI calcd. for $[C_{31}H_{46}O_4Na]^+$ $[M + Na]^+$: 505.3294, found 505.3281.

IR Spectroscopy v 3440*m*, 2963*m*, 2927*m*, 2856*w*, 1709*m*, 1454*w*, 1381*w*, 1248*w*, 891*m* cm⁻¹.

UV spectrum: $\lambda_{max} = 241$ nm in MeOH

Analytical HPLC: $R_t = 32.35$ minutes (C₁₈, 60%-100% MeOH in 50 minutes).

Semi-preparative HPLC: $R_t = 38.82$ minutes (C₁₈, 60%-80% MeOH in 50 minutes, 80%-100% MeOH in 10 minutes).

Crystallographic Data

Crystal and molecular structure (2S,3R,4S,E)-3-hydroxy-N-methoxy-N,2,4,6of tetramethyloct-6-enamide

Abstract

We present the crystal and molecular structure of (2S,3R,4S,E)-3-hydroxy-N-methoxy-N,2,4,6-tetramethyloct-6enamide

Comment [5]

The study of the title structure was undertaken to establish its three dimensional structure. Geometries are tabulated below. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft & MacScience, Japan).

Experimental

Crystal data

 $C_{13}H_{25}NO_{3}$ $C_{13}H_{25}NO_{3}$ $M_r = 243.347$ Monoclinic P2₁ a = 8.5218 (3)Å b = 9.5856 (4)Å c = 9.8281 (4)Å $\alpha = 90.00^{\circ}$ $\beta = 111.648 \ (2)^{\circ}$ $\gamma = 90.00^{\circ}$

 $V = 746.20 (5) Å^3$

Data collection

KappaCCD CCD diffractometer	$R_{int} = 0.031$
Absorption correction: none	$\theta_{\rm max} = 27.5$
3267 measured reflections	h = -11 →1
3253 independent reflections	$k = -12 \rightarrow 12$
2636 observed reflections	1=-12→1
Criterion: >2sigma(I)	

Refinement

Refinement on F^2

 $\mathbf{Z} = 2$ $D_x = 1.083 \text{ Mg m}^{-3}$ Density measured by: not measured fine-focus sealed tube Mo K α radiation $\lambda = 0.71073$ Cell parameters from 4731 refl. $\theta = 0.998$ —27.485 ° $\mu = 0.076 \text{ mm}^{-1}$ T = 298 KCube 0.7 x 0.5 x 0.24 mm Colourless Crystal source: Seeberger laboratory

1 50 ° 11 12 2

fullmatrix least squares refinement R(all) = 0.0658

R(gt) = 0.0513
wR(ref) = 0.1627
wR(gt) = 0.1464
S(ref) = 1.089
3253 reflections
154 parameters
1 restraints
H positions constr

$$\begin{split} &\Delta/\sigma_{max}=0.001\\ &\Delta\rho_{max}=0.118\text{e}\text{\AA}^3\\ &\Delta\rho_{min}=-0.133\text{e}\text{\AA}^3\\ &\text{Extinction correction: none}\\ &\text{Atomic scattering factors from International}\\ &\text{Tables Vol C Tables 4.2.6.8 and 6.1.1.4}\\ &\text{Flack parameter}=0.8~(12)\\ &\text{Flack H D}~(1983),~Acta~Cryst.~\text{A39},~876\text{-}881 \end{split}$$

Calculated weights $1/[\sigma^2(I_o)+(I_o+I_c)^2/900]$

Data collection: KappaCCD

Cell refinement: HKL Scalepack (Otwinowski & Minor 1997) Data reduction: Denzo and Scalepak (Otwinowski & Minor, 1997) Program(s) used to solve structure: *SIR*97(Cascarano al.,*Acta Cryst.*,1996,A52,C-79) Program(s) used to refine structure: *SHELXL*-97 (Sheldrick, 1997)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) $U_{eq} = 1/3\Sigma_i\Sigma_j U_{ij} a_i * a_j * a_i . a_j$.

	х	у	Z	U_{eq}	Occ
O15	0.4624 (2)	0.13136 (19)	0.09136 (15)	0.0734 (5)	1
O16	0.5725 (2)	0.16592 (17)	0.46659 (15)	0.0756 (5)	1
O17	0.6126 (2)	0.58537 (14)	0.35834 (16)	0.0644 (4)	1
N14	0.5317 (3)	0.0979 (2)	0.23996 (19)	0.0644 (5)	1
C1	0.5406 (3)	0.1991 (2)	0.3379 (2)	0.0555 (4)	1
C2	0.5139 (2)	0.3488 (2)	0.28732 (18)	0.0532 (4)	1
C3	0.6496 (2)	0.44252 (19)	0.39736 (19)	0.0504 (4)	1
C4	0.8276 (3)	0.4111 (2)	0.4034 (2)	0.0580 (5)	1
C5	0.9593 (3)	0.4908 (3)	0.5312 (2)	0.0719 (6)	1
C6	0.9636 (3)	0.4592 (3)	0.6812 (2)	0.0690 (5)	1
C7	0.9432 (3)	0.5587 (3)	0.7665 (3)	0.0785 (7)	1
C8	0.9499 (4)	0.5465 (5)	0.9203 (3)	0.1116 (12)	1
C9	0.3350 (3)	0.3917 (3)	0.2720 (3)	0.0742 (6)	1
C10	0.8514 (3)	0.4454 (3)	0.2610 (3)	0.0749 (6)	1
C11	0.9960 (6)	0.3108 (4)	0.7273 (4)	0.1168 (14)	1
C12	0.5262 (4)	-0.0497 (3)	0.2723 (3)	0.0842 (7)	1
C13	0.5851 (4)	0.1171 (4)	0.0259 (3)	0.0938 (8)	1
H17	0.5523	0.6165	0.3997	0.097	1
H2	0.5227	0.3564	0.1930	0.064	1
H3	0.6461	0.4257	0.4925	0.060	1
H4	0.8451	0.3127	0.4198	0.070	1
H5A	1.0703	0.4715	0.5294	0.086	1
H5B	0.9388	0.5900	0.5137	0.086	1
H7	0.9207	0.6524	0.7302	0.094	1
H8A	0.8393	0.5616	0.9219	0.167	1
H8B	1.0263	0.6150	0.9804	0.167	1
H8C	0.9885	0.4549	0.9572	0.167	1
H9A	0.3160	0.4867	0.2392	0.089	1
H9B	0.3230	0.3836	0.3651	0.089	1

H9C	0.2540	0.3324	0.2021	0.089	1
H10A	0.9653	0.4244	0.2711	0.090	1
H10B	0.8294	0.5427	0.2391	0.090	1
H10C	0.7746	0.3905	0.1831	0.090	1
H11A	0.9955	0.3000	0.8242	0.140	1
H11B	1.1035	0.2823	0.7263	0.140	1
H11C	0.9086	0.2540	0.6603	0.140	1
H12A	0.5777	-0.0647	0.3759	0.101	1
H12B	0.5852	-0.1028	0.2233	0.101	1
H12C	0.4103	-0.0790	0.2384	0.101	1
H13A	0.5358	0.1397	-0.0763	0.113	1
H13B	0.6241	0.0222	0.0371	0.113	1
H13C	0.6785	0.1783	0.0733	0.113	1

Table 2. Anisotropic displacement parameters $(Å^2)$

	U_{11}	U_{12}	U_{13}	U_{22}	U ₂₃	U ₃₃
015	0.0763 (10)	-0.0070 (8)	0.0195 (6)	0.0857 (11)	-0.0122 (7)	0.0543 (7)
016	0.1066 (13)	-0.0215 (9)	0.0340 (8)	0.0687 (9)	0.0038 (6)	0.0551 (7)
O17	0.0802 (9)	0.0025 (7)	0.0364 (7)	0.0513 (8)	-0.0005 (6)	0.0693 (8)
N14	0.0763 (11)	-0.0042 (8)	0.0233 (8)	0.0579 (10)	-0.0064 (7)	0.0579 (8)
C1	0.0603 (10)	-0.0103 (8)	0.0258 (8)	0.0561 (10)	-0.0013 (8)	0.0542 (9)
C2	0.0586 (10)	-0.0052 (9)	0.0223 (8)	0.0574 (10)	0.0007 (8)	0.0461 (8)
C3	0.0572 (9)	-0.0021 (8)	0.0245 (7)	0.0495 (9)	-0.0006 (7)	0.0489 (8)
C4	0.0596 (11)	-0.0029 (8)	0.0296 (9)	0.0542 (10)	-0.0047 (8)	0.0656 (10)
C5	0.0577 (12)	-0.0091 (10)	0.0209 (10)	0.0746 (15)	-0.0037 (11)	0.0797 (14)
C6	0.0612 (11)	0.0057 (11)	0.0102 (9)	0.0665 (12)	0.0032 (10)	0.0679 (11)
C7	0.0649 (13)	0.0066 (12)	0.0091 (10)	0.0846 (17)	-0.0080 (12)	0.0721 (13)
C8	0.090 (2)	0.015 (2)	0.0152 (14)	0.155 (4)	-0.0147 (18)	0.0768 (16)
C9	0.0579 (12)	-0.0028 (11)	0.0171 (10)	0.0852 (16)	-0.0042 (11)	0.0734 (13)
C10	0.0778 (14)	-0.0166 (13)	0.0496 (11)	0.0814 (15)	-0.0135 (12)	0.0826 (14)
C11	0.166 (4)	0.032 (2)	0.023 (2)	0.079 (2)	0.0135 (15)	0.0860 (19)
C12	0.0972 (18)	-0.0073 (13)	0.0340 (15)	0.0575 (12)	-0.0065 (13)	0.0966 (17)
C13	0.110 (2)	-0.0175 (17)	0.0480 (14)	0.103 (2)	-0.0279 (15)	0.0788 (15)

Table 3 . Geometric parameters (Å, °)

O15—N14	1.396 (2)	C4—C5	1.544 (3)
O15—C13	1.422 (3)	C5—C6	1.492 (3)
O16—C1	1.233 (2)	C6—C7	1.323 (4)
O17—C3	1.426 (2)	C6—C11	1.488 (4)
N14—C1	1.349 (3)	C7—C8	1.495 (4)
N14—C12	1.455 (3)	O17—H17	0.8200
C1—C2	1.508 (3)	C2—H2	0.9600
C2—C9	1.532 (3)	C3—H3	0.9600
C2—C3	1.546 (2)	C4—H4	0.9600
C3—C4	1.526 (3)	C5—H5A	0.9700
C4—C10	1.522 (3)	C5—H5B	0.9700

C7—H7	0.9601	C11—H11A	0.9600
C8—H8A	0.9600	C11—H11B	0.9600
C8—H8B	0.9600	C11—H11C	0.9600
C8—H8C	0.9600	C12—H12A	0.9600
C9—H9A	0.9600	C12—H12B	0.9600
C9—H9B	0.9599	C12—H12C	0.9600
С9—Н9С	0.9600	C13—H13A	0.9600
C10—H10A	0.9600	C13—H13B	0.9600
C10—H10B	0.9600	C13—H13C	0.9600
C10—H10C	0.9601		
N14—O15—C13	110.6 (2)	С8—С7—Н7	112.2
C1—N14—O15	118.18 (18)	C7—C8—H8A	109.5
C1—N14—C12	122.8 (2)	C7—C8—H8B	109.5
O15—N14—C12	114.60 (18)	H8A—C8—H8B	109.5
O16-C1-N14	118.6 (2)	C7—C8—H8C	109.5
O16—C1—C2	122.23 (18)	H8A—C8—H8C	109.5
N14—C1—C2	119.13 (16)	H8B—C8—H8C	109.5
C1—C2—C9	108.13 (18)	С2—С9—Н9А	109.0
C1—C2—C3	109.85 (15)	C2—C9—H9B	109.7
C9—C2—C3	111.87 (17)	H9A—C9—H9B	109.5
O17—C3—C4	108.52 (16)	С2—С9—Н9С	109.7
O17—C3—C2	109.65 (15)	H9A—C9—H9C	109.5
C4—C3—C2	112.85 (15)	H9B—C9—H9C	109.5
C10—C4—C3	112.94 (18)	C4—C10—H10A	109.4
C10—C4—C5	109.76 (18)	C4—C10—H10B	109.6
C3—C4—C5	110.36 (17)	H10A—C10—H10B	109.5
C6—C5—C4	116.7 (2)	C4—C10—H10C	109.4
C7—C6—C11	123.3 (3)	H10A—C10—H10C	109.5
C7—C6—C5	121.3 (2)	H10B—C10—H10C	109.5
C11—C6—C5	115.4 (2)	C6—C11—H11A	109.7
C6—C7—C8	128.3 (3)	C6—C11—H11B	109.8
C3—O17—H17	109.5	H11A—C11—H11B	109.5
C1—C2—H2	109.6	C6—C11—H11C	108.9
C9—C2—H2	108.3	H11A—C11—H11C	109.5
C3—C2—H2	109.1	H11B—C11—H11C	109.5
O17—C3—H3	109.9	N14—C12—H12A	109.8
C4—C3—H3	108.5	N14—C12—H12B	109.9
C2—C3—H3	107.5	H12A—C12—H12B	109.5
C10—C4—H4	107.6	N14—C12—H12C	108.7
C3—C4—H4	106.9	H12A—C12—H12C	109.5
C5—C4—H4	109.2	H12B—C12—H12C	109.5
C6—C5—H5A	108.1	015—C13—H13A	109.9
C4—C5—H5A	108.1	015—C13—H13B	108.7
C6—C5—H5B	108.1	H13A—C13—H13B	109.5
C4—C5—H5B	108.1	015—C13—H13C	109.8
Н5А—С5—Н5В	107.3	H13A—C13—H13C	109.5
Co-C/-H/	119.5	H13B—C13—H13C	109.5
C13—O15—N14—C1	116.5 (2)	C13—O15—N14—C12	-86.4 (3)

O15—N14—C1—O16	167.07 (19)	C9—C2—C3—C4	-174.36 (18)
C12—N14—C1—O16	12.0 (4)	O17—C3—C4—C10	-56.1 (2)
O15—N14—C1—C2	-13.9 (3)	C2—C3—C4—C10	65.6 (2)
C12—N14—C1—C2	-168.9 (2)	O17—C3—C4—C5	67.2 (2)
O16—C1—C2—C9	-78.4 (2)	C2—C3—C4—C5	-171.09 (16)
N14-C1-C2-C9	102.5 (2)	C10—C4—C5—C6	-174.7 (2)
O16—C1—C2—C3	43.9 (3)	C3—C4—C5—C6	60.2 (3)
N14—C1—C2—C3	-135.14 (19)	C4—C5—C6—C7	-122.8 (3)
C1—C2—C3—O17	-173.36 (15)	C4—C5—C6—C11	58.6 (4)
C9—C2—C3—O17	-53.3 (2)	C11—C6—C7—C8	0.9 (5)
C1—C2—C3—C4	65.5 (2)	C5—C6—C7—C8	-177.6 (2)

Crystal and molecular structure of (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16)

Table 1. Crystal data and structure refinement for (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16).

Identification code	sb373	
Empirical formula	C23 H44 O3 Si	
Formula weight	396.67	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 8.404(5) Å	<i>α</i> = 90°.
	b = 14.93(3) Å	β= 90°.
	c = 20.26(5) Å	$\gamma = 90^{\circ}.$
Volume	2541(8) Å ³	
Z	4	
Density (calculated)	1.037 Mg/m^3	
Absorption coefficient	0.110 mm ⁻¹	
F(000)	880	
Crystal size	$0.42 \text{ x } 0.17 \text{ x } 0.06 \text{ mm}^3$	
Theta range for data collection	3.31 to 23.20°.	

Index ranges	-9<=h<=9, -16<=k<=16, -22<=l<=22
Reflections collected	27234
Independent reflections	3591 [R(int) = 0.1531]
Completeness to theta = 23.20°	98.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.1855
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3591 / 0 / 246
Goodness-of-fit on F ²	1.079
Final R indices [I>2sigma(I)]	R1 = 0.0670, wR2 = 0.1138
R indices (all data)	R1 = 0.1170, wR2 = 0.1332
Absolute structure parameter	0.1(3)
Extinction coefficient	0.0030(11)
Largest diff. peak and hole	0.229 and -0.216 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
Si(1)	5210(2)	7809(1)	8474(1)	38(1)
O(1)	11173(4)	8462(2)	5235(2)	42(1)
O(2)	3118(4)	9390(2)	6184(2)	36(1)
O(3)	5240(3)	7747(2)	7669(1)	30(1)
C(1)	9727(6)	8398(3)	5199(2)	40(1)
C(2)	8573(5)	9082(3)	5414(2)	30(1)
C(3)	7030(6)	8868(3)	5370(2)	32(1)
C(4)	5600(5)	9403(3)	5546(2)	32(1)
C(5)	4518(5)	8875(3)	6035(2)	30(1)
C(6)	5334(5)	8629(3)	6682(2)	30(1)
C(7)	4244(5)	8111(3)	7159(2)	31(1)
C(8)	3206(5)	7374(3)	6845(2)	32(1)
C(9)	1974(5)	7029(3)	7341(3)	40(1)
C(10)	565(5)	6557(3)	7056(2)	34(1)
C(11)	238(6)	5712(4)	7195(3)	51(2)
C(12)	-1180(6)	5174(4)	6987(3)	69(2)
C(13)	9261(5)	9957(3)	5659(3)	43(2)

C(14)	4672(6)	9637(3)	4913(2)	41(1)
C(15)	6001(6)	9461(3)	7034(2)	40(1)
C(16)	4230(6)	6615(3)	6567(3)	41(1)
C(17)	-523(6)	7125(4)	6634(3)	56(2)
C(18)	4465(7)	8915(3)	8762(3)	55(2)
C(19)	3902(6)	6921(4)	8836(3)	54(2)
C(20)	7329(6)	7586(4)	8741(2)	40(1)
C(21)	8463(6)	8300(4)	8460(3)	57(2)
C(22)	7460(7)	7618(5)	9500(3)	77(2)
C(23)	7857(7)	6664(4)	8498(3)	61(2)

Table 3. Bond lengths [Å] and angles [°] for (2E,4R,5S,6R,7R,8S,10E)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16).

Si(1)-O(3)	1.633(5)
Si(1)-C(18)	1.859(6)
Si(1)-C(19)	1.873(6)
Si(1)-C(20)	1.890(5)
O(1)-C(1)	1.221(5)
O(2)-C(5)	1.438(5)
O(2)-H(2)	0.8400
O(3)-C(7)	1.437(5)
C(1)-C(2)	1.474(7)
C(1)-H(1)	0.9500
C(2)-C(3)	1.338(6)
C(2)-C(13)	1.513(7)
C(3)-C(4)	1.486(6)
C(3)-H(3)	0.9500
C(4)-C(14)	1.541(7)
C(4)-C(5)	1.559(6)
C(4)-H(4)	1.0000
C(5)-C(6)	1.524(7)
C(5)-H(5)	1.0000
C(6)-C(15)	1.537(6)
C(6)-C(7)	1.540(6)
C(6)-H(6)	1.0000
C(7)-C(8)	1.541(6)

C(7)-H(7)	1.0000
C(8)-C(16)	1.531(6)
C(8)-C(9)	1.532(6)
C(8)-H(8)	1.0000
C(9)-C(10)	1.495(6)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.321(7)
C(10)-C(17)	1.511(7)
C(11)-C(12)	1.497(7)
C(11)-H(11)	0.9500
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-C(23)	1.527(7)
C(20)-C(21)	1.539(7)
C(20)-C(22)	1.543(8)
C(21)-H(21A)	0.9800

C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
O(3)-Si(1)-C(18)	111.7(2)
O(3)-Si(1)-C(19)	111.0(2)
C(18)-Si(1)-C(19)	108.0(3)
O(3)-Si(1)-C(20)	105.1(2)
C(18)-Si(1)-C(20)	112.6(3)
C(19)-Si(1)-C(20)	108.4(3)
C(5)-O(2)-H(2)	109.5
C(7)-O(3)-Si(1)	133.4(3)
O(1)-C(1)-C(2)	125.7(5)
O(1)-C(1)-H(1)	117.2
C(2)-C(1)-H(1)	117.2
C(3)-C(2)-C(1)	116.9(5)
C(3)-C(2)-C(13)	126.7(5)
C(1)-C(2)-C(13)	116.4(4)
C(2)-C(3)-C(4)	129.7(5)
C(2)-C(3)-H(3)	115.1
C(4)-C(3)-H(3)	115.1
C(3)-C(4)-C(14)	109.4(4)
C(3)-C(4)-C(5)	110.6(4)
C(14)-C(4)-C(5)	110.4(4)
C(3)-C(4)-H(4)	108.8
C(14)-C(4)-H(4)	108.8
C(5)-C(4)-H(4)	108.8
O(2)-C(5)-C(6)	108.5(4)
O(2)-C(5)-C(4)	109.9(4)
C(6)-C(5)-C(4)	113.9(4)
O(2)-C(5)-H(5)	108.1
C(6)-C(5)-H(5)	108.1
C(4)-C(5)-H(5)	108.1
C(5)-C(6)-C(15)	111.7(4)

C(5)-C(6)-C(7)	113.1(4)
C(15)-C(6)-C(7)	109.4(4)
C(5)-C(6)-H(6)	107.5
C(15)-C(6)-H(6)	107.5
C(7)-C(6)-H(6)	107.5
O(3)-C(7)-C(6)	107.1(4)
O(3)-C(7)-C(8)	110.9(4)
C(6)-C(7)-C(8)	115.9(4)
O(3)-C(7)-H(7)	107.5
C(6)-C(7)-H(7)	107.5
C(8)-C(7)-H(7)	107.5
C(16)-C(8)-C(9)	111.8(4)
C(16)-C(8)-C(7)	111.2(4)
C(9)-C(8)-C(7)	110.6(4)
C(16)-C(8)-H(8)	107.7
C(9)-C(8)-H(8)	107.7
C(7)-C(8)-H(8)	107.7
C(10)-C(9)-C(8)	116.1(4)
C(10)-C(9)-H(9A)	108.3
C(8)-C(9)-H(9A)	108.3
C(10)-C(9)-H(9B)	108.3
C(8)-C(9)-H(9B)	108.3
H(9A)-C(9)-H(9B)	107.4
C(11)-C(10)-C(9)	122.2(5)
C(11)-C(10)-C(17)	122.1(5)
C(9)-C(10)-C(17)	115.7(4)
C(10)-C(11)-C(12)	128.1(5)
C(10)-C(11)-H(11)	116.0
C(12)-C(11)-H(11)	116.0
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(2)-C(13)-H(13A)	109.5
C(2)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
С(2)-С(13)-Н(13С)	109.5

H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(4)-C(14)-H(14A)	109.5
C(4)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(4)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(6)-C(15)-H(15A)	109.5
C(6)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(6)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(8)-C(16)-H(16A)	109.5
C(8)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(8)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
С(10)-С(17)-Н(17А)	109.5
C(10)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(10)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
Si(1)-C(18)-H(18A)	109.5
Si(1)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
Si(1)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
Si(1)-C(19)-H(19A)	109.5
Si(1)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
Si(1)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(23)-C(20)-C(21)	109.0(5)

C(23)-C(20)-C(22)	109.1(5)
C(21)-C(20)-C(22)	107.7(5)
C(23)-C(20)-Si(1)	109.9(4)
C(21)-C(20)-Si(1)	110.8(4)
C(22)-C(20)-Si(1)	110.3(4)
C(20)-C(21)-H(21A)	109.5
C(20)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(20)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(20)-C(22)-H(22A)	109.5
C(20)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(20)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(20)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for sb373. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Si(1)	43(1)	41(1)	30(1)	-3(1)	0(1)	2(1)
O(1)	28(2)	49(2)	48(3)	-6(2)	2(2)	4(2)
O(2)	28(2)	38(2)	42(2)	-3(2)	2(2)	7(2)
O(3)	28(2)	32(2)	31(2)	1(2)	1(2)	-1(2)
C(1)	42(3)	42(3)	36(3)	-8(3)	0(3)	0(3)
C(2)	29(3)	34(3)	28(3)	-4(3)	-1(2)	-6(2)
C(3)	45(3)	27(3)	23(3)	-3(2)	-2(2)	-9(3)

C(4)	34(3)	33(3)	28(3)	-4(2)	2(2)	1(2)
C(5)	29(3)	27(3)	33(3)	-9(2)	0(2)	4(2)
C(6)	30(2)	28(3)	32(3)	-2(2)	0(2)	-3(2)
C(7)	31(3)	34(3)	28(3)	1(2)	-1(2)	4(2)
C(8)	34(3)	36(3)	28(3)	-4(3)	-2(2)	-3(2)
C(9)	40(3)	35(4)	45(3)	1(3)	3(3)	-6(3)
C(10)	35(3)	27(3)	40(3)	4(3)	5(3)	-7(2)
C(11)	35(3)	45(4)	71(4)	0(3)	-5(3)	-6(3)
C(12)	40(3)	51(4)	115(6)	-9(4)	16(4)	-5(3)
C(13)	31(3)	30(3)	67(4)	-6(3)	6(3)	-3(2)
C(14)	40(3)	49(3)	33(3)	10(3)	-2(3)	-6(3)
C(15)	46(3)	38(3)	36(3)	5(3)	-5(3)	-12(3)
C(16)	45(3)	37(3)	41(3)	-2(3)	-4(3)	-3(3)
C(17)	43(3)	58(4)	66(4)	10(3)	-4(3)	-8(3)
C(18)	69(4)	57(4)	39(3)	-12(3)	-3(3)	16(3)
C(19)	60(4)	63(5)	39(4)	-3(3)	6(3)	-9(3)
C(20)	47(3)	42(4)	30(3)	0(3)	0(3)	5(3)
C(21)	42(3)	71(4)	58(4)	-7(4)	-13(3)	-6(3)
C(22)	64(4)	124(7)	43(4)	-2(4)	-15(3)	11(4)
C(23)	59(4)	60(4)	62(4)	14(4)	3(4)	13(3)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^{-3}) for (2*E*,4*R*,5*S*,6*R*,7*R*,8*S*,10*E*)-7-(*tert*-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16).

	Х	У	Z	U(eq)
H(2)	2479	9360	5865	54
H(1)	9309	7860	5018	48
H(3)	6817	8286	5202	38
H(4)	5952	9972	5762	38
H(5)	4176	8308	5814	36
H(6)	6255	8232	6573	36
H(7)	3512	8555	7370	37
H(8)	2615	7650	6467	39
H(9A)	2516	6615	7649	48
H(9B)	1586	7545	7603	48

H(11)	997	5408	7461	61
H(12A)	-1905	5554	6732	103
H(12B)	-1731	4947	7380	103
H(12C)	-830	4670	6714	103
H(13A)	8409	10402	5698	64
H(13B)	10063	10172	5345	64
H(13C)	9756	9865	6091	64
H(14A)	5394	9915	4592	61
H(14B)	3812	10056	5020	61
H(14C)	4220	9090	4723	61
H(15A)	5139	9891	7111	60
H(15B)	6822	9738	6758	60
H(15C)	6466	9283	7458	60
H(16A)	4828	6333	6927	61
H(16B)	4974	6857	6240	61
H(16C)	3543	6167	6357	61
H(17A)	-129	7131	6179	83
H(17B)	-544	7738	6807	83
H(17C)	-1600	6873	6643	83
H(18A)	5153	9391	8590	82
H(18B)	4471	8931	9245	82
H(18C)	3376	9006	8602	82
H(19A)	2785	7068	8749	81
H(19B)	4079	6887	9313	81
H(19C)	4156	6341	8634	81
H(21A)	9551	8175	8607	85
H(21B)	8138	8893	8617	85
H(21C)	8421	8287	7976	85
H(22A)	6812	7138	9692	115
H(22B)	7077	8199	9660	115
H(22C)	8573	7537	9631	115
H(23A)	8956	6553	8638	91
H(23B)	7795	6644	8015	91
H(23C)	7159	6204	8686	91

Table 6. Torsion angles [°] for (2E,4R,5S,6R,7R,8S,10E)-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16).

C(18)-Si(1)-O(3)-C(7)	-33.9(5)
C(19)-Si(1)-O(3)-C(7)	86.7(4)
C(20)-Si(1)-O(3)-C(7)	-156.3(4)
O(1)-C(1)-C(2)-C(3)	-176.3(5)
O(1)-C(1)-C(2)-C(13)	4.0(8)
C(1)-C(2)-C(3)-C(4)	179.9(5)
C(13)-C(2)-C(3)-C(4)	-0.4(9)
C(2)-C(3)-C(4)-C(14)	112.6(6)
C(2)-C(3)-C(4)-C(5)	-125.6(6)
C(3)-C(4)-C(5)-O(2)	-178.2(4)
C(14)-C(4)-C(5)-O(2)	-57.0(5)
C(3)-C(4)-C(5)-C(6)	59.8(5)
C(14)-C(4)-C(5)-C(6)	-179.0(4)
O(2)-C(5)-C(6)-C(15)	-66.8(5)
C(4)-C(5)-C(6)-C(15)	55.9(5)
O(2)-C(5)-C(6)-C(7)	57.1(5)
C(4)-C(5)-C(6)-C(7)	179.8(4)
Si(1)-O(3)-C(7)-C(6)	125.6(4)
Si(1)-O(3)-C(7)-C(8)	-107.1(4)
C(5)-C(6)-C(7)-O(3)	166.9(4)
C(15)-C(6)-C(7)-O(3)	-67.9(5)
C(5)-C(6)-C(7)-C(8)	42.5(5)
C(15)-C(6)-C(7)-C(8)	167.7(4)
O(3)-C(7)-C(8)-C(16)	-57.1(5)
C(6)-C(7)-C(8)-C(16)	65.3(5)
O(3)-C(7)-C(8)-C(9)	67.8(5)
C(6)-C(7)-C(8)-C(9)	-169.8(4)
C(16)-C(8)-C(9)-C(10)	-75.4(5)
C(7)-C(8)-C(9)-C(10)	160.1(4)
C(8)-C(9)-C(10)-C(11)	118.9(6)
C(8)-C(9)-C(10)-C(17)	-65.0(6)
C(9)-C(10)-C(11)-C(12)	175.3(5)
C(17)-C(10)-C(11)-C(12)	-0.5(9)
O(3)-Si(1)-C(20)-C(23)	-59.1(4)
C(18)-Si(1)-C(20)-C(23)	179.1(4)
C(19)-Si(1)-C(20)-C(23)	59.7(4)
O(3)-Si(1)-C(20)-C(21)	61.4(4)
C(18)-Si(1)-C(20)-C(21)	-60.3(5)

C(19)-Si(1)-C(20)-C(21)	-179.7(4)
O(3)-Si(1)-C(20)-C(22)	-179.5(4)
C(18)-Si(1)-C(20)-C(22)	58.8(5)
C(19)-Si(1)-C(20)-C(22)	-60.6(5)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for (2E,4R,5S,6R,7R,8S,10E)-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (16). [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(1)#1	0.84	2.15	2.879(6)	144.6

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z

Cell culture techniques, antibodies and indirect immunofluorescence.

HeLa cells were cultured at 37°C in Dulbecco's modified eagle's medium (DMEM), supplemented with 10% fetal calf serum, 100 units/ml penicillin and 100 µg/ml streptomycin.

For studying the inhibition of CRM1-mediated nuclear export, HeLa cells were grown on coverslips for 24 h to about 75% confluency. Cells were then incubated with different concentrations of LMB (LC laboratories, USA) or Anguinomycin C for 90 min at 37°C. For detection of Rio2, cells were fixed in 4% paraformaldehyde for 15 min and permeabilized for 5 min in 1 x detergent (0.1% Triton-X, 0.02% SDS in 1xPBS). Incubation with α -Rio2 antibody (polyclonal antibody, raised against recombinant full-length human Rio2 in rabbit, affinity-purified) and fluorescently labelled secondary antibody (α -rabbit, Alexa 488-labeled, Invitrogen). Pictures were acquired using a Leica TCS NT1 laser-scanning confocal microscope.

References

- [1] M. J. Plater, S. Aiken, G. Bourhill, *Tetrahedron* 2002, 58, 2415.
- [2] N. F. Langille, J. S. Panek, Org. Lett. 2004, 6, 3203-3206.
- [3] K. Komatsu, K. Tanino, M. Miyashita, Angew. Chem. 2004, 116, 4441; Angew. Chem. Int. Ed. 2004, 43, 4341.
- [4] J. D. White, A. T. Johnson, J. Org. Chem. 1994, 59, 3347-3358.
- [5] S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, *maXus Computer Program* for the Solution and Refinement of Crystal Structures 1999. Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow; C. K. Johnson, ORTEP--II. A Fortran Thermal--Ellipsoid Plot Program 1976. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Z. Otwinowski, W. Minor, In Methods in Enzymology 1997, 276, edited by C. W. Carter, Jr. & R. M. Sweet pp. 307--326, New York:Academic Press; A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, J. Appl. Cryst. 1999, 32, 115--119; G. M. Sheldrick, SHELXL97. Program for the Refinement of Crystal Structures 1997, University of Göttingen, Germany.

Date: Fri Dec 16 13:01:08 2005 ICIS: 8.3.0 SP2 for OSF1 (V4.0) build 98-238 from 26-Aug-98

Date: Tue Nov 22 16:12:41 2005 ICIS: 8.3.0 SP2 for OSF1 (V4.0) build 98-238 from 26-Aug-98

/

apodization: Strong

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons 868 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)

ppm 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0	1.0

Current Da NAME EXPNO PROCNO	ita Parameters F0385 3 1				S.Bo	nazzi/Carreira SB 7 125 MHz 13C DEPT 90+1	7 Opr:Br 135 NMR				
F2 - Acqui Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	sition Parameters 20060201 9.43 drx2500 5 mm BBO BB- deptleth 131072 CDC13 400 0			il	PrO, 0 ^H	Br CH	H ₃ OTIPS				
SWH FIDRES AQ RG DW DE TE CNST2 D1 d2 d12 DELTA	31152.648 Hz 0.237676 Hz 2.1037557 sec 13004 16.050 usec 298.0 K 145.000000 2.00000000 sec 0.00344828 sec 0.00344828 sec 0.00002100 sec 0.00001146 sec										
	== CHANNEL f1 ===================================	****				17-14-44-14-1-14-1-1-1-1-1-1-1-1-1-1-1-1	anangpanana manini baharana ''		••••••••••••••••••••••••••••••••••••••		and a family of the second data the second secon
PL1 SFO1	0.00 dB 125.7715724 MHz										
CPDPRG2 NUC2 P0 P3 p4 PCPD2 PL2 PL12 SF02	<pre>CHANNEL f2</pre>								I		
F2 - Proce SI SF WDW SSB LB GB PC	essing parameters 65536 125.7577869 MHz EM 0 1.00 Hz 0 1.40										
1D NMR plo CX F1P F1 F2P F2 PPMCM HZCM	bt parameters 40.00 cm 232.000 ppm 29175.80 Hz -8.000 ppm -1006.06 Hz 6.00000 ppm/cm 754.54675 Hz/cm	1999 - T C. J. & T C. M C M M C M M									
ppm 22	20 200	180	160	140	120	100	80	60	40	20	

	Current Data Par	ameters
NAME	F0385	
PROCNO	1	
82	- Acceleition D	aramotore
Date_	20060131	arameters
Time	10.31	
PROBHD	5 mm BBI 1H-	
PULPROG	invigptp	
TD	2048 CDC13	
NS	4	
DS	16	
FIDRES	4496.403	H2 H2
AQ	0.2277876	sec
RG	8192	11500
DE	6.00	usec
TB	300.0	K
d0	0.00000000	sec
D1	2.00000000	Sec
d4 	0.00172414	sec
d13	0.00000300	sec
D16	0.00010000	sec
d20 d21	0.000110000	Sec.
INO	0.00001030	sec
	THE CHANNEL FI	
NUC1	1H	
P1	7.10	usec
PL1	-4.00	usec dB
SF01	500.0319318	MHz
	THE CHANNEL F2	
CPDPRG2	garp	
NUC2 D3	13C	11600
p4	25.00	usec
PCPD2	76.00	usec
PL12	13.00	dB
SFO2	125.7431995	MHz
*******	GRADIENT C	ANNEL ======
GPNAM1	sine.100	
CPNAM2 CPNAM3	sine.100 sine.100	
GPX1	0.00	\$
GPX2	0.00	*
GPA3 GPY1	0.00	*
GPY2	0.00	8
GPT3 GPT3	0.00	8
GPZ2	30.00	8
GPZ3 P16	20.00	\$ 19600
610	1000.00	usec
F1	- Acquisition p	arameters
TD	512	
SF01	125.7432	MHz
SW	47.405945 193.027	nz ppm
-/		
F2 SI	 Processing p 1024 	arameters
SF	500.0300108	MHz
WDW OCD	QSINE	
əəb LB	0,00	Hz
GB	0	
PC	1.00	
FI	l - Processing p	arameters
SI	1024	
SF	125.7326514	MHz
WDW	SINE	
SSB LB	2	H17
GB	0.00	
	10 MMR plot	ratora
CX2	20.00 RMR plot par	ameters CM
CX1	20.00	cm
F2PL0 F2L0	6.500	ppa Hz
F2PHI	0.900	ppm
F2HI	450.03	Hz
r1860 F160	141.000	ppm Hz
F1PH1	9.000	ppm
F1HI F2EPMCM	1131.59	Hz som/cm
P2H2CM	140.00839	Ez/cm
P1 PPNCM	6.60000	son/en

	Current Data Parameters
NAME	F0385
EXPNO	10
PROCINO	1
F2	Acquisition Parameters
Date_	20060131
Time	9.11
INSTRUM	DRX500
PROBHD	5 mm BBI 1H-
PULPROG	cosydfgptp
TD	2048
NC	CDC13
ND DS	16
SWI	4496.403 Hz
FIDRES	2.195509 Hz
AQ	0.2277876 sec
RG	4096
D₩	111.200 usec
DE	6.00 usec
TE	300.0 K
00	0.00000300 sec
d11	0.03000000 sec
d12	0.00002000 sec
d13	0.00000300 sec
D16	0.00015000 sec
d20	0.00215300 sec
INO	0.00011120 sec
	000 NNDY 61
NUC1	CHANNEL 11
NUCL P1	7.10 usec
p2	14.20 usec
PL1	-4.00 dB
PL12	8.00 dB
SF01	500.0319318 MHz
CDNAM1	sine 100
CPNAM2	sine 100
GPX1	0.00%
GPX2	0.00 %
GPY1	0.00 %
GPY2	0.00 %
GPZ1	15.00 %
GPZ2	30.00 %
610	2000.00 usec
F	1 · Acquisition parameters
ND0	ź
TD	512
SF01	500.0319 MHz
FIDRES	8.782037 Hz
อท	0.322 ppm
	F2 - Processing parameters
SI	1024
SF	500.0300108 MHz
WDW	QSINE
SSB	3
LB	0.00 Hz
GB PC	1 00
10	1.00
	F1 - Processing parameters
SI	1024
MC2	TPPI
SF	500.0300108 MHz
WDW	QSINE
SSB	2 0.00 110
CB	0.00 HZ
GB	v
	2D NMR plot parameters
CX2	20.00 cm
CX1	20.00 cm
F2PLO	6.406 ppm
F2LO	3203.18 Hz
F2PHI	0.900 ppm
F2HI F1DIO	450.01 Hz
F110	0.400 ppm 3203 18 H/
FIPHT	0.900 ppm
FIHI	450.01 Hz
F2PPM	CM 0.27530 ppm/cm
F2HZC	M 137.65843 Hz/cm
F1P2M	CM 0.27530 ppm/cm

Current Data Parameters NAME F0384 EXEMO 3 PROCNO 1	S.Bon. 12	azzi/Carreira SB 79 Opr:Br 5 MHz 13C DEPT 90+135 NMR	
P2 - Acquisition Parameters Date_ 20060131 Time 11.25 INSTRUM drx2500 PROBHD 5 mm BB0 BB- PULPROG deptieth TD TD 131072 SOLVENT CDC13 NS 512 DS 0	iPrO, O	CH ₃ H ₃ COTIPS	
SWH 31152.648 Hz FIDRES 0.237676 Hz AQ 2.1037575 sec RG 13004 DW 16.050 usec DE 30.00 usec TE 298.0 K CNST2 145.000000 perc			
12 0.00344828 sec d12 0.0002000 sec DELTA 0.00001146 sec			
PI 9.00 usec p2 18.00 usec PLI 0.00 dB SF01 125.7715724 MHz	an a		versenen ander en
		. I	
F2 - Processing parameters SI 65536 SF 125.7577876 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40			
1D NMR plot parameters CX 40.00 cm F1P 232.000 ppm F1 29175.80 Hz F2P -8.000 ppm F2P -8.000 ppm F2 -1006.06 Hz FPMCM 6.00000 ppm/cm HZCM 754.54675 Hz/cm			
pm 220 200 180 160	140 120	100 80 60	40 20 0

Cur	rent Data Par	ameters
NAME	F0384	
PROCNO	11	
FZ - Date	Acquisition P 20060130	arameters
Time	9.44	
PROBID	DRX500 5 mm BBT 1H-	
PULPROG	invigptp	
TD COLUMNER	2048 CDC12	
NS	4	
DS	16	lle.
FIDRES	2.195509	Hz
AQ	0.2277876	sec
RG DW	111.200	usec
DE	6.00	usec
TE CNST2	300.0	ĸ
d0	0.00000300	sec
D1	2.00000000	sec
d11	0.03000000	sec
d13	0.00000300	sec
d20	0.00010000	sec
d21	0.00061714	sec
100	0.00001030	sec
	== CHANNEL f1	***********
NUC1 p1	1H 7 10	11690
p2	14.20	usec
PL1	-4.00	dB
3701	300.0313318	Pinz
20000002	CHANNEL E2	********
NUC2	garp 13C	
P3	12.50	usec
p4 pcpn2	25.00	usec
PL2	-3.00	dB
PL12 SEO2	13.00	dB MB2
01.0%	1051115151555	
CDNAM1	== GRADIENT CH	HANNEL
GPNAM2	sine.100	
GPNAN3 CPX1	sine.100	,
GPX2	0.00	8
GPX3	0.00	1
GPY2	0.00	8
GPY3	0.00	\$
GPZ1 GPZ2	30.00	4
GPZ3	20.00	٦
P16	1000.00	usec
F1 ·	Acquisition p	arameters
NDG TD	461	
SF01	125.7432	MHz
FIDRES	52.650421 193.027	Hz
¥2 -	Processing p	arameters
SF	500.0300108	MHz
WDW CCD	QSINE	
LB	0.00	Hz
GB	0	
PC	1.00	
F1 -	Processing p	arameters
SI MC2	1024 TPPI	
SF	125.7326423	MHz
WDW SSB	SINE	
LB	0.00	Hz
GB	0	
21	NMR plot par	ameters
CX2	20.00	CR CR
F2PLO	20.00	cai ppm
F2LO	3500.21	Hz
r∠PHI F2HI	0.800 400.02	ppm Hz
F1PLO	137.000	ppm
F1LO F1PHI	17225.37	Hz
FIHI	1131.59	Hz
F2PPMCM F2U7CM	0.31000	ppm/cm
FIPPMCM	6 40000	na/cm

Ci	urrent Data Par	ameters
NAME EXPNO	F0384 11	
PROCNO	1	
F2	Acquisition P	arameters
Date_	20060130	
INSTRUM	DRX500	
PROBHD	5 mm BBI 1H	
PULPROG TD	invigptp 2048	
SOLVENT	CDC13	
NS	4	
SWH	4496.403	Hz
FIDRES	2.195509	Hz
RG	0.2277876 8192	sec
DW	111.200	usec
TE	300.0	usec K
CNST2	145.0000000	
d0 D1	2.00000300	sec
d4	0.00172414	sec
d11 d13	0.03000000	sec
D16	0.00010000	sec
d20	0.00110000	sec
IND	0.00001030	sec
NUC1	TH CHAINEL 11	
P1	7.10	usec
PL1	-4.00	dB
SF01	500.0319318	MHz
	CHANNEL f2	
CPDPRG2	garp	
NUC2 P3	13C 12 50	11400
p4	25.00	usec
PCPD2 PCPD2	76.00	usec
PL12	13.00	dB
SF02	125.7431995	MHz
********	=== GRADIENT C	ANNEL CARDONEL
GPNAM1	sine.100	
GPNAM2 GPNAM3	sine.100	
GPX1	0.00	3
GPX2 GPX3	0.00	8
GPY1	0.00	8
GPY2 GPY3	0.00	* *
GPZ1	80.00	8
GPZ2 GPZ3	30.00	*
P16	1000.00	usec
121	. Nominition r	aramotoro
NDO	4	arameters
TD SEO1	461	WH2
FIDRES	52.650421	Hz
SW	193.027	ppm
F2	· Processing n	arameters
SI	1024	
SF WDW	500.0300108 OSINE	MHZ
SSB	2	
LB	0.00	Hz
PC	1.00	
P1	. Depending	
SI F1	 erocessing p 1024 	ardmeters
MC2	TPPI	
SF WDW	125.7326423 STMD	MHZ
SSB	2	
LB	0.00	Hz
ыD	0	
2	D NMR plot par	ameters
CX2 CX1	20.00	Cn Cn
F2PLO	6.900	ppm
F2LO F2PH1	3450.21	Hz
F2HI	1600.10	Hz
FIPLO	137.000	ppm H2
FIPEI	64.000	ppm
F1HI F2Ppmcw	8045.89	Hz nom/cm
F2HZCH	92.50555	Hz/cm
FIPPMCM	3.65000	pom/cm

Cu NAME EX PNO	rrent Data Par F0384	ameters
PROCNO	10	
F2 -	Acquisition P	arameters
Date_	20060130	
Time	8.25	
INSTRUM	DRX500	
PROBHD	5 mm BBI 1H·	
PULPROG	cosydfgptp	
TD	2048	
NC	CDCI3	
DS	16	
SWH	4496 403	82
FIDRES	2.195509	Hz
AQ	0.2277876	sec
RG	4096	
DW	111.200	usec .
DE	6.00	usec
TB 40	0.0000200	K.
00	2 000000000	sec
d11	0.03000000	sec
d12	0.00002000	sec
d13	0.00000300	sec
D16	0.00015000	sec
d20	0.00215300	sec
INU	0.00011120	sec
********	=== CHANNEL f1	
NUC1	1H	
P1	7.10	usec
p2	14.20	usec
PL1 PL12	-4.00	dB
PL12 CPO1	500 0210210	dB Mile
5101	200.0213210	MHZ
	== GRADIENT C	ANNEL ======
GPNAM1	sine.100	
GPNAM2	sine.100	
GPX1	0.00	*
GPAZ	0.00	8 a
GP11 GPV2	0.00	\$
GPZ1	15.00	s.
GPZ2	30.00	\$
P16	2000.00	USEC
P1 -	Acquisition o	aramotore
NDO	2	arameters.
TD	512	
SF01	500.0319	MHz
FIDRES	8.782037	Hz
SW	8.992	ppm
F2 -	Processing pa	arameters
SI	1024	
SF	500.0300108	MHz
WDW	QSINE	
558	3	U.S.
CD	0.00	HZ
PC	1.00	
F1 ·	Processing pa	arameters
SI	1024	
SE SE	500 0300108	MUg
WDW	OSINE	PRUZ
SSB	2	
LB	0.00	Hz
GB	0	
21	MMC plot par	motore
CY2 21	20 00	ameters
CX1	20.00	CM
F2PLO	6.907	ppm
F2LO	3453.47	Hz
F2PHI	0.795	ppm
F2HI	397.32	Hz
F1PLO	6.907	ppm
F1PLO F1LO F1DUI	6.907 3453.47	ppm Hz
F1PLO F1LO F1PHI F1HI	6.907 3453.47 0.795 397 32	ppm Hz ppm Hz
F1PLO F1LO F1PHI F1HI F2PPMCM	6.907 3453.47 0.795 397.32 0.30560	ppm Hz ppm Hz ppm/cm
F1PLO F1LO F1PHI F1HI F2PPMCM F2HZCM	6.907 3453.47 0.795 397.32 0.30560 152.80743	ppm Hz ppm Hz ppm/cm Hz/cm

GADEMANN_BO	NAZZI_040407	_SB 325 3	(0.068) Cm (1 399.08	1:9) 01									TOF N	AS ES+ 4.23e3
- iPrC		CH ₃					Enter fo C16H2 Mass 3 400.08 Ref: Put	ecular Mass Ca ormula e.g. C11H1 15102Na 399.0797 375 (1+) re App Chem. 63(Alculator 9NOBr Mass Type Average Monoiso Ion Mode +ve -ve 7), 975-90 (1991)	Calo User ele Calo Re Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	ulate ements ssat ppy barge			
%-														
	27 [,]	1.1717												
0	200 250	300	350 400	450	500	550	600	650	700 75	0 800	850	••••••••••••••••••••••••••••••••••••••	950	m/z 1000

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron Ions 668 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

spectrum pathname: E:\pel_data\spectra\Student\SB173.003

apodization: Strong

spectrum pathname: E:\pel_data\spectra\Student\SB181.003

apodization: Strong

spectrum pathname: E:\pel_data\spectra\Student\SB194.003

apodization: Strong

Instrument Method: SDS_50_100_30_RT

20.878 3175641 100.00 268688

Stored: 06.06.2006 13:56:24

Method Information

1 254 nm

Commentsde 50 à 100% ACN en 30 min a RTModified UserSystemLockedNoMethod Id1666Method Version2Edit User

Revision History

This method contains 3 items in the revision history.

Date: Thu Aug 17 10:46:45 2006 ICIS: 8.3.0 SP2 for OSF1 (V4.0) build 98-238 from 26-Aug-98

spectrum pathname: E:\pel_data\spectra\Student\SB205.003

apodization: Strong

Date: Tue Sep 12 15:08:25 2006 ICIS: 8.3.0 SP2 for OSF1 (V4.0) build 98-238 from 26-Aug-98

ETHZ

last transform history: AutoFlat_2 "E:\pel_data\spectra\Student\SB230.sp", 4000, 600, "E:\pel_data\spectra\Student\SB230.~0" 'Student, Fri Sep 15 15:54:43 2006 resolution: 4 cm-1 spectrum pathname: E:\pel_data\spectra\Student\SB230.003 apodization: Strong

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons

155 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

test lock

Lock_spray_050207_Bonazzi SB 286_1 68 (1.588) AM (Cen,2, 80.00, Ht,5000.0,0.00,0.70); Sm (Mn, 2x3.00); Cm (42:86)1: TOF MS ES+ 299.2419 8.82

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

-3.0

658.3941

-4.6

19.5

C41

N5

O Si

H52

Monoisotopic Mass, Odd and Even Electron lons

2245 formula(e) evaluated with 17 results within limits (up to 50 closest results for each mass)

Single Mass Analysis (displaying only valid results)

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons

415 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

GADEMANN_BONAZZI_090307_SB 305_FR2 BIS 212 (4.329) Cm (174:213)

Single Mass Analysis (displaying only valid results)

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron Ions 7029 formula(e) evaluated with 21 results within limits (up to 50 closest results for each mass)

GADEMANN_BONAZZI_090307_SB 301 165 (3.369) Cm (156:165)

TOF MS ES+_308.6528

294

Single Mass Analysis (displaying only valid results)

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons

718 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Single Mass Analysis (displaying only valid results)

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons 730 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Single Mass Analysis (displaying only valid results)

Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons 1116 formula(e) evaluated with 5 results within limits (up to 50 closest results for each mass)

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons

1503 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

1.60e3

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance = 2.0 PPM / DBE: min = -1.5. max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons

1356 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

GADEMANN_BONAZZI_040607_SB376_FR4 3 (0.068) Cm (3:9) TOF MS ES+

1.38e3

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Isotope matching not enabled

Monoisotopic Mass, Odd and Even Electron lons 991 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)

GADEMANN_BONAZZI_180607_SB 381 146 (2.989) Cm (142:147) TOF MS ES+

568

Scan Analysis Report

Report Time : lun. 09 juil. 07:06:17 PM 2007 Batch: D:\Gademann group\LSYNC\Simone\Anguinomycin C.BSW Software version: 3.00(182) Operator: Simone

Sample Name: Ang Collection Time	uinomycin	<u>2</u> 09.07.200	07 11:17:42
Peak Table Peak Style Peak Threshold Range		Peaks 0.0100 800.00nm	to 200.00nm
Wavelength (nm)	Abs		

241.00

0.404

ſ

47 Anguinomycin C					
Sample Name:	Anguinomycin C	Injection Volume:	25.0		
Vial Number:	GA13	Channel:	UV_VIS_2		
Sample Type:	unknown	Wavelength:	241		
Control Program:	simone3	Bandwidth:	1		
Quantif. Method:	delay ms	Dilution Factor:	1.0000		
Recording Time:	7/10/2007 8:45	Sample Weight:	1.0000		
Run Time (min):	80.00	Sample Amount:	1.0000		

Analytical HPLC: Rt = 32.35 minutes (C18, 60%-100% MeOH in 50 minutes)

Chromeleon (c) Dionex 1996-2006 Version 6.80 Build 2212

defltLCMS/Integration

47 Anguinomycin C

Sample Name:	Anguinomycin C	Injection Volume:	25.0
Vial Number:	GA13	Channel:	UV_VIS_2
Sample Type:	unknown	Mass Range:	n.a.
Control Program:	simone3	Polarity:	n.a.
Quantif. Method:	delay ms	Dilution Factor:	1.0000
Recording Time:	7/10/2007 8:45	Sample Weight:	1.0000
Run Time (min):	80.00	Sample Amount:	1.0000

Chromeleon (c) Dionex 1996-2006 Version 6.80 Build 2212

defltLCMS/MS (Curr.Peak)