

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

Synthesis of arylglycines via a novel α-arylation of Weinreb amides

Sebastian Hirner, Olaf Panknin, Magnus Edefuhr, and Peter Somfai*

KTH Chemical Science and Engineering, Organic Chemistry Royal Institute of Technology S-100 44 Stockholm, Sweden

somfai@kth.se

Supporting Information

Table of Content	Page
Experimental Section	S-2 - S-9
¹ H and ¹³ C NMR spectra for compound 6, 8, 11-13	S-10 - S-22
References	S-23

* Corresponding author. Phone +46 8 7906960. Fax: +46 8 7912333

General Experimental procedure.

¹H and ¹³C NMR spectra were recorded at 400 MHz (100 MHz) or 500 MHz (125 MHz) on a Bruker Avance 400 or a Bruker Avance DMX 500 instrument in CDCl₃ using the residual peak of CHCl₃ (¹H NMR δ = 7.26 ppm, ¹³C NMR δ = 77.0 ppm) as internal standard. Chemical shifts are reported in the δ scale with multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet), integration and coupling constant (Hz). IR-spectra were recorded on an ATI Mattson Infinity Series FTIR and only the strongest/structurally most important peaks (v_{max}, cm⁻¹) are listed. Optical rotations were determined on a Perkin Elmer Polarimeter 343 at the sodium D line (589 nm) and at ambient temperature. Dichloromethane (CH₂Cl₂) and tetrahydrofuran (THF) were dried by passing through a solvent column composed of activated alumina. Air- and moisture sensitive reactions were carried out in flame-dried, septum-capped flasks under an atmospheric pressure of nitrogen. All liquid reagents were transferred via oven-dried syringes. Commercially available compounds were used without further purification unless otherwise indicated. Lithium diisopropylamide (LDA) solution (1.8 M in tetrahydrofuran/heptane/ethylbenzene) was purchased from Aldrich and titrated before use.¹

General procedure for the synthesis of bromides 5a-b: ² 2-bromo-*N*-methoxy-*N*-methylacetamide (5a)

To a cold (-5 °C) solution of K_2CO_3 (6.24 g, 45.0 mmol) in 25 mL H₂O was added hydrochloride **4a** (2.00 g, 20.5 mmol) and 25 mL diethyl ether. Bromoacetyl bromide (1.96 mL, 24.6 mmol) was added dropwise, the cooling bath was removed and the mixture was stirred for 30 min. The layer were separated and the aqueous phase was extracted three times with Et₂O. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure to give **5a** as pale yellow oil (2.98 g, 80%) that was directly used in the next step.

N-tert-butoxy-2-bromo-N-methylacetamide (5b)

The general procedure was followed using **4b** (14.3 mmol, 2.00 g) and bromoacetyl bromide (4.34 g, 21.5 mmol) to give **5b** as a pale yellow oil (2.65 g, 83%) that was directly used for the next step.

Synthesis of 2-bromo-N-methoxy-N-methylacetamide (6a)

To a solution of **5a** (1.51 g, 8.31 mmol) and *N*-allyl-*N*-benzylamine (1.02 g, 6.93 mmol) in 30 mL MeCN was added K₂CO₃ (2.87 g, 20.8 mmol) and the mixture was stirred over night.. The reaction was filtered and concentrated under reduced pressure. Flash chromatography (pentane + 1% *i*PrNH₂, EtOAc $5 \rightarrow 40\%$) of the residue gave **6a** as a pale yellow oil (1.27 g, 74%): ¹H NMR (500 MHz, CDCl₃) $\delta =$ 7.39-7.21 (m, 5H), 5.90 (m, 1H), 5.22 (m, 1H), 5.15 (m, 1H), 3.83 (s, 2H), 3.56 (s, 3H), 3.45 (s, 2H), 3.33 (m, 2H), 3.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta =$ 139.1, 136.1, 128.2, 126.9, 117.6, 61.1, 57.8, 57.0, 52.0, 32.1 IR (film) $v_{max} = 2936$, 1671, 1454, 1175 cm⁻¹; HRMS (ESI+) calcd for C₁₄H₂₁N₂O₂ (M+H): 249,1598, found: 249,1601

2-(N-allyl-N-benzylamino)-N-tert-butoxy-N-methylacetamide (6b)

To a solution of **5b** (556 mg, 2.45 mmol) and *N*-allyl-*N*-benzylamine (365 mg, 2.45 mmol) in 4 mL MeCN was added K₂CO₃ (1.03 g, 7.44 mmol) and the mixture was stirred over night. The reaction was filtered and concentrated under reduced pressure. Flash chromatography (pentane + 1% *i*PrNH₂, EtOAc $5 \rightarrow 30\%$) of the residue gave **6b** as a colorless oil (579 mg, 81%): ¹H NMR (400 MHz, CDCl₃) $\delta = 7.39-7.21$ (m, 5H), 5.90 (m, 1H), 5.22 (m, 1H), 5.15 (m, 1H), 3.83 (s, 2H), 3.56 (s, 3H), 3.45 (s, 2H), 3.33 (m, 2H), 3.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 139.3$, 136.3, 129.1, 128.2, 126.9, 117.5, 82.4, 57.7, 56.8, 27.5; IR (film) $\nu_{max} = 2936$, 1671, 1454, 1175 cm⁻¹; HRMS (ESI+) calcd for C₁₇H₂₇N₂O₂ (M+H): 291.2067, found 291.2065.

General Procedures for the α -arylation of amide 6b

Procedure A: 2-(N-allyl-N-benzylamino)-N-methyl-2-phenylacetamide (8a)

To a solution of amide **6b** (29.0 mg, 0.10 mmol) in THF (2 mL) was added LDA (1.40 M, 71 μ L, 0.10 mmol) at -78 °C. The solution was stirred for 1 min and PhMgCl (2.0 M in THF, 100 μ L, 0.20 mmol) was added. The reaction was allowed to reach room temperature and quenched with sat. NH₄Cl (1 mL) and brine (1 mL). The aqueous phase was extracted twice with Et₂O and the combined organic extracts were dried (K₂CO₃) and concentrated under reduced pressure. Flash chromatography (pentane + 1% *i*PrNH₂, EtOAc 5 \rightarrow 40%) of the residue gave **8a** (25.2 mg, 86%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ = 7.39-7.25 (m, 10H), 7.20 (br, 1H), 5.84 (m, 1H), 5.18 (m, 2H), 4.2 (s, 1H), 3.82 (d, *J* = 14.0 Hz, 1H), 3.33 (d, *J* = 14.0 Hz, 1H), 3.25 (m, 1H), 2.88 (d, *J* = 4.9 Hz, 3H), 2.85 (m, 1H) ; ¹³C NMR (125 MHz, CDCl₃) δ = 172.2, 138.5, 134.7, 129.8, 128.5, 128.4, 128.1, 127.8, 127.2, 118.4, 68.9, 54.5, 53.2, 26.0; IR (film) ν_{max} = 3308, 1657, 1521, 1453 cm⁻¹; HRMS (ESI+) calcd for C₁₉H₂₃N₂O₃ (M+H): 295.1805, found: 295.1801.

Procedure B: 2-(N-allyl-N-benzylamino)-2-(3-biphenyl)-N-methylacetamide (8d)

The Grignard reagent was prepared from 3-bromobiphenyl (333 µL, 2.0 mmol) and magnesium powder (73 mg, 3.0 mmol) in 5 mL THF. To a solution of amide **6b** (29.0 mg, 0.10 mmol) in THF (2 mL) was added LDA (1.40 M, 71 µL, 0.10 mmol) at 0 °C. The solution was stirred for 1 min, cooled down to -78 °C and the freshly prepared Grignard solution was added (0.27 M in THF, 0.74 mL, 0.20 mmol). The reaction was allowed to reach room temperature and quenched with sat. NH₄Cl (1 mL) and brine (1 mL). The aqueous phase was extracted twice with Et₂O and the combined organic extracts were dried (K₂CO₃) and concentrated under reduced pressure. Flash chromatography (pentane + 1% *i*PrNH₂, EtOAc 5 → 35%) gave **8d** (29.9 mg, 81%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ = 7.52-711 (m, 15H), 5.79 (m, 1H), 5.12 (m, 2H), 4.42 (s, 1H), 3.79 (d, *J* = 14.0 Hz, 1H), 3.31 (d, *J* = 14.0 Hz, 1H), 3.21 (dd, *J* = 14.6, 4.9 Hz), 2.85 (m, 1H), 2.83 (d, J = 4.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ = 172.2, 141.2, 141.1, 138.6, 135.3, 135.2, 134.8, 128.8, 128.8, 128.7, 128.6, 128.6, 127.3, 127.3, 126.8, 118.6, 69.2, 54.8, 53.4, 26.2; IR (film) ν_{max} = 3310, 2928, 1660, 1521, 1411 cm⁻¹; HRMS (ESI+) calcd for C₂₅H₂₇N₂O (M+H): 371.2118, found: 371.2114.

The general procedure A was followed using 1.5 equiv LDA (1.40 M, 107 μ L, 0.15 mmol) and 4-FPhMgBr (1.0 M in THF, 200 μ L, 0.20 mmol) to give **8b** as a colorless oil (24.1 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ = 7.29-7.12 (m, 8H), 6.95 (m, 2H), 5.74 (m,1H), 5.10 (m, 2H), 4.32 (s, 1H) , 3.72 (d, *J* = 14.0 Hz, 1H), 3.20 (d, *J* = 14.0 Hz, 1H), 3.15 (m, 1H), 2.78 (d, *J* = 4.8 Hz, 3H), 2.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 172.0, 163.3, 161.3, 138.3, 134.7, 131.5, 131.5, 130.3, 130.3, 128.5, 128.4, 127.3, 118.5, 115.1, 114.9, 67.9, 54.5, 53.2, 26.0; IR (film) v_{max} = 3309, 1660, 1508, 1224 cm⁻¹; HRMS (ESI+) calcd for C₁₉H₂₂FN₂O (M+H): 313.1711, found: 313.1711.

2-(N-allyl-N-benzylamino)-2-(4-methoxyphenyl)-N-methylacetamide (8c)

The general procedure A was followed using 4-MePhMgBr (1.0 M in THF, 200 μ L, 0.20 mmol). Flash chromatography (pentane + 1% *i*PrNH₂, EtOAc 5→40%) gave **8c** (29.8 mg, 92%) as a colourless oil: ¹H NMR (400 MHz, CDCl₃) δ =7.28-7.10 (m, 8H), 6.81 (m, 2H), 5.76 (m, 1H), 5.10 (m, 2H), 4.29 (s, 1H), 3.72 (m, 4H), 3.23 (d, *J* = 14.0 Hz, 1H), 3.15 (m, 1H), 2.79 (d, *J* = 4.1 Hz, 3H), 2.76 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 172.5, 159.1, 138.6, 134.8, 130.9, 128.47, 128.42, 127.1, 126.8, 118.3, 113.6, 68.3, 55.1, 54.5, 53.1, 26.0; IR (film) ν_{max} = 3309, 2934, 1659, 1511, 1248 cm⁻¹; HRMS (ESI+) calcd for C₂₀H₂₅N₂O₂ (M+H): 325.1911, found: 325.1911.

2-(N-allyl-N-benzylamino)-N-methyl-2-(thiophen-2-yl)acetamide) (8e)

The general procedure A was followed using 1.5 equiv LDA (1.40 M, 107 μ L, 0.15 mmol) to give **8e** as a colorless oil (27.3 mg, 91%).: ¹H NMR (500 MHz, CDCl₃) δ = 7.37-7.25 (m, 6H), 7.16 (br, 1H), 7.02 (m, 1H), 6.98 (m, 1H), 5.86 (m, 1H), 5.23 (m, 2H), 4.71 (s, 1H), 3.83 (d, *J* = 13.8 Hz, 1H), 3.39 (d, *J* = 13.8 Hz, 1H), 3.25 (m, 1H), 2.93 (m, 1H), 2.87 (d, *J* = 5.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ = 171.1, 138.4, 136.4,135.0, 128.6, 128.5, 128.4, 127.3, 126.3, 125.6, 118.4, 63.3, 54.6, 53.5, 26.1; IR (film) v_{max} = 3307, 1661, 1522, 1409 cm⁻¹; HRMS (ESI+) calcd for C₁₇H₂₁N₂OS (M+H): 301.1369, found: 301.1366.

The Grignard reagent was prepared from 3-bromopyridine (19.3 µL, 0.20 mmol) and *i*PrMgCl · LiCl (1.0 M in THF, 200 µL, 0.20 mmol).³ The general procedure B was followed. Flash chromatography (pentane + 1% *i*PrNH₂, EtOAc 5 \rightarrow 50%) gave **8f** (22.7 mg, 77%) as a pale yellow oil: ¹H NMR (500 MHz, CDCl₃) δ = 8.48 (m, 1H), 8.41 (s, 1H), 7.54 (m, 1H), 7.33-7.12 (m, 7H), 5.76 (m, 1H), 5.15 (m, 2H), 4.40 (s, 1H), 3.77 (d, *J* = 13.9 Hz, 1H), 3.19 (m, 1H), 3.15 (d, *J* = 13.9 Hz, 1H), 2.82 (d, *J* = 4.9 Hz, 3H), 2.69 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 171.2, 151.1, 149.1, 138.0, 137.5, 134.6, 127.5, 123.0, 118.8, 65.9, 54.7, 53.4, 26.1; IR (film) v_{max} = 3293, 2930, 1664, 1524, 1424 cm⁻¹; HRMS (ESI+) calcd for C₁₈H₂₁N₃O (M+H): 296.1757, found: 296.1758.

2-(N-allyl-N-benzylamino)-2-(5-bromopyridin-3-yl)-N-methylacetamide (8g)

The Grignard reagent was prepared from 3,5-dibromopyridine (47.4 mg, 0.20 mmol) and *i*PrMgCl · LiCl (1.0 M in THF, 200 μ L, 0.20 mmol).³ The general procedure B was followed. Flash chromatography (pentane + 1% *i*PrNH₂ : EtOAc 5 \rightarrow 50%) gave **8g** (28.4 mg, 76%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ = 8.56 (s, 1H), 8.32 (s, 1H), 7.68 (s, 1H), 7.33–7.19 (m, 6H), 5.76 (m, 1H), 5.18 (m, 2H), 4.38 (s, 1H), 3.78 (d, *J* = 13.8 Hz, 1H), 3.20 (m, 1H), 3.14 (d, *J* = 13.8 Hz, 1H), 2.83 (d, *J* = 5.3 Hz, 3H), 2.68 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 170.6, 150.2, 149.2, 140.1, 137.7, 134.5, 131.4, 128.8, 128.4, 127.7, 120.4, 119.1, 65.3, 54.8, 53.5, 26.2; IR (film) v_{max} = 3321, 3065, 2929, 1667, 1523, 1420 cm⁻¹; HRMS (ESI+) calcd for C₁₈H₂₁BrN₃O (M+H): 374.0863, found: 374.0861.

2-(N-allyl-N-((S)-1-phenylethyl)amino)-N-tert-butoxy-N-methylacetamide (11)

To a solution of *N*-((*S*)-1-phenylethyl)prop-2-en-1-amine (1.00 g, 6.20 mmol), bromide **5b** (1.53 g, 6.82 mmol) and sodium iodide (186 mg, 1.24 mmol) in DMF (10 mL) was added K₂CO₃ (1.71 g, 12.40 mmol). The resultant mixture was stirred for 24 h at 60 °C and quenched with H₂O (20 mL). The mixture was extracted three times with Et₂O and the combined organic extracts were washed with water, brine, dried over K₂CO₃ and concentrated under reduced pressure. Flash chromatography (pentane + 1% *i*PrNH₂,) of the residue gave **11** (1.72 g, 91%) as a colorless oil: $[\alpha]_D^{20} = -17.8$ (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.40-7.18$ (m, 5H), 5.82 (m, 1H), 5.15 (m, 1H), 5.07 (m, 1H), 4.25 (q, *J* = 6.7 Hz, 1H), 3.67-3.43 (m, 2H), 3.33-3.21 (m, 2H), 3.19 (s, 3H), 1.34 (d, 3H, *J* = 6.7 Hz), 1.21 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 145.0$, 136.9, 128.2, 127.6, 126.7, 116.9, 82.2, 59.9, 54.1, 49.3, 39.3, 27.5, 20.0; IR (film) $\nu_{max} = 2977$, 2935, 1677, 1366, 1523, 1157 cm⁻¹; HRMS (ESI+) calcd for C₁₈H₂₈N₂O₂ (M+H): 305.2224, found: 305.2228.

(S)-2-(N-allyl-N-((S)-1-phenylethyl)amino)-N-methyl-2-phenylacetamide (12)

To a solution of ZnCl₂ (327 mg, 2.40 mmol) in 5 mL THF was added PhMgCl (2.0 M in THF, 1.2 mL, 2.40 mmol) and the resultant mixture was stirred for 30 min at rt. To a solution of 11 (609 mg, 2.0 mmol) in 20 mL Et₂O was added LDA (1.39 M, 1.51 mL, 2.1 mmol) at 0 °C and the resultant yellow solution was stirred for 1 min. The mixture was cooled down to -78 °C and the freshly prepared solution of PhZnCl was added and the temperature was allowed to reach room temperature. The reaction mixture was quenched with sat. NH₄Cl (5 mL) and brine (10 mL) and the phases were separated. The aqueous layer was extracted with 2*Et₂O and the combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure (diastereomeric ratio: 87:13, ¹H-NMR analysis on the crude product). Flash chromatography (hexane, THF $2 \rightarrow 18\%$) gave 12 as a diasteromeric mixture (458 mg, 74%). The diastereomers can be separated by flash chromatography (pentane, Et₂O 5 \rightarrow 20%) to yield 12 as a colourless oil: $[\alpha]_D^{20} = +9.2$ (c 0.85, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) $\delta =$ 7.41-7.24 (m, 10H), 6.94 (br, 1H), 5.65 (m, 1H), 5.03 (m, 2H), 4.47 (s, 1H), 4.12 (q, J = 6.9 Hz, 1H), 3.31 (m, 1H), 3.15 (m, 1H), 2.75 (d, J = 5.0 Hz, 3H), 1.17 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, $CDCl_3$) $\delta = 172.9, 143.6, 137.2, 129.6, 128.4, 128.4, 127.8, 127.5, 127.0, 116.8, 69.1, 57.5, 51.1, 25.8, 51.1$ 15.3; IR (film) $v_{\text{max}} = 2970, 2931, 1658, 1523, 1452 \text{ cm}^{-1}$; HRMS (ESI+) calcd for $C_{20}H_{25}N_2O$ (M+H): 309.1961, found: 309.1958.

(S)-2-(N-allyl-N-((S)-1-phenylethyl)amino)-N-methyl-N-nitroso-2-phenylacetamide (12a)

To a solution of amide **12** (117.4 mg, 0.38 mmol) in CH_2Cl_2 (6 mL), Ac_2O (2 mL) and acetic acid (0.2 mL) was added sodium nitrite (263 mg, 3.8 mmol) and the mixture was stirred for 6 h at rt. The reaction was diluted with toluene (20 mL), filtered and concentrated under reduced pressure to give crude nitrosoamide **12a** as a deep yellow oil, which was directly used in the next step.

(*S*)-methyl 2-(*N*-allyl-*N*-((*S*)-1-phenylethyl)amino)-2-phenylacetate (13): To a solution of crude nitrosoamide 12a in 10 ml MeOH was added sat. NaHCO₃ (5 mL). The mixture was slowly heated to reflux, diluted with brine and extracted three times with Et₂O. The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (pentane, Et₂O 2 \rightarrow 20%) gave 13 as a colourless oil (98.2 mg, 84%): $[\alpha]_D^{20} = + 22.2$ (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.36-7.14$ (m, 10H), 5.63 (m, 1H), 4.98 (m, 1H), 4.85 (m, 1H), 4.57 (s, 1H), 4.01 (q, *J* = 6.9 Hz, 1H), 3.50 (s, 3H), 3.31 (m, 2H), 1.29 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 173.1$, 143.9, 139.1, 137.9, 128.6, 128.3, 128.2, 127.7, 127.6, 126.9, 115.0, 66.3, 59.1, 56.2, 50.5, 19.1; IR (film) $v_{max} = 3029$, 2975, 1738, 1453, 1157 cm⁻¹; HRMS (ESI+) calcd for C₂₀H₂₄NO₂ (M+H): 310,1802, found: 310,1802.

(S)-methyl 2-((S)-1-phenylethylamino)-2-phenylacetate (13a)

A solution of methyl ester **13** (60.0 mg, 0.194 mmol), Pd(PPh₃)₄ (11.2 mg, 0.010 mmol) and *N*,*N*-dimethylbarbituric acid (151.4 mg, 0.97 mmol) in 1 mL CH₂Cl₂ was refluxed for 3 h. The mixture was diluted with Et₂O, filtered and concentrated under reduced pressure. Flash chromatography (heptane + 1% *i*PrNH₂, Et₂O 3 \rightarrow 20%) gave **13a** as a colorless oil (48.7 mg, 93%): [α]_D²⁰ = +26.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ = 7.28-7.17 (m, 10H), 4.15 (s, 1H), 3.73 (q, *J* = 6.5 Hz, 1H), 3.64 (s, 1H), 2.25 (br, 1H), 1.31 (d, *J* = 6.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ = 174.2, 144.7, 138.4, 128.7, 128.5, 127.9, 127.2, 127.1, 126.9, 62.9, 56.5, 52.1, 24.6; IR (film) v_{max} = 2954, 1736, 1688, 1453, 1170 cm⁻¹; HRMS (ESI+) calcd for C₂₀H₂₅N₂O (M+H): 270,1489, found: 270,1487.

(S)-methyl 2-amino-2-phenylacetate hydrochloride (14)

To a solution of **13a** (5.7 mg, 0.021 mmol) in MeOH (5 mL) and conc. HCl (250 μ L) was added a catalytic amount of Pd(OH)₂ (20% on C). The resultant mixture was stirred under H₂-atmosphere (1 atm) for 15 h, filtered through a pad of celite and evaporated under reduced pressure to give **14** as a white solid (4.3 mg, 100%) with spectral data characterizations in accordance with those previously reported in the literature: [α]_D²⁰ = +125.6 (*c* 0.43, MeOH).⁴

S-22

References

- ¹ A. F. Burchat, J. M. Chong, N. Nielsen, *J. Organomet. Chem.* 1997, *542*, 281.
 ² R. Tillyer, L. F. Frey1, D. M. Tschaen, U.-H. Dolling, *Synlett* 1996, 225-226.
 ³ A. Krasovskiy, P. Knochel, *Angew. Chem. Int. Ed.* 2004, *43*, 3333-3336.
 ⁴ G.-I. Li, G. Zhao, *Org. Lett.* 2006, *8*, 633-636.