

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

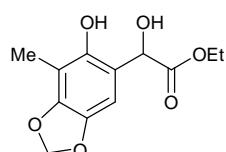
**Synthesis of the Sporolide Ring Framework
Through a Cascade Sequence Involving a Novel
Intramolecular [4+2] Cycloaddition Reaction of an *o*-Quinone**

K. C. Nicolaou,* Jianhua Wang, and Yefeng Tang

Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and the Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093

E-Mail: kcn@scripps.edu

I) Experimental

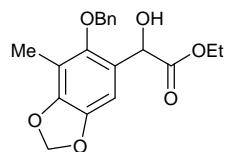

General Procedures. All reactions were carried out under an argon atmosphere with dry solvent under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF), toluene, benzene, diethyl ether (Et₂O), *N,N*-dimethylformamide (DMF), CH₃CN, CH₃OH and methylene chloride (CH₂Cl₂) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated.

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and an ethanolic solution of phosphomolybdic acid and cerium sulfate, and heat as developing agents. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography.

NMR spectra were recorded on Bruker DRX-600, DRX-500 or Varian Inova-400 instruments and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, b = broad, td = triple doublet, dt = double triplet.

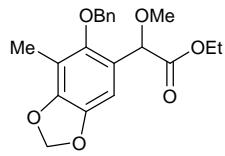
Infrared (IR) spectra were recorded on a Perkin-Elmer 1600 series FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded on a VG ZAB-ZSE mass spectrometer using MALDI (matrix-assisted laser-desorption ionization) or ESI (electrospray ionization).

Hydroxy ester 11: To a stirred solution of 2-methyl sesamol (**9**)^[1] (8.18 g, 53.7 mmol) in THF (80 mL) at 0 °C was added MeMgBr (3.0 M in Et₂O, 21.5 mL, 64.4 mmol, 1.2



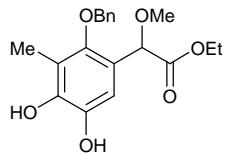
11

equiv.) carefully and the reaction mixture was stirred at this temperature for 0.5 h. Then ethyl glyoxalate **10** (50% in toluene, 16.0 mL, 80.6 mmol, 1.5 equiv.) was added at 0 °C and the reaction mixture was stirred at this temperature for an additional 0.5 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution (60 mL) and the resulting mixture was extracted with EtOAc (60 mL × 3). The combined organic phase


was washed with H_2O (50 mL) and brine (50 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc:hexanes, 1:2) to give pure hydroxy ester **11** (13.4 g, 52.6 mmol, 98%). **11**: R_f = 0.37 (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 3414bw, 2920w, 1734s, 1475m, 1248m, 1093s, 1027m, 926w cm^{-1} ; ^1H NMR: (CDCl_3 , 500 MHz) δ = 7.00 (s, 1 H), 6.52 (s, 1 H), 5.90 (d, J = 3.5 Hz, 2 H), 5.18 (d, J = 2.5 Hz, 1 H), 4.34 – 4.18 (m, 2 H), 3.48 (d, J = 2.5 Hz, 1 H), 2.12 (s, 3 H), 1.27 (t, J = 7.0 Hz, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 173.1, 148.9, 147.0, 140.4, 113.6, 109.4, 104.9, 101.0, 72.6, 62.6, 14.0, 8.7 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{12}\text{H}_{14}\text{O}_6\text{Na} [\text{M}+\text{Na}^+]$: 277.0683; found 277.0677.

Benzyl ether 12: To a stirred solution of hydroxy ester **11** (4.06 g, 16.0 mmol) in DMF (40 mL) at 0 °C was added BnBr (5.73 mL, 47.9 mmol, 3.0 equiv.), Cs₂CO₃ (10.4 g, 31.9

12 and the resulting mixture was extracted with EtOAc (40 mL \times 3). The combined organic phase was washed with H₂O (40 mL \times 3) and brine (40 mL), dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc:hexanes, 1:4) to give pure benzyl ether **12** (5.06 g, 14.7 mmol, 92%). **12**: R_f = 0.26 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 3484bw, 2903w, 1733m, 1474m, 1257m, 1208m, 1090s, 1025m, 939w, 736w, 698w cm⁻¹; ¹H NMR: (CDCl₃, 600 MHz) δ = 7.48 (d, *J* = 7.2 Hz, 2 H), 7.42 – 7.39 (m, 2 H), 7.37 – 7.34 (m, 1 H), 6.60 (s, 1 H), 5.96 (d, *J* = 2.4 Hz, 2 H), 5.39 (d, *J* = 5.4 Hz, 1 H), 4.94 (d, *J* = 11.1 Hz, 1 H), 4.86 (d, *J* = 11.1 Hz, 1 H), 4.28 – 4.15 (m, 2 H), 3.34 (d, *J* = 5.4 Hz, 1 H), 2.21 (s, 3 H), 1.21 (t, *J* = 7.2 Hz, 3 H) ppm; ¹³C NMR: (CDCl₃, 150 MHz) δ = 174.1, 150.7, 147.2, 143.5, 137.1, 128.5, 128.1, 127.9, 124.4, 113.9, 104.6, 101.4, 76.4, 68.5, 62.1, 14.1, 9.7 ppm; HRMS (ESI TOF): *m/z* calcd for C₁₉H₂₁O₆ [M+H⁺]: 345.1333; found 345.1330.


Methyl ether 13: To a stirred solution of benzyl ether **12** (1.19 g, 3.45 mmol) and HBF_4 (49% in H_2O , 0.620 mL, 3.45 mmol, 1.0 equiv.) in CH_2Cl_2 (15 mL) at 0 °C was added

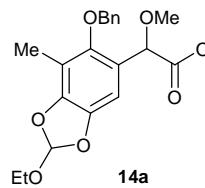
13

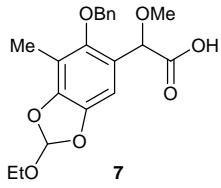
TMSCHN₂ (2.0 M in hexanes, 3.45 mL, 6.91 mmol, 2.0 equiv.) dropwise (carefully!) and the reaction mixture was stirred at 25 °C for 2 h. The reaction mixture was quenched with H₂O (20 mL) and the resulting mixture was extracted with EtOAc (30 mL × 3). The combined organic phase was washed with H₂O (30 mL) and brine (30 mL), dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc:hexanes, 1:4) to give pure methyl ether **13** (1.00 g, 2.79 mmol, 81%). **13**: R_f = 0.46 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2903w, 1745m, 1473m, 1426m, 1386m, 1261m, 1188m, 1091s, 1027m, 979w, 858w, 735w, 698m cm⁻¹; ¹H NMR: (CDCl₃, 400 MHz) δ = 7.52 – 7.49 (m, 2 H), 7.44 – 7.34 (m, 3 H), 6.77 (s, 1 H), 5.96 (s, 2 H), 5.15 (s, 1 H), 4.97 (d, J = 11.2 Hz, 1 H), 4.82 (d, J = 11.2 Hz, 1 H), 4.27 – 4.15 (m, 2 H), 3.31 (s, 3 H), 2.21 (s, 3 H), 1.24 (t, J = 7.2 Hz, 3 H) ppm; ¹³C NMR: (CDCl₃, 150 MHz) δ = 171.0, 151.0, 147.3, 143.6, 137.2, 128.5, 128.1, 127.8, 122.2, 113.5, 104.5, 101.4, 76.5, 76.4, 61.2, 57.0, 14.1, 9.6 ppm; HRMS (ESI TOF): *m/z* calcd for C₂₀H₂₃O₆ [M+H⁺]: 359.1489; found 359.1490.

Catechol 14: To a stirred solution of methyl ether **13** (1.88 g, 5.25 mmol) in benzene (25 mL) at 25 °C was added Pb(OAc)₄ (3.49 g, 7.87 mmol, 1.5 equiv.) and the reaction

14

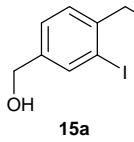
mixture was heated to 80 °C and stirred at this temperature for 16 h. The reaction mixture was diluted with EtOAc (75 mL) and washed with H₂O (50 mL × 5) and brine (50 mL). The organic phase was dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to the next reaction without further purification.

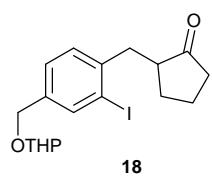
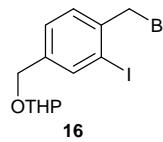

To a stirred solution of the residue obtained above in THF/H₂O (5:1, 9.0 mL) at 25 °C was added AcOH (15 mL, excess) and the reaction mixture was stirred at this temperature for 6 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution (60 mL) and the resulting mixture was extracted with EtOAc (30 mL × 3). The combined organic phase was washed with saturated aqueous NaHCO₃ solution (40 mL × 4), H₂O (40 mL) and brine (40 mL), dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc:hexanes, 1:2) to give pure catechol **14** (1.73 g, 4.99 mmol, 95%). **14**: R_f = 0.37 (silica gel,


EtOAc:hexanes 1:2); IR ν_{max} (film): 3400bm, 2935w, 1729s, 1607w, 1455m, 1375m, 1300s, 1213s, 1114s, 1027m, 861w, 698m cm^{-1} ; ^1H NMR: (CDCl_3 , 500 MHz) δ = 7.55 – 7.48 (m, 2 H), 7.44 – 7.40 (m, 2 H), 7.38 – 7.36 (m, 1 H), 7.17 (bs, 1 H), 6.89 (s, 1 H), 5.79 (bs, 1 H), 5.24 (s, 1 H), 4.95 (d, J = 11.0 Hz, 1 H), 4.84 (d, J = 11.0 Hz, 1 H), 4.27 – 4.13 (m, 2 H), 3.24 (s, 3 H), 2.26 (s, 3 H), 1.21 (t, J = 7.0 Hz, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 172.0, 150.1, 144.6, 140.2, 137.4, 128.6, 128.1, 127.8, 119.6, 118.0, 110.5, 76.2, 75.8, 61.6, 56.4, 14.0, 9.6 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{19}\text{H}_{22}\text{O}_6\text{Na} [\text{M}+\text{Na}^+]$: 369.1309; found 369.1307.

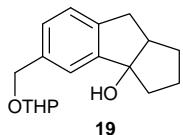
Ethyl orthoester 14a: To a stirred mixture of catechol **14** (170 mg, 0.491 mmol), $\text{CH}(\text{OEt})_3$ (0.164 mL, 0.983 mmol, 2.0 equiv.) and 4 Å MS (40 mg, 80 mg per mmol **13**)

in benzene (5.0 mL) at 25 °C was added $\text{TsOH}\cdot\text{H}_2\text{O}$ (18.6 mg, 0.098 mmol, 0.20 equiv.) and the reaction mixture was heated to 80 °C and stirred at this temperature for 16 h. The reaction mixture was filtered through a celite pad and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc:hexanes, 1:4) to give pure ethyl orthoester **14a** (189 mg, 0.470 mmol, 96%) as a *ca.* 1:1 mixture of two chromatographically inseparable diastereomers. **14a:** R_f = 0.51 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2982w, 1847w, 1747m, 1479m, 1430m, 1376m, 1267w, 1189m, 1088s, 1032m, 736w, 698w cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 7.51 – 7.49 (m, 2 H), 7.43 – 7.41 (m, 2 H), 7.38 – 7.35 (m, 1 H), 6.80 – 6.85 (s \times 2, 1 H), 6.82 – 6.81 (s \times 2, 1 H), 5.16 (s \times 2, 1 H), 4.97 (d, J = 11.1 Hz, 1 H), 4.82 (d, J = 11.1 Hz, 1 H), 4.26 – 4.14 (m, 2 H), 3.79 – 3.72 (m, 2 H), 3.32 – 3.30 (s \times 2, 3 H), 2.24 (s \times 2, 3 H), 1.30 – 1.22 (m, 6 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 171.0, 151.0, 151.0, 145.7, 145.6, 142.1, 142.1, 137.2, 128.6, 128.1, 127.8, 127.8, 122.5, 119.5, 119.4, 113.3, 113.2, 104.4, 104.2, 76.5, 76.5, 76.4, 61.2, 61.2, 60.0, 59.5, 57.2, 57.0, 14.8, 14.1, 9.7 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{22}\text{H}_{27}\text{O}_7 [\text{M}+\text{H}^+]$: 403.1751; found 403.1749.

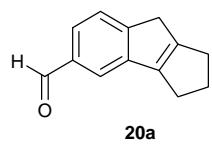

Carboxylic acid 7: To a stirred solution of ethyl orthoester **14a** (850 mg, 2.11 mmol) in dioxane/ H_2O (5:1, 18.0 mL) at 25 °C was added LiOH (1.01 g, 42.2 mmol, 20 equiv.) and the reaction mixture was heated to 80 °C and stirred at this temperature for 3 h. The



reaction mixture was quenched with 10% aqueous citric acid solution (50 mL) and the resulting mixture was extracted with EtOAc (30 mL \times 3). The combined organic phase was washed with H₂O (40 mL \times 4) and brine (40 mL), dried with Na₂SO₄ and concentrated *in vacuo* to give pure carboxylic acid **7** (786 mg, 2.10 mmol, 99%) as a *ca.* 1:1 mixture of two chromatographically inseparable diastereomers. **7**: R_f = 0.10 (silica gel, EtOAc:hexanes 1:1); IR ν_{max} (film): 2932w, 1720m, 1480m, 1376m, 1181m, 1087s, 1004m, 916w, 734w, 698w cm⁻¹; ¹H NMR: (CDCl₃, 600 MHz) δ = 7.49 – 7.46 (m, 2 H), 7.42 – 7.38 (m, 2 H), 7.37 – 7.34 (m, 1 H), 6.87 – 6.86 (s \times 2, 1 H), 6.73 (s, 1 H), 5.09 (s \times 2, 1 H), 5.02 – 5.00 (d \times 2, J = 13.2 Hz, 1 H), 4.86 – 4.82 (d \times 2, J = 13.2 Hz, 1 H), 3.77 – 3.70 (m, 2 H), 3.31 – 3.29 (s \times 2, 3 H), 2.26 – 2.25 (s \times 2, 3 H), 1.30 – 1.27 (m, 3 H) ppm; ¹³C NMR: (CDCl₃, 150 MHz) δ = 172.9, 151.2, 151.1, 146.1, 142.3, 142.2, 136.8, 128.6, 128.3, 127.9, 121.3, 121.3, 119.6, 119.6, 113.5, 113.5, 104.2, 104.2, 76.6, 76.5, 76.5, 59.8, 59.7, 57.0, 56.9, 14.8, 14.8, 9.8 ppm; HRMS (ESI TOF): *m/z* calcd for C₂₀H₂₂O₇Na [M+Na⁺]: 397.1263; found 397.1267.

Benzyllic alcohol 15a: To a stirred solution of 4-bromomethyl-3-iodobenzoic acid (**15**)^[2] (27.2 g, 80.0 mmol) in THF (200 mL) at 25 °C was added BH₃·THF (1.0 M in THF, 160 mL, 160 mmol, 2.0 equiv.) dropwise and the reaction mixture was stirred at this temperature for 2 h. The reaction was quenched with H₂O (20 mL) (carefully!), saturated aqueous NaHCO₃ solution (50 mL) and the resulting mixture was extracted with EtOAc (100 mL \times 3). The combined organic phase was washed with H₂O (200 mL) and brine (200 mL), dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:4) to give pure benzylic alcohol **15a** (20.9 g, 64.1 mmol, 80%). **15a**: R_f = 0.50 (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 3261bw, 2853w, 1400m, 1273m, 1224m, 1202m, 1044s, 873m, 820m, 760m cm⁻¹; ¹H NMR: (CDCl₃, 600 MHz) δ = 7.88 (s, 1 H), 7.45 (d, J = 7.8 Hz, 1 H), 7.33 (d, J = 7.8 Hz, 1 H), 4.67 (d, J = 4.2 Hz, 2 H), 4.60 (s, 2 H), 1.71 (t, J = 4.2 Hz, 1 H) ppm; ¹³C NMR: (CDCl₃, 150 MHz) δ = 143.1, 139.4, 138.2, 130.4, 127.2, 100.1, 63.8, 38.4 ppm; HRMS (ESI TOF): *m/z* calcd for C₈H₉BrIO [M+H⁺]: 326.8881; found 326.8880.


THP ether 16: To a stirred solution of benzylic alcohol **15a** (19.0 g, 58.3 mmol) and DHP (4.0 mL, 70 mmol, 1.2 equiv.) in CH_2Cl_2 (120 mL) at 25 °C was added $\text{TsOH}\cdot\text{H}_2\text{O}$ (1.10 g, 5.83 mmol, 0.1 equiv.) and the reaction mixture was stirred at this temperature for 0.5 h. The reaction mixture was quenched with saturated aqueous NaHCO_3 solution (60 mL) and the resulting mixture was extracted with CH_2Cl_2 (60 mL × 3). The combined organic phase was washed with H_2O (60 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:8) to give pure THP ether **16** (22.7 g, 55.4 mmol, 95%). **16:** $R_f = 0.69$ (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2939m, 2867w, 1385m, 1344m, 1199m, 1120s, 1032s, 971s, 905s, 869s, 815m cm^{-1} ; ^1H NMR: (CDCl_3 , 400 MHz) $\delta = 7.85$ (s, 1 H), 7.43 (d, $J = 6.4$ Hz, 1 H), 7.32 (d, $J = 6.4$ Hz, 1 H), 4.73 – 4.68 (m, 2 H), 4.60 – 4.53 (m, 2 H), 4.43 (d, $J = 10.0$ Hz, 1 H), 3.90 – 3.85 (m, 1 H), 3.56 – 3.52 (m, 1 H), 1.88 – 1.84 (m, 1 H), 1.78 – 1.72 (m, 1 H), 1.67 – 1.54 (m, 4 H) ppm; ^{13}C NMR: (CDCl_3 , 100 MHz) $\delta = 140.8, 139.2, 138.9, 130.2, 128.0, 100.0, 97.9, 67.2, 62.1, 38.5, 30.4, 25.3, 19.2$ ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{13}\text{H}_{16}\text{BrIO}_2\text{Na} [\text{M}+\text{Na}^+]$: 432.9271; found 432.9271.

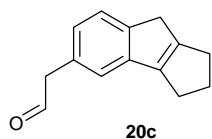
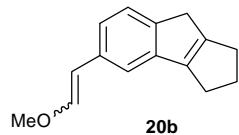
Cyclopentanone 18: To a stirred solution of $i\text{Pr}_2\text{NH}$ (8.00 mL, 57.2 mmol, 1.3 equiv.) in THF (100 mL) at –78 °C was added $n\text{BuLi}$ (2.5 M in hexanes, 22.9 mL, 57.2 mL, 1.3 equiv.) dropwise and the reaction mixture was warmed to 0 °C for 0.5 h. Then cyclopentanone (**17**, 5.10 mL, 57.2 mmol, 1.3 equiv.) was added at –78 °C and the mixture was warmed to 0 °C over 1 h. Then HMPA (25 mL) and THP ether **16** (18 g, 44 mmol, 1.0 equiv.) in THF (30 mL) were added sequentially at –78 °C and the reaction mixture was stirred at 25 °C for additional 2 h. The reaction mixture was quenched with saturated aqueous NH_4Cl solution (40 mL) and the resulting mixture was extracted with Et_2O (60 mL × 3). The combined organic phase was washed with H_2O (60 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:4) to give pure cyclopentanone **18** (11.8 g, 28.6 mmol, 65%) as a *ca.* 1:1 mixture of two chromatographically inseparable diastereomers.


18: $R_f = 0.50$ (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 2941m, 2869w, 1737s, 1452w, 1345w, 1120m, 1035s, 974w, 906w, 816w cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) $\delta = 7.83$ (s, 1 H), 7.26 (d, $J = 7.8$ Hz, 1 H), 7.15 (d, $J = 7.8$ Hz, 1 H), 4.71 – 4.68 (m, 2 H), 4.40 (d, $J = 12.0$ Hz, 1 H), 3.89 (t, $J = 9.9$ Hz, 1 H), 3.56 – 3.53 (m, 1 H), 3.28 (dd, $J = 14.4, 4.8$ Hz, 1 H), 2.62 (dd, $J = 13.8, 9.6$ Hz, 1 H), 2.49 – 2.44 (m, 1 H), 2.36 (dd, $J = 19.2, 8.4$ Hz, 1 H), 2.18 – 2.12 (m, 1 H), 2.07 – 1.98 (m, 2 H), 1.90 – 1.82 (m, 1 H), 1.77 – 1.72 (m, 2 H), 1.68 – 1.52 (m, 5 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) $\delta = 219.5, 141.9, 138.8, 138.4, 129.8, 127.8, 100.6, 97.9, 67.5, 62.1, 49.8, 39.8, 37.9, 30.5, 29.2, 25.4, 20.5, 19.3$ ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{18}\text{H}_{24}\text{IO}_3$ [$\text{M}+\text{H}^+$]: 415.0765; found 415.0758.

Tertiary alcohol 19: To a stirred solution of cyclopentanone **18** (4.40 g, 10.6 mmol) in DMF (30 mL) at 25 °C was added CrCl₂ (5.40 g, 42.7 mmol, 4.0 equiv.) and NiCl₂ (27 mg, 0.21 mmol, 0.02 equiv.) and the reaction mixture was heated to 100 °C and stirred at this temperature for 16 h. The reaction mixture was cooled to ambient temperature and quenched with H₂O (10 mL). The resulting mixture was extracted with Et₂O (40 mL × 3) and the combined organic phase was washed with H₂O (30 mL), dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:4) to give pure tertiary alcohol **19** (2.30 g, 8.00 mmol, 76%) as a *ca.* 1:1 mixture of two chromatographically inseparable diastereomers. **19:** R_f = 0.30 (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 3398bw, 2942m, 1441w, 1347m, 1200m, 1117s, 1025s, 907m, 813m cm⁻¹; ¹H NMR: (CDCl₃, 600 MHz) δ = 7.38 (s, 1 H), 7.25 (d, *J* = 4.8 Hz, 1 H), 7.14 (d, *J* = 4.8 Hz, 1 H), 4.78 (dd, *J* = 12.0, 3.0 Hz, 1 H), 4.72 (dd, *J* = 7.2, 3.6 Hz, 1 H), 4.48 (d, *J* = 12.0 Hz, 1 H), 3.96 – 3.90 (m, 1 H), 3.58 – 3.53 (m, 1 H), 3.31 (dd, *J* = 16.8, 9.0 Hz, 1 H), 2.68 – 2.63 (m, 1 H), 2.54 (dd, *J* = 16.8, 3.6 Hz, 1 H), 2.19 – 2.13 (m, 1 H), 2.08 – 2.06 (m, 2 H), 1.95 (d, *J* = 6.6 Hz, 1 H), 1.90 – 1.78 (m, 2 H), 1.76 – 1.71 (m, 1 H), 1.67 – 1.42 (m, 5 H) ppm; ¹³C NMR: (CDCl₃, 150 MHz) δ = 147.7, 142.5, 137.4, 128.3, 124.8, 123.2, 123.2, 97.9, 97.8, 93.7, 69.0, 68.9, 62.1, 62.1, 51.8, 41.2, 37.7, 34.1, 30.5, 25.7, 25.5, 19.3 ppm; HRMS (ESI TOF): *m/z* calcd for C₁₈H₂₄O₃Na [M+Na⁺]: 311.1618; found 311.1618.

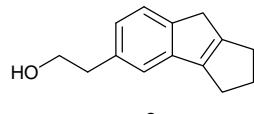
Hydroxy indene **20:** To a stirred solution of tertiary alcohol **19** (1.90 g, 6.60 mmol) in benzene (30 mL) at 25 °C was added TsOH·H₂O (125 mg, 0.66 mmol, 0.1 equiv.) and the reaction mixture was heated to 80 °C and stirred at this temperature for 0.5 h. The reaction mixture was cooled to ambient temperature and CH₃OH (10 mL) was added. The reaction mixture was stirred at 25 °C for additional 0.5 h before quenched with saturated aqueous NaHCO₃ solution (10 mL). The resulting mixture was extracted with Et₂O (20 mL × 3) and the combined organic phase was washed with H₂O (20 mL), dried with Na₂SO₄, and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes: 1:4) to give pure hydroxy indene **20** (1.00 g, 5.38 mmol, 82%). **20**: R_f = 0.25 (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 3337bm, 2843m, 1736w, 1620w, 1440m, 1351m, 1278m, 1163m, 1039s, 864s, 816s cm⁻¹; ¹H NMR: (CDCl₃, 400 MHz) δ = 7.35 (d, *J* = 7.6 Hz, 1 H), 7.21 (s, 1 H), 7.09 (d, *J* = 7.6 Hz, 1 H), 4.70 (s, 2 H), 3.19 (s, 2 H), 2.63 – 2.59 (m, 4 H), 2.45 – 2.39 (m, 2 H) ppm; ¹³C NMR: (CDCl₃, 100 MHz) δ = 152.1, 147.8, 147.4, 142.5, 139.0, 123.9, 122.3, 117.5, 65.8, 34.9, 29.7, 28.2, 26.4 ppm; HRMS (ESI TOF): *m/z* calcd for C₁₃H₁₅O [M+H⁺]: 187.1117; found 187.1114.

Aldehyde **20a:** To a stirred solution of hydroxy indene **20** (750 mg, 4.03 mmol) in CH₂Cl₂ (10 mL) at 25 °C was added NaHCO₃ (1.01 g, 12.0 mmol, 3.0 equiv.) and DMP

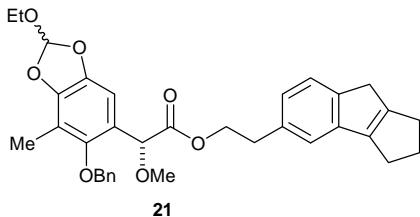


(2.05 g, 4.83 mmol, 1.2 equiv.) sequentially and the reaction mixture was stirred at this temperature for 0.5 h. The reaction mixture was filtered through a celite pad and the filtrate was concentrated *in vacuo*.

The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:8) to give pure aldehyde **20a** (700 mg, 3.80 mmol, 95%). **20a**: R_f = 0.60 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2950w, 2846w, 1691s, 1612w, 1448w, 1175w cm⁻¹; ¹H NMR: (CDCl₃, 400 MHz) δ = 10.01 (s, 1 H), 7.67 (s, 1 H), 7.62 (d, *J* = 7.6 Hz, 1 H), 7.50 (d, *J* = 7.6 Hz, 1 H), 3.27 (s, 2 H), 2.66 – 2.61 (m, 4 H), 2.47 – 2.39 (m, 2 H) ppm; ¹³C NMR: (CDCl₃, 100 MHz) δ = 192.8, 155.5, 153.3, 147.1, 142.9, 135.3, 126.9, 124.2,

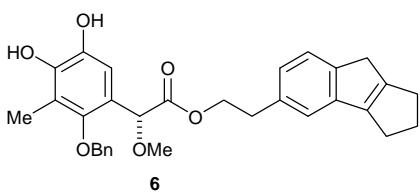
118.3, 35.6, 29.8, 28.1, 26.4 ppm; HRMS (ESI TOF): m/z calcd for $C_{13}H_{13}O$ [M+H $^+$]: 185.0961; found 185.0961.


Methyl enol ether 20b: To a stirred suspension of $MeOCH_2PPh_3Br$ (1.48 g, 4.30 mmol, 1.5 equiv.) in THF (20 mL) at 0 °C was added KHMDS (0.5 M in toluene, 8.60 mL, 4.30 mmol, 1.5 equiv.) dropwise and the reaction mixture was stirred at this temperature for 1 h. Then a solution of aldehyde **20a** (530 mg, 2.88 mmol) in THF (3 mL) was added at 0 °C and the reaction mixture was stirred at 25 °C for 1 h. The reaction mixture was quenched with saturated aqueous $NaHCO_3$ solution (10 mL) and the resulting mixture was extracted with Et_2O (10 mL \times 3). The combined organic phase was washed with H_2O (10 mL), dried with Na_2SO_4 , and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:10) to give pure methyl enol ether **20b** (590 mg, 2.78 mmol, 96%) as a *ca.* 1:1 mixture of *E/Z*- isomers. **20b:** R_f = 0.80 (silica gel, EtOAc:hexanes 1:10); IR ν_{max} (film): 2933m, 2893m, 2843m, 1638s, 1464m, 1437m, 1392w, 1262m, 1222s, 1148s, 1090s, 930m, 872m, 820m, 720s cm^{-1} ; 1H NMR: (CDCl₃, 400 MHz) δ = 7.42 – 7.28 (m, 4 H), 7.10 – 7.05 (m, 2 H), 6.98 (dd, J = 7.6, 1.6 Hz, 1 H), 6.11 (d, J = 7.2 Hz, 1 H), 5.99 (d, J = 13.2 Hz, 1 H), 5.28 (d, J = 7.2 Hz, 1 H), 3.79 (s, 3 H), 3.70 (s, 3 H), 3.17 (s, 4 H), 2.64 – 2.58 (m, 8 H), 2.45 – 2.39 (m, 4 H) ppm; ^{13}C NMR: (CDCl₃, 100 MHz) δ = 151.9, 151.3, 148.1, 147.7, 147.4, 147.0, 145.9, 145.8, 142.5, 142.1, 134.3, 133.9, 133.8, 133.6, 128.7, 128.5, 128.4, 124.0, 123.7, 123.6, 120.8, 118.5, 115.2, 106.4, 105.7, 60.6, 56.4, 34.9, 34.9, 29.7, 28.2, 26.5, 26.4 ppm; HRMS (ESI TOF): m/z calcd for $C_{15}H_{17}O$ [M+H $^+$]: 213.1274; found 213.1273.

Aldehyde 20c: To a stirred solution of methyl enol ether **20b** (500 mg, 2.36 mmol) in THF (15 mL) at 25 °C was added aqueous HCl solution (2.0 N, 4.70 mL, 9.40 mmol, 4.0 equiv.) and the reaction mixture was heated to 60 °C and stirred at this temperature for 3 h. The reaction mixture was cooled to ambient temperature and quenched with saturated aqueous $NaHCO_3$ solution (10 mL). The resulting mixture was extracted with Et_2O (10 mL \times 3) and the combined organic phase was washed with H_2O (10 mL), dried with Na_2SO_4 and


concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:8) to give pure aldehyde **20c** (410 mg, 2.07 mmol, 88%). **20c**: R_f = 0.60 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2895w, 2845w, 1723s, 1619w, 1467w, 1395w, 1033w, 811w, 725w cm^{-1} ; ^1H NMR: (CDCl₃, 400 MHz) δ = 9.75 (t, J = 2.8 Hz, 1 H), 7.36 (d, J = 7.6 Hz, 1 H), 7.04 (s, 1 H), 6.95 (dd, J = 7.6, 1.6 Hz, 1 H), 3.69 (d, J = 2.8 Hz, 2 H), 3.20 (s, 2 H), 2.63 – 2.58 (m, 4 H), 2.43 – 2.36 (m, 2 H) ppm; ^{13}C NMR: (CDCl₃, 100 MHz) δ = 200.0, 152.6, 147.4, 147.3, 143.1, 130.0, 124.7, 124.4, 119.8, 50.8, 35.0, 29.7, 28.2, 26.4 ppm; HRMS (ESI TOF): m/z calcd for C₁₄H₁₅O [M+H⁺]: 199.1117; found 199.1115.

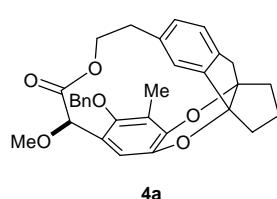
Alcohol 8: To a stirred solution of aldehyde **20c** (400 mg, 2.02 mmol) in THF/CH₃OH (5:1, 6.0 mL) at 25 °C was added NaBH₄ (84 mg, 2.2 mmol, 1.1 equiv.) portionwise and


the reaction mixture was stirred at this temperature for 0.5 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution (5 mL) and the resulting mixture was extracted with Et₂O (10 mL × 3). The combined organic phase was washed with H₂O (10 mL), dried with Na₂SO₄ and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:4) to give pure alcohol **8** (383 mg, 1.92 mmol, 95%). **8**: R_f = 0.25 (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 3346bm, 2945s, 2846s, 1621w, 1467m, 1397w, 1045s, 810m, 725m cm^{-1} ; ^1H NMR: (CDCl₃, 400 MHz) δ = 7.31 (d, J = 7.6 Hz, 1 H), 7.06 (d, J = 1.2 Hz, 1 H), 6.96 (dd, J = 7.6, 1.2 Hz, 1 H), 3.90 – 3.85 (dd, J = 12.4, 6.4 Hz, 2 H), 3.17 (s, 2 H), 2.90 (t, J = 6.4 Hz, 2 H), 2.62 – 2.58 (m, 4 H), 2.44 – 2.38 (m, 2 H) ppm; ^{13}C NMR: (CDCl₃, 100 MHz) δ = 152.1, 147.4, 146.5, 142.6, 136.2, 124.1, 124.0, 119.3, 64.0, 39.3, 34.9, 29.7, 28.2, 26.4 ppm; HRMS (ESI TOF): m/z calcd for C₁₄H₁₇O [M+H⁺]: 201.1274; found 201.1270.

Ester 21: To a stirred solution of carboxylic acid **7** (85.2 mg, 0.228 mmol, 1.25 equiv.) and alcohol **8** (36.7 mg, 0.183 mmol, 1.0 equiv.) in CH₂Cl₂ (1.5 mL) at 25 °C was added DCC (49.1 mg, 0.238 mmol, 1.3 equiv.) and 4-DMAP (4.5 mg, 0.037 mmol, 0.2 equiv.) and the reaction mixture was stirred at this temperature for 3 h. The reaction mixture was concentrated *in vacuo* and the residue so obtained was subjected to flash column

chromatography (EtOAc:hexanes, 1:6) to give pure ester **21** (85.5 mg, 0.154 mmol, 84%) as a *ca.* 1:1 mixture of two chromatographically inseparable diastereomers. **21**: R_f = 0.47 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2931m, 1747m, 1621w, 1478m, 1376m, 1345w, 1261m, 1185m, 1087s, 1034m, 1005m, 735m, 697m cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 7.42 – 7.34 (m, 5 H), 7.19 – 7.17 (d \times 2, J = 7.8 Hz, 1 H), 6.97 – 6.94 (s \times 2, 1 H), 6.86 (s, 1 H), 6.81 – 6.77 (m, 2 H), 5.13 (s, 1 H), 4.82 – 4.80 (m, 1 H), 4.64 – 4.62 (s \times 2, 1 H), 4.42 – 4.36 (m, 2 H), 3.80 – 3.71 (m, 2 H), 3.29 – 3.27 (s \times 2, 3 H), 3.12 (s, 2 H), 2.95 – 2.89 (m, 2 H), 2.59 – 2.56 (m, 2 H), 2.53 – 2.51 (m, 2 H), 2.41 – 2.36 (m, 2 H), 2.21 – 2.20 (s \times 2, 3 H), 1.31 – 1.26 (m, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 171.0, 171.0, 151.9, 151.8, 151.0, 150.9, 147.4, 146.5, 146.5, 145.7, 145.7, 142.5, 142.4, 142.1, 137.2, 135.2, 135.2, 128.5, 128.0, 127.7, 127.7, 124.0, 124.0, 123.8, 123.8, 122.4, 122.4, 119.5, 119.4, 119.0, 119.0, 113.2, 113.1, 104.4, 103.1, 76.3, 76.3, 76.2, 76.2, 65.9, 65.8, 60.0, 59.4, 57.2, 57.0, 35.0, 35.0, 34.8, 29.7, 28.2, 26.3, 14.8, 9.7 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{34}\text{H}_{36}\text{O}_7\text{Na} [\text{M}+\text{Na}^+]$: 579.2353; found 579.2350.

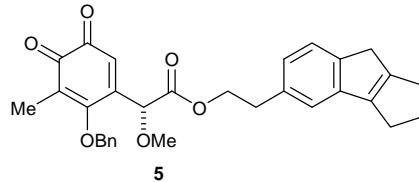
Catechol 6: To a stirred solution of ester **21** (64.2 mg, 0.115 mmol) in CH_3OH (1.0 mL) at 25 °C was added $\text{TsOH}\cdot\text{H}_2\text{O}$ (1.1 mg, 0.0058 mmol, 0.05 equiv.) and the mixture was



stirred at this temperature for 16 h. The reaction mixture was quenched with saturated aqueous NaHCO_3 solution (2 mL) and the resulting mixture was extracted with EtOAc (3×3 mL). The combined

organic phase was washed with H_2O (5 mL) and brine (5 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc:hexanes, 1:2) to give pure catechol **6** (56.7 mg, 0.113 mmol, 98%). **6**: R_f = 0.25 (silica gel, EtOAc:hexanes 1:2); IR ν_{max} (film): 3380bm, 2924s, 1731s, 1609w, 1460s, 1378s, 1302s, 1187s, 1114s, 1039m, 1009s, 911w, 809w, 731m, 697m cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 7.42 – 7.33 (m, 5 H), 7.16 (d, J = 7.2 Hz, 1 H), 6.93 (s, 1 H), 6.77 (s, 1 H), 6.75 (d, J = 7.2 Hz, 1 H), 6.42 (s, 1 H), 5.65 (s, 1 H), 5.18 (s,

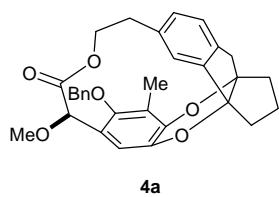
1 H), 4.76 (d, J = 11.4 Hz, 1 H), 4.62 (d, J = 11.4 Hz, 1 H), 4.43 – 4.35 (m, 2 H), 3.22 (s, 3 H), 3.11 (s, 2 H), 3.91 – 2.87 (m, 2 H), 2.58 – 2.55 (m, 2 H), 2.53 – 2.48 (m, 2 H), 2.40 – 2.35 (m, 2 H), 2.21 (s, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 171.8, 152.0, 150.2, 147.3, 146.5, 144.4, 142.4, 139.8, 137.4, 135.1, 128.5, 128.0, 127.7, 124.0, 123.8, 119.9, 119.0, 118.0, 110.6, 76.1, 75.8, 66.0, 56.5, 34.8, 29.7, 28.2, 26.3, 9.6 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{31}\text{H}_{32}\text{O}_6\text{Na} [\text{M}+\text{Na}^+]$: 523.2091; found 523.2093.


Macrocycle 4a (one-step procedure): To a stirred solution of catechol **6** (25.0 mg, 50 μmol) in toluene (10 mL, 0.005 M concentration) at 120 °C was added Ag_2O (23.1 mg,

100 μmol , 2.0 equiv.) and the reaction mixture was stirred at this temperature for 1 h. The reaction mixture was concentrated *in vacuo* and the residue so obtained was subjected to flash column chromatography (EtOAc/hexanes, 1:4) to give pure macrocycle

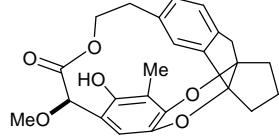
4a (15.0 mg, 30 μmol , 60%). **4a**: R_f = 0.35 (silica gel, EtOAc:hexanes 1:4); IR ν_{max} (film): 2959m, 1732s, 1473m, 1260m, 1108s, 1061s, 731m cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 7.40 – 7.30 (m, 5 H), 6.97 (s, 1 H), 6.82 – 6.78 (m, 3 H), 4.89 (s, 1 H), 4.71 (d, J = 13.8 Hz, 1 H), 4.58 (d, J = 13.8 Hz, 1 H), 4.27 – 4.16 (m, 2 H), 3.27 (s, 3 H), 3.09 (d, J = 20.4 Hz, 1 H), 3.01 – 2.94 (m, 2 H), 2.84 (dt, $J^{\text{d}} = 17.4$ Hz, $J^{\text{t}} = 3.3$ Hz, 1 H), 2.61 – 2.55 (m, 1 H), 2.48 – 2.42 (m, 1 H), 2.38 – 2.32 (m, 2 H), 2.23 – 2.16 (m, 1 H), 2.03 (s, 3 H), 1.80 – 1.73 (m, 1 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 170.1, 150.3, 148.3, 144.0, 142.4, 140.4, 136.9, 136.7, 129.0, 128.5, 128.2, 128.1, 127.7, 124.5, 122.1, 120.8, 119.4, 101.5, 98.3, 77.9, 76.1, 65.8, 57.2, 44.1, 37.3, 36.3, 34.5, 23.2, 9.2 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{31}\text{H}_{31}\text{O}_6 [\text{M}+\text{H}^+]$: 499.2115; found 499.2116.

***o*-Quinone indene 5** (two-step procedure): To a stirred solution of catechol **6** (207.5 mg, 0.414 mmol) in CH_2Cl_2 (5.0 mL) at 25 °C was added Ag_2O (192.1 mg, 0.829 mmol, 2.0



equiv.) and the reaction mixture was stirred at this temperature for 5 min. The reaction mixture was filtered through a celite pad and washed with EtOAc (5 mL \times 2). The filtrate was concentrated *in vacuo* to

give pure *o*-quinone indene **5** (206.5 mg, 0.414 mmol, 99%). **5**: R_f = 0.43 (silica gel,

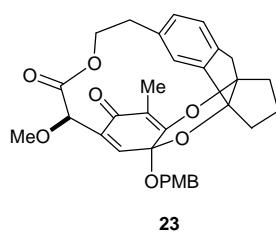

EtOAc:hexanes 1:2); IR ν_{max} (film): 2924m, 2852w, 1739m, 1683w, 1653m, 1627w, 1579m, 1455m, 1377m, 1316s, 1260m, 1185s, 1105s, 1045m, 1011m, 913m, 805m, 734m, 698m cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 7.40 – 7.37 (m, 3 H), 7.32 – 7.30 (m, 2 H), 7.16 (d, J = 7.8 Hz, 1 H), 6.95 (s, 1 H), 6.82 (d, J = 7.2 Hz, 1 H), 6.35 (s, 1 H), 4.92 (d, J = 11.4 Hz, 1 H), 4.85 (d, J = 11.4 Hz, 1 H), 4.47 (s, 1 H), 4.33 – 4.28 (m, 2 H), 3.37 (s, 3 H), 3.12 (s, 2 H), 2.90 – 2.87 (m, 2 H), 2.60 – 2.58 (m, 2 H), 2.54 – 2.52 (m, 2 H), 2.42 – 2.38 (m, 2 H), 1.89 (s, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 179.9, 179.4, 167.9, 162.5, 152.5, 149.5, 147.1, 146.7, 142.5, 135.3, 135.0, 128.8, 128.8, 127.8, 125.0, 124.0, 124.0, 123.1, 118.9, 78.4, 75.7, 66.3, 58.9, 34.9, 34.7, 29.7, 28.2, 26.4, 10.2 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{31}\text{H}_{31}\text{O}_6$ [M+H $^+$]: 499.2115; found 499.2112.

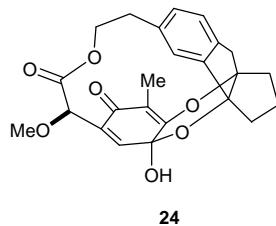
Macrocyclic 4a: A solution of *o*-quinone indene **5** (67.6 mg, 0.135 mmol) in toluene (27 mL, 0.005 M concentration) was heated in a sealed flask at 120 °C for 3 h. The reaction

mixture was concentrated *in vacuo* and subjected to flash column chromatography (EtOAc:hexanes, 1:4) to give pure title compound **4a** (33.8 mg, 0.0678 mmol, 50%). All the spectroscopic data of the product were identical to the data of the product obtained by the one-step procedure as described above.

Phenol 22: To a solution of macrocycle **4a** (22.9 mg, 45.9 μmol) in EtOH (1.0 mL) at 25 °C was added $\text{Pd}(\text{OH})_2$ (20% on carbon, 2.3 mg, 10% wt) and the reaction flask was

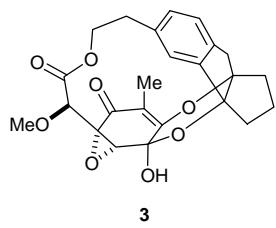
charged with H_2 (balloon, ~ 1 atm). The reaction mixture was stirred at this temperature for 16 h. The reaction mixture was filtered through celite and washed with EtOAc (2×2 mL). The filtrate was concentrated *in vacuo* and the resulting residue was


subjected to flash column chromatography (EtOAc:hexanes, 1:2) to give pure phenol **22** (16.0 mg, 39.1 μmol , 85%). **22:** R_f = 0.11 (silica gel, EtOAc:hexanes 1:4); mp. 233 – 234 °C (acetone/hexanes); IR ν_{max} (film): 3464bm, 2949w, 1714s, 1477m, 1437m, 1357w, 1253m, 1226m, 1175s, 1116s, 1059s, 989m, 952w, 821w cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 6.97 (s, 1 H), 6.82 – 6.79 (m, 3 H), 5.03 (s, 1 H), 4.49 (s, 1 H), 4.41 (td, J^1 = 11.7 Hz, J^d = 2.4 Hz, 1 H), 4.14 – 4.10 (m, 1 H), 3.40 (s, 3 H), 3.07 (d, J = 16.8 Hz, 1 H),


2.99 (td, $J^t = 13.5$ Hz, $J^d = 4.2$ Hz, 1 H), 2.94 (d, $J = 17.4$ Hz, 1 H), 2.85 (d, $J = 14.4$ Hz, 1 H), 2.59 – 2.53 (m, 1 H), 2.47 – 2.41 (m, 1 H), 2.35 – 2.30 (m, 2 H), 2.21 – 2.16 (m, 1 H), 1.98 (s, 3 H), 1.80 – 1.72 (m, 1 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 170.8, 148.0, 146.7, 142.5, 141.9, 140.5, 136.7, 128.1, 127.7, 124.5, 118.7, 115.9, 114.6, 101.6, 98.4, 77.6, 65.8, 57.2, 43.9, 37.3, 36.2, 34.8, 23.3, 8.0 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{24}\text{H}_{24}\text{O}_6\text{Na} [\text{M}+\text{Na}^+]$: 431.1465; found 431.1458.

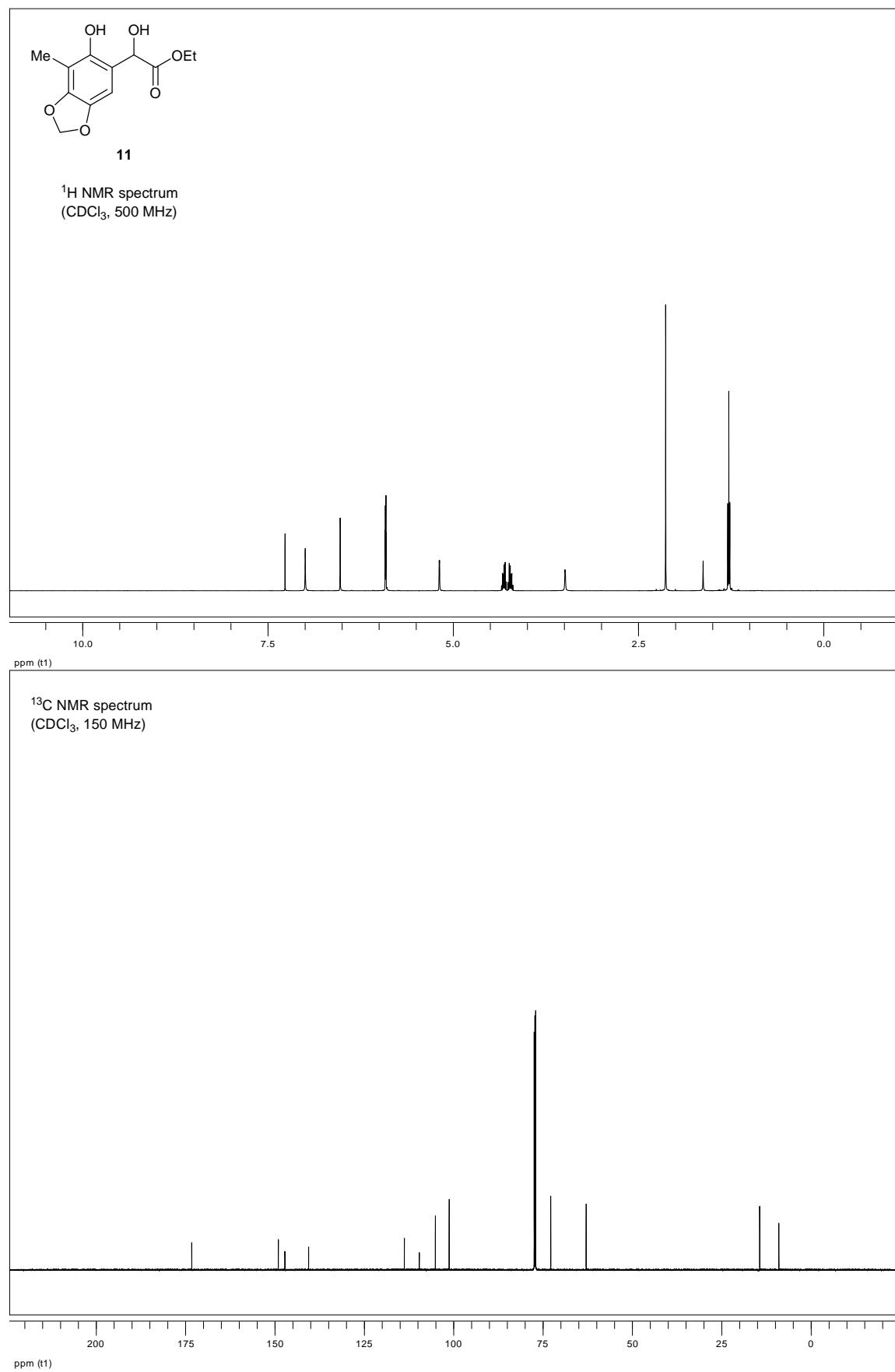
PMB ketal 23: To a stirred mixture of phenol **22** (10.9 mg, 26.7 μmol), PMBOH (33 μL , 0.27 mmol, 10 equiv.) and K_2CO_3 (18.5 mg, 0.133 mmol, 5.0 equiv.) in CH_3CN (1.0 mL)

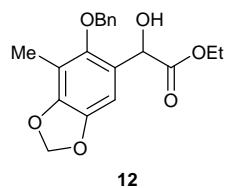
at 0 °C was added $\text{PhI}(\text{CO}_2\text{CF}_3)_2$ (12.1 mg, 28.0 μmol , 1.05 equiv.) and the reaction mixture was stirred at this temperature for 5 min. The reaction mixture was quenched with H_2O (5 mL) and the resulting mixture was extracted with EtOAc (3×5 mL). The combined organic phase was washed with H_2O (5 mL) and brine (5 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography ($\text{EtOAc}/\text{hexanes}$, 1:4) to give pure PMB ketal **23** (12.6 mg, 23.1 μmol , 87%). **23:** $R_f = 0.34$ (silica gel, $\text{EtOAc}/\text{hexanes}$ 1:4); IR ν_{max} (film): 2949m, 1742s, 1679m, 1633s, 1514m, 1443w, 1372m, 1301m, 1248s, 1173s, 1109m, 1022s, 821m, 731w cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) δ = 7.22 (d, $J = 8.4$ Hz, 2 H), 7.00 – 6.95 (m, 2 H), 6.90 (s, 1 H), 6.87 (s, 1 H), 6.84 (d, $J = 9.0$ Hz, 2 H), 4.84 (s, 1 H), 4.58 – 4.54 (m, 2 H), 4.50 (d, $J = 10.8$ Hz, 1 H), 3.90 (td, $J^t = 12.0$ Hz, $J^d = 3.6$ Hz, 1 H), 3.79 (s, 3 H), 3.40 (s, 3 H), 3.19 (d, $J = 16.8$ Hz, 1 H), 3.13 (d, $J = 16.8$ Hz, 1 H), 3.03 (td, $J^t = 13.2$ Hz, $J^d = 4.8$ Hz, 1 H), 2.79 (d, $J = 14.4$ Hz, 1 H), 2.52 – 2.47 (m, 1 H), 2.38 – 2.32 (m, 2 H), 2.31 – 2.24 (m, 1 H), 1.95 – 1.89 (m, 1 H), 1.52 (s, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) δ = 185.0, 168.9, 161.6, 159.2, 142.9, 138.1, 137.0, 136.4, 133.8, 129.9, 129.4, 128.9, 125.5, 124.4, 120.3, 113.7, 103.0, 91.8, 90.9, 75.5, 65.6, 65.2, 58.0, 55.3, 44.3, 38.2, 34.1, 33.7, 23.9, 7.4 ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{32}\text{H}_{33}\text{O}_8 [\text{M}+\text{H}^+]$: 545.2175; found 545.2173.


Hemiketal 24: To a stirred solution of PMB ketal **23** (12.6 mg, 23.1 μmol) in $\text{CH}_2\text{Cl}_2/\text{H}_2\text{O}$ (10:1, 1.1 mL) at 25 °C was added DDQ (7.9 mg, 35 μmol , 1.5 equiv.) and

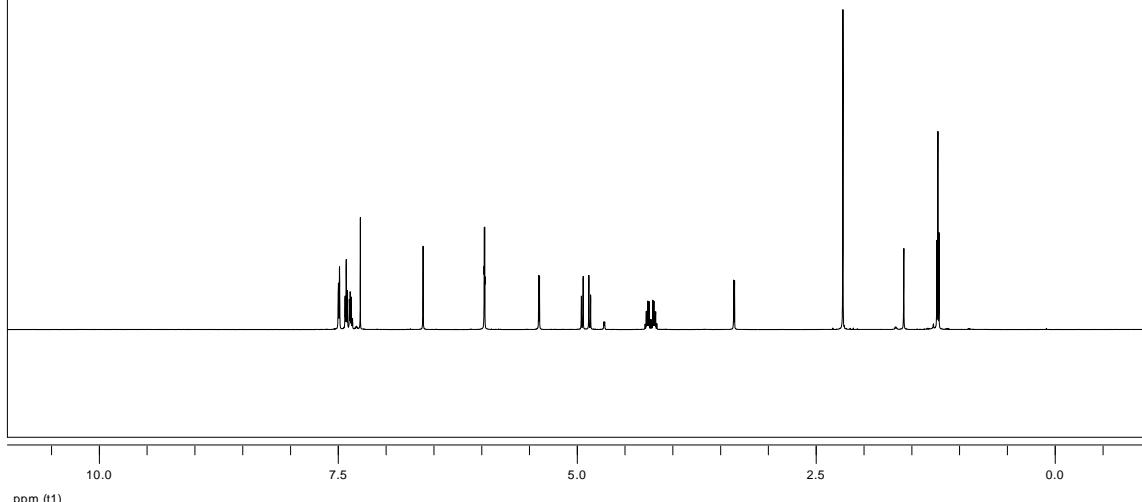
the reaction mixture was stirred at this temperature for 16 h. The reaction mixture was quenched with saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3$ solution (3 mL) and the resulting mixture was extracted with EtOAc (3×5 mL). The combined organic phase was washed with saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3$ solution (2×5 mL), H_2O (10 mL) and brine (10 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to flash column chromatography (EtOAc :hexanes, 1:2) to give pure hemiketal **24** (9.4 mg, 22 μmol , 96%). **24**: $R_f = 0.18$ (silica gel, EtOAc :hexanes 1:2); IR ν_{max} (film): 3350bm, 2924s, 1743s, 1633s, 1373w, 1297m, 1261m, 1191s, 1108s, 1004s, 801m cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) $\delta = 6.99 - 6.96$ (m, 2 H), 6.87 (s, 1 H), 6.83 (s, 1 H), 4.81 (s, 1 H), 4.57 (ddd, $J = 10.8, 5.4, 2.4$ Hz, 1 H), 3.89 (ddd, $J = 12.6, 11.7, 3.6$ Hz, 1 H), 3.44 (s, 3 H), 3.26 (bs, 1 H), 3.22 (d, $J = 17.4$ Hz, 1 H), 3.13 (d, $J = 17.4$ Hz, 1 H), 3.02 (ddd, $J = 18.0, 14.4, 5.4$ Hz, 1 H), 2.79 (d, $J = 13.8$ Hz, 1 H), 2.44 – 2.39 (m, 2 H), 2.30 – 2.24 (m, 2 H), 1.92 – 1.88 (m, 2 H), 1.54 (s, 3 H) ppm; ^{13}C NMR: (CDCl_3 , 150 MHz) $\delta = 184.8, 168.8, 162.0, 142.5, 138.4, 137.0, 136.5, 133.4, 129.0, 125.5, 124.2, 119.5, 103.4, 90.9, 88.7, 75.4, 65.3, 58.2, 44.1, 38.5, 34.5, 34.1, 24.0, 7.4$ ppm; HRMS (ESI TOF): m/z calcd for $\text{C}_{24}\text{H}_{25}\text{O}_7$ [$\text{M}+\text{H}^+$]: 425.1595; found 425.1599.

Epoxide 3: To hemiketal **24** (5.4 mg, 13 μmol) at 25 °C was added TBHP (55 mM in CH_2Cl_2 , 1.13 mL, 62 μmol , 5.0 equiv.) and DBU (0.4 μL , 3 μmol , 0.2 equiv.)

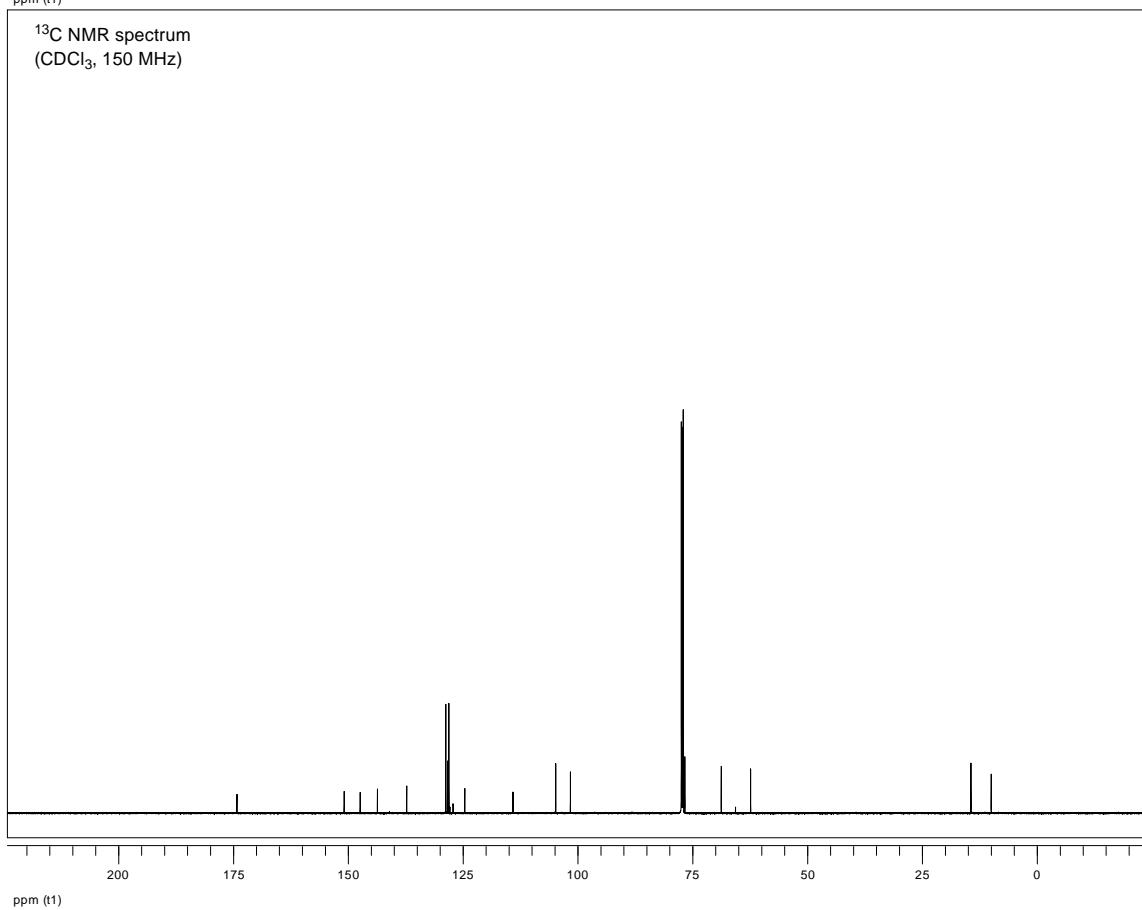

sequentially and the reaction mixture was heated to 40 °C and stirred at this temperature in a sealed tube for 24 h. The reaction mixture was quenched with saturated aqueous Na_2SO_3 solution (1 mL) and the resulting mixture was extracted with EtOAc (3×5 mL). The combined organic phase was washed with H_2O (5 mL) and brine (5 mL), dried with Na_2SO_4 and concentrated *in vacuo*. The residue so obtained was subjected to preparative TLC (EtOAc :hexanes, 1:2, twice) to give pure epoxide **3** (3.4 mg, 7.7 μmol , 60%). **3**: $R_f = 0.26$ (silica gel, EtOAc :hexanes 1:2); mp. 218 – 219 °C (acetone/hexanes); IR ν_{max} (film): 3350bm, 2924s, 2853m, 1741s, 1643m, 1463m, 1379m, 1260s, 1177s, 1105s, 1055s cm^{-1} ; ^1H NMR: (CDCl_3 , 600 MHz) $\delta = 7.07 - 7.04$ (m, 2 H), 6.96 (d, $J = 7.2$ Hz, 1 H), 4.61 (ddd, $J = 10.8, 4.8, 2.4$ Hz, 1 H), 4.45 (s, 1 H), 4.05 (s, 1

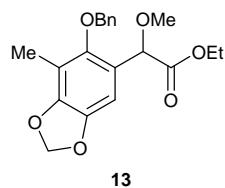

H), 3.70 – 3.65 (m, 1 H), 3.51 (s, 3 H), 3.19 – 3.13 (m, 3 H), 3.02 (td, $J^t = 13.2$ Hz, $J^d = 4.8$ Hz, 1 H), 2.83 (d, $J = 13.8$ Hz, 1 H), 2.61 – 2.55 (m, 1 H), 2.40 – 2.29 (m, 3 H), 2.06 – 2.00 (m, 1 H), 1.96 – 1.91 (m, 1 H), 1.32 (s, 3 H) ppm; ^{13}C NMR: (CDCl₃, 150 MHz) δ = 189.6, 167.5, 161.8, 143.7, 137.2, 136.6, 128.5, 125.5, 125.3, 116.7, 105.0, 96.1, 89.5, 76.5, 66.1, 60.4, 60.0, 59.1, 44.9, 37.1, 34.2, 32.2, 23.8, 7.1 ppm; HRMS (ESI TOF): *m/z* calcd for C₂₄H₂₅O₈ [M+H⁺]: 441.1544; found 441.1555.

References:

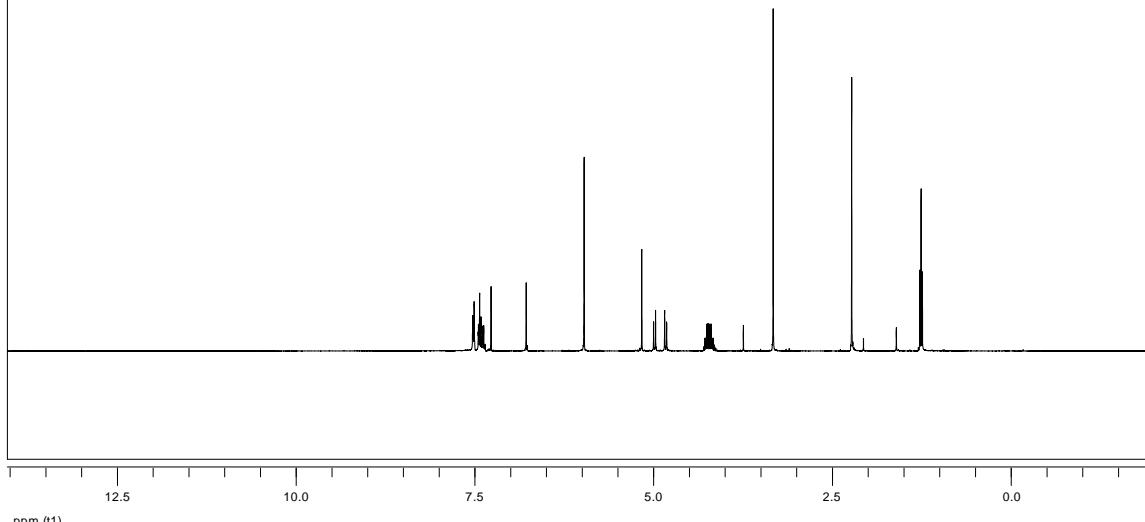

- [1] X. Chen, J. Chen, M. De Paolis, J. Zhu, *J. Org. Chem.* **2005**, *70*, 4397.
- [2] S. Shankar, G. Vaidyanathan, D. Affleck, P. C. Welsh, M. R. Zalutsky, *Bioconjugate Chem.* **2003**, *14*, 331.

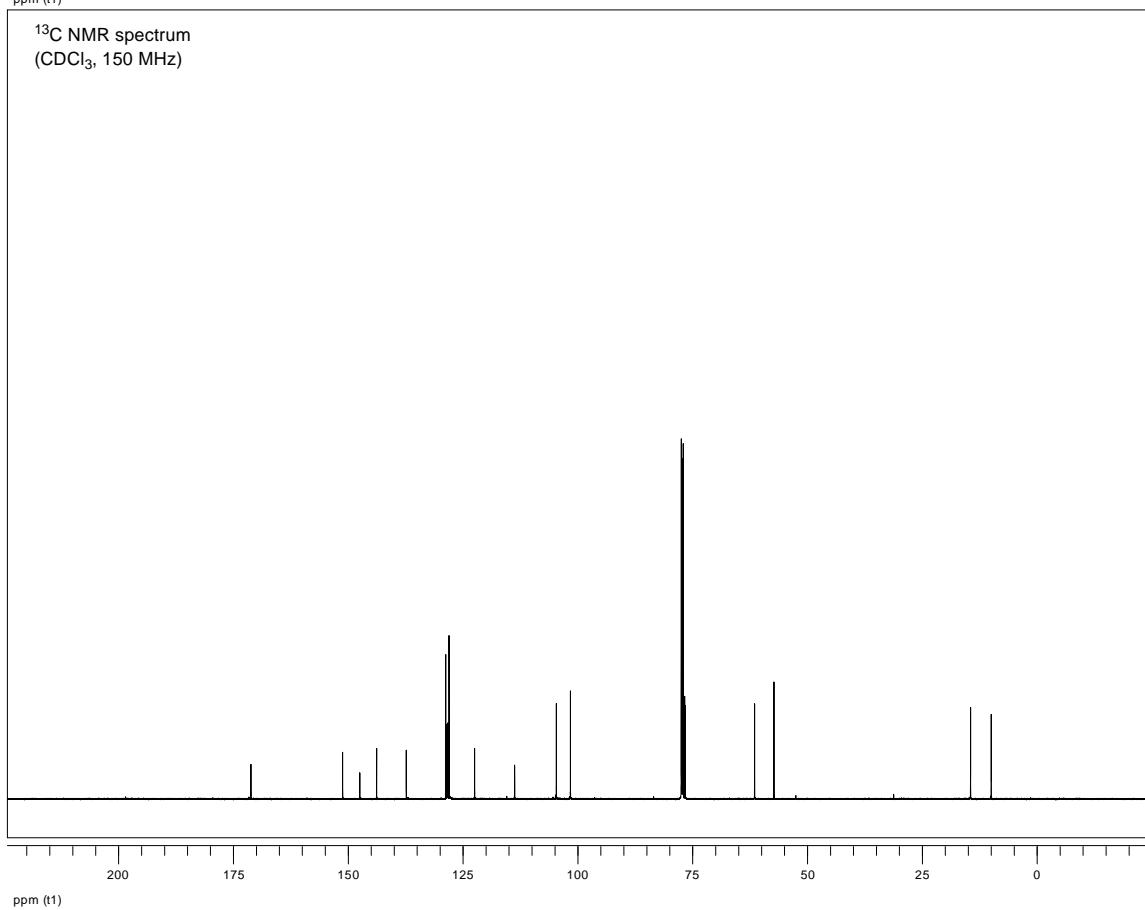
II) ^1H and ^{13}C NMR spectra of compounds:

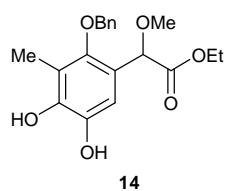




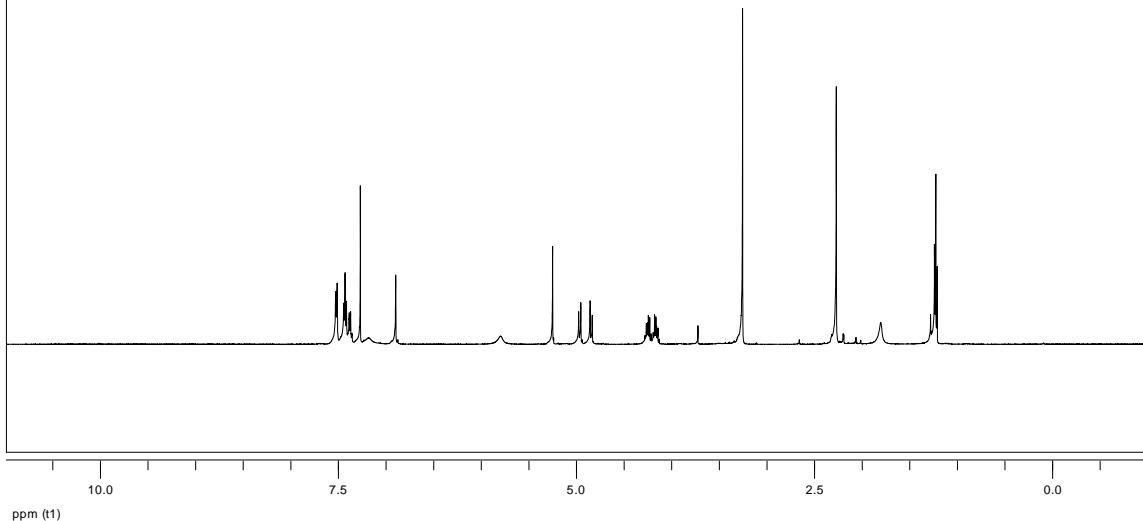
¹H NMR spectrum
(CDCl₃, 600 MHz)

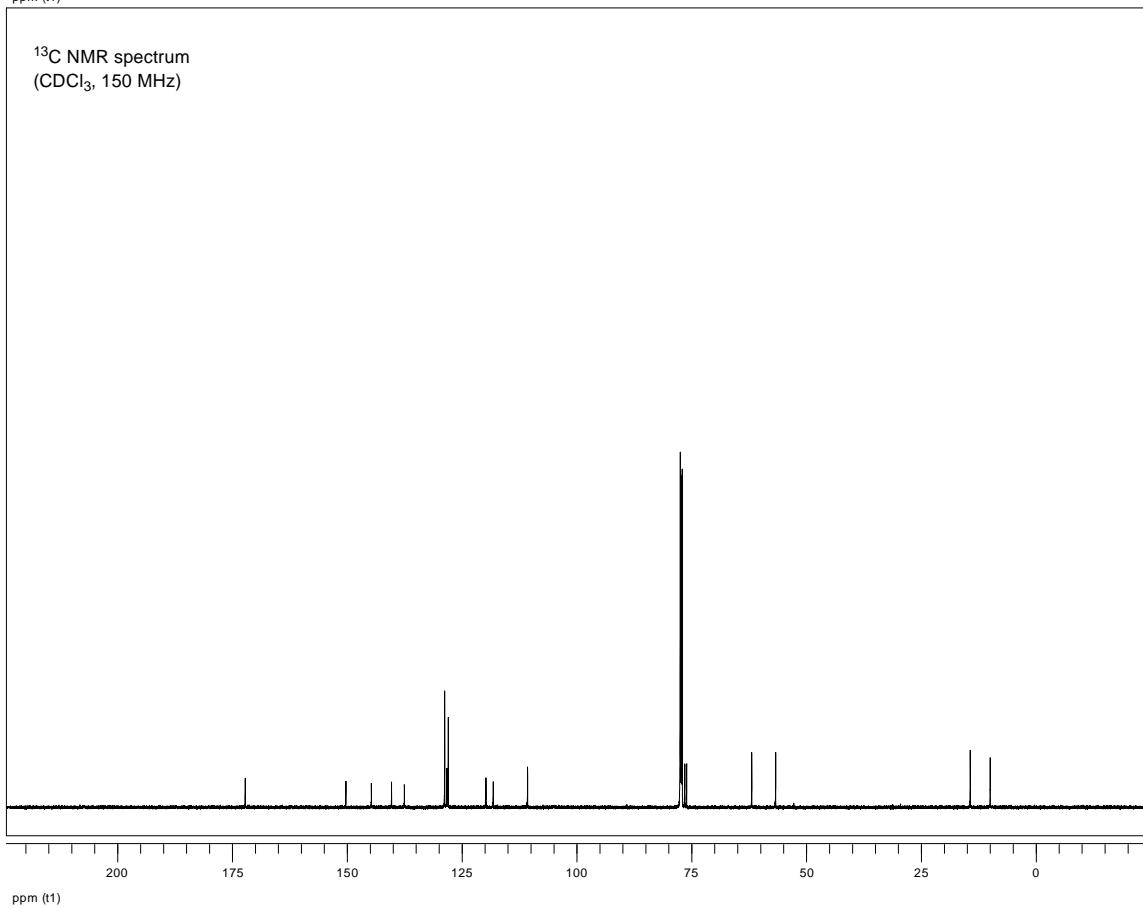

¹³C NMR spectrum
(CDCl₃, 150 MHz)

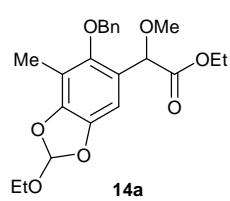



13

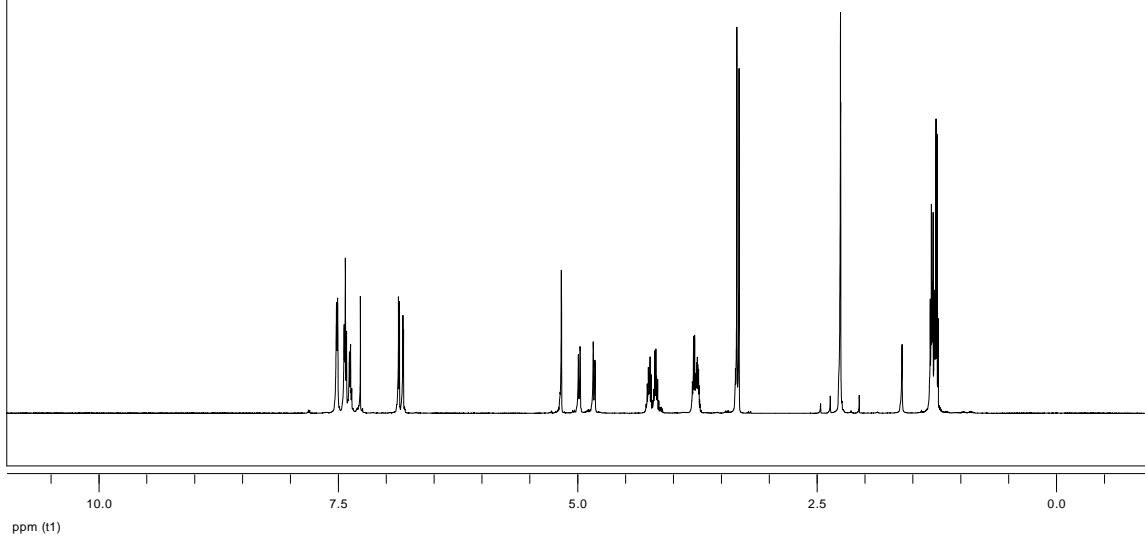
¹H NMR spectrum
(CDCl₃, 400 MHz)


¹³C NMR spectrum
(CDCl₃, 150 MHz)

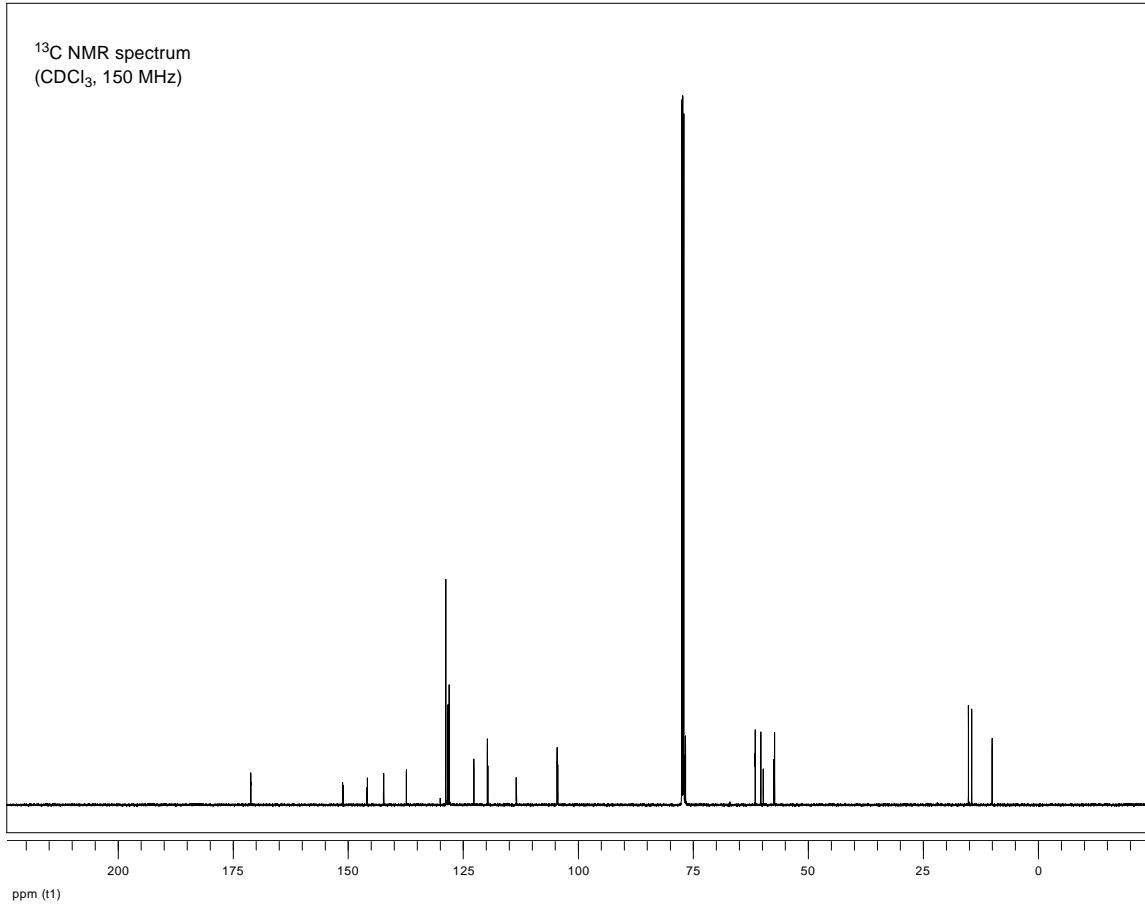


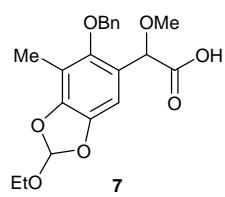

14

¹H NMR spectrum
(CDCl₃, 500 MHz)

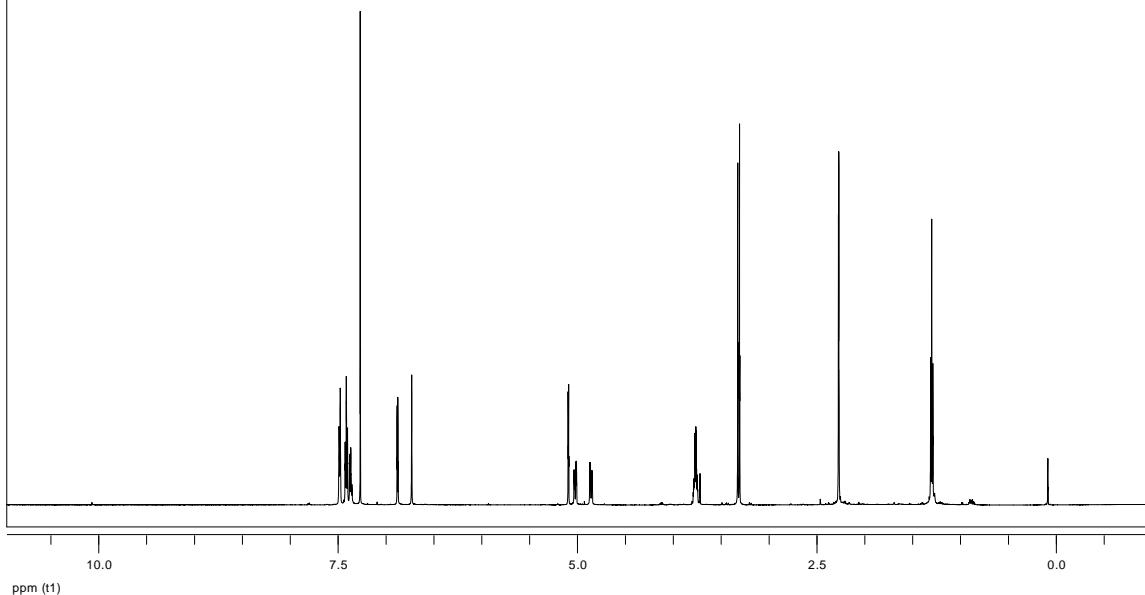


¹³C NMR spectrum
(CDCl₃, 150 MHz)

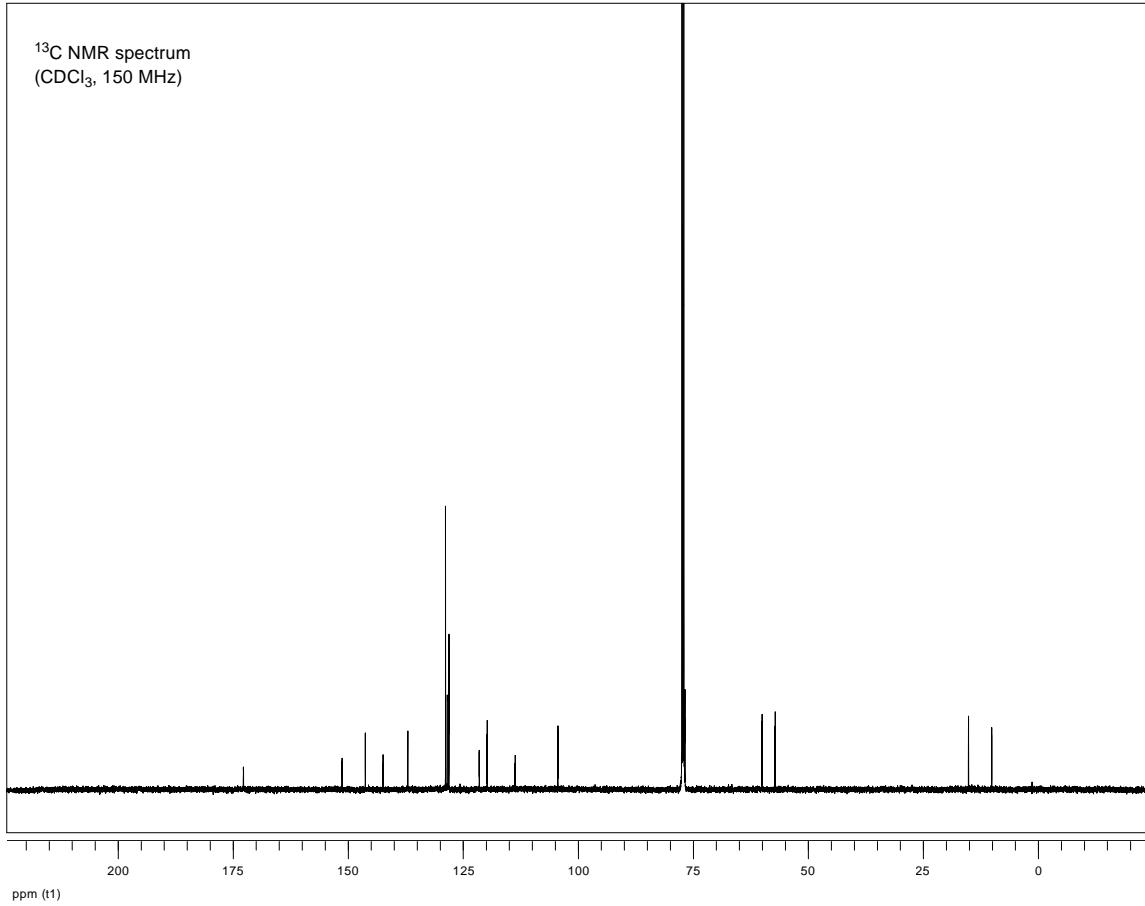


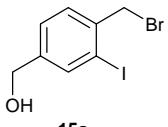


¹H NMR spectrum
(CDCl₃, 600 MHz)

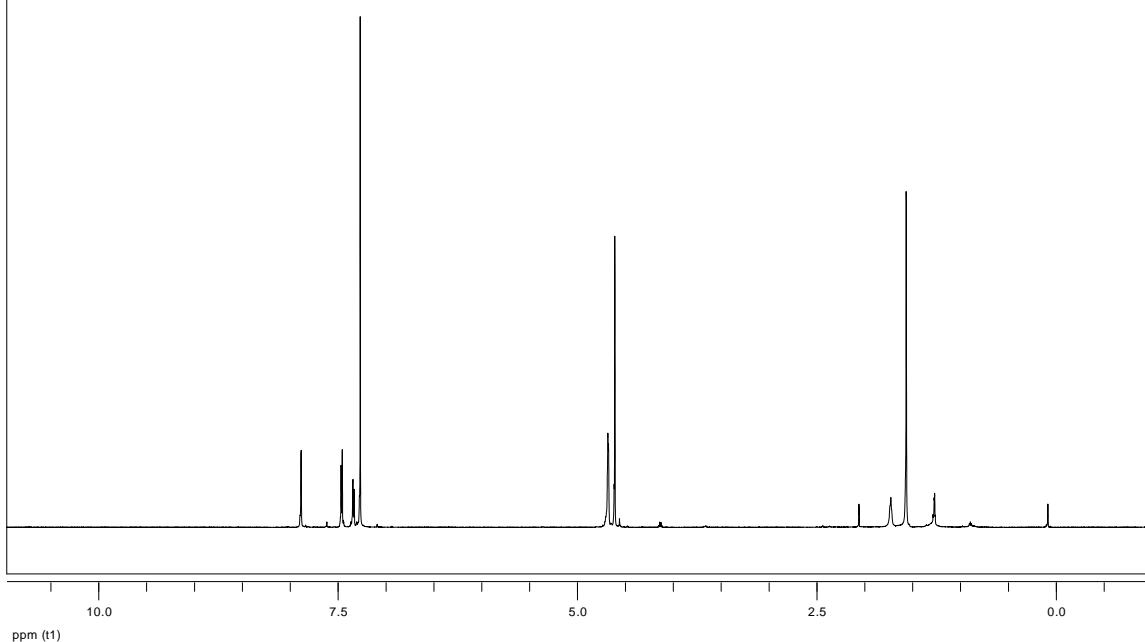


¹³C NMR spectrum
(CDCl₃, 150 MHz)

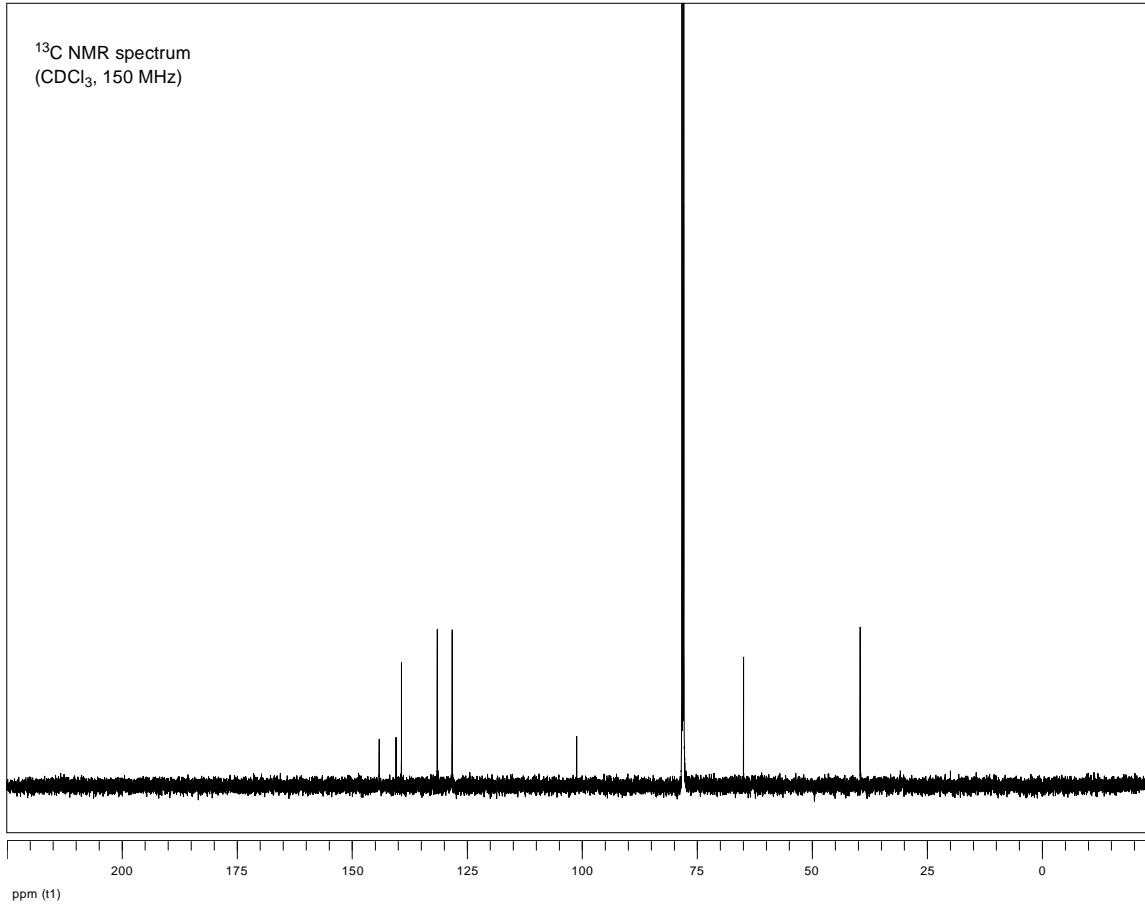


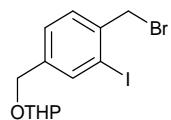


¹H NMR spectrum
(CDCl₃, 600 MHz)

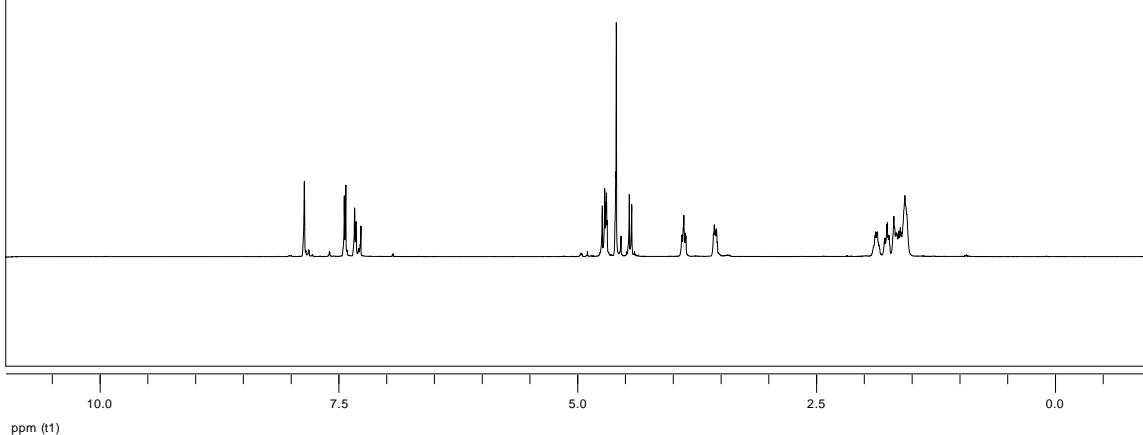


¹³C NMR spectrum
(CDCl₃, 150 MHz)

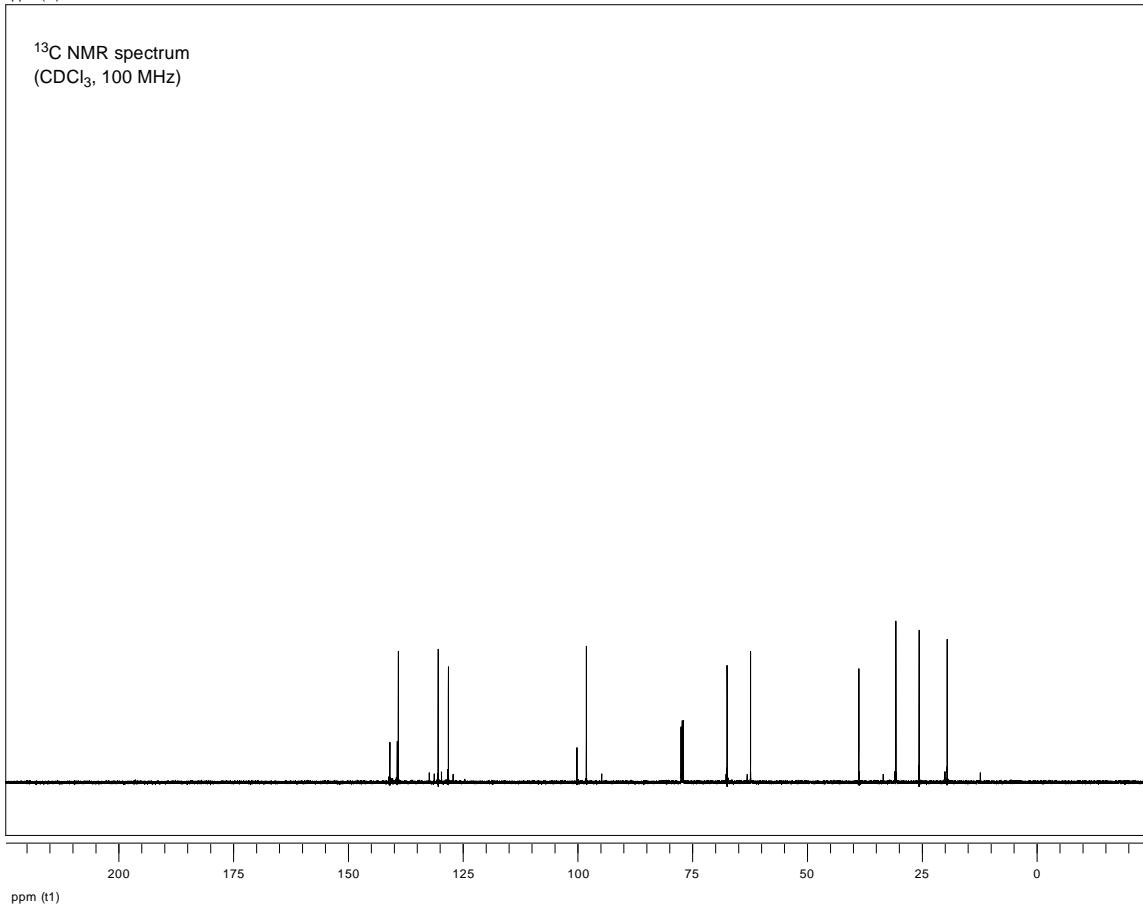


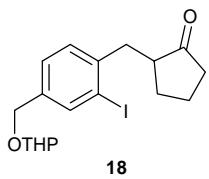


¹H NMR spectrum
(CDCl₃, 600 MHz)

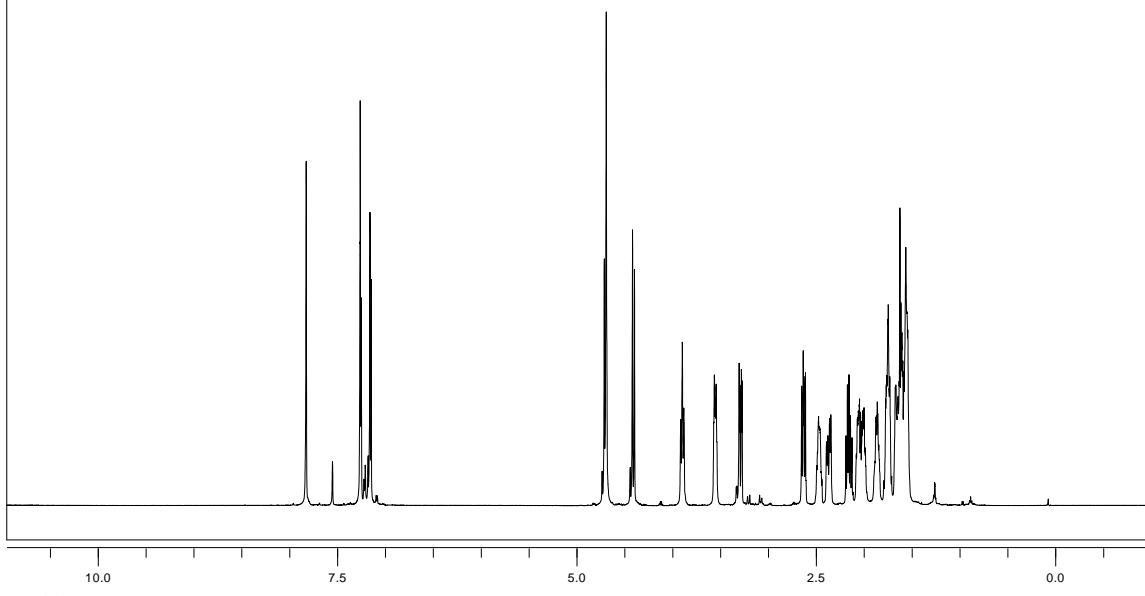


¹³C NMR spectrum
(CDCl₃, 150 MHz)

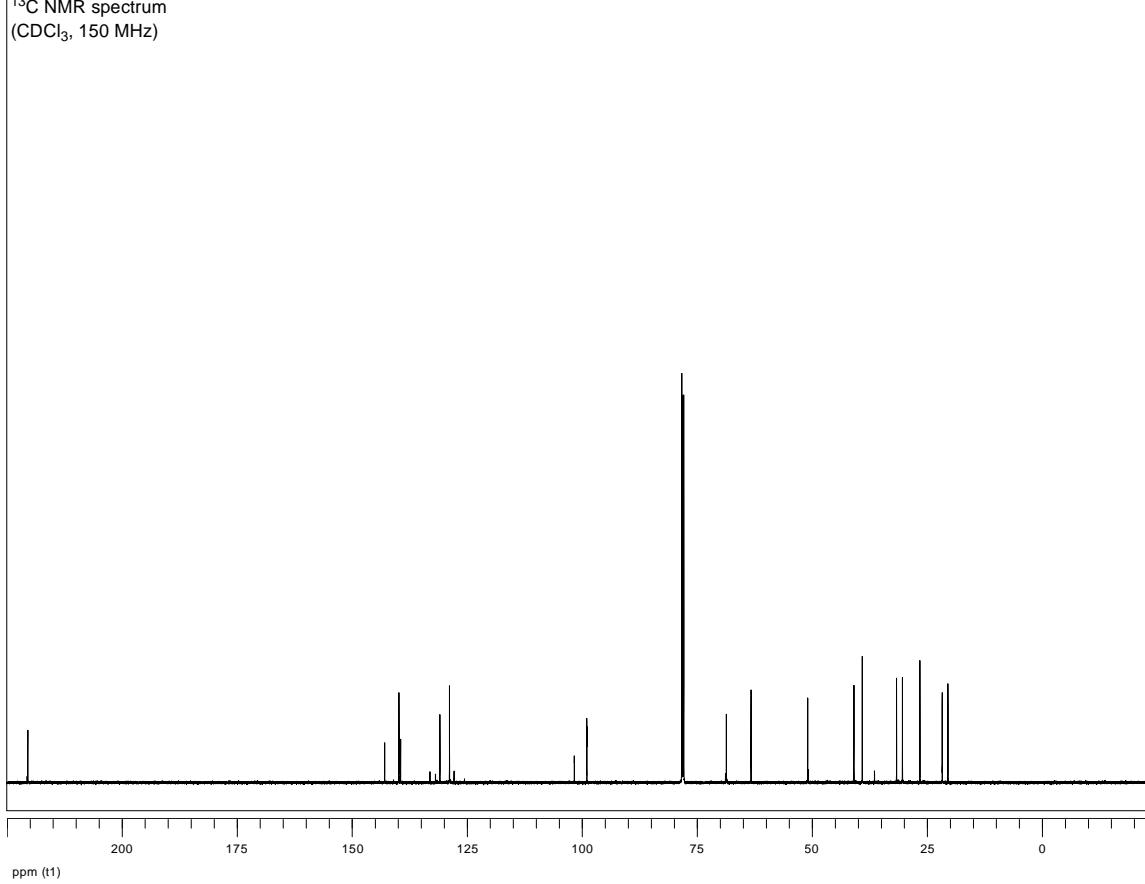


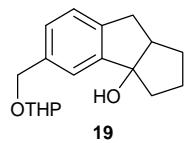


^1H NMR spectrum
(CDCl_3 , 400 MHz)

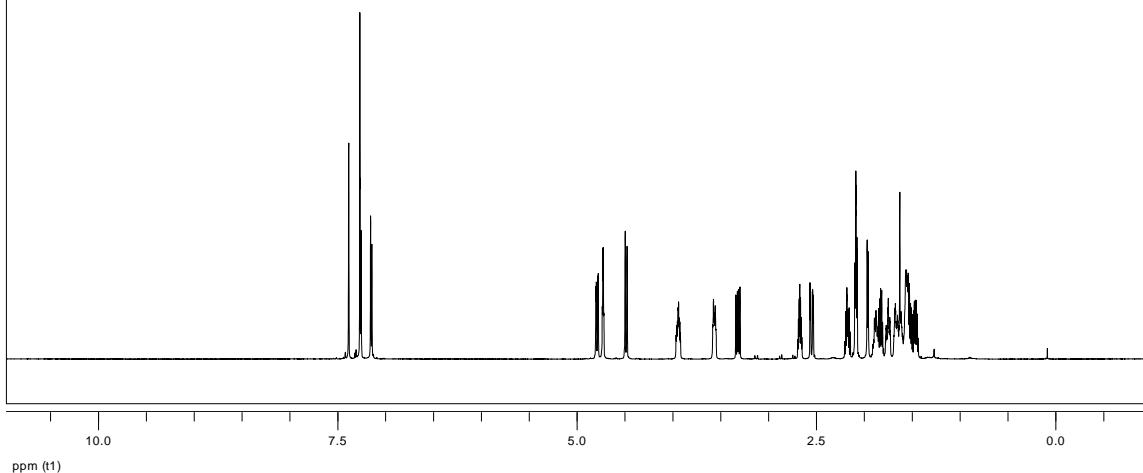


^{13}C NMR spectrum
(CDCl_3 , 100 MHz)

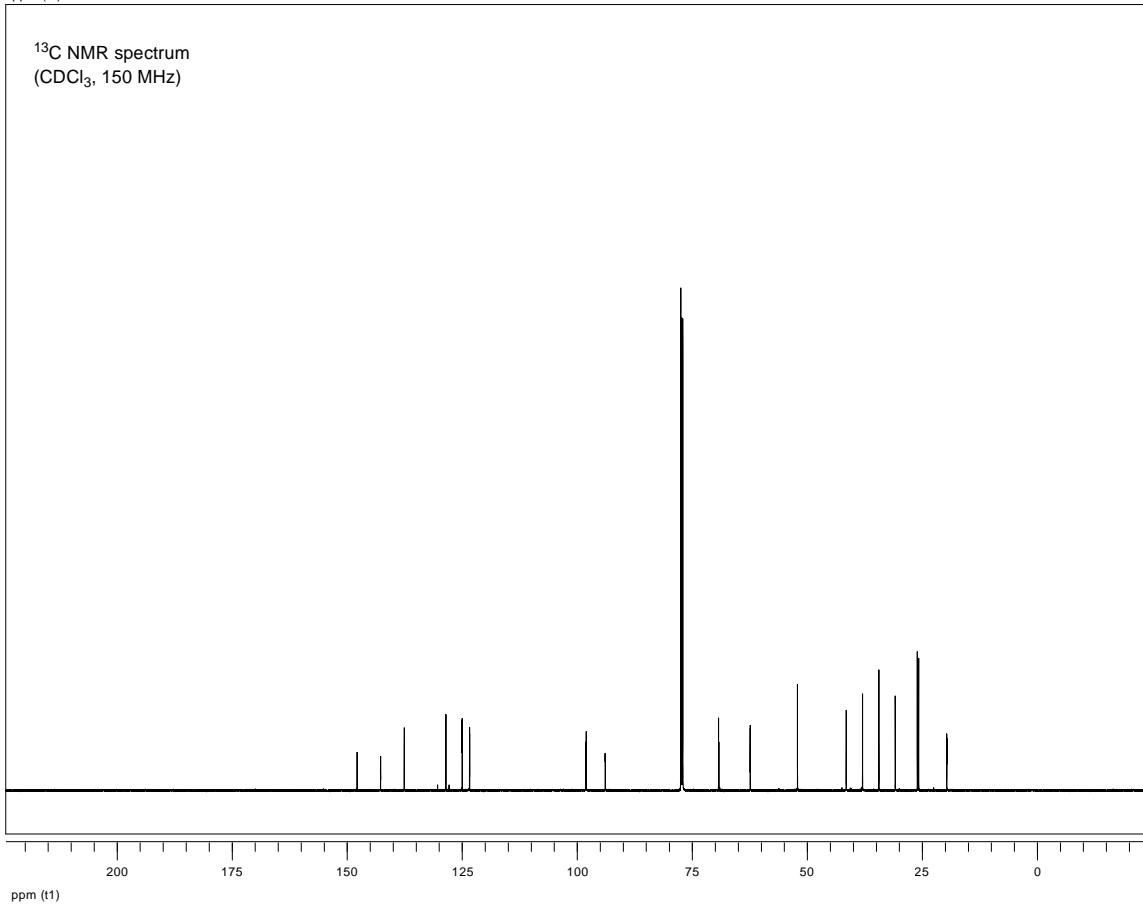


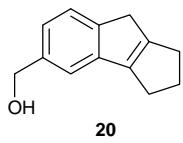


¹H NMR spectrum
(CDCl₃, 600 MHz)

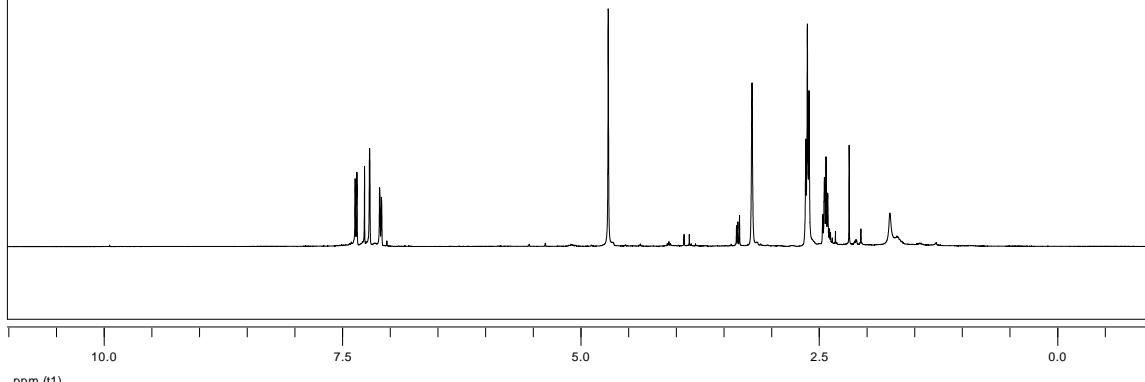


¹³C NMR spectrum
(CDCl₃, 150 MHz)

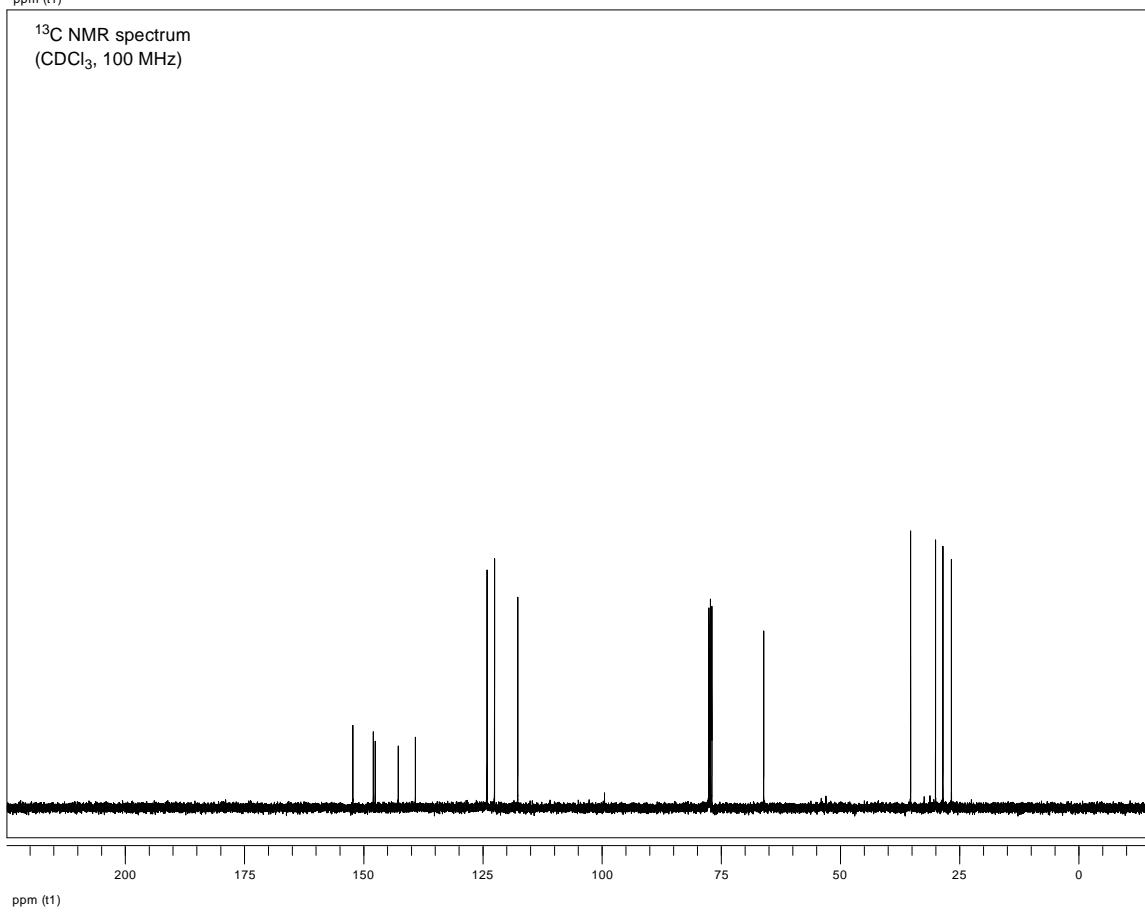


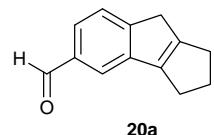


^1H NMR spectrum
(CDCl_3 , 600 MHz)

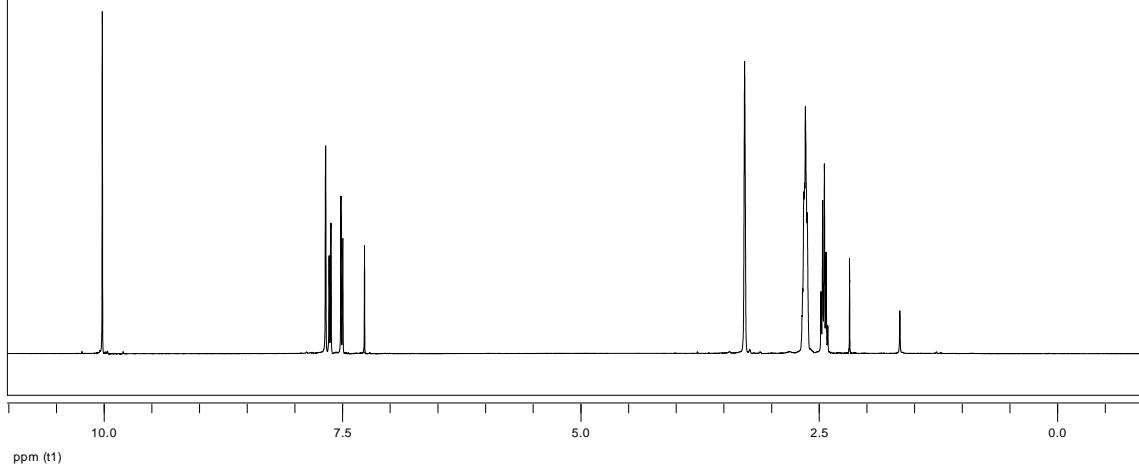


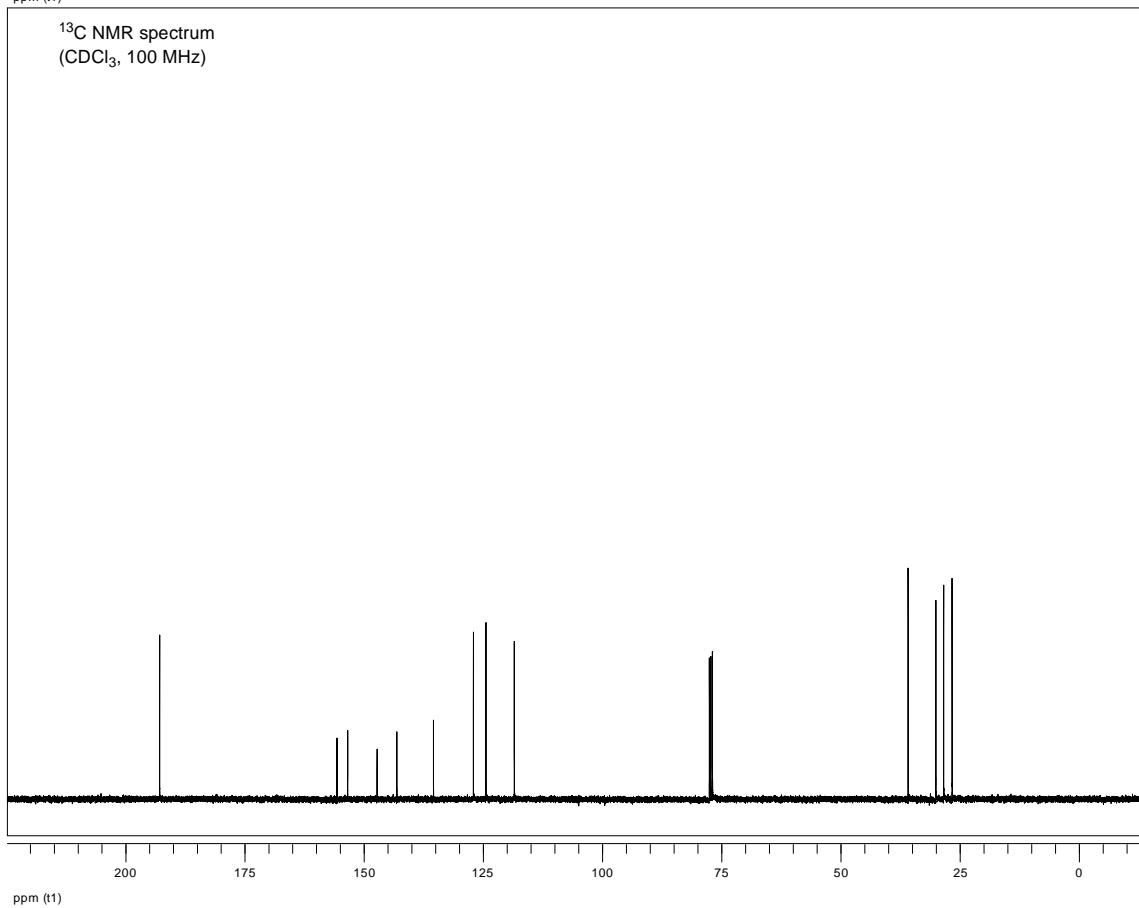
^{13}C NMR spectrum
(CDCl_3 , 150 MHz)

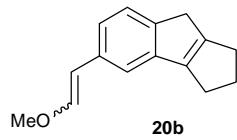




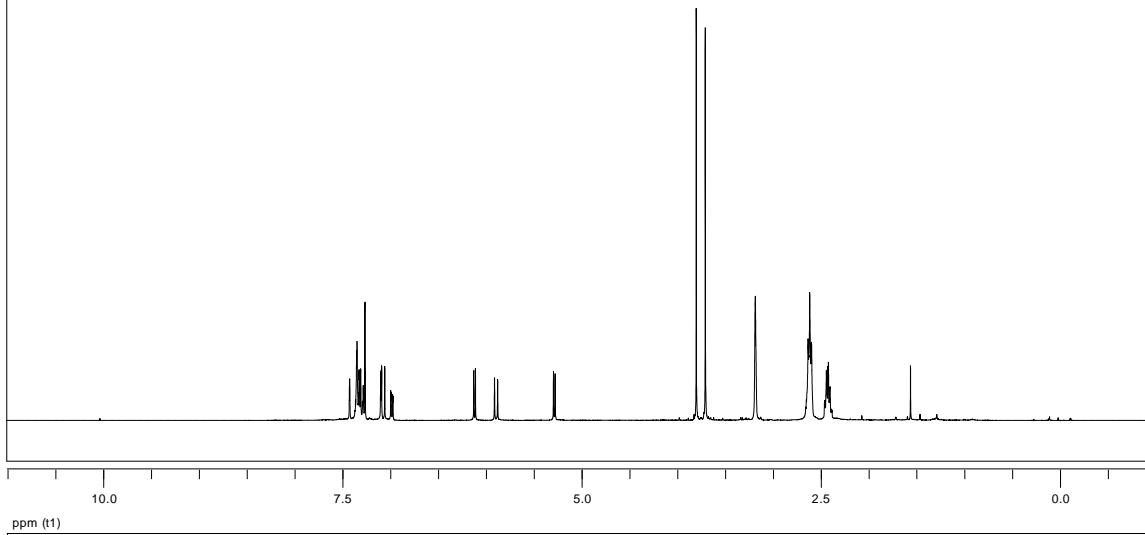
¹H NMR spectrum
(CDCl₃, 400 MHz)

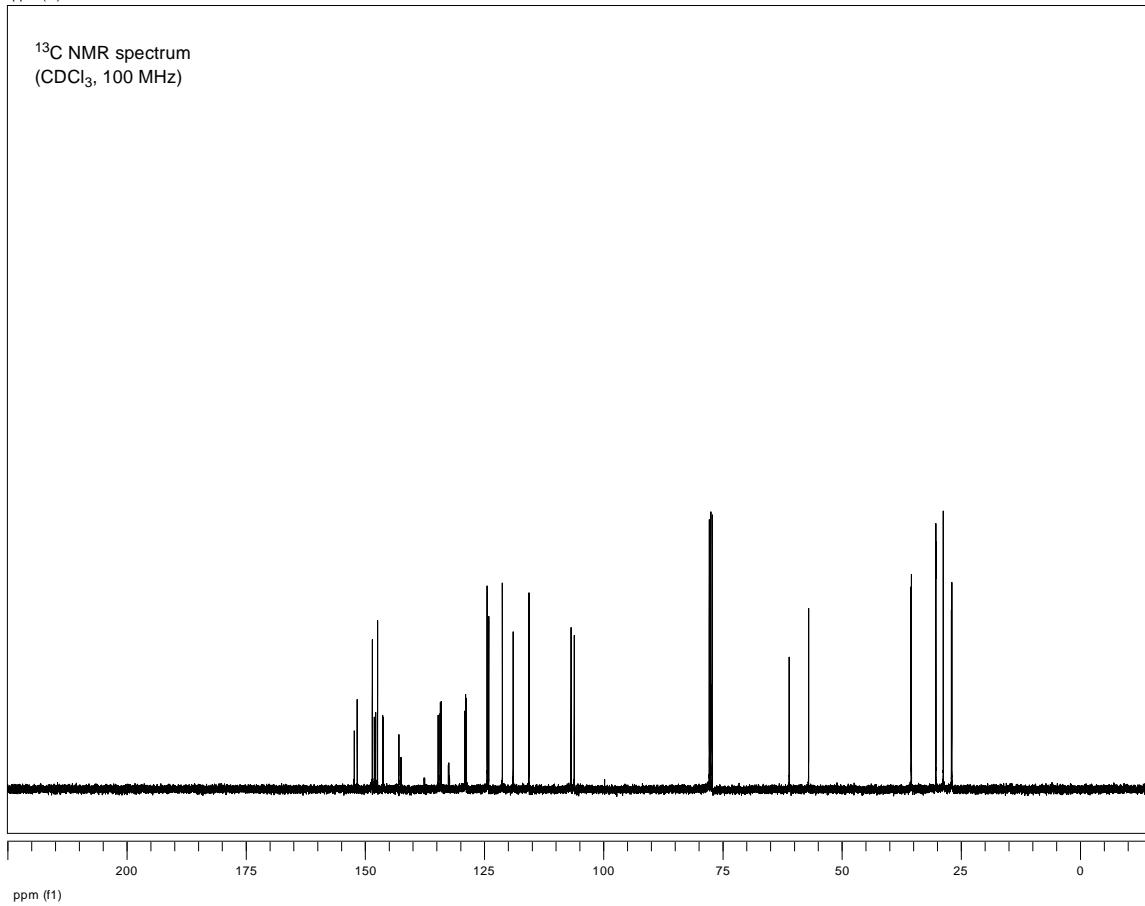

¹³C NMR spectrum
(CDCl₃, 100 MHz)

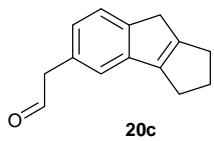



20a

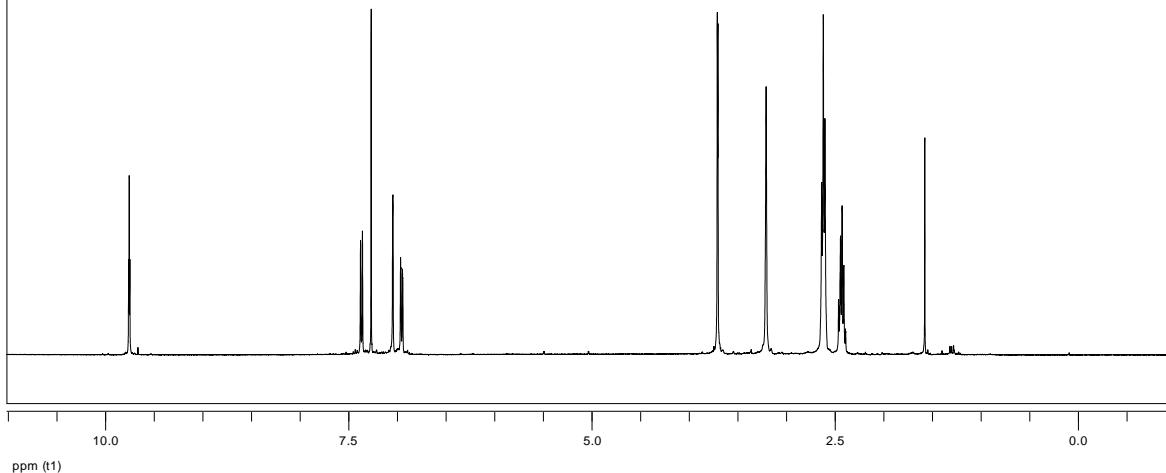
^1H NMR spectrum
(CDCl_3 , 400 MHz)


^{13}C NMR spectrum
(CDCl_3 , 100 MHz)

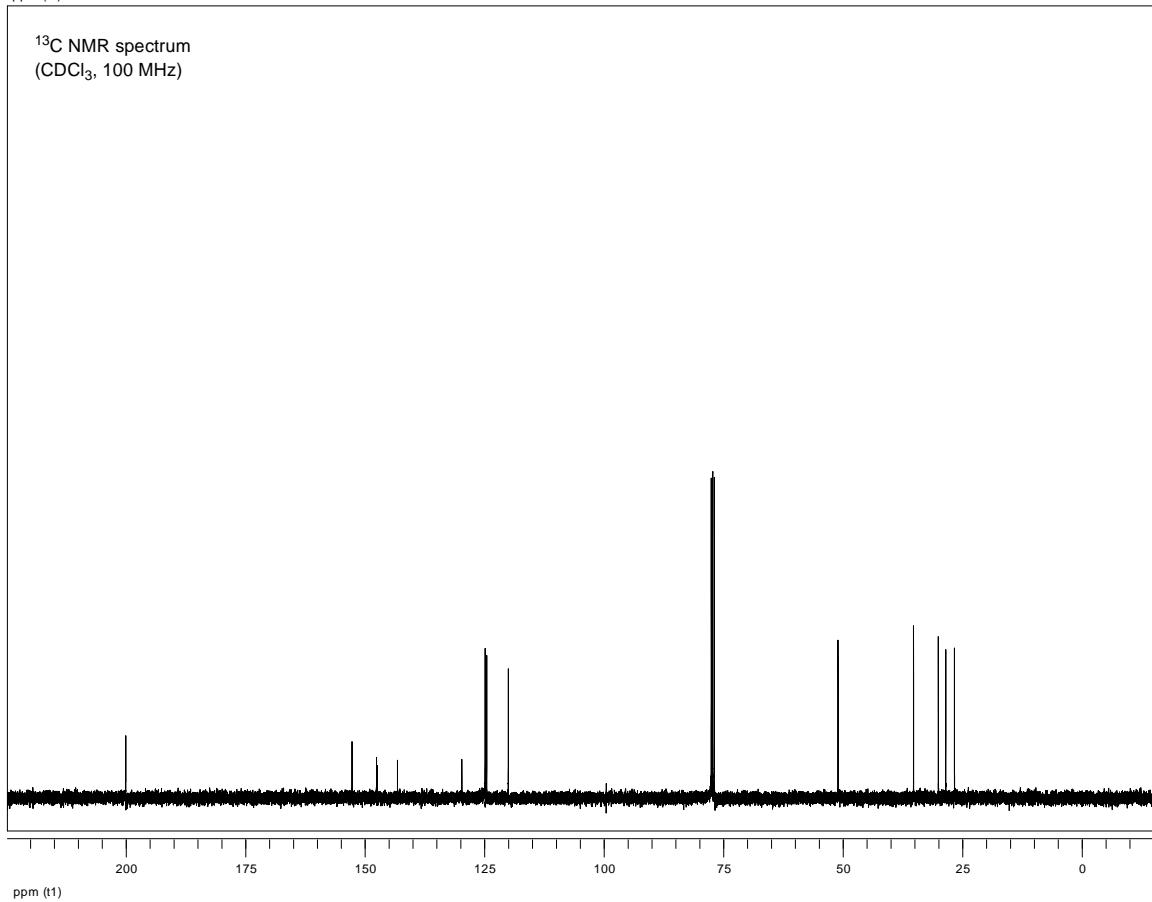


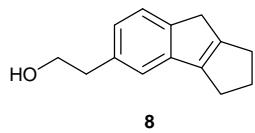

20b

^1H NMR spectrum
(CDCl_3 , 400 MHz)

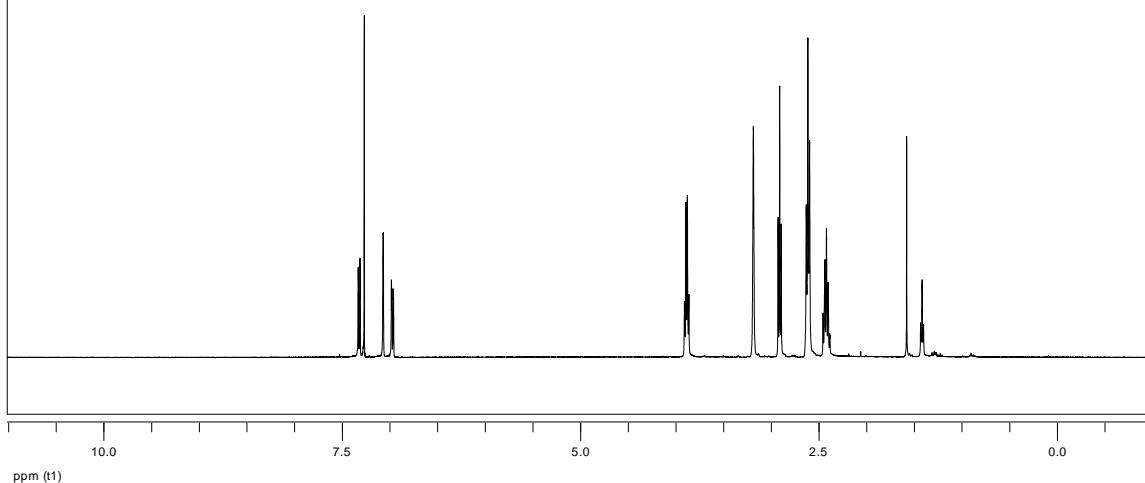


^{13}C NMR spectrum
(CDCl_3 , 100 MHz)

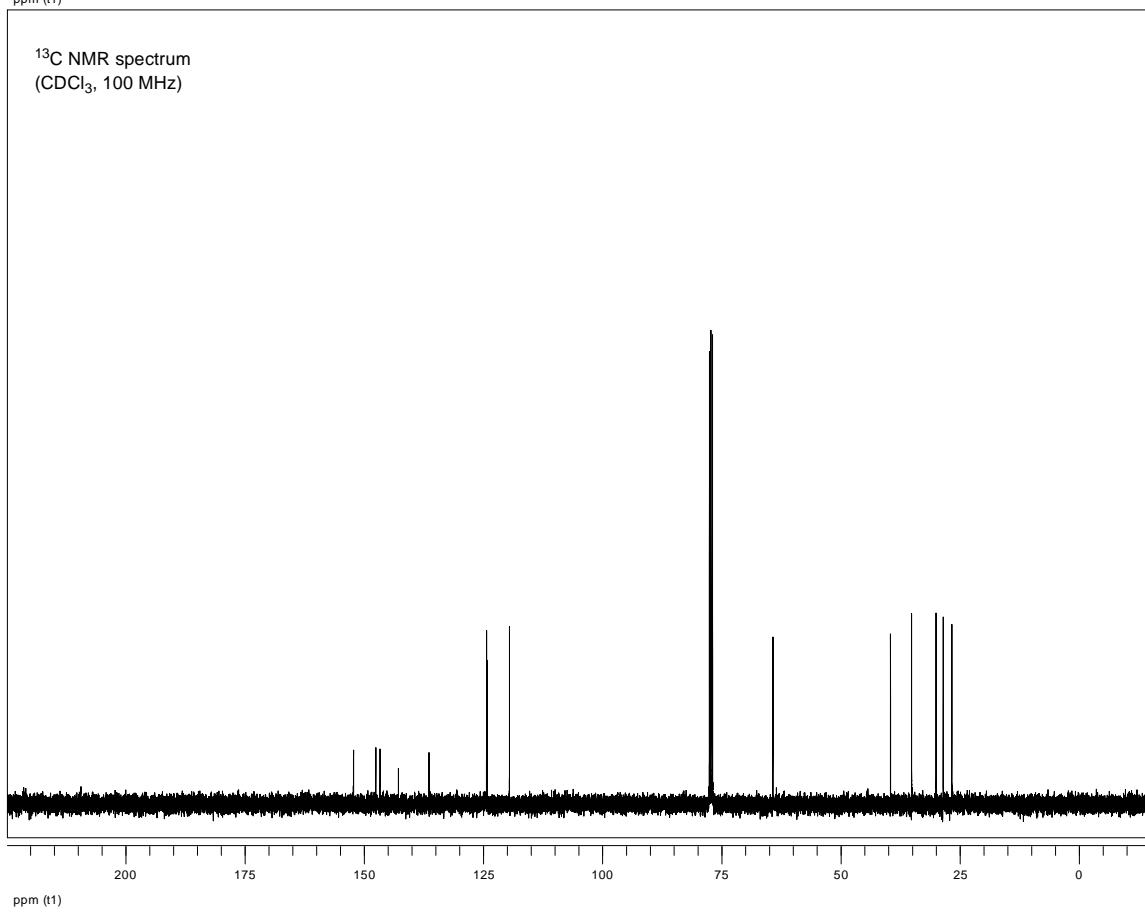


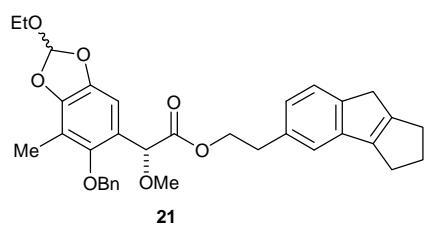


¹H NMR spectrum
(CDCl₃, 400 MHz)

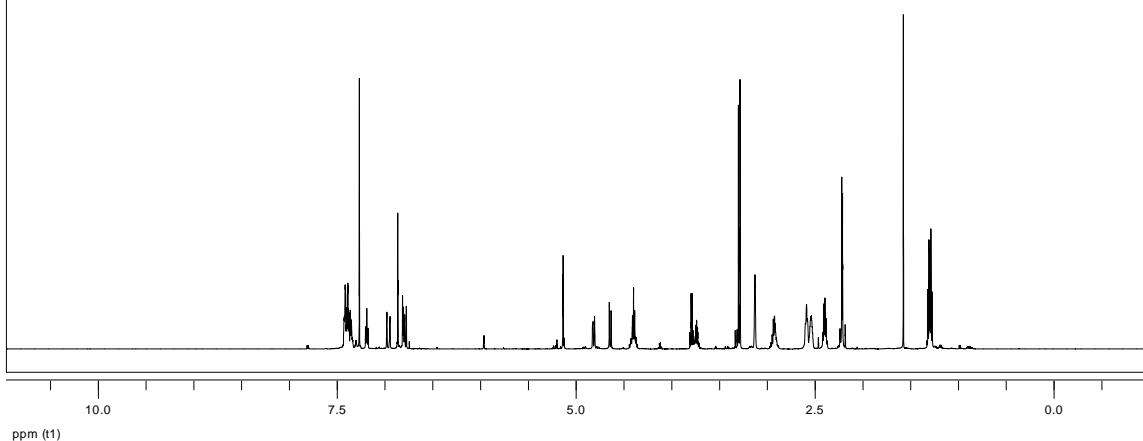


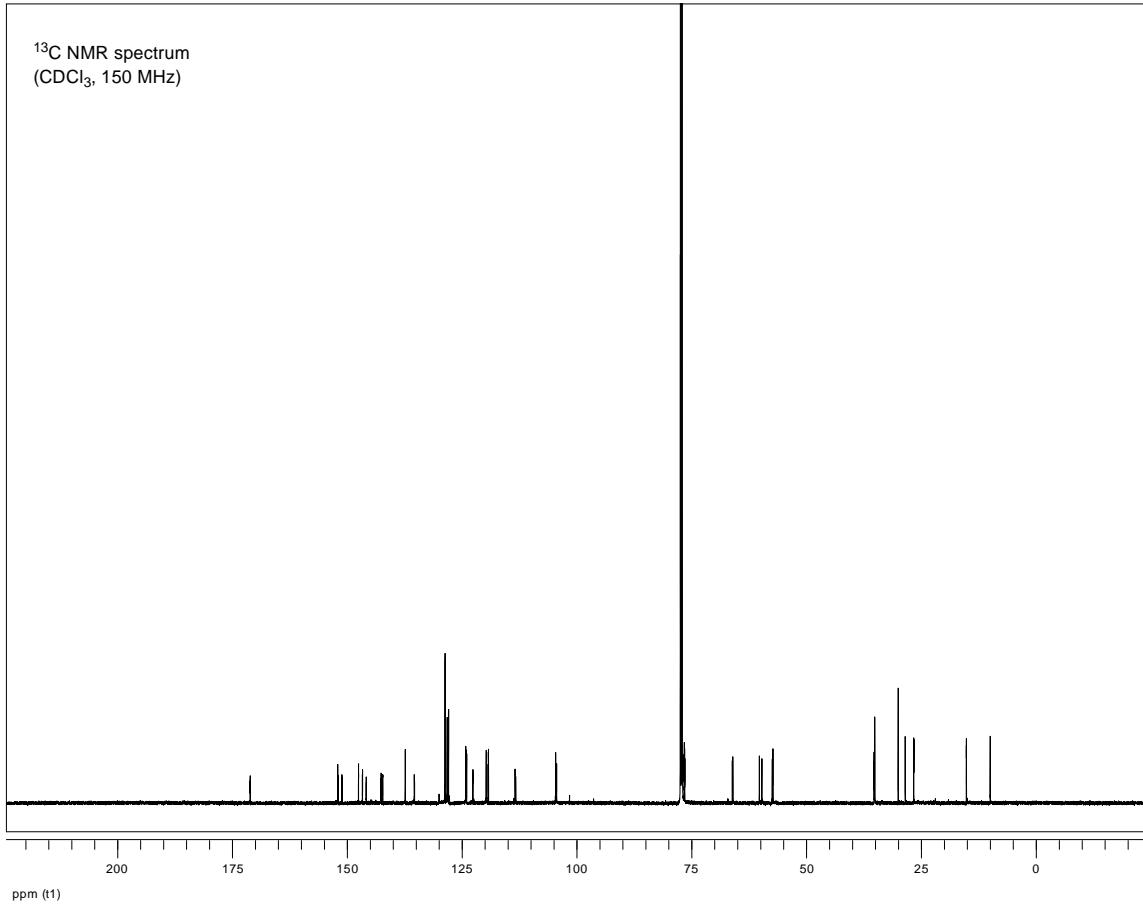
¹³C NMR spectrum
(CDCl₃, 100 MHz)

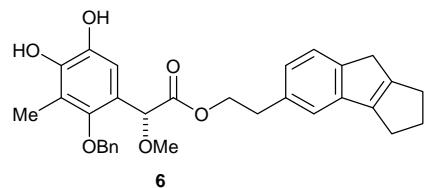




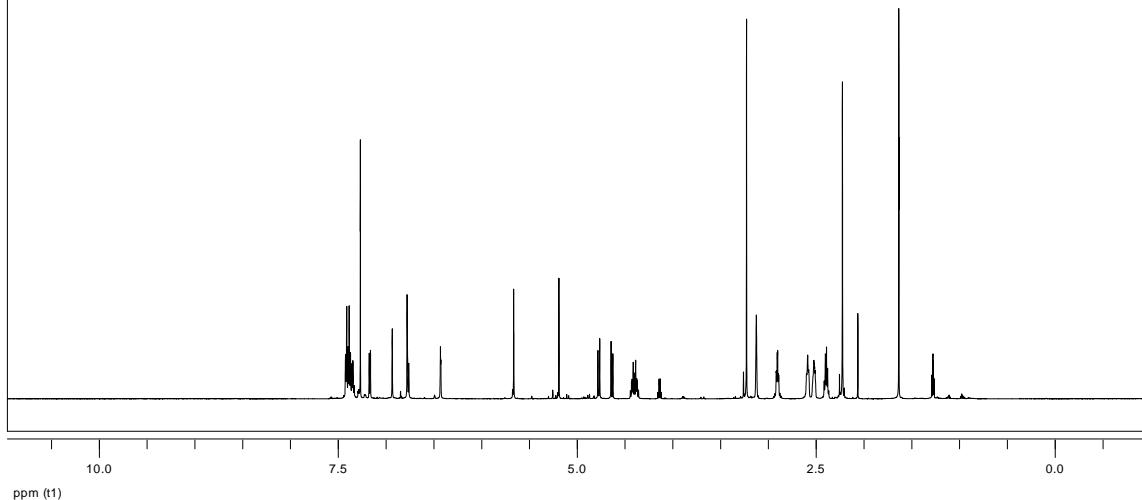
¹H NMR spectrum
(CDCl₃, 400 MHz)

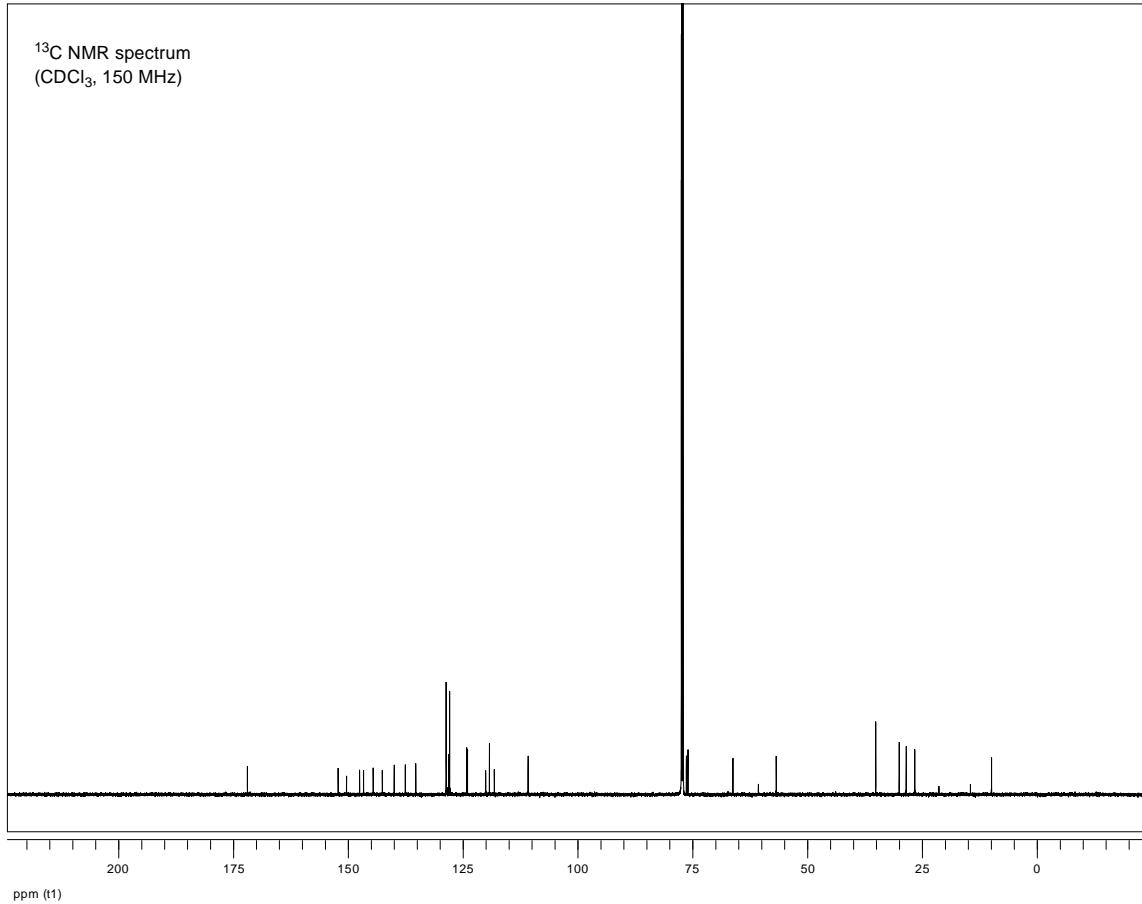

¹³C NMR spectrum
(CDCl₃, 100 MHz)




21

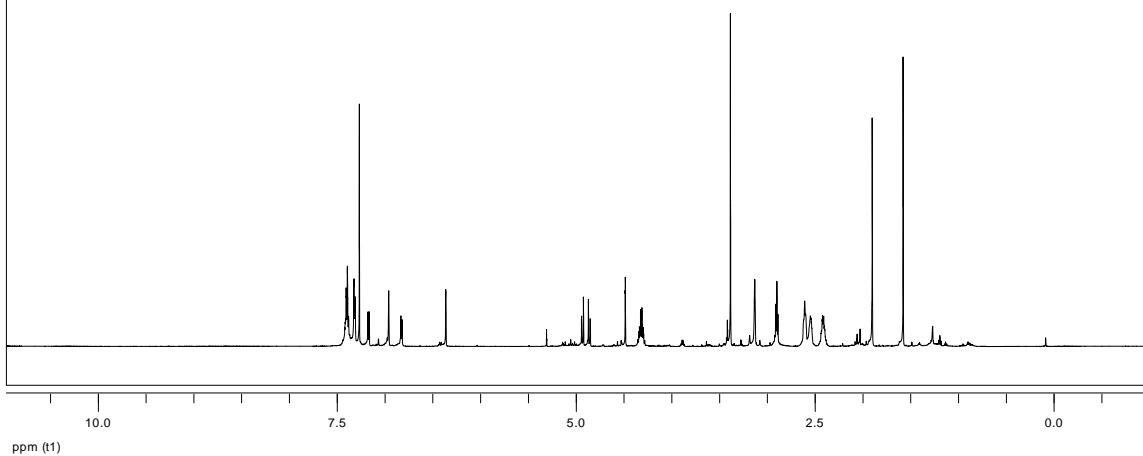
¹H NMR spectrum
(CDCl₃, 600 MHz)

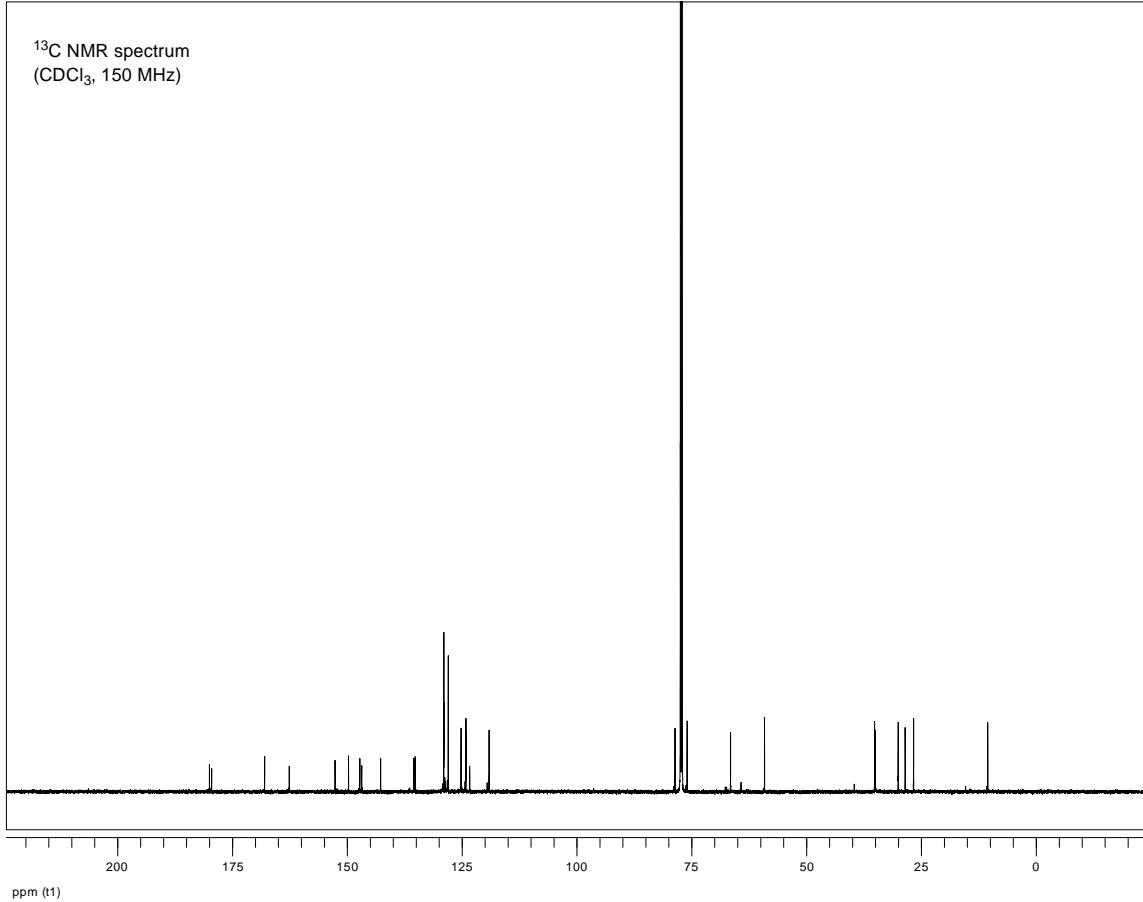

¹³C NMR spectrum
(CDCl₃, 150 MHz)

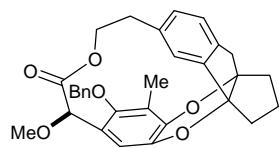



6

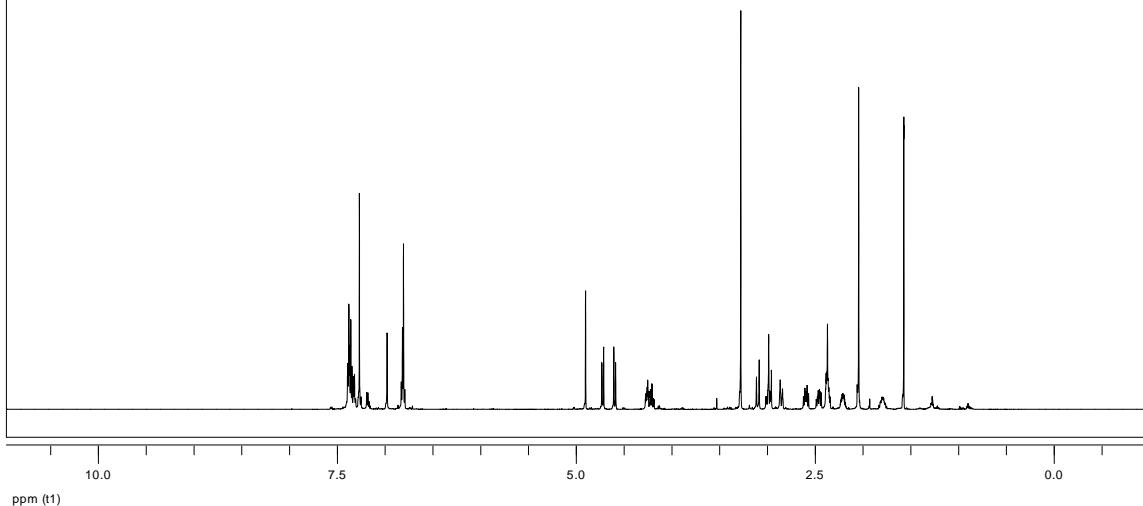
¹H NMR spectrum
(CDCl₃, 600 MHz)

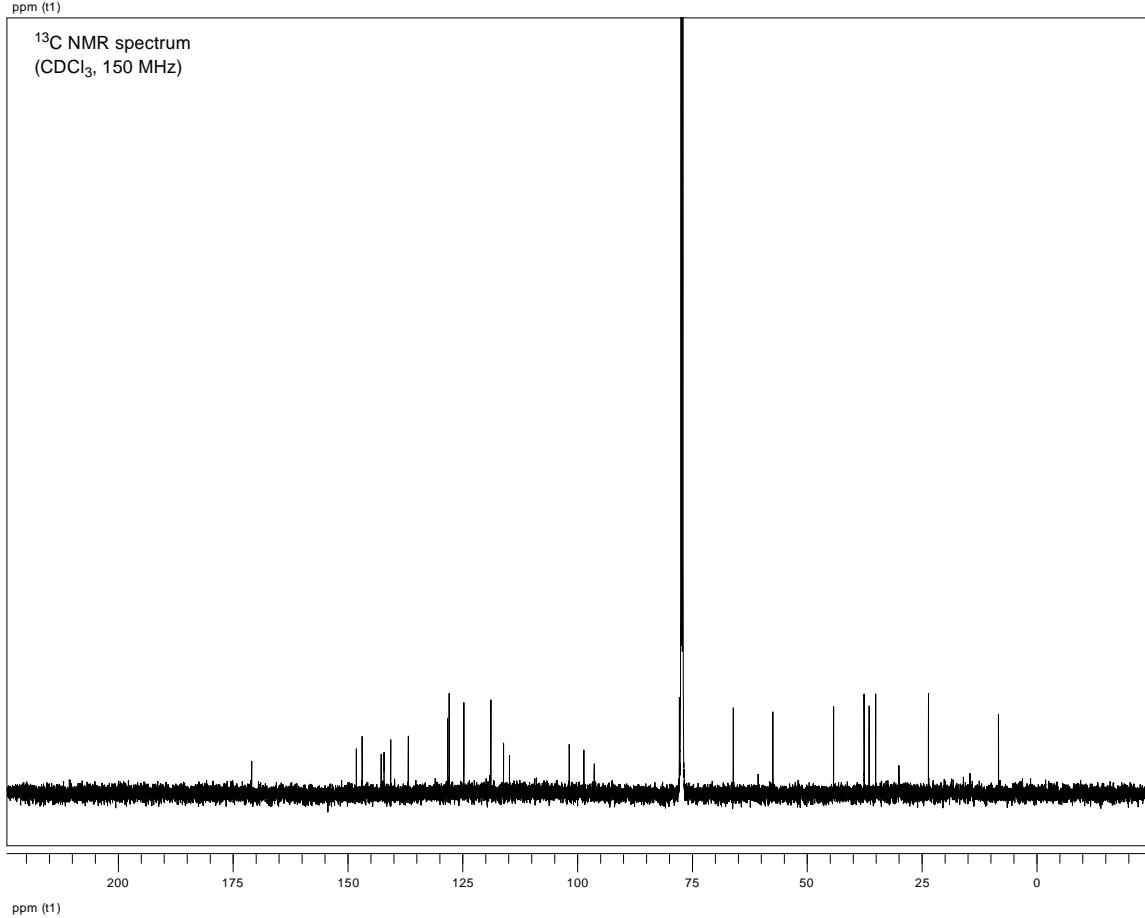
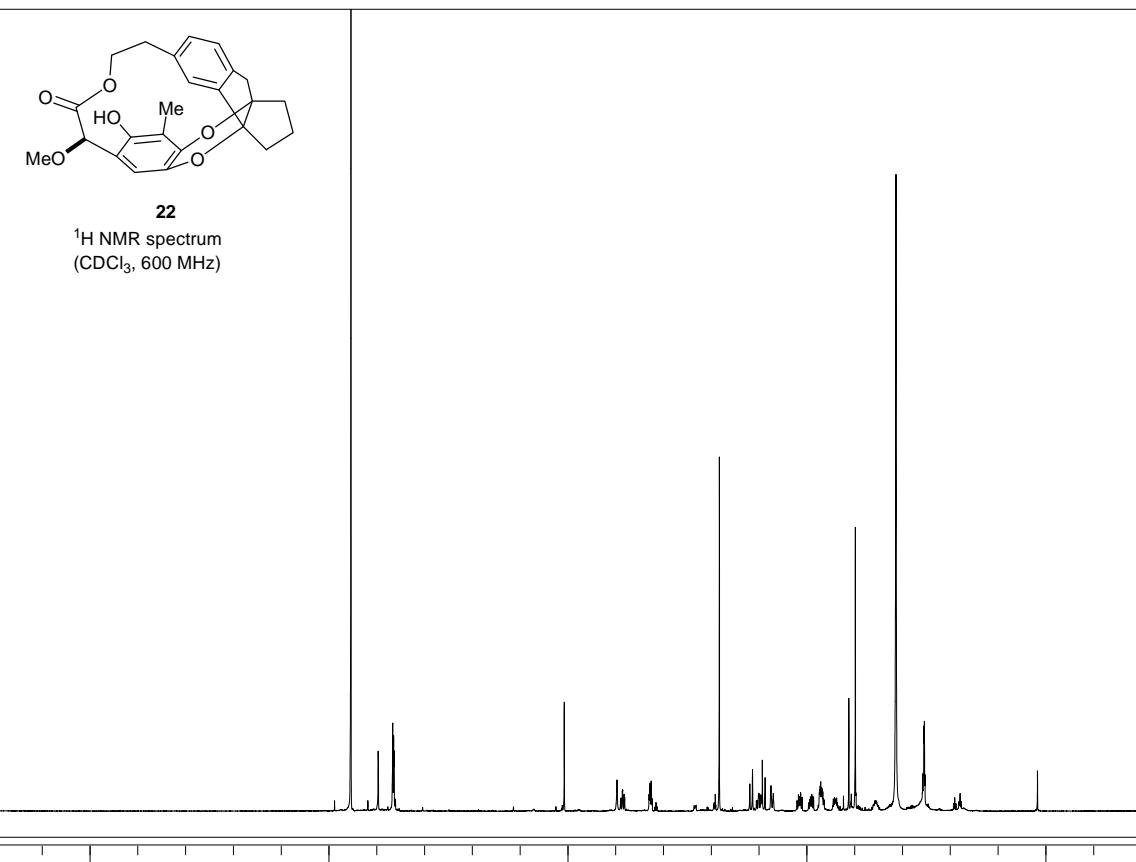

¹³C NMR spectrum
(CDCl₃, 150 MHz)

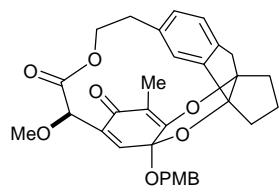


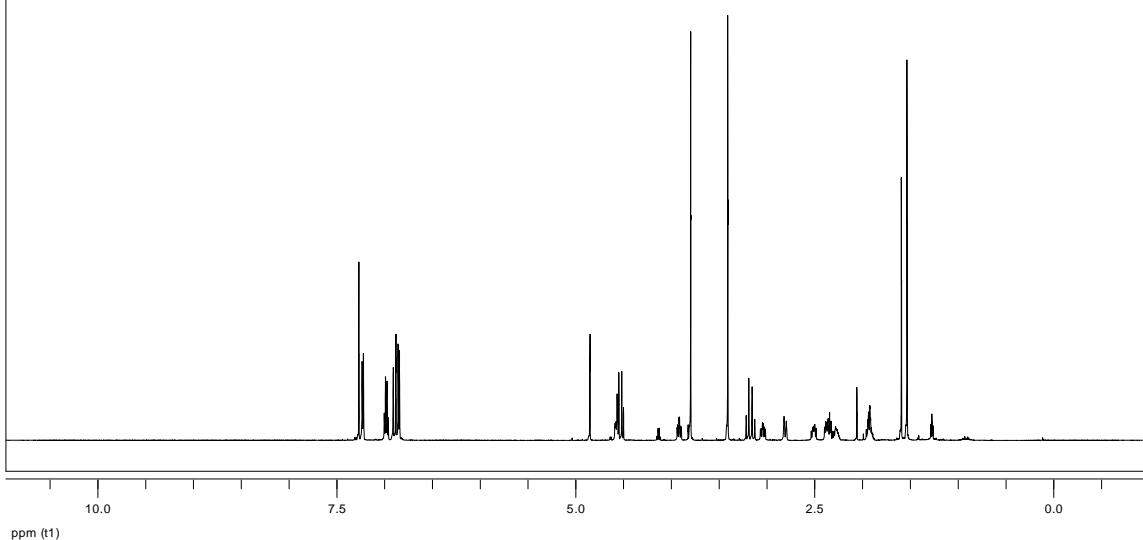

5

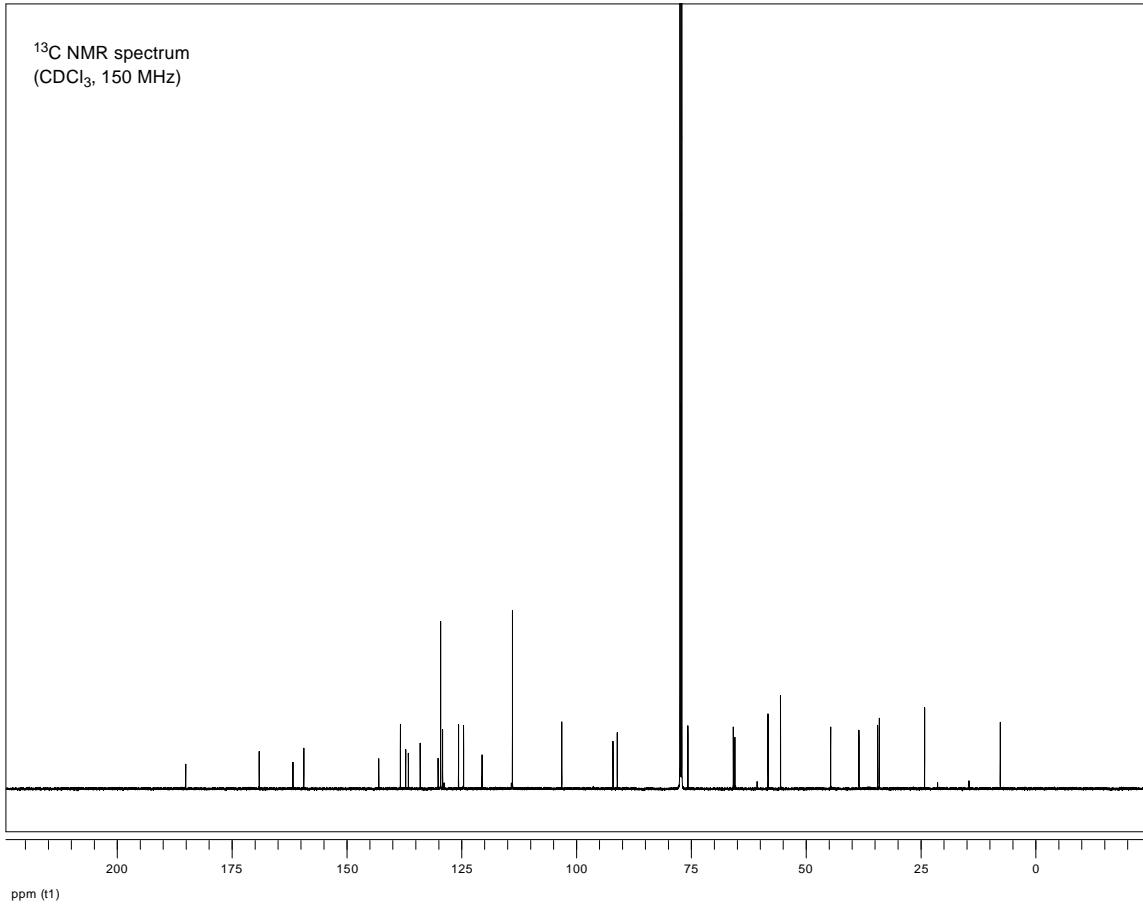
^1H NMR spectrum
(CDCl_3 , 600 MHz)

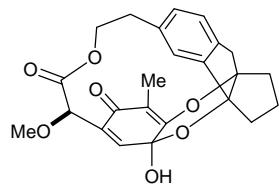

^{13}C NMR spectrum
(CDCl_3 , 150 MHz)



4a

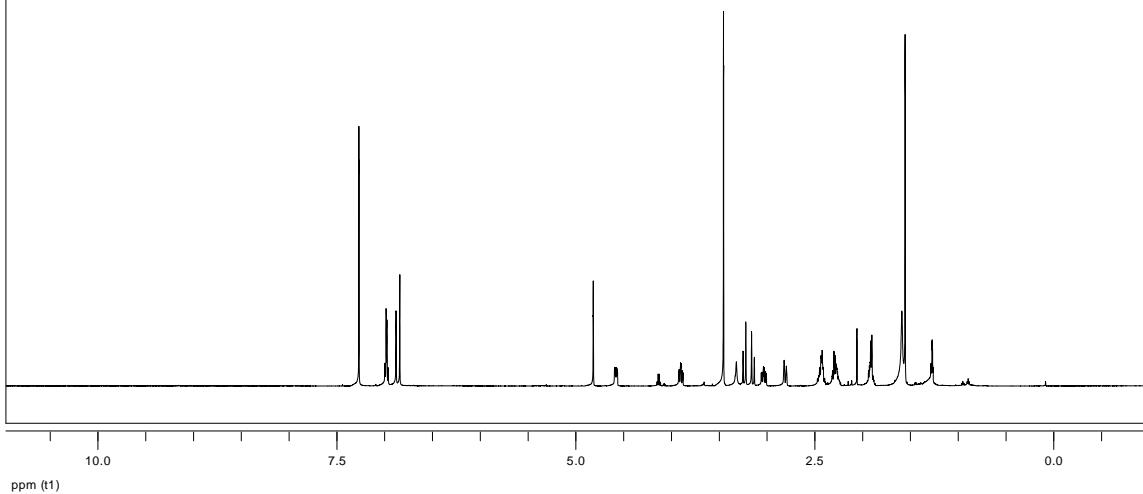

^1H NMR spectrum
(CDCl_3 , 600 MHz)

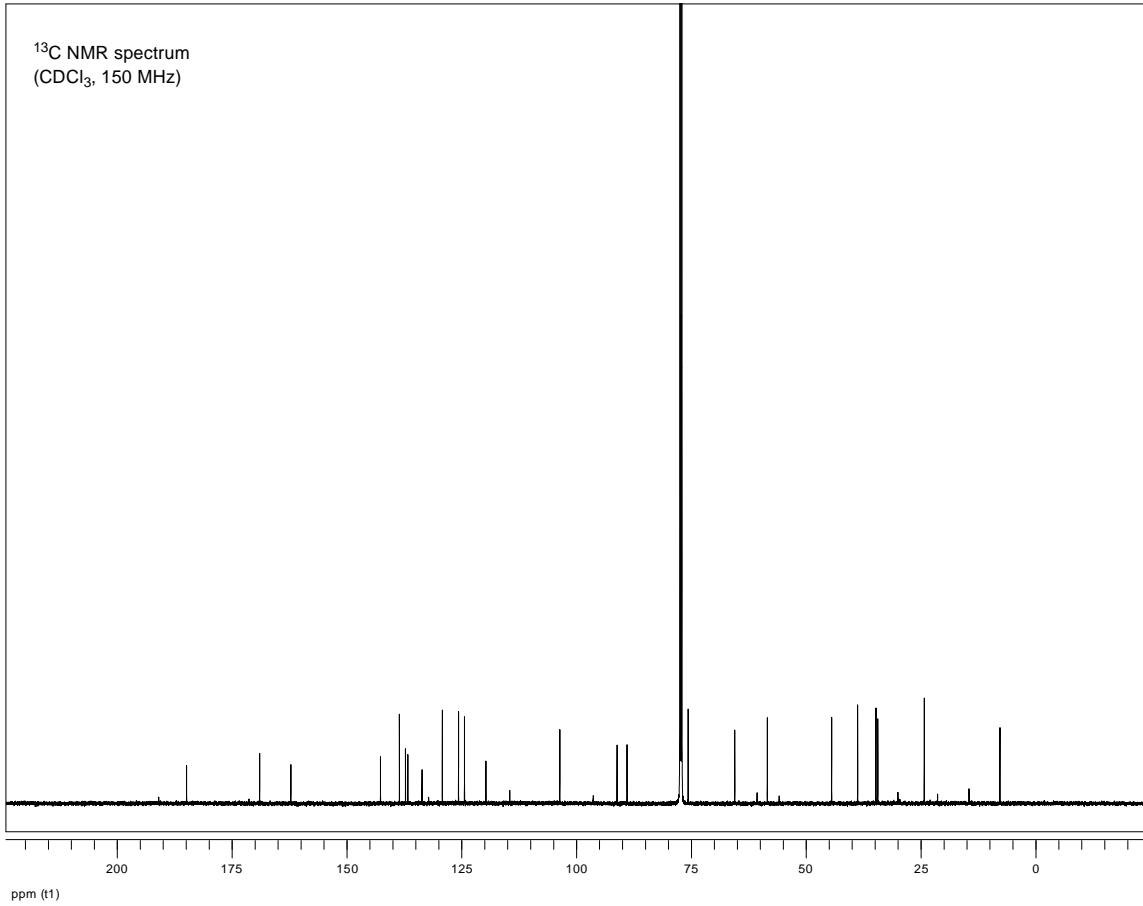

^{13}C NMR spectrum
(CDCl_3 , 150 MHz)

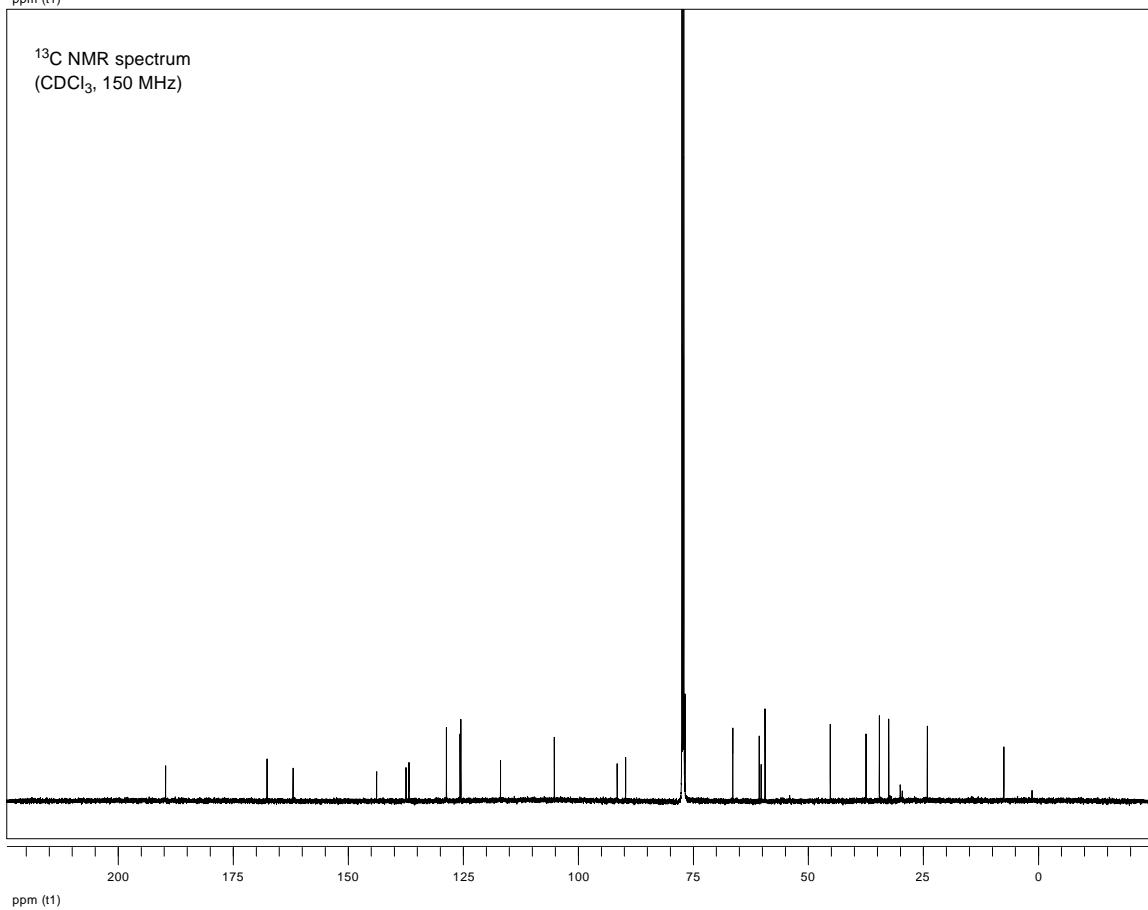
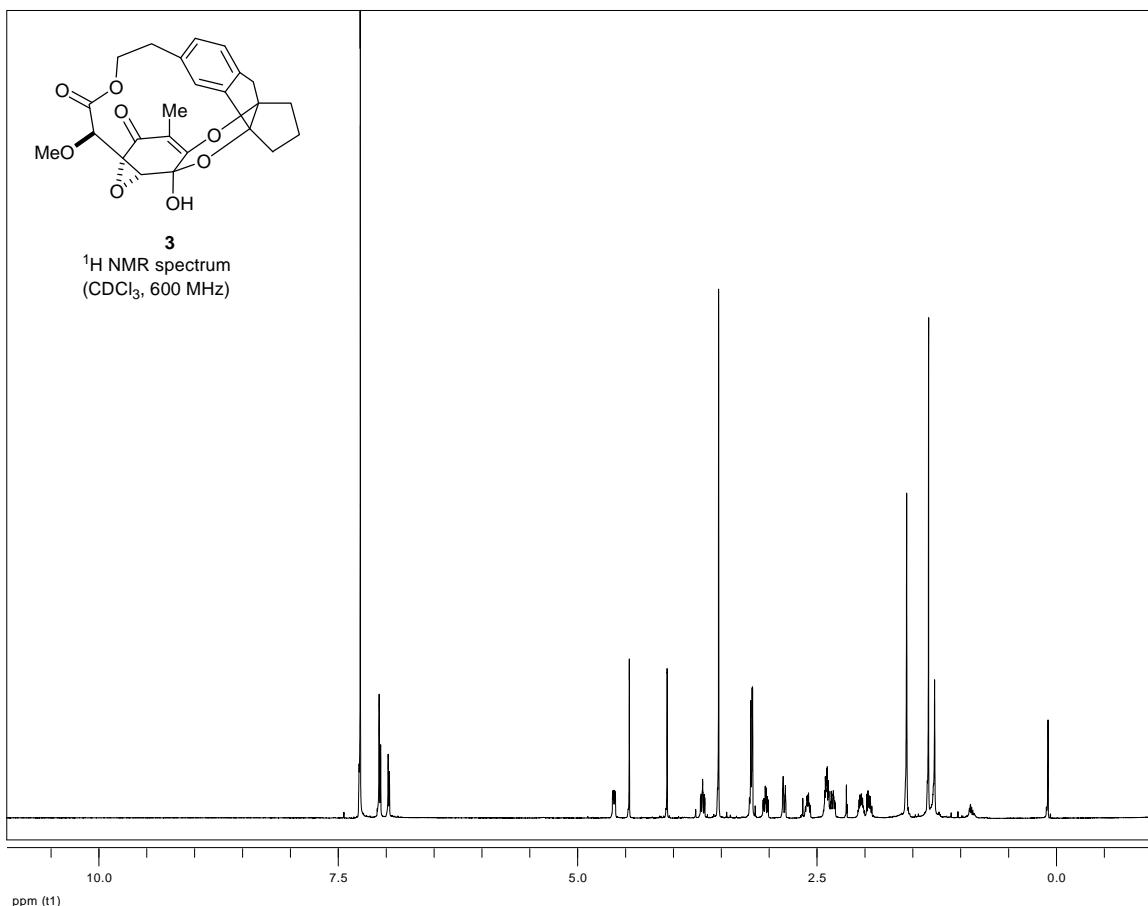




¹H NMR spectrum
(CDCl₃, 600 MHz)


¹³C NMR spectrum
(CDCl₃, 150 MHz)





24

^1H NMR spectrum
(CDCl_3 , 600 MHz)

^{13}C NMR spectrum
(CDCl_3 , 150 MHz)

