

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

Part I Experimental

Contents

Ι	Ex	xperimental	1
1	Gen	neral Procedures	3
	1.1	General methods for all branching pathways	3
		1.1.1 Cleavage of the small molecule from solid support	3
		1.1.2 Cleavage of TIPS protecting group in solution phase	3
		1.1.3 Determination of ee values - chiral shift reagents for pathway 1	3
		1.1.4 Determination of ee values - chiral HPLC	3
		1.1.5 General procedure for resin derivatisation	3
		1.1.6 General procedure for alcohol loading	4
2	Solı	ation phase synthesis of both enantiomers of gemmacin	4
	2.1	Preparation of enantioselective gemmacin	4
3	\mathbf{Syn}	thesis of two carbon unit starting material	6
4	Hor	mer Wadsworth Emmons Reaction	7
	4.1	Building blocks used	7
		4.1.1 General procedure on solid phase	7
		4.1.2 General procedure in solution phase	8
5	Bra 13-	nching pathway 1 Dipolar cycloadditions	10
	1,0 -	Building blocks used	10
	5.2	Synthesis of building blocks for the 1.3-dipolar cycloaddition	10
	5.3	General procedure for enantioselective 1.3-dipolar cycloaddition reaction	11
	0.0	5.3.1 Bacemic solid phase synthesis	12
		5.3.2 Bacemic solution phase synthesis	13
		5.3.3 General procedure for alkylation on solid phase	15
		5.3.4 General procedure for reductive amination on solid phase	16
		5.3.5 General procedure for solution phase acylation reactions	17
0	D		11
6	Bra Dih	ydroxylation Reactions	18
	6.1	Building blocks used	18
	6.2	Enantioselective dihydroxylation on solid support	18
		6.2.1 Racemic synthesis on solid support	19
		6.2.2 Enantioselective dihydroxylation reactions in solution phase	19
		6.2.3 Racemic synthesis in solution phase	19
	6.3	Diversity generating reactions from diols	20
7	Bra C	nching pathway 3	00
	Gen	Puilding blocks used	42 00
	1.1 7.0	Example of the second	22 22
	1.2	7.2.1 Conoral procedure for the energieselective Diele Alder reaction in solution where	44 02
		7.2.2. General procedure for reasonic Diels Alder reaction in solution phase	23 94
	7 9	Diversity generating reactions from the performance	24 95
	1.3	Diversity generating reactions from the nordornene	20 25
			20

	7.3.2 Dihydroxylation reaction solid phase	25
	7.3.3 Dihydroxylation reactions solution phase	26
	7.3.4 Acetal formations general procedure for solid phase synthesis	26
	7.3.5 Acetal formations general procedure for solution phase synthesis	27
	7.3.6 General procedure for the oxidative cleavage, reductive amination reaction on solid support	27
	7.3.7 Oxidative cleavage, reductive amination reaction in solution phase	28
	7.3.8 General procedure for the epoxidation reaction on solid support	29
	7.3.9 General procedure for the epoxidation reaction in solution phase	29
8	Diversity generating reactions preformed in solution phase	29
	8.0.10 Alkylation reactions	29
	8.0.11 Grubbs metathesis reactions	31
	8.0.12 General procedure for ring closing metathesis reactions	31
9	Cleavage of compounds to synthesise carboxylic acids	33
	9.1 General method for solid supports	33
	9.2 General method for solution phase synthesis	33
	9.3 Library compounds generated using this methodology	33
10	Cleavage of compounds to synthesise alcohols	36
	10.1 General method for solid supports	36
	10.2 General method for solution phase synthesis	36
	10.3 Library compounds generated using this methodology	36
11	Cleavage of compounds to synthesise amides	39
	11.1 Building blocks used	39
	11.2 General method for solid supports	39
	11.3 General method for solution phase synthesis	39
	11.4 Library compounds generated using this methodology	39
	11.5 Combined diels-alder and amide cleavage reactions	43
12	2 Cleavage of compounds to synthesise esters	43
	12.1 General method for solid supports	43
	12.2 General method for solution phase synthesis	43
	12.3 Library compounds generated using this methodology	44
13	3 Preparation of analogues in solution phase for SAR analysis	50
14	4 Core Skeletal Structures	54
15	5 PCA analysis	54
16	3 Screening Data	54
17	7 Screening against EMRSA 15 and 16	54
18	8 Human Cell Cytotoxicity Assay	55
10		
18	א wembrane שוגרע isrupter Assay	55

1 General Procedures

Experimental techniques using flame dried glassware apparatus are standard unless otherwise indicated; reactions were carried out under nitrogen with dry, freshly distilled solvents. Dichloromethane was distilled from calcium hydride. n-BuLi in hexane (Aldrich) was titrated with benzyl-biphenyl-4-ylmethylene-amine and anhydrous menthol before use. All other reagents were purified in accordance with the instructions in 'Purification of Laboratory Chemicals' or used as obtained from commercial sources.

Temperatures of 0 $^{\circ}{\rm C}$ were maintained using an ice-water bath and - 78 $^{\circ}{\rm C}$ with an acetone and cardice.

Yields refer to chromatographically and spectroscopically pure compounds. All reactions were monitored by thin layer chromatography (TLC) using glass plates pre-coated with Merck silica gel 60 F254 or aluminium oxide 60 F254. Visualisation was by the quenching of UV fluorescence ($\nu_{max} = 254$ nm) or by staining with ceric ammonium molybdate or potassium permanganate or Dragendorff's reagent (0.08 % w/v bismuth subnitrate and 2 % w/v KI in 3M aq. AcOH). Retention factors (R_f) are quoted to 0.01.

Melting points were obtained using a Reichert hot plate microscope with a digital thermometer attachment and are uncorrected.

Infrared spectra were recorded neat on a Perkin-Elmer Spectrum One spectrometer with internal referencing. Selected absorption maxima (ν_{max}) are reported in wavenumbers (cm⁻¹). Proton magnetic resonance spectra were recorded on Bruker Ultrashield 400 or 500. Proton assignments are supported by ¹H-¹H spectra where necessary. Chemical shifts (δ_H) are quoted in ppm and are referenced to the residual nondeuterated solvent peak. Coupling constants (J) are reported in Hertz to the nearest 0.5 Hz. Data are reported as follows: chemical shift, integration, multiplicity [br, broad; s, singlet; d, doublet; t, triplet; q, quartet; qui, quintet; sept, septet; m, multiplet; or as a combination of these (e.g. dd, dt, etc.)], coupling constant(s) and assignment. Diastereotopic protons are assigned as X and X', where the ' indicates the higher field proton.

Carbon magnetic resonance spectra were recorded on Bruker 400 or 500 spectrometers operating at 100 and 125 MHz respectively. Carbon spectra assignments are supported by DEPT editing and where necessary $^{13}C^{-1}H$ (HMQC) correlations.

Chemical shifts (δ_C) are quoted in ppm to the nearest 0.01 ppm, and are referenced to the deuterated solvent (7.26 ppm for CHCl₃ and 77.0 ppm for ¹³C of CDCl₃, 2.54 ppm for DMSO and 40.45 ppm for ¹³C of d₆-DMSO).

Phosphorus magnetic resonance spectra (^{31}P) were recorded on a DPX 400 MHz spectrometer. Chemical shifts (δ_P) are quoted in ppm to the nearest 0.01 ppm and are referenced to H₃PO₄ (external).

Cyclopentadiene was prepared by cracking dicyclopentadiene at atmospheric pressure and collecting the monomer at 0 $^{\circ}$ C. Library compounds were all purified by flash column chro-

matography and assessed for purity by LCMS using the UV trace (at 254 nm) and the total ion count. Compounds with purity greater than 85 % were screened in the biological assays.

LCMS spectra were recorded on an HP/Agilent MSD LC-MS APCI+ 120-1000 full gradient ACq T = 1 min 1 μ l. High resolution mass measurements were made by the EPSRC mass spectrometry service (Swansea) and reported mass values are

within the error limits of 5 ppm mass units. Microanalyses were performed by the University of Cambridge Microanalytical Laboratory in the Department of Chemistry, and are quoted to the nearest 0.1 % for all elements except for hydrogen, which is quoted to the nearest 0.05 %. Reported atomic percentages are within the error limits of \pm 0.4 %. Optical rotations were recorded on a Perkin Elmer 343 polarimeter. $[\alpha]_D^{25}$ values are reported in $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ at 589 nm, concentration (c) is given in g(100mL)⁻¹. All flash chromatography was carried out using slurry-packed Merck 9385 Kieselgel 60 silca gel.

The numbering on the pictures does not follow the IUPAC naming system and is simply used for the asigning of the 1 H NMR and 1 3C NMR.

2,2-Bis[2-[4(S)-tert-butyl-1,3-oxazolinyl]]propane[(R,R)-tert-Butyl bis (oxazoline)] catalyst was prepared according to Evans methodology.[1]

1.1 General methods for all branching pathways

1.1.1 Cleavage of the small molecule from solid support

The solid supported small molecule (100 mg) was dissolved in THF (0.5 ml) and HF·Pyr (50 μ l, 1.77 mmol) was added. The vial sealed and agitated for 2.5 h, then quenched using trimethylethoxysilane. The vial was agitated for a further 30 min to ensure complete quenching. Then the solvent was filtered through a plug of silica gel and the solvent was removed in vacuo and the product purified by flash column chromatography (10:1 CH₂Cl₂: Methanol)

1.1.2 Cleavage of TIPS protecting group in solution phase

A plastic eppendorf vial containing the TIPS protected alcohol (1 equiv.) and THF (0.5 ml) at room temperature was charged with HF.Pyr (50 μ L, 1.77 mmol). The vial was sealed and the solution agitated for 2.5 hours. The solution was quenched via addition of trimethylethoxysilane (0.32 ml) and agitated for a further 30 minutes. The solution was filtered through a plug of silica gel and the gel washed with CH₂Cl₂ (× 3), CH₂Cl₂: MeOH (1:1) (× 3) and CH₂Cl₂ (× 3) and the solvent removed *in vacuo*.

1.1.3 Determination of ee values - chiral shift reagents for pathway 1

To simplify the identification of the level of induced stereochemistry, the use of chiral shift reagents was introduced, by which method it was possible to estimate ee values from ¹H NMR spectra. (S)-(+)- α -methoxyphenylacetic acid in C₆D₆ was used, since under these conditions two distinctive peaks in the 1H NMR spectrum were clearly shown for the two enantiomers.

1.1.4 Determination of ee values - chiral HPLC

Other enantiomeric excess's were calculated using chiral HPLC.

1.1.5 General procedure for resin derivatisation

To prepare i-Pr(n-Bu)₂MgLi, a round bottom flask, equipped

with a magetic stirrer, containing i-PrMgCl (2.0 M in THF, 2 equiv.) and THF (quantity to result in 0.2 M solution of i-Pr(n-Bu)₂MgLi) at O °C was charged with n-BuLi (2.5 M solution in hexanes, 4 equiv.) and stirred for 30 mintues. The resulting clear yellow solution was added to a second round bottom flask, equipped with a magnetic stirrer, containing white copolymerised (74 % styrene, 1 % divinylbenzene, 25 % 4-bromostyrene) 4-bromopolystyrene beads (2.0 mmol/g, 1 equiv.) that had been previously swollen in THF (10 - 30 mL per gram of beads) for 15 minutes at 0 °C. The resulting mixture was stirred slowly for 5 hours, by which time the beads had turned golden in colour, then charged with i-Pr₂SiHCl (6 equiv.) and warmed to room temperature over two hours. The resulting white beads were filtered and washed sequentially with THF (3 \times 5 minutes), CH₂Cl₂:MeOH (1:1, 3 \times 5 minutes), and CH_2Cl_2 (5 × 5 minutes) then dried under reduced pressure to give free flowing white beads. Elemental analysis: Si 4.62 %

1.1.6 General procedure for alcohol loading

A dry fritted polpropylene column (Bruker), fitted with a Teflon stopcock and capped with a suba seal, containing the dry derivitised resin (1 equiv.) was evacuated and purged with nitrogen several times. The beads were swollen with CH₂Cl₂ (1mL/g beads) and the resulting suspension charged with TM-SCl (6 equiv.) at room temperature and agitated occasionally over 30 minutes. The solution was drained and the beads washed with anhydrous CH_2Cl_2 (× 3). The beads were suspended in a solution of 1,3-dichloro-5,5-dimethylhydantoin (3 equiv.) and CH_2Cl_2 (1 mL/g beads) at room temperature and agitated occasionally over two hours. The solution drained and the beads washed with anhydrous CH_2Cl_2 (× 2). The beads were suspended in a solution of 2,6-lutidine (4 equiv.), DMAP (0.1 equiv.), the alcohol (1.1 equiv.) and CH_2Cl_2 (1.25) mL/g beads) at room temperature. The mixture was agitated and left to stand for 16 hours. The solution was drained and the leads washed with CH_2Cl_2 (× 3), CH_2Cl_2 :MeOH (1:1, × 3) and THF (\times 3). Air-drying under suction for two hours with occasional agitation followed by drying under high vacuum gave free flowing beads.

2 Solution phase synthesis of both enantiomers of gemmacin

2.1 Preparation of enantioselective gemmacin

1-3-[2-(4-Chloro-phenylsulfanyl)-phenyl]acryloyl-3-(2-triisopropylsilanyloxy-ethyl)-

imidazolidin-2-one (5) To a solution of the phosphonate (5.00 g, 10.8 mmol) in acetonitrile (50 ml) under nitrogen was added lithium bromide (946 mg, 11 mmol), DBU (2.17 ml, 11 mmol) and 2-(4-chlorothiophenyl)-benzaldehyde (2.73 g, 11 mmol). The solution was stirred for three hours and a yellow precipitate formed. The solvent was removed *in vacuo* and the solid dissolved in ethyl acetate and washed with saturated ammonium chloride solution, brine, dried (MgSO₄) and solvent removed *in vacuo*. The product was purified by flash column chromatography to yield the title compound as a white solid (3.20 g, 53 %).

 $R_f 0.33$ (SiO₂; 10:3 40:60 petrol: ethyl acetate); ν_{max} (neat) 2942, 2865, 1721 (C=O), 1665 (C=O), 1615, 1475, 1374, 1355, 1266, 1107, 1092 cm $^{-1};\;\delta_{H}$ (500 MHz; CDCl₃) 8.34 (1H, d, J 15.5, H4), 8.04 (1H, d, J 15.5, H3), 7.81 (1H, dd, J 7.5, 2.0, H8), 7.39 (1H, m, H5), 7.36-7.28 (2H, m, ArH), 7.23 (2H, d, J 9.0, H9), 7.15 (2H, d, J 9.0, H10), 3.94 (2H, dd, J 8.0, 7.5, Ha), 3.91 (2H, t, J 5.0, H1), 3.66 (2H, dd, J 8.0, 7.5, Ha), 3.45 (2H, t, J 5.0, H2), 1.07 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 165.43 (C=O), 154.87 (C=O), 140.77 (C[4]H), 137.43 (C), 135.21 (C), 135.04 (C), 134.06 (C[5]H), 132.65 (C), 131.28 (C[9]H), 130.34 (C[8]H), 129.29 (C[10]H), 128.53 (CH), 127.89 (CH), 121.05 (C[3]H), 62.16 (C[1]H₂), 46.51 (C[2]H₂), 42.86 (C[a]H₂), 40.07 (C[a]H₂), 17.94 (C[TIPS]H₃), 11.84 $(C[TIPS]H); LCMS (APCI+) 559 (M+H^+), HRMS (M+H)^+$ found 559.2214 $C_{29}H_{40}N_2O_3ClSSi$ required 559.2212, Δ ppm +0.3, mp 106 -108 °C (40:60 petrol: ether).

(1S, 2R, 3R, 4R)-1-3-[2-(4-Chloro-phenylsul-fanyl)-phenyl]-bi-cyclo[2.2.1]hept-5-ene-2-carbonyl-3-(2-tri-isopropylsilanyloxy-ethyl)-imidazo-

lidin-2-one (6) To an oven dried round-bottomed flask was added 2,2-bis[2-[4(S)-tert-buty-1,3-oxa-

zolinyl]]propane [(s,s)-tert-butyl bis(oxazoline)] (79 mg, 0.268 mmol), Cu(OTf)₂ (97 mg, 0.268 mmol) and 3Å molecular sieves followed by CH₂Cl₂ (5 ml). The solution was stirred for 40 minutes and developed a green colour. This was added to a solution of **5** (1.5 g, 2.68 mmol) followed by cyclopentadiene (4.4 ml, 53.6 mmol). The green reaction was stirred at room temperature for four days until complete by TLC. The solvent was removed *in vacuo* and the product purified by flash column chromatography to yield the title compound as a viscous oil (1.598 g, 95 %).

 $R_f 0.22$ (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2942, 2865, 1720 (C=O), 1679 (C=O), 1474, 1436, 1389, 1354, 1333, 1261, 1242, 1107, 1091 cm⁻¹; $[\alpha]_D^{25}$ -39.1 (c 0.15, CHCl₃); δ_H (500 MHz; CDCl₃) 7.51 (1H, d, J 8.0, H10), 7.33-7.30 (2H, m, H11, H12), 7.22-7.15 (3H, m, H14, H13), 7.08 (2H, d, J 8.5, H15), 6.43 (1H, dd, J 5.5, 3.0, H6), 5.96 (1H, dd, J 5.5, 2.5, H5), 4.41 (1H, dd, J 5.0, 3.0, H3), 3.88-3.85 (2H, m, H1), 3.70-3.68 (2H, m, H9, Ha), 3.59-3.45 (2H, m, Ha), 3.45 (1H, ddd, J 14.0, 5.5, 4.5, H2), 3.38-3.37 (1H, m, Ha), 3.35 (1H, d, J 4.0, H4), 3.29-3.25 (1H, ddd, J 14.0, 5.5, 4.5, H2'), 2.93 (1H, s, H7), 1.94 (1H, d, J 9.0, H8), 1.54 (1H, dd, J 9.0, 1.5, H8'), 1.07 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 173.60 (C=O), 154.69 (C=O), 146.60 (C-Cl), 138.60 (C[6]H), 136.34 (C-C), 134.35 (C[5]H), 133.40 (C[13]H), 131.77 (C-S), 131.00 (C-S), 130.422 (C[14]H), 128.97 (C[15]H), 128.49 (C[10]H), 127.30 (C[11]H), 126.92 (C[12]H), 61.95 (C[1]H₂),49.80 (C[7]H), 48.83 (C[3]H), 47.82 (C[8]H₂), 47.63 (C[4]H), 46.44 (C[2]H₂), 44.82 (C[9]H), 42.40 (C[a]H₂), 40.11 (C[a]H₂), $17.94 (C[TIPS]H_3), 11.86 (C[TIPS]H): HRMS (M+H)^+ found$ 625.2687 $C_{34}H_{46}N_2O_3ClSSi$ required 625.2681, Δ ppm +0.9.

(1R, 2S, 3S, 4S)-1-3-[2-(4-Chloro-phenylsulfanyl)phenyl]-bi-cyclo[2.2.1]hept-5-ene-2-carbonyl-3-(2tri-isopropylsilanyloxy-ethyl)-imidazolidin-2-one (7)

A viscous oil (704 mg, 62 %); $[\alpha]_D^{25}$ +41 (c 0.275, CHCl₃).

(1*R*, 2*S*, 3*R*, 4*S*, 5*S*, 6*R*)-1-3-[2-(4-Chloro-phenylsulfanyl)-phenyl]-5,6-dihydroxy-bicyclo[2.2.1]heptane-2-car-bonyl-3-(2-triisopropylsilanyloxyethyl)-imidazolidin-2-one (8) To a solution of 6 (1.5 g, 2.4 mmol) in acetone (100 ml) and water (10 ml) was added NMO (562 mg, 4.8 mmol) followed by a solution of OsO₄ (100 μ l). The yellow reaction was stirred for 24 hours until complete by TLC. Saturated sodium thiosulfate solution (50 ml) was added and the reaction stirred for one hour. The reaction was extracted with CH₂Cl₂ and organic layer was washed with saturated sodium biocarbonate solution (50 ml), brine (50 ml), dried (MgSO₄) and solvent removed *in vacuo.* The crude product was purified by flash column chromatography to yield the title compound as a yellow foam (1.32 g, 83 %).

 $R_f 0.19 (SiO_2; 10:1 CH_2Cl_2: MeOH); \nu_{max} (neat) 3449, 2940,$ 2864, 1725 (C=O), 1672 (C=O), 1474, 1388, 1354, 1261, 1091 cm⁻¹; $[\alpha]_D^{25}$ -28.0 (c 0.1, CHCl₃); δ_H (500 MHz; CDCl₃) 7.43 (1H, d, J 7.5, H10), 7.29-7.25 (2H, m, H11, H12), 7.20 (2H, d, J 8.5 H14), 7.15 (1H, t, J 7.0, H13), 7.08 (2H, d, J 8.5, H15), 4.31 (1H, dd, J 5.5, 4.5, H3), 4.08 (1H, d, J 5.5, H6), 3.99 (1H, d, J 5.5, H5), 3.86-3.84 (2H, m, H1), 3.81 (1H, d, J 5.5, H9), 3.79-3.66 (1H, m, Ha), 3.64-3.55 (2H, m, Ha), 3.43-3.38 (2H, m, Ha, H2), 3.34-3.30 (1H, m, H2'), 2.86 (2H, d, J 4.5, OH), 2.67 (1H, s, H4), 2.27 (1H, s, H7), 1.99 (1H, d, J 110, H8), 1.80 (1H, d, J 11.0, H8'), 1.06 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 172.39 (C=O), 154.23 (C=O), 145.09 (C-Cl), 135.95 (C-C), 134.29 (C[13]H), 132.25 (C-S), 132.04 (C-S), 130.49 (C[14]H), 128.08 (C[15]H), 128.43 (C[10]H), 127.18 (C[11]H), 126.98 (C[12]H), 74.07 (C[6]H), 70.33 (C[5]H), 62.02 (C[1]H₂), 51.12 (C[7]H), 49.33 (C[3]H), 47.29 (C[4]H), 46.51 (C[8]H₂), 42.28 (C[2]H₂), 42.08 (C[9]H), 40.04 (C[a]H₂), 32.54 (C[a]H₂), 17.95 (C[TIPS] H_3), 11.83 (C[TIPS]H); LCMS 659 (M+H⁺); HRMS $(M+H)^+$ found 659.2736 $C_{34}H_{48}N_2O_5ClSSi$ required 659.2736, Δ ppm +0.0; mp 64-66 °C (CH₂Cl₂: MeOH).

(1S, 2R, 3S, 4R, 5R, 6S)-1-3-[2-(4-Chloro-phenylsulfanyl)-phenyl]-5,6-dihydroxy-bicyclo[2.2.1]heptane-2-car-bonyl-3-(2-triisopropylsilanyloxyethyl)-imidazolidin-2-one (9)

A yellow foam (571 mg, 84 %); $[\alpha]_D^{25}$ +35.3 (c 0.085, CHCl₃).

5R, 6S, 7R)-1-7-[2-(4-Chloro-phenylsul-(1S,fanyl)-phenyl]-3-[2-(5-nitro-pyridin-2-ylamino)ethyl]-3-aza-bicyclo[3.2.1]octane-6-carbonyl-3-(2tri-isopropylsilanyloxy-ethyl)-imidazolidin-2-one (10) To a solution of 8 (300 mg, 0.46 mmol) in ethyl acetate (3.6 ml) and water (0.9 ml) at room temperature was added sodium periodate (149 mg, 0.69 mmol). The reaction was stirred for one hour and the solid removed by filtration. The solid was washed with methanol: ethyl acetate (3.5:6.5). Water was added to the filtrate and the organic layer separated. The organic layer was washed with brine, dried $(MgSO_4)$ and the solvent removed in vacuo. The crude product was dissolved in chloroform (5 ml) and 2-(2-aminoethylamino)-5-nitropyridine (83 mg, 0.46 mmol) was added. The reaction was stirred under nitrogen for 30 minutes and sodium triacetoxyborohydride (194 mg, 0.92 mmol) was added. The reaction was stirred overnight, then poured into water and extracted with chloroform. The organic layer was washed with brine, dried $(MgSO_4)$ and solvent removed in vacuo. The crude product was purified by

flash column chromatography to yield the title compound as

a yellow oil (252 mg, 68 %).

 $R_f 0.35$ (SiO₂; 10:4 toluene: ethyl acetate); ν_{max} (neat) 3287, 2941, 2867, 1723 (C=O), 1644 (C=O), 1603, 1473, 1318, 1289, 1248, 1108, 1091 cm⁻¹-1; $[\alpha]_D^{25}$ -37.5 (c 0.2, CHCl₃); δ_H (500 MHz; CDCl₃) 9.05 (1H, d, J 2.5, H20), 8.02 (1H, dd, J 9.5, 2.5, H19), 8.9 (1H, br s, NH), 7.49 (1H, d, J 8.0, H10), 7.39 (1H, d, J 7.5, H11), 7.36 (1H, t, J 6.0, H12), 7.25 (1H, d, J 7.5, H13), 7.10 (2H, d, J 8.5, H14), 6.89 (1H, d, J 9.5, H18), 6.78 (2H, d, J 8.5, H15), 4.83 (1H, d, J 7.0, H9), 4.52 (1H, dd, J 6.5, 6.0, H3), 3.89-3.86 (2H, m, H1), 3.85-3.83 (1H, m, Ha), 3.76-3.0 (1H, m, Ha), 3.59-3.55 (2H, m, Ha), 3.52-3.26 (4H, m, H2, H17), 2.99 (1H, s, H4), 2.55 (1H, d, J 12.0, H5), 2.52-2.44 (3H, m, H5', H16), 2.42 (1H, d, J 11.0, H6), 2.28-2.26 (1H, m, H8), 2.0 (1H, d, J 10.0, H6'), 1.94 (1H, s, H7), 1.52 (1H, d, J 11.5, H8'), 1.06 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 173.02 (C=O), 161. 68 (C-N), 154.34 (C=O), 149.37 (C-Cl), 147.15 (C[20]H), 137.83 (CNO₂), 135.37 ([19]H), 134.79 (C-C), 132.25 (C-S), 132.40 (C-S), 131.22 (C[13]H), 139.51 (C[14]H), 129.02 (C[15]H), 128.91 (C[10]H), 127.16 (C[11]H), 126.99 (C[12]H), 125.29 (C[18]H), 61.73 (C[1]H₂), 57.21 (C[5]H), 56.46 (C[6]H), 54.52 (C[16]H₂), 54.32 (C[3]H), 46.52 (C[2]H₂), 44.17 (C[7]H), $44.00 \ ({\rm C}[9]{\rm H}), \ 42.42 \ ({\rm C}[{\rm a}]{\rm H}_2), \ 40.79 \ ({\rm C}[4]{\rm H}), \ 40.38 \ ({\rm C}[{\rm a}]{\rm H}),$ 37.95 (C[8]H₂), 37.82 (C[2]H₂), 17.94 (C[TIPS]H₃), 11.82 (C[TIPS]H); LCMS (ES+) 806 (M+H⁺); HRMS (M+H)⁺ found 806.3411 C₄₁H₅₆ClN₆O₅SSi required 806.3412, Δ ppm -0.1

(1R, 5S, 6R, 7S)-1-7-[2-(4-Chloro-phenylsul-fanyl)-phenyl]-3-[2-(5-nitro-pyridin-2-ylamino)ethyl]-3-aza-bicyclo[3.2.1]octane-6-carbonyl-3-(2-tri-isopropylsilanyloxy-ethyl)-imidazolidin-2-one (11)

A yellow oil (230 mg, 75 %); $[\alpha]_D^{25}$ +38.0 (c 0.05, CHCl₃).

(1*S*, 5*R*, 6*S*, 7*R*)-7-[2-(4-Chloro-phenylsulfanyl)phenyl]-3-[2-(5-nitro-pyridin-2-ylamino)-ethyl]-3aza-bi-cyclo[3.2.1]octane-6-carboxylic acid (12) To a solution of 10 (100 mg, 0.12 mmol) in THF (0.5 ml) and water (0.5 ml) was added lithium hydroxide (3 mg, 0.125 mmol). The reaction was heated at 50 °C for 48 hours, then acidified using pH 7 buffer and extracted with chloroform. The organic layer was reduced *in vacuo* and the crude product purified by flash column chromatography to yield the title compound as a yellow solid (43 mg, 67 %).

 R_f 0.05 (SiO₂; ethanol); ν_{max} (neat) 3241, 2939, 2791, 1604 (C=O), 1573, 1536, 1474, 1325, 1290, 1091 cm⁻¹; $[\alpha]_D^{25} + 107.5$ (c 0.04, CHCl₃); δ_H (500 MHz; MeOD) 8.92 (1H, d, J 2.5, H20), 7.96 (1H, dd, J 9.5, 2.5, H19), 7.46 (1H, d, J 8.0, H10), 7.34 (1H, t, J 8.5, H11), 7.26 (1H, d, J 8.0, H12), 7.18-7.14 (3H, m, H14, H13), 6.91-6.68 (3H, m, H15, H18), 4.45 (1H, d, J 5.5, H9), 3.68-3.64 (1H, m, H17), 3.47-3.43 (1H, m, H17), 3.29 (1H, t, J 6.0, H3), 3.13 (1H, d, J 11.0, H6), 2.95 (1H, br s, H5), 2.84-2.79 (2H, m, H16), 2.76 (1H, br s, H6'), 2.65 (1H, d, J 10.5, H7), 2.32 (1H, br s, H5'), 2.10-2.08 (1H, m, H8),1.91 (1H, br s, H4), 1.60 (1H, d, J 11.5, H8'); δ_C (125 MHz; MeOD) 179.53 (C=O), 161.61 (C-N), 149.17 (C-C), 145.98 (C[20]H), 136.31 (C-S), 135.05 (C-S), 134.00 ([19]H), 133.44 (CNO₂), 131.78 (C[13]H), 131.06 (C[14]H), 130.18 (C[15]H), 128.73 (C[10]H), 128.49 (C[11]H), 126.53 (C[12]H), 126.31 (C[18]H), 56.91 (C[5]H), 56.52 (C[6]H), 56.53 (C[3]H), 53.93 (C[16]H₂), 46.82 (C[7]H), 44.41 (C[9]H), 40.25 $(C[4]H), 37.57 (C[8]H_2), 36.14 (C[17]H_2); LCMS (APCI+) 659$ $(M+H^+)$; HRMS $(M+H)^+$ found 539.1520 $C_{27}H_{28}N_4O_4SCl$ required 539.1516, Δ ppm -0.4; mp 99-102 °C (ethanol); HPLC - racemic compound inseparable under conditions tried. Columns: Chiralpak OD; AD; AS; AD-H. Solvent; 90:10 Hexane:IPA; 95:5 Hexane:IPA; 98:2 Hexane:IPA. Flow 1mL/min.

6

(1R, 5S, 6R, 7S)-7-[2-(4-Chloro-phenylsulfanyl)phenyl]-3-[2-(5-nitro-pyridin-2-ylamino)-ethyl]-3aza-bi-cyclo[3.2.1]octane-6-carboxylic acid (13)

A yellow solid (54 mg, 86 %); $[\alpha]_D^{25} -105.0$ (c 0.04, CHCl₃) HPLC - racemic compound inseparable under conditions tried. Columns: Chiralpak OD; AD; AS; AD-H. Solvent; 90:10 Hexane:IPA; 95:5 Hexane:IPA; 98:2 Hexane:IPA. Flow 1mL/min.

3 Synthesis of two carbon unit starting material

1-(2-Triisopropylsilanyloxy-ethyl)-imidazolidin-

2-one (14) A round-bottom flask, equipped with a magnetic stirrer, containing azeotroped (CH₂Cl₂/toluene) 1-(2-hydroxy-ethyl)-imaidazolidi-2-one (45.92 g, 0.35 mol), DMAP (2.93 g, 0.03 mol), NEt₃ (86.7 mL, 0.73 mol), CaH₂ (50 mg, 0.49 mmol) and CH_2Cl_2 (450 mL) was slowly charged with TIPSCl (53.2 mL, 0.29 mol) over 20 minutes. The mixture was stirred at room temperature for 16 hours. The resulting suspension was filtered, the filtrate poured carefully into ice water (500 mL) and the filtered solid dissolved in the resulting two phase mixture. The aqueous layer was extracted with CH_2Cl_2 (×2), the combined organic layers washed sequentially with saturated aqueous sodium hydrogen carbonate solution and saturated aqueous sodium chloride solution, dried (MgSO₄) and solvent removed in vacuo. The crude product was purified by column chromatography to give the title compound as a colourless oil (42.9 g, 60 %).

R_f.035 (SiO₂; ethyl acetate); ν_{max} (neat) 3320, 2863, 1711, 1685 (C=O), 1276, 1105 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.73 (1H, br s, NH), 3.83 (2H, 2t, J 5.0, H1), 3.62 (2H, t, J 8.0, Ha), 3.39 (2H, t, J 8.0, Ha), 3.31 (2H, t, J 5.0, H2), 1.12-1.04 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 162.8 (C=O), 63.1 (C[1]H₂), 46. (C[2]H₂), 46.3 (C[a]H₂), 38.4 (C[a]H₂), 17.9 (C[TIPS]H₃), 11.9 (C[TIPS]H); HRMS (M+Na)⁺ found 286.2062 C₁₄H₃₀N₂O₃Si requires 286.4857, Δ ppm -4.8.

1-(2-Bromo-acetyl)-3-(2-triisopropylsilanyloxy-

ethyl)-imidazolidin-2-one (15) A round-bottom flask, equipped with a magnetic stirrer, containing 14 (13.76 g, 48 mmol) and THF (150 ml) at 0 °C was sequentially charged dropwise with bromoacetyl bromide (20 ml, 240 mmol) over 45 minutes followed by triethylamine (33 ml, 240 mmol) over 45 minutes. The reaction mixture was allowed to warm to room temperature and stirred for two hours. The reaction mixture was quenched by the addition of saturated aqueous sodium bicarbonate solution (150 ml) and stirred for one hour. The reaction mixture was extracted with ethyl acetate (× 3), the combined organic layers washed with brine, dried (MgSO₄) and the solvent removed *in vacuo*. The crude product was purified by flash column chromatography to give the title compound as a colourless oil (16.8 g, 86 %).

R_f 0.44 (SiO₂; 2:8 ethyl acetate: 40:60 petrol); ν_{max} (neat) 2942, 2866, 1726 (C=O), 1683 (C=O), 1376, 1356, 1273, 1106, 917, 730 cm⁻¹; δ_H (400 MHz; CDCl₃) 4.44 (2H, s, H3), 3.80-3.73 (4H, m, H1, Ha), 3.58-3.52 (2H, t, J 8.5, Ha), 3.34-3.29 (2H, t, J 5.0, H2), 1.23-0.64 (21H, s, TIPS); δ_C (100 MHz; CDCl₃) 166.0 (C=O), 154.0 (C=O), 61.8 (C[1]H₂), 46.4 (C[2]H₂), 42.7 (C[a]H₂), 40.0 (C[a]H₂), 28.3 (C[3]H₂), 17.8 (C[TIPS]H₃), 11.7 (C[TIPS]H); LCMS (APCI+) 407 (M+H⁺); HRMS (M+Na)⁺ found 429.11754 C₁₆H₃₁N₂O₃SiBrNa requires 429.11795, Δ ppm +0.95.

2-Oxo-2-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)imidazolidin-1-yl]-ethyl-phosphonic acid diethyl ester (16) A round-bottom flask, equipped with a magnetic stirrer, containing the 15 (16.0 g, 39 mmol) and triethyl phosphite (35 ml, 206 mmol) was refluxed at 155 °C for $3\frac{1}{2}$ hours. The unreacted triethyl phosphite was then removed *in vacuo* to give the crude product. The crude product was purified by flash column chromatography to give the title compound (17.5 g, 96 %) as a pale yellow solid.

R_f 0.34 (SiO₂; ethyl acetate: CH₂Cl₂: MeOH 18:18:1); ν_{max} (neat) 2942, 2867, 1726 (C=O), 1677 (C=O), 1357, 1258, 1021, 882 cm⁻¹; δ_H (400 MHz; CDCl₃) 4.19-4.09 (4H, m, OCH₂CH₃), 3.88-3.76 (6H, m, H1, Ha, H3), 3.61-3.53 (2H, t, J 8.5, Ha), 3.41-3.35 (2H, t, J 5.5, H2), 1.33-1.26 (6H, t, J 7.2, OCH₂CH₃), 1.12-0.99 (21H, m, TIPS); δ_C (100 MHz; CDCl₃) 165.1 (C=O), 154.3 (C=O), 62.4 (CH₂), 62.2 (C[1]H₂), 46.6 (C[2]H₂), 42.4 (C[a]H₂), 40.1 (C[a]H₂), 34.4 (C[3]H₂), 33.0 (C[3]H₂), 17.9 (C[TIPS]H₃), 16.3 (C[OEt]H₃), 16.4 (C[OEt]H₃), 11.8 (C[TIPS]H); LCMS (APCI+) 465 (M+H⁺); HRMS (M+H)⁺ found 465.2537 C₂₀H₄₂N₂O₆SiP required 465.2550, Δ ppm -1.3; mp 30 °C (ethyl acetate: CH₂Cl₂: MeOH).

2-Oxo-2-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)imidazolidin-1-yl]-ethyl-phosphonic acid diethyl ester (1) 16 was cleaved using the standard cleavage conditions to yield a colourless oil (4.9 g, 93 %).

R_f 0.12 (SiO₂; ethyl acetate: CH₂Cl₂: MeOH 18:18:4); ν_{max} (neat) 2946, 2874, 1726 (C=O), 1686 (C=O), 1355, 1251, 1016, 884 cm⁻¹; δ_H (400 MHz; CDCl₃) 4.11 (1H, br s, OH), 4.06-3.95 (4H, m, OC<u>H₂</u>CH₃), 3.74 (2H, d, 7.5, H1), 3.72 (1H, s, H3), 3.68 (1H, s, H3'), 3.64-3.59 (2H, br s, Ha), 3.45 (2H, t, *8.0*, Ha), 3.28 (2H, t, *5.0*, H2), 1.20 (6H, t, *J* 7.0, OCH₂C<u>H₃); δ_C (100 MHz; CDCl₃) 164.7 (C=O), 154.5 (C=O), 62.5 (C[1]H₂), 59.73 (C[OEt]H₂), 46.4 (C[2]H₂), 41.6 (C[a]H₂), 40.0 (C[a]H₂), 34.0 (C[3]H₂), 33.0 (C[3]H₂), 16.2 (C[OEt]H₃), 16.1 (C[OEt]H₃); HRMS (M+H)⁺ found 308.1135 C₁₁H₂₂N₂O₆P required 308.1137, Δ ppm -0.2.</u>

4 Horner Wadsworth Emmons Reaction

4.1 Building blocks used

4.1.1 General procedure on solid phase

A test tube containing a suspension of the solid support immobilised phosphonate (17) (0.48 mmol/g, 1 equiv.), powered lithium bromide (2 equiv.) and dry DMF (10 mL/g beads) at room temperature was charged sequentially with DBU (2 equiv.) and the aldehyde (3 equiv.). The reaction was viciously agitated at room temperature for 48 hours. The beads were filtered and wsahed sequentially with DMF (× 3), CH₂Cl₂ (× 3), CH₂Cl₂:MeOH (1:1, × 3) and CH₂Cl₂ (× 3), air, dried under suction for 2 hours with occasional agitation, and then placed under high vacuum to give free flowing beads. A sample of the beads were cleaved using the standard cleavage conditions to give:

1-(2-Hydroxy-ethyl)-3-(thiophen-2-yl-acryloyl)imidazolidin-2-one (18)

$$HO \xrightarrow{2} N \xrightarrow{0} A \xrightarrow{0} 3 \xrightarrow{5} 6^7$$

A white solid. R_f 0.33 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3493 (OH), 1715 (C=O), 1640 (C=O) cm⁻¹; δ_H (500 MHz; CDCl₃) 8.02-7.95 (2H, 2d, J 5.5, H3, H4), 7.34 (3H, s, H5, H6, H7), 4.09 (2H, t, J 7.5, H1), 3.95 (2H, t, J 5.0, Ha), 3.65 (2H, t, J 7.5, H2), 3.43 (2H, t, J 5.0, Ha); δ_C (125 MHz; CDCl₃) 162.99 (C=O), 146.56 (C=O), 136.50 (C[4]H), 130.85 (CH), 128.37 (CH), 127.95 (CH), 117.14 (C[3]H), 60.95 (C[1]H₂), 46.81 (C[2]H₂), 42.35 (C[a]H₂), 40.15 (C[a]H₂); LCMS (APCI+) 267 (M+H⁺): HRMS (M+H)⁺ found 267.0809 C₁₂H₁₅N₂O₃S requires 267.0803, Δ ppm +2.0; mp 154-156 °C (CH₂Cl₂: MeOH).

1-[3-(4-Bromo-phenyl)-acryloyl]-3-(2-hydroxyethyl)-imidazolidin-2-one (19)

A white solid. R_f 0.32 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3473 (OH), 1713 (C=O), 1660 (C=O), 1618 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.98 (1H, d, J 15.5, H4), 7.63 (1H, d, J 15.5, H3), 7.45-7.36 (4H, 2 × d, J 8.5, H5, H6), 3.91 (2H, t, J 8.0, H1), 3.78 (2H, t, J 5.0, Ha), 3.53 (2H, t, J 8.0, H2), 3.40 (2H, t, J 5.0, Ha), 1.87 (1H, br s, OH); δ_C (125 MHz; CDCl₃) 165.55 (C=O), 155.71 (C=O), 142.56 (C[4]H), 142.40 (C-C), 134.03 (C-Br), 131.99 (CH), 129.75 (CH), 129.44 (CH), 128.28 (CH), 124.27 (CH), 119.07 (C[3]H), 60.84 (C[1]H₂), 46.77 (C[2]H₂), 42.33 (C[a]H₂), 40.15 (C[a]H₂); LCMS (APCI+) 339 (M+H⁺): HRMS (M+Na)⁺ found 361.0174 C₁₄H₁₅BrN₂O₃Na requires 361.0164, Δ ppm +2.7; mp 128-130 °C (CH₂Cl₂: MeOH).

1-(2-Hydroxy-ethyl)-3-[3-(3,4,5-trimethoxy-phenyl)-acryloyl]-imidazolidin-2-one (20)

A white solid. R_f 0.33 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3453 (OH), 1704 (C=O), 1688 (C=O) cm⁻¹; δ_H (500 MHz; CDCl₃) 7.95 (1H, d, J 15.5, H4), 7.72 (1H, d, J 15.5, H3), 6.86 (2H, s, H5), 3.99 (2H, t, J 8.5, H1), 3.89 (3H, s, OMe) 3.87 (3H, s, OMe), 3.85 (3H, s, OMe), 3.63-3.58 (4H, m, H2, Ha), 3.48 (2H, t, J 5.0, Ha); δ_C (125 MHz; CDCl₃) 165.76 (C=O), 153.36 (C=O), 152.64 (C), 144.22 (C[4]H), 140.43 (CH), 130.65 (C), 117.71 (C[3]H), 107.49 (C[5]H), 105.62 (C[5]H), 60.92 (C[1]H₂), 56.22 (C[Me]H₃), 46.76 (C[2]H₂), 42.33 (C[a]H₂), 40.19 (C[a]H₂); LCMS (APCI+) 351 (M+H⁺): HRMS (M+H)⁺ found 351.1554 C₁₇H₂₃N₂O₆ requires 351.1556, Δ ppm -0.6; mp 190-192 °C (CH₂Cl₂: MeOH).

1-But-2-enoyl-3-(2-hydroxy-ethyl)-imidazolidin-2-one (21)

A yellow oil. R_f 0.33 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3442 (OH), 1714 (C=O), 1662 (C=O), 1621 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.35 (1H, dq, J 15.0, 7.0, H4), 7.08 (1H, dq, J 15.0, 1.5, H3), 3.90 (2H, t, J 8.0, H1), 3.82 (2H, t, J 5.0, Ha), 3.56 (2H, t, J 8.0, H2), 3.44 (2H, t, J 5.0, Ha), 1.92 (3H, dd, J 7.0, 1.5, H5); δ_C (125 MHz; CDCl₃) 165.78 (C=O), 155.66 (C=O), 144.21 (C[4]H), 122.77 (C[3]H), 60.62 (C[1]H₂), 46.69 (C[2]H₂), 42.20 (C[a]H₂), 39.99 (C[a]H₂), 18.37 (C[5]H₃); LCMS (APCI+) 199 (M+H⁺): HRMS (M+H)⁺ found 199.1085 C₉H₁₅N₂O₃ required 199.1083, Δ ppm +1.0.

4.1.2 General procedure in solution phase

To a stirred solution of **16** (1.0 equiv.) and lithium bromide (1.2 equiv.) in dry MeCN under nitrogen was added DBU (1.2 equiv.) and the aldehyde (3.0 equiv.). The reaction was monitored by TLC and after 2.5 hours the solvent removed *in vacuo*. The residue was dissolved in ethyl acetate and washed with sodium hydrogen carbonate solution (\times 2), brine (\times 2), dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield:

1-[3-(4-Bromo-phenyl)-acryloyl]-3-(2triisopropyl-silanyloxy-ethyl)-imidazolidin-2-one (22)

A white solid (210 mg, 81 %). R_f 0.30 (SiO₂; 8:2 hexane: ethyl acetate); ν_{max} (neat) 2941, 2865, 1720 (C=O), 1644 (C=O), 1618, 1486, 1374, 1353, 1241, 1105 cm⁻¹; δ_H (500 MHz; CDCl₃) 8.01 (1H, d, J 15.5, H4), 7.65 (1H, d, J 15.5, H3), 7.37 (4H, s, H5, H6), 3.80-3.90 (4H, m, H1, Ha), 3.54 (2H, t, J 8.0, H2), 3.36 (2H, t, J 5.0, Ha), 0.95 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 165.73 (C=O), 155.08 (C=O), 142.30 (C[4]H), 134.52 (C-C), 132.24 (CH), 130.05 (CH), 124.38 (C-Br), 119.07 (C[3]H), 62.41 (C[1]H₂), 46.90 (C[2]H₂), 43.11 (C[a]H₂), 40.41 (C[a]H₂), 18.12 (CH₃), 12.15 (CH); LCMS (APCI+) 495 (M+H⁺): HRMS (M+H)⁺ found 495.1689 C₂₃H₃₆BrN₂O₃Si requires 495.1678, Δ ppm +2.1; mp 67-69 °C (hexane: ethyl acetate).

1-[3-(2-Bromo-phenyl)-acryloyl]-3-(2triisopropyl-silanyloxy-ethyl)-imidazolidin-2-one (23)

A white solid (695 mg, 70 %); R_f 0.34 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2942, 2866, 1719 (C=O), 1664 (C=O), 1611, 1567, 1465, 1436, 1381, 1364, 1265 cm⁻¹; δ_H (500 MHz; CDCl₃) 8.17 (1H, d, J 15.5, H4), 8.05 (1H, d, J 15.5, H3), 7.76 (1H, dd, J 8.0, 1.5, H8), 7.60 (1H, d, J8.0, H5), 7.31 (1H, apparent t, J 8.0, H6), 7.20 (1H, td, J 8.0, 1.5, H7), 3.99-3.95 (2H, m, Ha), 3.91 (2H, t, J 5.0, H1), 3.70-3.66 (2H, m, Ha), 3.46 (2H, t, J 5.0, H2), 1.06 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 165.34 (C=O), 154.85 (C=O), 141.91 (C[4]H), 135.22 (C-C), 133.26 (CH), 132.52 (C-Br), 130.87 (CH), 128.42 (CH), 127.58 (CH), 121.38 (C[3]H), 62.14 $(C[1]H_2), 46.61 (C[2]H_2), 42.88 (C[a]H_2), 40.10 (C[a]H_2),$ 17.94 (C[TIPS]H₃), 11.84 (C[TIPS]H); LCMS (APCI+) 496 $(M+H^+)$: HRMS $(M+H)^+$ found 495.1673 $C_{23}H_{35}N_2O_3SiBr$, required 495.1673, Δ ppm -0.1; mp 151-154 $^{\circ}\mathrm{C}$ (hexane: ethyl acetate).

1-(2-Triisopropylsilanyloxy-ethyl)-3-[3-(2-vinyl-phenyl)-acryloyl]-imidazolidin-2-one (24)

A yellow oil (200 mg, 75 %); R_f 0.28 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2942, 2865, 1720 (C=O), 1663 (C=O), 1614, 1374, 1354, 1268, 1241, 1107 cm⁻¹; δ_H (500 MHz; CDCl₃) 8.14 (1H, d, J 15.5, H4), 7.98 (1H, d, J 15.5, H3), 7.67 (1H, dd, J 7.5, 1.0, ArH), 7.46 (1H, d, J 8.0, ArH), 7.31 (1H, td, J 8.0, 1.5, ArH), 7.25 (1H, td, J 7.5, 1.5, ArH), 7.11 (1H, dd, J 17.0, 11.0, H9), 5.62 (1H, dd, J 17.0, 1.5, H10), 5.39 (1H, dd, J 11.0, 1.0, H10'), 3.96-3.91 (2H, m, Ha), 3.88 (2H, t, J 5.0, H1), 3.67-3.62 (2H, m, Ha), 3.42 (2H, t, J 5.0, H2), 1.04 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 165.84 (C=O), 154.88 (C=O), 141.21 (C[4]H), 138.11 (C), 135.11 (CH), 134.39 (C), 129.72 (CH), 127.82 (CH), 127.37 (CH), 126.75 (C[9]H), 120.48 (C[3]H), 117.72 (C[10]H₂), 62.18 (C[1]H₂), 46.60 (C[2]H₂), 42.87 (C[a]H₂), 40.11 (C[a]H₂), 17.93 (C[TIPS]H₃), 11.83 (C[TIPS]H); LCMS (APCI+) 443 (M+H⁺): HRMS (M+H)⁺ found 443.2726 C₂₅H₃₉N₂O₃Si, required 443.2724, Δ ppm -0.4.

1-Octa-2,7-dienoyl-3-(2-triisopropylsilanyloxyethyl)-imidazolidin-2-one (25)

A colourless oil (136 mg, 67 %); R_f 0.24 (SiO₂; 11:2 hexane: ethyl acetate); ν_{max} (neat) 2940, 2865, 1725 (C=O), 1671 (C=O), 1634, 1435, 1375, 1353, 1270, 1245, 1106 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.38 (1H, dt, J 15.5, 1.5, H3), 7.05 (1H, dt, J 15.5, 7.0, H4), 5.79 (1H, ddt, J 17.0, 10.0, 7.0, H8), 5.01 (1H, ddt, J 17.0, 2.0, 1.5, H9), 4.96 (1H, ddt, J 10.0, 2.0, 1.5, H9'), 3.90-3.86 (4H, m, H1, Ha), 3.62 (2H, dd, J 8.5, 7.5, Ha), 3.42 (2H, t, J 5.0, H2), 2.27 (2H, tdd, J 8.0, 7.0, 1.0, H5), 2.06 (2H, tdt, J 7.5, 7.0, 1.0, H7), 1.57 (2H, quintet, J 7.5, H6), 1.06 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 165.94 (C=O), 154.84 (C=O), 148.24 (C[4]H), 138.21 (C[8]H), 121.74 $(C[3]H), 114.94 (C[9]H), 62.18 (C[1]H_2), 46.56 (C[2]H_2), 42.82$ $(C[a]H_2), 39.98 (C[a]H_2), 33.19 (C[7]H_2), 31.88 (C[5]H_2),$ 27.43 (C[6]H₂) 17.94 (C[TIPS]H₃), 11.84 (C[TIPS]H); LCMS (APCI+) 366 $(M+H^+)$: HRMS $(M+H)^+$ found 409.2881 $C_{22}H_{40}N_2O_3Si$, required 409.2881, Δ ppm +0.0.

1-[3-(9-Ethyl-9H-carbazol-3-yl)-acryloyl]-3-(2triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (26)

A yellow foam (138 mg, 24 %). R_f 0.25 (hexane: ethyl acetate 3:1); ν_{max} (thin film) 2941 (s, CH), 2865 (s, CH), 1721 (s, C=O), 1660 (s, C=O) cm⁻¹; dH (400 MHz, CDCl₃) 8.34 (1H, s, ArH), 8.15 (1H, d, J 15.0, H3), 8.12 (1H, d, J 8.0, ArH), 8.03 (1H, d, J 15.0, H4), 7.76 (1H, d, J 8.0, ArH), 7.46 (1H, dd, J 8.0, 8.0, ArH), 7.37 (1H, d, J 8.0, ArH), 7.34 (1H, d, J 8.0, ArH), 7.25 (1H, dd, J 8.0, 8.0, ArH), 4.32 (2H, q, J 7.0, H12), 3.96 (2H, t, J 7.0, H1), 3.92 (2H, t, J 5.0, Ha), 3.64 (2H, t, J 7.0, Ha), 3.46 (2H, t, J 5.0, H2), 1.41 (3H, t, J 7.0, H13), 1.10-1.02 (21 H, m, (TIPS)); δ_C (100 MHz, CDCl₃) 166.4 (C=O), 155.2 (C=O), 145.3 (C[4]H), 141.2 (C-C), 140.4 (C-C), 126.5 (C-C), 126.3 (CH), 126.1 (CH), 123.3 (C-C), 123.0 (C-C), 121.3 (C[3]H), 120.7 (CH), 119.5 (CH), 115.2 (CH), 108.7 (CH), 108.6 (CH), $62.3 (C[1]H_2), 46.6 (C[2]H_2), 42.9 (C[a]H_2), 40.2 (C[a]H_2),$ 37.7 (C[12]H₂), 18.0 (CH₃), 13.8 (C[13]H₃), 11.8 (CH); HRMS (ES^+) calculated for $C_{31}H_{43}N_3O_3Si [M+H]^+ 534.3146$, found 534.3146.

1-Acryloyl-3-(2-triisopropylsilanyloxy-ethyl)imidazolidin-2-one (27)

$$\mathsf{TIPSO}_{1} \overset{2}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\underset{a}{\overset{\mathsf{O}}{\underset{a}{\underset{a}{\atopa}{\atopa}{\atopa}{\atopa}{\atopa}{\atopa}}}}}}^{\mathsf{O}} \overset{\mathsf{O}}{\overset{\mathsf{H}}} \overset{\mathsf{H}}{\overset{\mathsf{H}}}_{\mathsf{H}}}$$

A viscous colourless oil (0.70 g, 98 %): R_f 0.32 (hexane: ethyl acetate 4:1); ν_{max} (thin film) 2942 (s, CH), 2866 (s, CH), 1725 (s, C=O), 1672 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.62 (1H, dd, J 17.0, 10.0, H5), 6.47 (1H, dd, J 17.0, 2.0, H4), 5.77 9

(1H, dd, J 10.0, 2.0, H3), 3.91-3.86 (4H, m, C[1]H₂, Ha), 3.63 (2H, t, J 8.0, Ha), 3.42 (2H, t, J 5.0, H2), 1.14-1.01 (21H, m, (TIPS)); δ_C (100 MHz, CDCl₃) 165.6 (C=O), 154.6 (C=O), 129.2 (C[4,5]H₂), 128.5 (C[3]H), 62.1 (C[1]H₂), 46.5 (C[2]H₂), 42.8 (C[a]H₂), 39.9 (C[a]H₂), 17.9 (CH₃), 11.8 (CH); HRMS (ES⁺) calculated for C₁₇H₃₂N₂O₃Si [M+H]⁺ 341.2255, found 341.2257.

1-(5-Methyl-hex-2-enoyl)-3-(2triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (28)

A colourless oil (3.30 g, 69 %): R_f 0.41 (30-40 pet. ether:ethyl acetate 4:1); ν_{max} (thin film) 2943 (s, CH), 2867 (s, CH), 1726 (s, C=O), 1671 (s, C=O), 1634 (s, C=C) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.36 (1H, dt, J 15.0, 1.0, H4), 7.05 (1H, dt, J 15.0, 7.0, H3), 3.89-3.85 (4H, m, H1, Ha), 3.60 (2H, t, J 9.0, Ha), 3.41 (2H, t, J 5.0, H2), 2.14 (2H, app. dt, J 7.0, 1.0, H5), 1.77 (1H, septet, J 7.0, H6), 1.13-1.02 (21H, m, TIPS), 0.92 (6H, d, J 7.0, H7); δ_C (100 MHz, CDCl₃) 165.9 (C=O), 154.8 (C=O), 147.6 (C[4]H), 122.4 (C[3]H), 62.2 (C[1]H₂), 46.5 (C[2]H₂), 42.8 (C[a]H₂), 41.7 (C[5]H₂), 40.0 (C[a]H₂), 27.9 (C[6]H), 22.4 (C[7]H₃), 17.9 (CH₃), 11.8 (CH); HRMS (ES⁺) calculated for C₂₁H₄₀N₂O₃Si [M+H]⁺ 397.2881, found 397.2884.

1-(3-(2-chloro-6-methoxyquinolin-3-yl)acryloyl)-3-(2-(triisopropylsilyloxy)ethyl)imidazolidin-2one (29)

A white solid (940 mg, 81 %); R_f 0.37 (SiO₂; 2:8 petrol: ethyl acetate); ν_{max} (neat) 2942, 2865, 1720 (C=O), 1666 (C=O), 1621, 1583, 1495, 1354, 1055, 729 cm⁻¹; δ_H (500 MHz; CDCl₃) 8.39 (1H, s, H5), 8.21-8.20 (2H, m, H3, H4), 7.85 (1H, d, J 9.0, H9), 7.35 (1H, dd, J 9.0, 3.0, H8), 7.08 (1H, d, J 3.0, H6), 4.00-3.86 (7H, m, Ha, H1, H7), 3.66 (2H, t, J 8.5, Ha), 3.44 (2H, t, J 5.0, H2), 1.10 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 164.8 (C=O), 158.3 (C=O), 154.9 (C), 147.8 (C), 143.9 (C), 138.3 (C[4]H), 134.8 (CH), 129.6 (CH), 128.2 (C), 128.1 (C), 124.2 (CH), 122.5 (C[3]H), 105.2 (CH), 62.1 (C[1]H₂), 55.6 (C[OMe]), 46.6 (C[2]H₂), 42.9 (C[a]H₂), 40.1 (C[a]H₂), 17.9 (C[TIPS]H₃), 11.8 (C[TIPS]H); HRMS (M+H)⁺ found 532.2395 C₂₇H₃₉N₃O₄SiCl, required 532.2393, Δ ppm +0.3; mp 156 °C (petrol: ethyl acetate).

5 Branching pathway 1 1,3-Dipolar cycloadditions

5.1 Building blocks used

5.2 Synthesis of building blocks for the 1,3-dipolar cycloaddition

(Benzylidene-amino)-acetic acid methyl ester (30) A suspension of methyl glycinate hydrochloride (3.2 g, 25.3 mmol), benzaldehyde (2.1 mL, 21.1 mmol) and MgSO₄ (3.0 g, 25.3 mmol) in CH₂Cl₂ (30 mL) was stirred at 0 °C. TEA (3.5 mL, 25.3 mmol) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. Et₂O (50 mL) was then added and the solution was filtered. The filtrate was washed with water (× 2), brine (× 2), dried (MgSO₄) and concentrated *in vacuo* to give the title compound as a colourless oil (3.54 g, 95 %).

 $\begin{array}{l} \nu_{max} \mbox{ (thin film) } 2953 \mbox{ (s, CH), } 2851 \mbox{ (s, CH), } 1740 \mbox{ (s, C=O), } 1646 \mbox{ (s, C=N) cm}^{-1}; \mbox{ } \delta_H \mbox{ (400 MHz, CDCl_3) } 8.28 \mbox{ (1H, s, H3), } 7.77 \mbox{ (2H, dd, } J \mbox{ 7.0, } 2.0, \mbox{ ArH}), \mbox{ 7.44-7.38 \mbox{ (3H, m, ArH), } 4.41 \mbox{ (2H, s, H2), } 3.76 \mbox{ (3H, s, H1); } \mbox{ } \delta_C \mbox{ (125 MHz, CDCl_3) } 170.5 \mbox{ (C=O), } 165.5 \mbox{ (C[3]H), } 135.6 \mbox{ (C-C), } 131.3 \mbox{ (CH), } 128.6 \mbox{ (CH), } 128.5 \mbox{ (CH), } 62.0 \mbox{ (C[2]H_2), } 52.1 \mbox{ (C[1]H_3). } Data \mbox{ consistant with literature values.} \end{array}$

2-(Benzylidene-amino)-propionic acid methyl ester (31) A suspension of L-alanine methyl ester hydrochloride (3.53 g, 25.3 mmol), benzaldehyde (2.1 mL, 21.1 mmol) and MgSO₄ (3.0 g, 25.3 mmol) in CH₂Cl₂ (50 mL) was stirred at 0 °C. TEA (3.5 mL, 25.3 mmol) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. Et₂O (50 mL) was then added and the solution was filtered. The filtrate was washed with water (× 2) and brine (× 2), dried (MgSO₄) and concentrated *in vacuo* to give the title compound as a colourless oil (3.52 g, 87 %).

$$MeO \xrightarrow{1}_{3} N \xrightarrow{Ph}_{4}$$

(Benzylidene-amino)-phenyl-acetic acid methyl ester (32) A suspension of (S)-(+)-2-phenylglycine methyl ester hydrochloride (5.10 g, 25.3 mmol), benzaldehyde (2.1 mL, 21.1 mmol) and MgSO₄ (3.0 g, 25.3 mmol) in CH₂Cl₂ (50 mL) was stirred at 0 °C. TEA (3.5 mL, 25.3 mmol) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. Et₂O (50 mL) was then added and the solution was filtered. The filtrate was washed with water (× 2) and brine (× 2), dried (MgSO₄) and concentrated *in vacuo* to give the title compound as a white solid (5.08 g, 95 %).

$$\underset{1}{\overset{O}{\overset{}}}_{Ph}^{MeO} \overset{O}{\overset{}}_{Ph}^{2} \overset{N}{\underset{Ph}{\overset{}}}_{Ph}^{Ph}$$

 $\begin{array}{l} \nu_{max} \mbox{ (thin film) } 3029 \mbox{ (s, CH), } 2952 \mbox{ (s, CH), } 1738 \mbox{ (s, C=O), } 1641 \mbox{ (s, C=N) cm}^{-1}; \mbox{ [α]}_{25}^{25} \mbox{ -41.6 (c 0.79, CHCl_3); } \delta_H \mbox{ (400 } \mbox{MHz, CDCl_3) } 8.35 \mbox{ (1H, s, H3), } 7.82 \mbox{ (2H, d, J 7.0, ArH), } 7.51 \mbox{ (2H, d, J 7.0, ArH), } 7.43\mbox{ -7.31 (6H, m, ArH), } 5.21 \mbox{ (1H, s, H2), } 3.75 \mbox{ (3H, s, H1); } \delta_C \mbox{ (100 MHz, CDCl_3) } 171.5 \mbox{ (C=O), } 163.8 \mbox{ (C[3]H) } 138.1 \mbox{ (C-C), } 135.7 \mbox{ (C-C), } 131.2 \mbox{ (CH), } 128.7 \mbox{ (CH), } 128.6 \mbox{ (CH), } 128.1 \mbox{ (CH), } 127.8 \mbox{ (CH), } 76.5 \mbox{ (C[2]H), } 52.5 \mbox{ (C[1]H_3); } m/z \mbox{ (APCI+) } 254 \mbox{ (92 \%, M+H+); } mp \mbox{ 48 °C. Data in agreement with literature values. } [2] \end{array}$

2-(Benzylidene-amino)-3-phenyl-propionic acid methyl ester (33) A suspension of L-phenylalanine methyl ester hydrochloride (1.88 g, 8.72 mmol), benzaldehyde (0.74 mL, 7.26 mmol) and MgSO₄ (1.05 g, 8.72 mmol) in CH₂Cl₂ (20 mL) was stirred at 0 °C. TEA (1.22 mL, 8.72 mmol) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred for two days. Et₂O (20 mL) was then added and the solution was filtered. The filtrate was washed with water (× 2) and brine (× 2), dried (MgSO₄) and concentrated *in vacuo* to give the title compound as a colourless oil (2.07 g, 89 %).

$$MeO \int_{1}^{0} N H H$$

 ${\rm R}_f$ 0.37 (hexane: ethyl acetate 3:1); ν_{max} (thin film) 2952 (s, CH), 2849 (s, CH), 1736 (s, C=O), 1640 (s, C=N) cm^{-1}; $[\alpha]_D^{25}$ –206.7 (c 0.92, CHCl₃); δ_H (400 MHz, CDCl₃) 7.93 (1H, s, H4), 7.69 (2H, dd, J 6.0, 2.0, ArH), 7.45-7.36 (3H, m, ArH), 7.26-7.15 (5H, m, ArH), 4.18 (1H, dd, J 9.0, 5.0, H2), 3.75 (3H, s, H1), 3.38 (1H, dd, J 14.0, 5.0, H3), 3.15 (1H, dd, J 14.0, 9.0, H3'); δ_C (100 MHz, CDCl₃) 172.1 (C=O), 163.8 (C[4]H) 137.4 (C-C), 135.6 (C-C), 131.1 (CH), 129.7 (CH), 128.5 (CH), 128.5 (CH), 128.3 (CH), 126.6 (CH), 75.0 (C[2]H), 52.2 (C[1]H₃), 39.8 (C[3]H₂); m/z (APCI+) 268 (100 %, M+H⁺). [2]

[(2-Methyl-benzylidene)-amino]-acetic acid methyl ester (34) A suspension of glycine methyl ester hydrochloride (2.61 g, 20.8 mmol), ortho-tolualdehyde (2.0 mL, 17.3 mmol) and MgSO₄ (2.50 g, 20.8 mmol) in CH₂Cl₂ (50 mL) was stirred at 0 °C. TEA (2.9 mL, 20.8 mmol) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. Et₂O (100 mL) was then added and the solution was filtered. The filtrate was washed with water (× 2) and brine (× 2), dried (MgSO₄) and concentrated *in vacuo* to give the title compound as a crystalline solid (2.80 g, 75 %).

$$MeO \underbrace{1}_{2} \underbrace{N}_{3} \underbrace{1}_{8} \underbrace{N}_{3} \underbrace{N}_{8} \underbrace{N}_{1} \underbrace{N}_{3} \underbrace{N}_{1} \underbrace{N}_{$$

 ν_{max} (thin film) 2953 (s, CH), 1737 (s, C=O), 1639 (s, C=N) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.57 (1H, s, H3), 7.90 (1H, d, J 7.0, ArH), 7.29 (1H, dd, J 7.0, 7.0, ArH), 7.21 (1H, dd, J 7.0, 7.0, ArH), 7.15 (1H, d, J 7.0, ArH), 4.41 (2H, s, H2), 3.75 (3H, s, H1), 2.49 (3H, s, H8); δ_C (100 MHz, CDCl₃) 170.6 (C=O), 164.0 (C[3]H) 138.0 (C-C), 133.6 (C-C), 130.8 (CH), 127.8 (CH), 126.2 (CH), 62.4 (C[2]H₂), 52.1 (C[1]H₃), 19.2 (C[8]H₃); m/z (APCI⁺) 192 (100 %, M+H+); mp 45 °C.

[(Naphthalen-2-ylmethylene)-amino]-acetic acid methyl ester (35) A suspension of glycine methyl ester hydrochloride (1.0 g, 7.7 mmol), 2-naphtaldehyde (1.0 g, 6.4 mmol) and MgSO₄ (0.93 g, 7.7 mmol) in CH₂Cl₂ (25 mL) was stirred at 0 °C. TEA (1.1 mL, 7.7 mmol) was added dropwise. The reaction was allowed to warm to ambient temperature and stirred overnight. Et₂O (50 mL) was then added and the solution was filtered. The filtrate was washed with water (× 2) and brine (× 2), dried (MgSO₄) and concentrated *in vacuo* to give the title compound as an off-white solid (1.33 g, 5.9 mmol, 91 %).

 $\begin{array}{l} \nu_{max} \mbox{ (thin film) } 2953 \mbox{ (s, CH), } 2881 \mbox{ (s, CH), } 1723 \mbox{ (s, C=O), } 1692 \mbox{ (s, C=N) cm^{-1}; } \delta_H \mbox{ (400 MHz, CDCl_3) } 8.45 \mbox{ (1H, s, H3), } 8.09 \mbox{ (1H, s, ArH), } 8.04 \mbox{ (1H, dd, } J \mbox{ 9.0, } 2.0, \mbox{ ArH}), 7.92-7.83 \mbox{ (3H, m, ArH), } 7.57-7.48 \mbox{ (2H, m, ArH), } 4.48 \mbox{ (2H, s, H2), } 3.80 \mbox{ (3H, s, H1); } \delta_C \mbox{ (100 MHz, CDCl_3) } 170.6 \mbox{ (C=O), } 165.5 \mbox{ (C[3]H) } 135.0 \mbox{ (C-C), } 133.3 \mbox{ (C-C), } 133.0 \mbox{ (C-C), } 130.6 \mbox{ (CH), } 128.7 \mbox{ (CH), } 127.9 \mbox{ (CH), } 127.4 \mbox{ (CH), } 126.5 \mbox{ (CH), } 123.9 \mbox{ (CH), } 62.1 \mbox{ (C[2]H_2), } 52.2 \mbox{ (C[1]H_3); m/z} \mbox{ (APCI^+) } 228 \mbox{ (90 \%, M+H+) mp } 84 \mbox{ °C.} \end{array}$

5.3 General procedure for enantioselective 1,3-dipolar cycloaddition reaction

AgOAc (0.1 equiv.) and (R)-QUINAP (0.12 equiv.) were dissolved in THF at ambient temperature, a spatula of powdered molecular sieves (4 Å) was added. The reaction mixture was stirred for 1h. The imine (**30-35**) (1.5 equiv.) was added to the reaction mixture at -40 C, followed by the TIPS protected alkene (1 equiv.) and iPr₂Net (0.3 equiv.). The reaction mixture was stirred at -78 °C for 6 hours and left at -25 °C overnight, after which the reaction mixture was concentrated *in vacuo*. The crude product was purified by flash chromatography (hexane:ethyl acetate 2:1).

A colourless white foam (60 % ee); $[\alpha]_D^{25}$ -20.8 (c 1.22, CHCl₃). Data in agreement with racemic compound. EE calculated using chiral shift reagents, see general methods.

(2*S*, 3*R*, 4*S*, 5*R*)-4-[2-Oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-5phenyl-pyrrolidine-2-carboxylic acid methyl ester (37)

A colourless oil (65 % ee). R_f 0.17 (hexane: ethyl acetate 1:1); ν_{max} (thin film /cm-1) 2943 (s, CH), 2866 (s, CH), 1722 (s, C=O), 1673 (s, C=O) cm⁻¹; $[\alpha]_D^{25}$ -22.6 (c 0.44, CHCl₃); δ_H (400 MHz, C₆D₆) 7.58 (2H, d, J 7.0, ArH), 7.16 (2H, dd, J 7.0, 7.0, ArH), 7.08 (1H, t, J 7.0 Hz, ArH), 5.07 (1H, ddd, J 8.0, 8.0, 7.0, H3), 4.67 (1H, d, J 8.0, H7), 3.83 (1H, dd, J 8.0, 8.0, H5), 3.65-3.54 (2H, m, H1), 3.49 (3H, s, H6), 3.23-3.13 (2H, m, Ha), 3.06-3.00 (1H, m, Ha), 2.97-2.84 (3H, m, H2, NH), 2.67-2.60 (1H, m, Ha), 2.48-2.41 (1H, m, H4), 2.27-2.20 (1H, m, H4), 1.13-1.03 (TIPS); δ_C (100 MHz, C₆D₆) 173.6 (C=O), 172.2 (C=O), 154.2 (C=O), 140.7 (C-C), 127.7 (CH), 127.4 (CH), 126.9 (CH), 66.2 (CH), 62.0 (C[1]H₂), 60.3 (CH), 51.3 (C[6]H₃), 47.9 (CH), 46.2 (C[2]H₂), 41.8 (C[a]H₂), 39.6 (C[a]H₂), 33.1 (C[4]H₂), 17.9 (CH₃), 11.9 (CH); HRMS (ES^+) calculated for $C_{27}H_{43}N_3O_5Si [M+H]^+$ 518.3045, found 518.3043. EE calculated using chiral shift reagents, see general methods.

(2S, 3R, 4S, 5R)-2-Methyl-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (38)

A colourless oil (63 % ee). R_f 0.31 (hexane:ethyl acetate 1:1); ν_{max} (thin film) 2943 (s, CH), 2866 (s, CH), 1723 (s, C=O), 1672 (s, C=O) cm⁻¹; $[\alpha]_D^{25}$ -23.3 (c 0.28, CHCl₃); δ_H (400 MHz, C₆D₆) 7.60 (2H, d, J 7.0, ArH), 7.16 (2H, dd, J 7.0, 7.0, ArH), 7.08 (1H, t, J 7.0, ArH), 5.22 (1H, ddd, J 8.0, 8.0, 6.0, H3), 4.92 (1H, d, J 8.0, H7), 3.64-3.52 (5H, m, H6, H1), 3.34-3.13 (4H, m, H2, Ha, NH), 3.04-2.98 (1H, m, Ha), 2.89 (1H, dt, J 10.0, 5.0, Ha), 2.62 (1H, dt, J 10.0, 5.0, Ha), 2.42 (1H, dt, J 10.0, 8.0, H4), 1.99 (1H, dd, J 13.0, 12.0, H4), 1.52 (3H, s, H5), 1.12-1.04 (21H, m, (TIPS); δ_C (100 MHz, C₆D₆) 176.4 (C=O), 172.3 (C=O), 154.1 (C=O), 140.8 (C-C), 127.7 (CH), 127.5 (CH), 126.9 (CH), 66.0 (C), 65.4 (CH), 62.0 (C[1] H_2), 51.6 (C[6]H₃), 48.8 (CH), 46.1 (C[2]H₂), 41.8 (C[a]H₂), 40.2 $(C[a]H_2), 39.6 (C[4]H_2), 26.8 (C[5]H_3), 17.9 (CH_3), 11.9 (CH);$ HRMS (ES⁺) calculated for $C_{28}H_{45}N_3O_5Si [M+H]^+ 532.3201$, found 532.3201. EE calculated using chiral shift reagents, see general methods.

(2S, 3R, 4S, 5R)-4-[2-Oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-2,5diphenyl-pyrrolidine-2-carboxylic acid methyl ester (39)

A colourless oil (60 % ee). R_f 0.17 (hexane:ethyl acetate 3:1); ν_{max} (thin film) 2943 (s, CH), 2866 (s, CH), 1725 (s, C=O), 1670 (s, C=O) cm⁻¹; $[\alpha]_D^{25}$ -16.3 (c 0.23, CHCl₃); δ_H (400 MHz, C₆D₆) 8.01 (2H, d, J 7.0, ArH), 7.57 (2H, d, J 7.0, ArH), 7.30 (2H, dd, J 7.0, 7.0, ArH), 7.21-7.15 (3H, m, ArH), 7.10 (1H, t, J 7.0, ArH), 5.15 (1H, ddd, J 8.0, 8.0, 5.0, H3), 4.77 (1H, d, J 8.0, H6), 3.96 (1H, bs, NH), 3.68 (1H, dd, J 13.0, 5.0, H4), 3.60-3.48 (2H, m, H1), 3.45 (3H, s, H5), 3.29-3.19 (1H, m, Ha), 3.14-3.07 (1H, m, Ha), 2.99-2.92 (2H, m, H2), 2.68-2.58 (2H, m, Ha), 2.42 (1H, dt, J 9.0, 7.0, H4), 1.11-1.04 (21H, m, ((TIPS); δ_C (100 MHz, C₆D₆) 174.6 (C=O), 172.7 (C=O), 153.9 (C=O), 144.3 (C-C), 140.2 (C-C), 128.2 (CH), 127.6 (CH), 127.5 (CH) 127.1 (CH), 127.0 (CH), 126.8 (CH), 72.5 (C), 65.7 (CH), 62.0 (C[1]H₂), 52.1 (C[5]H₃), 48.9 (CH), 46.1 $(C[2]H_2), 41.7 (C[a]H_2), 41.7 (C[a]H_2), 39.5 (C[4]H_2), 17.9$ (CH_3) , 11.9 (CH); HRMS (ES^+) calculated for $C_{33}H_{47}N_3O_5Si$ $[M+H]^+$ 594.3358, found 594.3358. EE calculated using chiral shift reagents, see general methods.

Racemic solid phase synthesis 5.3.1

A suspension of the solid supported alkene (210 mg, 0.3 mmol/g), building block (30-35) (86 mg, 0.48 mmol) and silver acetate (80 mg, 0.48 mmol) in THF (3 mL), with a spatula of powdered molecular sieves was shaken at ambient temperature. DBU (0.07 mL, 0.48 mmol) was added, after which the reaction was left shaking overnight. The reaction mixture was diluted with Et₂O and sat. aq. NaHCO₃ was added. The solution was then drained under positive nitrogen pressure and washed/drained with CH_2Cl_2 (× 3), CH_2Cl_2 :methanol 1:1 (× 3) and THF (\times 3). The beads were air-dried under suction for 2 hours and then placed under high vacuum for four days to give solid suported 1.3-dipolar cycloaddition product. 200 mg of resin was cleaved using the general procedure for deprotection of alcohols. The crude product was purified by filtration through a plug of silica with ethyl acetate to give:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-4-[3-(2-hydroxy-ethyl)-2-oxo-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (40)

A white solid. $R_f 0.22$ (ethyl acetate); ν_{max} (thin film) 3443 (b, OH), 2952 (s, CH), 1719 (s, C=O), 1670 (s, C=O) cm^{-1} ; δ_H (400 MHz, CDCl₃) 7.42 (2H, d, J 7.0, ArH), 7.33 (2H, d, J 7.0, ArH), 7.29-7.19 (5H, m, ArH), 4.94 (1H, d, J 9.0, H8), 4.85 (1H, dd, J 9.0, 9.0, H3), 4.09 (1H, dd, J 9.0, 9.0, H4), 3.97 (1H, d, J 9.0, H7), 3.70-3.65 (5H, m, H1, H9), 3.45-3.38 (1H, m, Ha), 3.26-3.21 (2H, m, H2), 3.20-3.14 (1H, m, Ha), 2.94-2.87 (2H, m, Ha), 2.45 (1H, bs, NH); δ_C (125 MHz, CDCl₃) 172.7 (C=O), 170.6 (C=O), 154.8 (C=O), 139.8 (C-C), 139.3 (C-C), 131.7 (CH), 129.7 (CH), 128.0 (CH), 127.8 (CH), 127.6 (CH), 120.8 (C-Br), 67.2 (CH), 65.0 (CH), 60.6 (C[1]H₂), 57.9 (CH), 52.2 $(C[9]H_3)$, 51.3 (CH), 46.5 $(C[2]H_2)$, 42.0 $(C[a]H_2)$, 39.7 (C[a]H₂); HRMS (ES⁺) calculated for $C_{24}H_{26}BrN_3O_5$ $[M+H]^+$ 516.1129, found 516.1133; mp 65 °C (Ethyl acetate).

 $(2S^{*},$ $3R^*$, $4S^*$, $5R^*$)-1-Acetyl-3-(4-bromophenyl)-4-[3-(2-hydroxy-ethyl)-2-oxo-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (41)

A white solid. $R_f 0.13$ (ethyl acetate); IR (thin film) 3442 (b, OH), 2953 (s, CH), 1720 (s, C=O), 1678 (s, C=O), 1647 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.58 (2H, d, J 8.0, ArH), 7.42 (2H, d, J 8.0, ArH), 7.35 (2H, dd, J 8.0, 8.0, ArH), 7.28 (1H, t, J 8.0, ArH), 7.18 (2H, d, J 8.0, ArH), 5.64 (1H, d, J 9.0, H8), 4.82 (1H, dd, J 11.0, 9.0, H3), 4.46 (1H, d, J 11.0, H7), 4.18 (1H, dd, J 11.0, 11.0, H4), 3.87 (2H, t, J 5.0, H1), 3.68 (3H, s, H9), 3.57-3.40 (5H, m, H2, Ha), 3.20-3.13 (1H, m, Ha), 1.84 (3H, s, H10); δ_C (125 MHz, CDCl₃) 172.0 (C=O), 170.6 (C=O), 166.5 (C=O), 155.0 (C=O), 138.7 (C-C), 136.0 (C-C), 131.9 (CH), 129.9 (CH), 128.7 (CH), 128.4 (CH), 126.9 (CH), 121.6 (C-Br), 65.5 (CH), 63.4 (CH), 60.6 (C[1]H₂), 56.4 (CH), 52.3 $(C[9]H_3)$, 46.5 (CH), 46.4 $(C[2]H_2)$, 42.1 $(C[a]H_2)$, 39.6 (C[a]H₂), 22.2 (C[10]H3); HRMS (ES⁺) calculated for $C_{26}H_{28}BrN_3O_6$ [M+H]⁺ 558.1234, found 558.1229; mp 224 °C (Ethyl acetate)

 $(2S^{*},$ $3R^*$, $4S^*$, $5R^*$)-3-(4-Bromo-phenyl)-4-[3-(2-hydroxy-ethyl)-2-oxo-imidazolidine-1carbonyl]-2-methyl-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (42)

A viscous oil. ν_{max} (thin film) 3337 (b, OH), 2951 (s, CH), 1720 (s, C=O), 1675 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.40 (2H, d, J 8.0, ArH), 7.34 (2H, d, J 8.0, ArH), 7.28-7.20 (3H, m, ArH), 7.15 (2H, d, J 8.0, ArH), 5.16 (1H, app. t, J 11.0, H3), 4.98 (1H, d, J 11.0, H9), 4.15 (1H, d, J 11.0, H4), 4.05 (1H, bs, NH), 3.75 (3H, s, H8), 3.71 (2H, t, J 5.0, H1), 3.75-3.68 (1H, m, Ha), 3.40 (1H, m, Ha), 3.29 (2H, t, J 5.0, H), 3.20-3.14 (1H, m, Ha), 2.95-2.88 (1H, m, Ha), 2.82-2.75 (1H, m, Ha), 1.27 (3H, s, H7); δ_C (100 MHz, CDCl₃) 174.9 (C=O), 170.5 (C=O), 155.0 (C=O), 140.0 (C-C), 136.7 (C-C), 131.3 (CH), 130.5 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 121.1 (C-Br), 68.7 (C), 62.5 (CH), 60.5 (C[1]H₂), 54.5 (CH), 54.2 (CH), 52.5 $(C[8]H_3)$, 46.5 $(C[2]H_2)$, 42.0 $(C[a]H_2)$, 39.7 (C[a]H₂), 19.5 (C[7]H₃); HRMS (ES⁺) calculated for $C_{25}H_{28}N_3O_5$ [M+H]⁺ 530.1285, found 530.1286.

5R)-4-[3-(2-Hydroxy-ethyl)-2-(2R,4S, oxo-imidazolidine-1-carbonyl]-2,5-diphenylpyrrolidine-2-carboxylic acid methyl ester (43)

A viscous oil. ν_{max} (thin film) 3443 (b, OH), 2923 (s, CH), 1723 (s, C=O), 1670 (s, C=O) cm⁻¹; $[\alpha]_D^{25}$ -24.6 (c 0.18, 12 CHCl₃); δ_H (400 MHz, CDCl₃) 7.71 (2H, d, J 8.0, ArH), 7.37-7.22 (8H, m, ArH), 4.76 (1H, app. q, J 8.0, CH), 4.64 (1H, d, J 8.0, CH), 3.77 (3H, s, H5), 3.65 (2H, t, J 5.0, CH₂), 3.56-3.48 (1H, m, CH₂), 3.27 (1H, dd, J 13.0, 5.0, CH₂), 3.18 (2H, t, J 5.0, CH₂), 3.21-3.16 (1H, m, CH₂), 3.14-3.03 (1H, m, CH₂), 2.92-2.86 (2H, m, CH₂), 2.64 (1H, dd, J 13.0, 7.0, CH₂); δ_C (100 MHz, CDCl₃) 174.7 (C=O), 172.8 (C=O), 154.9 (C=O), 142.5 (C-C), 139.0 (C-C), 128.4 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 126.5 (CH), 72.2 (C), 65.3 (C[1]H₂), 60.7 (CH), 52.9 (C[5]H₃), 48.8 (CH), 46.7 (C[2]H₂), 42.0 (C[a]H₂), 40.4 (C[a]H₂), 39.9 (C[4]H₂); HRMS (ES⁺) calculated for C₂₄H₂₇N₃O₅ [M+H]⁺ 438.2023, found 438.2023.

 $(2R^*, 4S^*, 5R^*)$ -4-[3-(2-Hydroxy-ethyl)-2-oxoimidazolidine-1-carbonyl]-2-methyl-5-phenylpyrrolidine-2-carboxylic acid methyl ester (44)

HO
$$2$$
 N N 3 4 Me 6
1 2 N 4 Me 6
 2 N 4 Me 6
 4 Me 6
 2 N 4 Me 6
 6 N 6 7 100 10

A viscous oil. ν_{max} (thin film) 3354 (b, OH), 2924 (s, CH), 2854 (s,CH), 1721 (s, C=O), 1668 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.29-7.20 (5H, m, ArH), 4.94-4.86 (2H, CH), 3.86 (3H, s, H6), 3.66 (2H, t, J 5.0, H1), 3.51-3.46 (1H, m, Ha), 3.20 (2H, t, J 5.0, H2), 3.21-3.16 (1H, m, Ha), 3.11-3.05 (1H, m, Ha), 2.92-2.83 (2H, m, Ha, H4), 2.09 (1H, dd, J 13.0, 7.0, H4 '), 1.23 (3H, s, H5); δ_C (100 MHz, CDCl₃) 176.3 (C=O), 172.6 (C=O), 154.8 (C=O), 138.9 (C-C), 127.9 (CH), 127.6 (CH), 127.3 (CH), 66.5 (C), 65.4 (CH), 60.6 (C[1]H₂), 52.7 (C[6]H₃), 48.5 (CH), 46.7 (C[2]H₂), 42.0 (C[a]H₂), 40.1 (C[a]H₂), 39.8 (C[4]H₂), 26.4 (C[5]H₃); HRMS (ES+) calculated for C₁₉H₂₅N₃O₅ [M+H]⁺ 376.1867, found 376.1865.

 $(2S^*, 4S^*, 5R^*)$ -4-[3-(2-Hydroxy-ethyl)-2-oxoimidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2carboxylic acid methyl ester (45)

$$HO_{1}^{2}$$
 N_{a}^{N} N_{a}^{3} HO_{2}^{45} HO_{2}^{6} $HO_{$

A viscous oil. ν_{max} (thin film) 3405 (b, OH), 2952 (s, CH), 1723 (s, C=O), 1668 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.29-7.18 (5H, m, ArH), 4.82 (1H, dt, J 8.0, 8.0, H3), 4.61 (1H, d, J 8.0, H7), 3.95 (1H, t, J 8.0, H5), 3.81 (3H, s, H6), 3.64 (2H, t, J 5.0, H1), 3.52-3.45 (1H, m, Ha), 3.21 (2H, t, J 5.0, H2), 3.21-3.16 (1H, m, Ha), 3.07-3.01 (1H, m, Ha), 2.92-2.85 (1H, m, Ha), 2.71 (1H, bs, NH), 2.59-2.53 (1H, m, H4), 2.40-2.33 (1H, m, H4); δ_C (100 MHz, CDCl₃) 173.8 (C=O), 172.7 (C=O), 154.9 (C=O), 138.9 (C-C), 127.8 (CH), 127.5 (CH), 127.2 (CH), 66.3 (CH), 60.5 (C[1]H₂), 60.1 (CH), 52.3 (C[6]H₃), 47.8 (CH), 46.6 (C[2]H₂), 41.9 (C[a]H₂), 39.8 (C[a]H₂), 33.1 (C[4]H₂); HRMS (ES⁺) calculated for C₁₈H₂₃N₃O₅ [M+H]⁺ 361.1638, found 361.1636.

 $(2S^{\ast},\ 3R^{\ast},\ 4S^{\ast},\ 5R^{\ast})\text{-}3\text{-}(9\text{-}Ethyl\text{-}9H\text{-}carbazol\text{-}3\text{-}yl)\text{-}4\text{-}[3\text{-}(2\text{-}hydroxy\text{-}ethyl)\text{-}2\text{-}oxo\text{-}imidazolidine\text{-}1\text{-}carbonyl]\text{-}5\text{-}phenyl\text{-}pyrrolidine\text{-}2\text{-}carboxylic}$ acid methyl ester (46)

 $HO_{1}^{2} N_{A}^{O} N_{$

A colourless oil. $R_f 0.17$ (ethyl acetate); ν_{max} (thin film) 3479 (b, OH), 2926 (s, CH), 1722 (s, C=O), 1673 (s, C=O) cm^{-1} ; δ_H (400 MHz, CDCl₃) 8.08 (1H, d, J 8.0, ArH), 8.06 (1H, d, J 2.0, ArH), 7.48-7.18 (10H, m, ArH), 5.07 (1H, d, J 9.0, H9), 5.00 (1H, dd, J 9.0, 9.0, H3), 4.37-4.29 (3H, m, H4, H5), 4.15 (1H, d, J 9.0, H7), 3.70 (2H, t, J 5.0, H1), 3.65 (3H, s, H8), 3.46-3.40 (1H, m, Ha), 3.30-3.20 (2H, m, Ha), 3.16-3.11 (1H, m, Ha), 2.98-2.88 (2H, m, H2), 1.62 (1H, bs, NH), 1.41 (3H, t, J 7.0, H6), 0.87 (1H, bs, OH); δ_C (100 MHz, CDCl₃) 173.3 (C=O), 171.1 (C=O), 155.0 (C=O), 140.2 (C-C), 140.1 (C-C), 139.1 (C-C), 130.4 (C-C), 127.9 (CH), 127.8 (CH), 127.7 (CH), 125.6 (CH), 123.0 (C-C), 122.7 (C-C), 120.5 (CH), 119.8 (CH), 118.7 (CH), 108.6 (CH), 108.3 (CH), 68.1 (CH), 65.2 (CH), 60.8 (C[1]H₂), 58.7 (CH), 52.5 (CH), 52.1 (C[8]H₃), 46.7 $(C[5]H_2), 42.1 (C[2]H_2), 39.8 (C[a]H_2), 37.5 (C[a]H_2), 13.9$ $(C[6]H_3)$; HRMS (ES^+) calculated for $C_{32}H_{34}N_4O_5$ $[M+H]^+$ 555.2602, found 555.2603.

5.3.2 Racemic solution phase synthesis

A solution of alkene (22-29) (1 equiv.), imine (30-35) (2 equiv.), and AgOAc (2 equiv.) in THF with a spatula of powdered molecular sieves was stirred at ambient temperature. DBU (2 equiv.) was added, after which the reaction was left to stir for 3 hours. The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO₃. The organic extracts were dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography (hexane : ethyl acetate 2:1) to yield:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-4-[2-0xo-3-(2-triisopropylsilanyloxy-ethyl)imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2carboxylic acid methyl ester (36)

 $R_f 0.14$ (hexane: ethyl acetate: TEA 80:20:2); ν_{max} (thin film) 2944 (s, CH), 2866 (s, CH), 1725 (s, C=O), 1675 (s, C=O) cm⁻¹; δ_H (400 MHz, C₆D₆) 7.70 (2H, d, J 7.0, H6), 7.30 (2H, d, J 7.0, H5), 7.28-7.21 (3H, m, ArH), 7.13 (2H, dd, J 7.0, 7.0, ArH), 5.25 (1H, d, J 9.0, H8), 5.20 (1H, dd, J 9.0, 9.0, H3), 4.59 (1H, dd, J 9.0, 9.0, H4), 3.99 (1H, d, J 9.0, H7), 3.60-3.55 (2H, m, H1), 3.31 (3H, s, H9), 3.11-3.04 (3H, m, H2, Ha), 2.87 (1H, bs, NH), 2.82-2.72 (1H, m, Ha), 2.51-2.46 (2H, m, Ha), 1.11-1.01 (21H, m, TIPS); δ_C (125 MHz, CDCl₃) 172.8 (C=O), 170.6 (C=O), 154.1 (C=O), 140.0 (C-C), 139.2 (C-C), 131.7 (CH), 129.8 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 120.8 (C-Br), 67.3 (CH), 64.9 (CH), 62.2 (C[1]H₂), 57.8 $(CH), 52.2 (C[9]H_3), 51.3 (CH), 46.3 (C[2]H_2), 42.4 (C[a]H_2),$ $39.6 (C[a]H_2), 18.0 (CH_3), 11.7 (CH); HRMS (ES^+) calculated$ for $C_{33}H_{46}BrN_3O_5Si [M+H]^+$ 672.2463, found 672.2465; mp 104 °C (Ethanol)

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(9-Ethyl-9H-carbazol-3-yl)-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2carboxylic acid methyl ester (47)

A viscous yellow oil (40 mg, 35 %). R_f 0.16 (hexane: ethyl acetate 2:1); ν_{max} (thin film) 2944 (s, CH), 2866 (s, CH), 1723 (s, C=O), 1676 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.08 (1H, d, J 8.0, ArH), 8.06 (1H, d, J 2.0, ArH), 7.48-7.17 (10H, m, ArH), 5.09 (1H, d, J 9.0, H15), 5.04 (1H, dd, J 9.0, 9.0, H3), 4.37-4.29 (3H, m, H4, H12), 4.16 (1H, d, J 9.0, H14), 3.75 (2H, t, J 5.0, H1), 3.64 (3H, s, H16), 3.44-3.35 (1H, m, Ha), 3.27-3.18 (2H, m, Ha), 3.06-2.98 (1H, m, Ha), 2.95-2.85 (2H, m, H2), 1.71 (1H, bs, NH), 1.41 (3H, t, J 7.0, H13), 1.08-0.96 (21H, m, (TIPS)); δ_C (100 MHz, CDCl₃) 173.5 (C=O), 170.9 (C=O), 154.2 (C=O), 140.5 (C-C), 140.2 (C-C), 139.2 (C-C), 130.3 (C-C), 127.9 (CH), 127.7 (CH), 127.6 (CH), 125.7 (CH), 125.5 (CH), 123.1 (C-C), 122.8 (C-C), 120.6 (CH), 119.9 (CH), 118.7 (CH), 108.6 (CH), 108.3 (CH), 68.2 (CH), 67.0 (CH), 62.2 (C[1]H₂), 60.4 (CH), 52.4 (CH), 52.0 (C[16]H₃), 46.4 (C[12]H₂), 42.4 (C[2]H₂), 39.6 (C[a]H₂), 37.5 (C[a]H₂), 17.9 (CH₃), 13.9 (C[13]H₃), 11.8 (CH); HRMS (ES⁺) calculated for $C_{41}H_{54}N_4O_5Si [M+H]^+$ 711.3936, found 711.3937.

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(2-Chloro-6-methoxyquinolin-3-yl)-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-5-phenylpyrrolidine-2-carboxylic acid methyl ester (48)

A yellow foam (185 mg, 93 %): R_f 0.28 (hexane: ethyl acetate: TEA 60:40:2); ν_{max} (thin film) 2946 (s, CH), 2866 (s, CH), 1726 (s, C=O), 1674 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.13 (1H, s, ArH), 7.82 (1H, d, J 9.0, ArH), 7.38-7.22 (6H, m, ArH), 7.08 (1H, d, J 2.0, ArH), 5.20 (1H, dd, J 8.0, 8.0, H3), 5.02 (1H, d, J 8.0, H11), 4.73 (1H, dd, J 8.0, 8.0, H4), 4.13 (1H, d, J 8.0, H10), 3.92 (3H, s, H7), 3.73-3.72 (2H, m, H1), 3.73 (3H, s, H12), 3.45-3.39 (1H, m, Ha), 3.31-3.23 (2H, m, Ha), 3.21-3.13 (1H, m, Ha), 3.00-2.90 (2H, m, H2), 1.62 (1H, bs, NH), 1.07-0.98 (21H, m, (TIPS)); δ_C (100 MHz, CDCl₃) 172.7 (C=O), 170.8 (C=O), 158.2 (C=O), 154.0 (C=O), 148.7 (C-Cl), 142.7 (C-C), 139.3 (C-C), 135.7 (CH), 132.7 (C-C), 129.6 (CH), 128.5 (C-C), 128.0 (CH), 127.8 (CH), 127.6 (CH), 123.1 (CH), 104.8 (CH), 67.0 (C[3]H), 65.4 $(C[11]H), 62.2 (C[1]H_2), 56.8 (C[10]H), 55.6 (C[7]H_3), 52.4$ $(C[12]H3), 49.0 (C[4]H), 46.4 (C[2]H_2), 42.4 (C[a]H_2), 39.7$ $(C[a]H_2), 17.9 (CH_3), 11.7 (CH); HRMS (ES^+)$ calculated for $C_{37}H_{49}ClN_4O_6Si [M+H]^+$ 709.3183, found 709.3181.

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-5-o-tolyl-pyrrolidine-2-carboxylic acid methyl ester (48)

A viscous yellow oil (136 mg, 95 %): R_f 0.11 (hexane: ethyl acetate 3:1); ν_{max} (thin film) 2943 (s, CH), 2866 (s, CH), 1725 (s, C=O), 1671 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.43 (2H, d, J 8.0, ArH), 7.30 (1H, d, J 7.0, ArH), 7.24 (2H, d, J 8.0, ArH), 7.18-7.00 (3H, m, ArH), 5.11 (1H, d, J 9.0, H9), 4.99 (1H, dd, J 9.0, 8.0, H3), 4.10 (1H, dd, J 9.0, 8.0, H4), 3.94 (1H, d, J 9.0 Hz, H7), 3.73-3.61 (2H, m, H1), 3.71 (3H, s, H8), 3.46-3.37 (1H, m, Ha), 3.26-3.15 (2H, m, Ha), 3.12-3.01 (2H, m, H2), 2.87 (1H, dt, J 9.0, 7.0, Ha), 2.41 (3H, H10), 1.07-0.98 (21H, m, (TIPS)); δ_C (100 MHz, CDCl₃) 172.6 (C=O), 171.7 (C=O), 153.9 (C=O), 140.2 (C-C), 137.1 (C-C), 136.6 (C-C), 131.8 (CH), 130.1 (CH), 129.5 (CH), 127.3 (CH), 126.3 (CH), 125.8 (CH), 120.8 (C-Br), 67.9 (CH), 62.1 (C[1]H₂), 61.7 (CH), 56.6 (CH), 52.6 (CH), 52.2 (C[8]H₃), 46.2 (C[2]H₂), 42.4 (C[a]H₂), 39.8 (C[a]H₂), 19.4 (C[10]H₃), 17.9 (CH₃), 11.8 (CH); HRMS (ES⁺) calculated for C₃₄H₄₈BrN₃O₅Si [M+H]⁺ 686.2619, found 686.2616.

A yellow solid (137 mg, 96 %): R_f 0.15 (hexane: ethyl acetate 3:1); ν_{max} (thin film) 2943 (s, CH), 2866 (s, CH), 1722 (s, C=O), 1675 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.80-7.76 (3H, m, ArH), 7.74 (1H, d, J 9.0, ArH), 7.49 (1H, dd, J 9.0, 2.0, ArH), 7.46-7.41 (4H, m, ArH), 7.27 (2H, d, J 8.0, ArH), 5.14 (1H, d, J 10.0, H9), 4.99 (1H, app. t, J 10.0, H3), 4.20 (1H, app. t, J 10.0, H4), 4.05 (1H, d, J 10.0, H7), 3.75-3.63 (2H, m, H1), 3.72 (3H, s, H8), 3.34-3.26 (2H, m, Ha), 3.11 (1H, dt, J 10.0, 5.0, Ha), 3.01-2.95 (1H, m, Ha), 2.73 (1H, dt, J 10.0, 3.0, H2), 2.50 (1H, dt, J 10.0, 7.0, H2'), 1.05-0.95 (21H, m, TIPS); δ_C (100 MHz, CDCl₃) 172.8 (C=O), 170.7 (C=O), 154.1 (C=O), 139.4 (C-C), 137.3 (C-C), 132.9 (C-C), 132.9 (C-C), 131.7 (CH), 129.8 (CH), 127.9 (CH), 127.5 (CH), 127.5 (CH), 126.6 (CH), 126.1 (CH), 126.0 (CH), 125.5 (CH), 120.8 (C-Br), 67.4 (CH), 65.1 (CH), 62.0 (C[1]H₂), 57.7 (CH), 52.2 (C[8]H₃), 51.2 (CH), 46.2 (C[2]H₂), 42.1 (C[a]H₂), 39.6 $(C[a]H_2), 17.9 (CH_3), 11.8 (CH); HRMS (ES^+)$ calculated for C₃₇H₄₈BrN₃O₅Si [M+H]⁺ 722.2619, found 722.2621; mp 47 C (hexane: ethyl acetate)

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-2-methyl-4-[2-oxo-3-(2-triisopropylsilanyloxyethyl)-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (50)

A viscous colourless oil (114 mg, 83 %). R_f 0.16 (hexane: ethyl acetate 3:1); ν_{max} (thin film) 2944 (s, CH), 2867 (s, CH), 1723 (s, C=O), 1676 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.39 (2H, d, J 8.0, ArH), 7.34 (2H, dd, J 7.0, 1.0, ArH), 7.28-7.19 (3H, m, ArH), 7.16 (2H, d, J 8.0, ArH), 5.20 (1H, app. t, J 10.0, H3), 5.00 (1H, d, J 10.0, H9), 3.36 (1H, d, J 10.0, H4), 3.87-3.78 (2H, m, H1), 3.76 (3H, s, H8), 3.41-3.32 (2H, m, Ha), 3.31-3.24 (2H, m, H2), 3.02 (1H, dt, J 9.0, 6.0, Ha), 2.79 (1H, dt, J 11.0, 6.0, Ha), 1.26 (3H, s, H7), 1.11-1.01 (21H, m, (TIPS)); δ_C (100 MHz, CDCl₃) 175.0 (C=O), 170.5 (C=O), 154.3 (C=O), 140.4 (C-C), 136.8 (C-C), 131.3 (CH), 130.6 (CH), 127.7 (CH), 127.7 (CH), 127.6 (CH), 121.0 (C-Br), 68.6 (C-CH3), 62.4 (CH), 62.2 (C[1]H₂), 54.3 (CH), 54.1 (CH), 52.4 $(C[8]H_3), 46.4 (C[2]H_2), 42.5 (C[a]H_2), 39.6 (C[a]H_2), 19.8$ $(C[7]H_3)$, 17.9 (CH₃), 11.8 (CH); HRMS (ES⁺) calculated for $C_{34}H_{48}BrN_3O_5Si [M+H]^+ 686.2619$, found 686.2621.

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -5-Naphthalen-2-yl-4-[2oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-3-(3,4,5-trimethoxy-phenyl)pyrrolidine-2-carboxylic acid methyl ester (51)

A yellow solid (5.72 g, 72 %). R_f 0.23 (30-40 pet. ether: ethyl acetate 1:1); ν_{max} (thin film) 2942 (s, CH), 2866 (s, CH), 1722 (s, C=O), 1675 (s, C=O) cm⁻¹; δ_H (500 MHz, C₆D₆) 7.87-7.78 (3H, m, ArH), 7.77 (1H, d, J 8.0, ArH), 7.52 (1H, d, J 8.0, ArH), 7.49-7.45 (2H, m, ArH), 6.62 (2H, s, H5), 5.16 (1H, d, J 9.0, H8), 5.03 (1H, app. t, J 9.0, H3), 4.21 (1H, app. t, J 9.0, H4), 4.10 (1H, d, J 9.0, H6), 3.89 (6H, s, OCH₃), 3.84 (3H, s, OCH₃) 3.78-3.71 (1H, m, H1), 3.77 (3H, s, H7), 3.69-3.64 (1H, m, H1), 3.37-3.31 (2H, m, Ha), 3.17-3.12 (1H, m, Ha), 3.01-2.96 (2H, m, Ha, NH), 2.80-2.74 (1H, m, H2), 2.53-2.49 (1H, m, H2), 1.12-1.01 (21H, m, (TIPS)); δ_C (125 MHz, CDCl₃) 173.2 (C=O), 171.0 (C=O), 154.2 (C=O), 153.2 (C-C), 137.4 (C-C), 136.9 (C-C), 136.1 (C-C), 132.9 (C-C), 127.9 (CH), 127.5 (CH), 127.4 (CH), 126.5 (CH), 126.1 (CH), 126.0 (CH), 125.6 (CH), 105.0 (OCH₃), 67.6 (CH), 65.3 (CH), 62.0 $(C[1]H_2), 60.8 (CH), 57.6 (CH), 56.2 (OCH_3), 52.2 (C[7]H_3),$ 46.3 (C[2]H₂), 42.1 (C[a]H₂), 39.7 (C[a]H₂), 17.9 (CH₃), 11.8 (CH); HRMS (ES+) calculated for $C_{40}H_{55}N_3O_8Si [M+H]^+$ 734.3831, found 734.3832; mp 53 °C (30-40 pet. ether: ethyl acetate 1:1).

5.3.3General procedure for alkylation on solid phase

Solid-tagged pyrrolidine beads were swollen in CH_2Cl_2 (20 mL/g of beads). DMAP (1 equiv.) and pyridine (10 equiv.) 15

were added, followed by acid chloride (10 equiv.). The reaction was left shaking for 3 days. The solution was drained under positive nitrogen pressure and washed/drained with CH₂Cl₂ $(\times 3)$, CH₂Cl₂:methanol 1:1 ($\times 3$) and THF ($\times 3$). The beads were air-dried under suction for 3 hours and placed under high vacuum for two days. A small portion of beads were cleaved using the standard cleavage method to give:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-1-butyryl-4-[3-(2-hydroxy-ethyl)-2-oxo-imidazolidine-1-carbonyl]-5-naphthalen-2-yl-pyrrolidine-2-carboxylic acid methyl ester (52)

 ν_{max} (thin film) 3447 (b, OH), 2922 (s, CH), 2851 (s, CH), 1721 (s, C=O), 1678 (s, C=O), 1651 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 8.07 (1H, s, ArH), 7.87-7.79 (3H, m, ArH), 7.73 (2H, d, J 8.0, ArH), 7.50-7.45 (2H, m, ArH), 7.42 (2H, d, J 8.0, ArH), 7.20 (2H, d, J 8.0, ArH), 5.83 (1H, d, J 9.0, H12), 4.87 (1H, dd, J 11.0, 9.0, H3), 4.51 (1H, d, J 11.0, H7), 4.25 (1H, app. t, J 12.0, H4), 3.93 (2H, t, J 5.0, H1), 3.72 (3H, s, H8), 3.67-3.56 (1H, m, Ha), 3.46-3.35 (4H, m, Ha, H2), 3.06-2.98 (1H, m, Ha), 2.24-2.16 (1H, m, H9), 1.89-1.83 (1H, m, H9'), 1.02-0.87 (2H, m, H10), 0.70 (3H, t, J 7.0, H11); δ_C (125 MHz, CDCl₃) 173.1 (C=O), 172.2 (C=O), 166.6 (C=O), 155.2 (C=O), 136.5 (C-C), 136.1 (C-C), 133.1 (C-C), 133.1 (C-C), 131.9 (CH), 129.9 (CH), 128.6 (CH), 128.0 (CH), 127.8 (CH), 126.4 (CH), 126.2 (CH), 126.2 (CH), 124.5 (CH), 121.6 (C-Br), 65.7 (CH), 62.9 (CH), 60.6 (C[1]H₂), 56.6 (CH), 52.3 $(C[8]H_3), 46.4 (CH, C[2]H_2), 42.0 (C[a]H_2), 39.6 (C[a]H_2),$ 35.8 (C[9]H₂), 17.7 (C[10]H₂), 13.6 (C[11]H₃); m/z (APCI+) 638 (99 %, M+H+).

(2S*, 3R*, 4S*, 5R*)-1-Butyryl-3-(2-chloro-6methoxy-quinolin-3-yl)-4-[3-(2-hydroxy-ethyl)-2-oxo-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (53)

A white crystalline solid. ν_{max} (thin film) 2958 (s, CH), 2925 (s, CH), 1723 (s, C=O), 1677 (s, C=O), 1647 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.05 (1H, s, ArH), 7.86 (1H, d, J 9.0, ArH), 7.65 (2H, d, J 7.0, PhH), 7.40-7.28 (2H, m, ArH), 7.37 (2H, d, J 7.0, ArH), 7.03 (1H, d, J 2.0, ArH), 5.76 (1H, d, J 9.0, H10), 5.24 (1H, app. t, J 9.0, H4), 4.88 (1H, app. t, J 9.0, H3), 4.58 (1H, d, J 9.0, H5), 3.90-3.87 (5H, m, H6, H1), 3.73 (3H, s, OCH₃), 3.55-3.39 (5H, m, H2, Ha), 3.17-3.13 (1H, m, Ha), 2.23 (1H, dt, J 14.0, 7.0, H7), 1.92 (1H, dt, J 14.0, 7.0, H7'), 1.53 (2H, ddq, J 7.0, H8), 0.76 (3H, t, J 7.0, H9); δ_C (100 MHz, CDCl₃) 173.1 (C=O), 171.4 (C=O), 166.6 (C=O), 158.3 (C-C), 155.1 (C-C), 142.9 (C-C), 138.7 (C-C), 131.1 (CH), 129.6 (CH), 128.8 (CH), 128.5 (CH), 128.3 (C-C), 127.0 (CH), 123.4 (CH), 104.8 (CH), 68.0 (CH), 62.6 (CH), 60.5 (C[1]H₂), 55.6 (OCH₃), 55.3 (CH), 52.5 (OCH₃), 50.0 (CH), 46.4 (C[2]H₂), 42.1 (C[a]H₂), 39.7 (C[a]H₂), 35.8 $(C[7]_2)$, 17.8 $(C[8]H_2)$, 13.6 $(C[9]H_3)$; HRMS (ES^+) calculated for C₃₂H₃₅ClN₄O₇ [M+H]⁺ 623.2267, found 623.2263; mp 297 $^{\circ}C$ (CH₂Cl₂: Methanol 95:5)

 ν_{max} (thin film) 3448 (b, OH), 2922 (s, CH), 2852 (s, CH), 1720 (s, C=O), 1678 (s, C=O), 1647 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 7.58 (2H, d, J 7.0, ArH), 7.41 (2H, d, J 8.0, ArH), 7.35 (2H, dd, J 7.0, 7.0, ArH), 7.28 (1H, t, J 7.0, ArH), 7.18 (2H, d, J 8.0, ArH), 5.66 (1H, d, J 9.0, H12), 4.79 (1H, dd, J 12.0, 9.0, H3), 4.47 (1H, d, J 12.0, H7), 4.20 (1H, app. t, J 12.0, H4), 3.88 (2H, t, J 5.0, H1), 3.68 (3H, s, H8), 3.57-3.50 (3H, m, Ha), 3.50-3.39 (2H, m, H2), 3.20-3.13 (1H, m, Ha), 2.21-2.14 (1H, m, H9), 1.89-1.83 (1H, m, H9'), 1.53-1.43 $(2H, m, H10), 0.73 (3H, t, J 7 Hz, H11); \delta_C (125 MHz, CDCl_3)$ 173.0 (C=O), 172.2 (C=O), 166.6 (C=O), 155.1 (C=O), 138.9 (C-C), 136.1 (C-C), 131.9 (CH), 129.9 (CH), 128.7 (CH), 128.3 (CH), 126.9 (CH), 121.6 (C-Br), 65.6 (CH), 62.8 (CH), 60.7 (C[1]H₂), 56.5 (CH), 52.3 (C[8]H₃), 46.4 (C, CH, C[2]H₂), 42.1 (C[a]H₂), 39.6 (C[a]H₂), 35.8 (C[9]H₂), 17.7 (C[10]H₂), 13.6 (C[11]H₃); m/z (APCI+) 588 (99 %, M+H+).

5.3.4General procedure for reductive amination on solid phase

Solid-tagged pyrrolidine beads were swollen in CH₂Cl₂:MeOH 1:2 (20 ml per gram of beads). Aldehyde (10 equiv.) was added followed by borane-pyridine complex (10 equiv.). The reaction was left shaking for 3 days. The solution was drained under positive nitrogen pressure and washed/drained with CH_2Cl_2 :MeOH 1:1 (× 3), DMF:EtOH:Et₃N 2:2:1 (× 3), CH_2Cl_2 (× 2), a solution of 8-hydroxyquinoline in CH_2Cl_2 (5) % w/v (× 4) and CH₂Cl₂ (× 5). The beads were air-dried under suction for 3 hours and placed under high vacuum for two days. A small portion of beads were cleaved using the standard conditions to give:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-1ethyl-4-[3-(2-hydroxy-ethyl)-2-oxo-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (54)

 ν_{max} (thin film) 3462 (b, OH), 2922 (s, CH), 2851 (s, CH), 1721 (s, C=O), 1675 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 7.42 (2H, d, J 7.0, ArH), 7.38 (2H, d, J 8.0, ArH), 7.27-7.17 (5H, m, ArH), 4.73 (1H, dd, J 11.0, 11.0, H3), 4.47 (1H, d, J 11 Hz, H7), 4.33 (1H, dd, J 11.0, 11.0, H4), 3.79 (2H, t, J 5.0, H1), 3.65 (3H, s, H8), 3.62 (1H, d, J 11.0, H11), 3.46-3.38 (1H, m, Ha), 3.38-3.29 (2H, m, CHa), 3.24-3.18 (1H, m, Ha), 3.07-3.02 (1H, m, H2), 2.87-2.78 (1H, m, H2), 2.73-2.62 (2H, 16

m, H9), 0.86 (H10); δ_C (125 MHz, CDCl₃) 173.2 (C=O), 169.5 (C=O), 155.1 (C=O), 141.4 (C-C), 138.0 (C-C), 131.6 (CH), 130.0 (CH), 128.5 (CH), 127.6 (CH), 127.5 (CH), 121.0 (C-Br), 71.6 (CH), 68.4 (CH), 60.9 (C[1]H₂), 55.5 (CH), 52.0 (C[8]H₃), 48.7 (CH), 42.2 (C[2]H₂), 39.7 (C[9]H₂), 11.7 (C[10]H₃); m/z (APCI+) 546 (99 %, M+H+).

General procedure for solution phase alkylation **reactions** To a solution of pyrrolidine (**36-51**)) (1 equiv.) in DCE at ambient temperature was added 1-methylindole-3-carboxaldehyde (8 equiv.). The solution was stirred for 1.5 hours, after which $NaB(OAc)_3H$ (8 equiv.) was added and the reaction was stirred for 24 hours. The reaction mixture was poured into water, extracted with CH₂Cl₂, the organic layer was washed with saturated aqueous NaHCO₃ solution, dried $(MgSO_4)$ and concentrated in vacuo. The crude product was purified by flash chromatography (hexane:ethyl acetate 2:1) to give:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(9-Ethyl-9H-carbazol-3yl)-1-(1-methyl-1H-indol-3-ylmethyl)-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (55)

A colourless oil (17 mg, 48 %): R_f 0.28 (hexane: ethyl acetate 2:1); ν_{max} (thin film) 2943 (s, CH), 2866 (s, CH), 1722 (s, C=O), 1678 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.06 (1H, d, J 8.0, ArH), 7.97 (1H, s, ArH), 7.57-7.17 (13H, m, ArH), 7.08 (1H, dd, J 8.0, 8.0, ArH), 6.91 (1H, s, ArH), 4.91 (1H, dd, J 9.0, 9.0, H3), 4.62-4.55 (2H, m, H4, H15), 4.28 (2H, q, J 7.0, H12), 4.03 (1H, d, J 9.0, H14), 3.81-3.77 (2H, m, H1), 3.77 (3H, s, H6), 3.71 (2H, s, H17), 3.37-3.3.18 (4H, m, CH₂), 3.19 (3H, s, H19), 3.08-3.00 (1H, m, CH₂), 2.84-2.76 (1H, m, CH₂), 1.37 (3H, t, J 7.0, H13), 1.07-0.99 (21H, m, (TIPS)); δ_C (100 MHz, CDCl3) 173.2 (C=O), 170.3 (C=O), 154.3 (C=O), 141.0 (C-C), 140.1 (C-C), 139.2 (C-C), 136.9 (C-C), 129.4 (CH), 129.4 (CH), 129.0 (C-C), 128.7 (C-C), 127.4 (CH), 127.2 (CH), 126.0 (CH), 125.4 (CH), 122.9 (C-C), 122.8 (C-C), 121.3 (CH), 120.6 (CH), 120.2 (CH), 119. 9 (CH), 118.9 (CH), 118.5 (CH), 109.4 (C-C), 108.7 (CH), 108.4 (CH), 108.2 (CH), 72.5 (CH), 68.4 (CH), 62.2 (C[1]H₂), 55.7 (CH), $51.1 (C[16]H_3), 49.6 (CH), 46.3 (C[12]H_2) 46.1 (C[17]H_2), 42.4$ $(C[2]H_2), 39.5 (C[a]H_2), 36.1 (C[a]H_2), 32.5 (C[19]H_3), 17.8$ (CH_3) , 13.7 $(C[13]H_3)$, 11.7 (CH); HRMS (ES^+) calculated for $C_{51}H_{63}N_5O_5Si [M+H]^+ 854.4671$, found 854.4675.

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-1-(2-methyl-benzyl)-4-[2-oxo-3-(2-triisopropylsilanyl-oxy-ethyl)-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (56)

A yellow foam (60 mg, 98 %). $R_f 0.58$ (30-40 pet. ether: ethyl acetate 2:1); ν_{max} (thin film) 2922 (s, CH), 2866 (s, CH), 1734 (s, C=O), 1711 (s, C=O), 1676 (s, C=O) cm⁻¹; δ_H (400 MHz, C₆D₆) 7.41 (2H, d, J 7.0, ArH), 7.36 (2H, d, J 8.0, ArH), 7.22-7.15 (6H, m, ArH), 7.03-6.97 (2H, m, ArH), 6.92 (1H, dd, J 6.0, 2.0, ArH), 4.81 (1H, app. t, J 11.0, H3), 4.51 (1H, d, J11.0, H9), 4.35 (1H, app. t, J 11.0, H4), 3.87-3.79 (3H, m, H7, H1), 3.66 (1H, d, J 13.0, H10), 3.55 (1H, d, J 13.0, H10'), 3.42-3.24 (4H, m, Ha, H2), 3.14 (3H, s, H8), 3.10-3.04 (1H, ddd, J 10.0, 6.0, 6.0, Ha), 2.82-2.75 (1H, ddd, J 10.0, 6.0, 6.0, Ha), 2.16 (3H, s, H11), 1.12-1.01 (21H, m, TIPS); δ_C (100 MHz, $CDCl_3$) 172.3 (C=O), 169.4 (C=O), 154.2 (C=O), 140.4 (C-C), 138.5 (C-C), 137.6 (C-C), 135.1 (C-C), 131.6 (CH), 130.9 (CH), 130.0 (CH), 129.7 (CH), 128.7 (CH), 127.5 (CH), 127.4 (CH), 121.0 (C-Br), 73.1 (CH), 70.5 (CH), 62.2 (C[1]H₂), 57.6 $(C[10]H_2), 55.2 (CH), 51.3 (C[8]H_3), 49.2 (CH), 46.4 (C[2]H_2),$ 42.5 (C[a]H₂), 39.6 (C[a]H₂), 19.1 (C[11]H₃), 17.9 (CH₃), 11.8 (CH); HRMS (ES⁺) calculated for $C_{41}H_{54}BrN_3O_5Si [M+H]^+$ 776.3089, found 776.3088; m.p. 118 $^{\circ}\mathrm{C}$ (30-40 pet. ether: ethyl acetate 2:1).

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -1-Ethyl-5-naphthalen-2-yl-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-3-(3,4,5-trimethoxy-phenyl)pyrrolidine-2-carboxylic acid methyl ester (57)

A viscous oil (2.66 g, 97 %). R_f 0.22 (30-40 pet. ether: ethyl acetate 2:1); ν_{max} (thin film) 2942 (s, CH), 2866 (s, CH), 1723 (s, C=O), 1674 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 7.82-7.75 (4H, m, ArH), 7.70 (1H, dd, J 7.0, 1.0, ArH), 7.44-7.42 (2H, m, ArH), 6.57 (2H, s, H5), 4.92 (1H, app. t, J 11.0, H3), 4.68 (1H, d, J 11.0, H10), 4.42 (1H, app. t, J 11.0, H4), 3.84 (6H, s, OCH₃), 3.81 (2H, q, J 7.0, H8), 3.80 (3H, s, OCH₃), 3.72 (3H, s, H7), 3.70 (1H, d, J 11.0, H6), 3.47-3.40 (1H, m, H1), 3.33-3.26 (1H, m, H1), 3.21-3.13 (2H, m, Ha), 2.80-2.59 (4H, m, Ha, H2), 1.10-1.02 (21H, m, (TIPS)), 0.89 (3H, t, J 7.0, H8); δ_C (125 MHz, CDCl₃) 173.6 (C=O), 169.8 (C=O), 154.4 (C=O), 153.1 (COMe), 139.4 (COMe), 137.0 (C-C), 134.6 (C-C), 133.0 (C-C), 132.8 (C-C), 127.7 (CH), 127.6 (CH), 127.2 (CH), 127.0 (CH), 126.7 (CH), 125.8 (CH), 125.6 (CH), 105.1 (CH), 72.2 (OCH₃), 68.7 (CH), 62.0 (C[1]H₂), 60.7 (CH), 56.1 (OCH₃), 55.1 (CH), 52.0 (OCH₃), 49.6 (CH), 47.0 (C[2]H₂), 46.4 (C[a]H₂), 42.2 (C[a]H₂), 39.6 (C[8]H₂), 17.9 (CH₃), 12.1 (C[9]H₃), 11.8 (CH); HRMS (ES⁺) calculated for $C_{42}H_{59}N_3O_8Si [M+H]^+$ 762.4150, found 762.4184.

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-1-(2-methyl-benzyl)-4-[2-oxo-3-(2-triisopropylsilanyl-oxy-ethyl)-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (58)

A viscous oil (2.84 g, 94 %). R_f 0.37 (30-40 pet. ether: ethyl acetate 1:1); ν_{max} (thin film) 2942 (s, CH), 2865 (s, CH), 1725 (s, C=O), 1676 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 7.96-7.72 (5H, m, ArH), 7.46-7.43 (2H, m, ArH), 7.25-7.23 (1H, m, ArH), 7.01-6.97 (2H, m, ArH), 6.91-6.88 (1H, m, ArH), 6.57 (2H, s, H5), 4.96 (1H, app. t, J 11.0, H3), 4.68 (1H, d, J 11.0, H10), 4.45 (1H, app. t, J 11.0, H4), 3.91 (1H, d, J 13.0, H8), 3.85 (6H, s, OCH₃), 3.83-3.76 (2H, m, H1), 3.81 (3H, s, OCH₃), 3.70 (1H, d, J 13.0, H8'), 3.62 (1H, d, J 11.0, Ha), 3.48-3.42 (1H, m, Ha), 3.32-3.27 (1H, m, Ha), 3.17 (3H, s, H7), 3.17-3.11 (1H, m, Ha), 2.72-2.51 $(2H, m, H2), 2.16 (3H, s, H9), 1.11-1.01 (21H, m, (TIPS)); \delta_C$ $(125 \text{ MHz}, \text{CDCl}_3) 172.5 \text{ (C=O)}, 169.8 \text{ (C=O)}, 154.3 \text{ (C=O)},$ 153.1 (COMe), 138.4 (COMe), 138.1 (C-C), 137.0 (C-C), 135.2 (C-C), 134.2 (C-C), 133.0 (C-C), 132.7 (C-C), 130.9 (CH), 129.7 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 127.0 (CH), 126.9 (CH), 126.0 (CH), 125.8 (CH), 125.7 (CH), 125.0 (CH), 105.1 (CH), 73.5 (OCH₃), 71.0 (CH), 62.0 (C[1]H₂), 60.7 (CH), 57.6 (C[8]H₂), 56.1 (OCH₃), 54.8 (CH), 51.3 (OCH₃), 50.2 (CH), 46.3 (C[2]H₂), 42.2 (C[a]H₂), 39.6 (C[a]H₂), 19.1 $(C[9]H_3), 17.9 (CH_3), 11.8 (CH); HRMS (ES^+)$ calculated for $C_{48}H_{63}N_3O_8Si [M+H]^+ 838.4463$, found 838.4462.

5.3.5 General procedure for solution phase acylation reactions

Acid Chloride (1.4 equiv.) was added to a solution of the pyrrolidine (**36-51**) (1 equiv.), DMAP (0.1 equiv.) and pyridine (1.5 equiv.) in CH₂Cl₂ at ambient temperature. The reaction was stirred for 5 hours, after which Et₂O (20 mL) was added. The reaction mixture was filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography (hexane:ethyl acetate 1:1) to give:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ - 1-Butyryl-3-(2-chloro-6-methoxy-quinolin-3-yl)-4-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-5-phenyl-pyrrolidine-2-carboxylic acid methyl ester (59)

A colourless oil (105 mg, 95 %): R_f 0.33 (hexane: ethyl acetate 1:1); ν_{max} (thin film) 2944 (s, CH), 2867 (s, CH), 1749 (s, C=O), 1723 (s, C=O), 1679 (s, C=O), 1649 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.03 (1H, s, ArH), 7.83 (1H, d,

J 9.0, ArH), 7.62 (2H, d, J 7.0, ArH), 7.37-7.24 (4H, m, ArH), 6.98 (1H, d, J 2.0, ArH), 5.75 (1H, d, J 8.0, H11), 5.24 (1H, app. t, J 8.0, H3), 4.85 (1H, app. t, J 8.0, H4), 4.50 (1H, d, J 8.0, H10), 3.90 (2H, t, J 5.0 Hz, H1), 3.85 (3H, s, H7), 3.68 (3H, s, H12), 3.57-3.35 (5H, m, H2, Ha), 3.15-3.08 (1H, m, Ha), 2.28-2.17 (1H, m, H13), 1.93-1.85 (1H, m, H3'), 1.63-1.40 (2H, m, H14), 1.11-0.98 (21H, m, (TIPS)), 0.73 (3H, t, J 7.0, H15); δ_C (100 MHz, CDCl₃) 173.0 (C=O), 171.4 (C=O), 166.5 (C=O), 158.3 (C-O), 154.4 (C=O), 148.6 (C-Cl), 142.9 (C-C), 138.8 (C-C), 136 (CH), 130.0 (C-C), 129.6 (CH), 128.7 (CH), 128.4 (C-C), 128.3 (CH), 126.9 (CH), 123.4 (CH), 104.8 (CH), 65.4 (C[3]H), 62.6 (C[11]H), 61.7 (C[1]H₂), 55.6 (C[7]H₃), 55.2 $(C[10]HC=O), 52.5 (C[12]H_3), 46.5 (C[2]H_2), 42.9 (C[4]H),$ 42.5 (C[a]H₂), 39.6 (C[a]H₂), 35.7 (C[13]H₂), 17.9 (CH₃), 17.8 $(C[14]H_2)$, 13.6 $(C[15]H_3)$, 11.8 (CH); HRMS (ES^+) calculated for $C_{41}H_{55}ClN_4O_7Si [M+H]^+$ 779.3601, found 779.3604.

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -1-Ethyl-4-[3-(2-hydroxyethyl)-2-oxo-imidazolidine-1-carbonyl]-5-naphthalen-2-yl-3-(3,4,5-trimethoxy-phenyl)-pyrrolidine-2-carboxylic acid methyl ester (60)

A white crystalline solid (31.6 mg, 73 %). R_f 0.28 (ethyl acetate); ν_{max} (thin film) 2937 (s, CH), 2840 (s, CH), 1721 (s, C=O), 1676 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 7.84-7.78 (4H, m, ArH), 7.73 (1H, dd, J 7.0, 1.0, ArH), 7.48-7.43 (2H, m, ArH), 6.58 (2H, s, H5), 4.87 (1H, app. t, J 11.0, H3), 4.66 (1H, d, J 11.0, H10), 4.44 (1H, app. t, J 11.0, H4), 3.87 (6H, s, OCH₃), 3.82 (3H, s, OCH₃), 3.76-3.73 (5H, m, H8, H7), 3.71 (1H, d, J 11.0, H6), 3.37-3.23 (3H, m, H1, Ha), 3.10-3.03 (1H, m, Ha), 2.82-2.68 (2H, m, H2), 2.68-2.55 (2H, m, Ha), 0.90 (3H, t, J 7.0, H9); δ_C (125 MHz, CDCl₃) 173.5 (C=O), 169.9 (C=O), 155.1 (C=O), 153.1 (COMe), 139.1 (COMe), 137.0 (C-C), 134.7 (C-C), 133.1 (C-C), 132.8 (C-C), 127.7 (CH), 127.6 (CH), 127.3 (CH), 127.1 (CH), 126.8 (CH), 125.9 (CH), 125.7 (CH), 105.1 (CH), 72.1 (OCH₃), 68.9 $(CH), 60.8 (C[1]H_2), 60.7 (CH), 56.2 (OCH_3), 55.4 (CH),$ 52.0 (OCH₃), 49.7 (CH), 46.8 (C[2]H₂), 46.6 (C[a]H₂), 42.0 $(C[a]H_2), 39.7 (C[8]H_2), 11.9 (C[9]H_3); HRMS (ES^+) calcu$ lated for $C_{33}H_{39}N_3O_8$ [M+H]⁺ 606.2810, found 606.2814; mp $73 \ ^{\circ}C$ (ethyl acetate).

A white crystalline solid (83.0 mg, 71 %). R_f 0.28 (ethyl acetate); ν_{max} (thin film) 2947 (s, CH), 2841 (s, CH), 1721 (s, C=O), 1678 (s, C=O) cm⁻¹; δ_H (500 MHz, CDCl₃) 7.81-7.74 (5H, m, ArH), 7.47-7.43 (2H, m, ArH), 7.25-7.23 (1H, 18)

m, ArH), 7.01-6.96 (2H, m, ArH), 6.91-6.89 (1H, m, ArH), 6.56 (2H, s, H5), 4.91 (1H, app. t, J 11.0, H3), 4.65 (1H, d, J 11.0, H10), 4.46 (1H, app. t, J 11.0, H4), 3.89 (1H, d, J 13.0, H8), 3.84 (6H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.76-3.68 (2H, m, H1), 3.66 (1H, d, J 13.0, H8'), 3.61 (1H, d, J 11.0, H6), 3.34-3.28 (2H, m, Ha), 3.24-3.19 (1H, m, Ha), 3.16 (3H, s, H7), 3.05-3.00 (1H, m, Ha), 2.64-2.58 (1H, m, H2), 2.50-2.45 (1H, m, H2), 2.16 (3H, s, H9); δ_C (125) MHz, CDCl₃) 172.4 (C=O), 169.8 (C=O), 155.1 (C=O), 153.1 (COMe), 138.4 (COMe), 137.9 (C-C), 137.0 (C-C), 135.1 (C-C), 134.3 (C-C), 133.0 (C-C), 132.6 (C-C), 130.9 (CH), 129.7 (CH), 127.7 (CH), 127.6 (CH), 127.6 (CH), 127.5 (CH), 127.1 (CH), 127.0 (CH), 125.8 (CH), 125.7 (CH), 125.0 (CH), 105.1 (CH), 73.5 (OCH₃), 71.2 (CH), 60.8 (C[1]H₂), 60.7 (CH), 57.6 $(C[8]H_2), 56.1 (OCH_3), 54.9 (CH), 51.3 (OCH_3), 50.2 (CH),$ 46.6 (C[2]H₂), 42.0 (C[a]H₂), 39.8 (C[a]H₂), 19.1 (C[9]H₃); HRMS (ES⁺) calculated for $C_{39}H_{43}N_3O_8$ [M+H]⁺ 682.3123, found 682.3128; mp 78 $^{\circ}$ C (ethyl acetate).

6 Branching Pathway 2 Dihydroxylation Reactions

6.1 Building blocks used

6.2 Enantioselective dihydroxylation on solid support

To a sample-vial containing a suspension of solid support immobilised of alkene resin (0.77 mmol/g, 50 mg, 0.04 mmol) was charged sequentially with $K_3 Fe(CN)_6$ (38 mg, 0.12 mmol), K_2CO_3 (16.9 mg, 0.12 mmol), $MeSO_2NH_2$ (5.5 mg, 0.06 mmol) in water (0.4 ml) and chiral ligand (2.9 mg, 4 μ mol) in THF (0.4 ml). The suspension was charged with potassium osmate dihydrate (2.9 mg, 1.2μ mol) the sample-vials sealed. The mixture was vigorously agitated for 14 days at 4 °C. EtOAc and saturated sodium thiosulphate solution were added and mixture stirred for a further hour. The beads were washed with THF (\times 3), CH₂Cl₂ (\times 3), CH₂Cl₂:MeOH (\times 3) and CH_2Cl_2 (× 3). The beads were air-dried under suction for 2 hours with occasional agitation, and then placed under high vacuum. A plastic eppendorf vial containing the immobilised resin bound alcohol beads (96 mg) and THF (0.5 ml) at room temperature was charged with HF.Pyr (50 μ L, 1.77 mmol). The vial was sealed and agitated for 2.5 hours, then quenched with trimethylethoxysilane (0.32 ml). The vials were agitated for a further 30 minutes to ensure complete quenching. The solvent was filtered through a plug of silica gel and the resin washed with THF (\times 3), CH₂Cl₂ (\times 3), CH₂Cl₂: MeOH (1:1) $(\times 3)$ and CH₂Cl₂ $(\times 3)$ and the solvent was removed *in vacuo*. The spectral data was consistent with solution phase synthesis.

h		1	1		1
		Solvent	Chiral	Yield	Enantiomeric
		(1:1)	Catalyst		excess
	А	THF:Water	(DHQD) ₂ PHAL	63 %	91 %
			$(\text{AD-mix }\beta)$		
	В	THF:Water	(DHQD) ₂ PHAL	39 %	90 %
			(AD-mix α)		

6.2.1 Racemic synthesis on solid support

(*rac*)-1-[3-(4-Bromo-phenyl)-2,3-dihydroxy-propionyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-one

A test-tube containing a suspension of solid supported alkene (loading 0.36 mmol/g, 100 mg, 0.036 mmol), N-methyl morpholine-N-oxide (8 mg, 0.068 mmol), H₂O (0.1 ml) and THF (0.9 ml) was charged with osmium tetroxide (2.5 wt % in 2-methyl-2-propanol). The test-tube was purged with nitrogen, sealed and agitated for 5 days. Na₂S₂O₇ solution and EtOAc were added the suspension agitated for a further 30 minutes. The beads were washed with THF (× 3), CH₂Cl₂:MeOH (× 3) and CH₂Cl₂ (× 3). Air-drying under suction for 2 hours with occasional agitation followed by drying under high vacuum yielded yellow beads (96 mg).

Following general method for the cleavage of the solid support gave the title compound as a white solid (10.2 mg, 76 %, loading 0.45 mmol/g). The spectral data was consistent with synthesized in solution.

6.2.2 Enantioselective dihydroxylation reactions in solution phase

2(S), 3(R)-1-[3-(4-Bromo-phenyl)-2,3-dihydroxy-propionyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-

one To a round-bottomed flask, equipped with a magnetic stirring bar, containing the alkene (22-29) (194 mg, 0.39 mmol), methane sulfonamide (111 mg, 1.2 mmol), AD-mix β (540 mg), (DHQD)₂PHAL (31 mg, 0.04 mmol), ^tBuOH (10 ml) and water (10 ml) was charged with osmium tetroxide (123 $\mu {\rm L},$ 0.01 mmol). The mixture was stirred vigorously for 16 hours. The reaction mixture was quenched by the addition of $Na_2S_2O_7$ solution and stirred for a further 30 minutes. The quenched solution was diluted with EtOAc and the phases separated, the aqueous layer extracted with EtOAc $(\times 3)$, the combined organic layers washed with NaCl, dried (MgSO₄), and the solvent removed in vacuo. The crude compound was purified by column chromatography ($R_f 0.50$; SiO_2 ; 1:10 MeOH: CH_2Cl_2) to give the title compound as a white solid (109 mg, 92 %). The spectral data was constant with the racemic compound.

6.2.3 Racemic synthesis in solution phase

A round-bottom flask, equipped with a magnetic stirrer, containing the alkene (22-29) (1.5 g, 3.02 mmol), N-methyl morpholine-N-oxide (0.60 g, 5.14 mmol), acetone (75 ml) and water (7.5 ml) was charged with osmium tetroxide (2.5 wt% in 2-methyl-2-propanol, 0.92 ml, 0.09 mmol). The yellow mixture was stirred at room temperature for 12 hours. The reaction mixture was quenched by the addition of Na₂S₂O₇ solution (80 ml) and stirred for a further 30 minutes. The quenched reaction mixture was diluted with EtOAc and the phases separated. The aqueous layer was extracted with EtOAc (× 3), the combined organic layers washed with saturated aqueous NaCl solution, dried (MgSO₄), and the solvent removed *in vacuo*. The crude product was purified by column chromatography to give: (*rac*)-1-[3-(4-Bromo-phenyl)-2,3-dihydroxy-propionyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (62)

Isolated as a highly viscous clear oil (1.33 g, 83 %) that solidified on standing. R_f 0.50 (SiO₂; 1:10 MeOH: CH₂Cl₂); ν_{max} (neat) 3504w, 3400w, 3170w br (alcohol) 1725s (amide), 1682s (amide), 1261m, 1104s, 765s cm⁻¹; δ_H (500 MHz; CDCl₃) 7.50-7.45 (2H, d, J 8.5, H6), 7.42-7.37 (2H, d, J 8.5, H5), 5.34-5.28 (1H, br s, H4), 5.17-5.11 (1H, br s, H3), 4.04-3.97 (1H, br d, J 5.7, OH), 3.94-3.83 (4H, m, H1, Ha), 3.75-3.66 (2H, m, Ha), 3.48-3.40 (2H, m, H2), 3.14-3.02 (1H, br d, J 5.5, OH), 1.19-0.99 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 172.6 (C=O), 154.4 (C=O), 140.0 (C-C), 131.2 (CH), 128.0 (CH), 121.4 (C-Br), 74.0 (CH), 73.2 (CH), 61.9 (C[1]H₂) 46.6 (C[2]H₂), 43.3 (C[a]H₂), 40.0 (C[a]H₂), 17.9 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H⁺) 529.1730 C₂₃H₃₈⁻⁹BrN₂O₅Si⁺ required 529.1728, Δ ppm +0.378; mp 66-68 °C (MeOH: CH₂Cl₂).

(*rac*)-1-(2,3-Dihydroxy-butyryl)-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (63)

Isolated as a clear oil (103 mg, 95 %) after purification by column chromatography. R_f 0.21 (SiO₂; 5:95 MeOH: CH₂Cl₂); ν_{max} (neat) 3466w br (alcohol) 2942m, 2867m, 1728s (amide), 1674s (amide), 1437w, 1356m, 1106s, 881m cm⁻¹; δ_H (500 MHz; CDCl₃) 5.03-4.86 (1H, dd, J 7.5, 2.0, H3), 4.18-4.09 (1H, m, H4), 4.01-3.95 (1H, d, J 7.5, OH), 3.91-3.79 (4H, m, H1, Ha), 3.68-3.60 (2H, m, Ha), 3.42-3.31 (2H, m, H2), 2.50-2.41 (1H, br s, OH), 1.32-1.25 (3H, d, J 6.5, H5), 1.12-0.94 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 173.5 (C=O), 154.4 (C=O), 73.8 (CH), 68.6 (CH), 61.9 (C[1]H₂) 46.5 (C[2]H₂), 43.2 (C[a]H₂), 39.8 (C[a]H₂), 19.8 (C[5]H₃), 17.9 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H⁺) 389.2467 C₁₈H₃₇N₂O₅Si⁺ required 389.2466, Δ ppm +0.3.

(*rac*)-1-(2,3-Dihydroxy-5-methyl-hexanoyl)-3-(2triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (64)

Isolated as a clear oil (96 mg, 89 %) after purification by column chromatography. R_f 0.14 (SiO₂; 5:95 MeOH: CH₂Cl₂); ν_{max} (neat) 3448w (alcohol), 2944m, 2867m, 1731s (amide), 1673m (amide), 1356m, 1267s, 1103s, 882m cm⁻¹; δ_H (500 MHz; CDCl₃) 5.02-4.95 (1H, br s, H3), 4.11-4.01 (1H, br s, H4), 3.94-3.80 (5H, m, H1, Ha, OH), 3.71-3.62 (2H, t, J 8.5, Ha), 3.43-3.35 (2H, t, J 5.5, H2), 2.10-1.90 (1H, br s, OH), 1.18-1.73 (1H, m, H6), 1.63-1.51 (1H, m, H5), 1.50-1.38 (1H, m, H5'), 1.12-0.94 (21H, m, TIPS), 0.97-0.85 (2 x 3H, d, J 6.5, 5.5 H7); δ_C (125 MHz; CDCl₃) 173.8 (C=O), 154.3 (C=O), 73.3 (CH), 70.7 (CH), 61.9 (C[1]H₂) 46.5 (C[2]H₂), 43.3 (C[a]H₂), 43.1 (C[a]H₂), 39.9 (C[5]H₂), 24.4 (C[7]H₃), 23.3 (C[7]H₃), 21.9 (C[6]H), 17.8 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H⁺) 431.2936 C₂₁H₄₃N₂O₅Si⁺ required 431.2936, Δ ppm +0.1. (rac)-1-[2,3-Dihydroxy-3-(3,4,5-trimethoxyphenyl)-propionyl]-3-(2-triisopropylsilanyloxyethyl)-imidazolidin-2-one (65)

$$\mathsf{TIPSO}_{1} \overset{2}{\underset{a a}{\overset{\circ}{\overset{\circ}}}} \mathsf{N}_{1} \overset{0}{\underset{a a}{\overset{\circ}{\overset{\circ}}}} \mathsf{N}_{1} \overset{0}{\underset{a a}{\overset{\circ}{\overset{\circ}}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{\circ}{\overset{\circ}}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{\circ}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{\circ}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{\circ}}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{\circ}{\overset{\circ}}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{\circ}}} \mathsf{N}_{1} \overset{0}{\underset{o H}{\overset{0}}} \mathsf{N}_{1} \overset{0}{\overset{0}} \mathsf{N}_{1} \overset{0}{\overset$$

Isolated as a yellow oil (57 mg, 54 %) after purification by column chromatography. $R_f 0.28$ (SiO₂; 5:95 MeOH: CH_2Cl_2 ; ν_{max} (neat) 3471w br (alcohol), 2941m, 2866m, 1728m (amide), 1675m (amide), 1429m, 1248m, 1123s, 732m cm^{-1} ; δ_H (500 MHz; CDCl₃) 6.78-6.74 (2H, s, H5), 5.37-5.32 (1H, dd, J 7.0, 2.0, H4), 5.10-5.05 (1H, br d, J 4.5 H2), 4.03-3.97 (1H, d, J 7.0, OH), 3.94-3.75 (13H, m, H1, Ha, H6, H7), 3.73-3.58 (2H, m, Ha), 3.48-3.32 (2H, m, H2), 3.07-2,98 (1H, d, J 7.0, OH), 1.15-0.98 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 172.8 (C=o), 154.3 (C=0), 153.0 (C-C), 137.2 (C), 136.6 (C), 103.3 (C[5]H), 74.2 (CH), 73.7 (CH), 61.7 (C[1]H₂), 60.7 (CH_3) , 56.1 (CH_3) , 56.0 (CH_3) , 46.5 $(C[2]H_2)$, 43.1 $(C[a]H_2)$, 39.9 (C[a]H₂), 17.8 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H+) 558.3205 $C_{26}H_{48}N_3O_8Si^+$ required 558.3205, Δ ppm 0.0, mp 116-118 °C (MeOH; CH_2Cl_2).

(rac)-1-[3-(3-Chloro-7-methoxy-naphthalen-2-yl)-2,3-dihydroxy-propionyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (66)

Isolated as a pale vellow oil (101 mg, 95 %) after purification by column chromatography. $R_f 0.22$ (SiO₂; 5:95 MeOH: CH₂Cl₂); ν_{max} (neat) 3447 (alcohol), 2942m, 2866m, 1733s (amide), 1673m (amide), 1497s, 1272s, 1107s, 735m cm⁻¹; δ_H (500 MHz; CDCl₃) 8.44-8.36 (1H, s, H10), 7.88-7.82 (1H, d, J 9.5, H9), 7.36-7.29 (1H, dd, J 9.0, 2.5, H8), 7.11-7.08 (1H, d, J 2.5, H6), 5.61-5.57 (1H, m, H4), 5.23-5.18 (1H, dd, J 7.5, 4.0, H3), 4.89-4.84 (1H, d, J 7.5, OH), 3.99-3.82 (5H, m, H1, H7), 3.82-3.74 (2H, t, J 5.0, Ha), 3.71-3.57 (3H, m, Ha, OH), 3.34-3.20 (2H, m, Ha), 1.14-0.91 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 172.0 (C=O), 158.1 (C=O), 154.6 (C), 146.2 (C), 143.1 (C), 137.3 (CH), 131.8 (C), 129.4 (CH), 128.3 (C), 123.2 (CH), 105.4 (CH), 72.8 (CH), 70.5 (CH), 61.8 (C[1]H₂), 55.6 (C[7]H₃), 46.5 (C[2]H₂), 43.3 (C[a]H₂), 40.2 (C[a]H₂), 17.9 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H⁺) 566.2450 $\rm C_{27}H_{41}N_3O_6{}^{35}ClSi^+$ required 566.2448, Δ ppm +0.4.

(rac)-1-[3-(9-Ethyl-9H-carbazol-3-yl)-2,3-dihydroxy-propionyl]-3-(2-triisopropylsilanyloxyethyl)-imidazolidin-2-one (67)

Isolated as a white solid (71 mg, 67 %) after purification by column chromatography. $R_f 0.28$ (SiO₂; 5:95 MeOH: CH₂Cl₂); ν_{max} (neat) 3447w br (alcohol), 2941m, 2866m, 1728s (amide), 1672m (amide), 1471m, 1271s, 1232s, 745m cm⁻¹; δ_H (500 MHz; CDCl₃) 8.29-8.17 (1H, s, ArylCH), 8.15-8.05 (1H, d, J 7.8. ArylCH), 7.67-7.61 (1H, dd, J 8.5, 1.5 ArylCH), 7.47-7.42 (1H, m, ArylCH), 7.41-7.35 (1H, m, ArylCH), 7.23-7.17 (1H, m, ArylCH), 5.50-5.47 (1H, dd, *J* 7.0, 20

3.0, H4), 5.39-5.34 (1H, dd, J 6.0, 2.5, H3), 4.39-4.31 (2H, q, J 7.0, H12), 4.09-4.03 (1H, d, J 7.0, OH), 3.92-3.84 (4H, m, H1, Ha), 3.69-3.55 (2H, m, Ha), 3.47-3.31 (2H, m, H2), 3.17-3.11 (1H, d, J 6.0, OH), 1.44-1.38 (3H, t, J 7.0, H13) 1.10-1.01 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 173.0 (C=O), 154.5 (C=O), 140.2 (C), 139.7 (C), 131.1 (C), 125.5 (CH), 124.4 (CH), 123.0 (C), 122.7 (C), 120.6 (CH), 118.7 (CH), 118.4 (CH), 108.4 (CH), 108.1 (CH), 74.6 (CH), 74.4 (CH), $61.9 (C[1]H_2), 46.5 (C[2]H_2), 43.2 (C[a]H_2), 39.9 (C[a]H_2),$ 37.5 (C[12]H₂), 17.9 (C[13]H₃), 13.8 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H⁺) 590.3021 $C_{31}H_{45}N_3O_5SiNa^+$ required 590.3021, $\Delta ppm + 0.1$, mp 64-65 °C (MeOH; CH₂Cl₂).

(rac)-1-[3-(4-Bromo-phenyl)-2,3-dihydroxy-propionyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-one (68) 62 cleaved using standard cleavage method.

$$HO \xrightarrow{2}_{a a} N \xrightarrow{A}_{a a} O \xrightarrow{A}_{a a} O \xrightarrow{A}_{a a} O \xrightarrow{A}_{a a} O \xrightarrow{A}_{b H} O \xrightarrow{5}_{b H} O \xrightarrow{6}_{B}$$

 \mathbf{R}_f 0.2 (SiO_2; 1:9 MeOH:CH_2Cl_2); ν_{max} (neat) 3397m bs (alcohol), 1714m (amide), 1671m (amide), 1264m, 1071s, 721m cm^{-1} ; δ_H (500 MHz; CDCl₃:CD₃OD (1:1)) 7.15-7.09 (4H, m, H5, H6), 5.09-5.06 (1H, d, J 2.0, H4), 4.80-4.77 (1H, d, J 2.0, H3), 3.65-3.56 (1H, m, Ha), 3.55-3.48 (1H, m, Ha'), 3.45-3.38 (2H, t, J 5.3 H1), 3.36-3.24 (2H, m, Ha), 3.16-3.03 (2H, m, H2); δ_C (125 MHz; CDCl₃:CD₃OD (1:1)) 172.3 (C=O), 154.4 (C=O), 140.1 (C-C), 130.3 (CH), 127.6 (CH), 120.4 (C-Br), 73.9 (CH), 72.7 (CH), 58.7 (C[1]H₂), 45.5 (C[2]H₂), 41.8 $(C[a]H_2)$, 39.3 $(C[a]H_2)$; HRMS found m/z (ESI-H⁺) 373.0395 $C_{14}H_{18}^{79}BrN_2O_5^+$ required 373.0394, $\Delta ppm + 0.295$; mp 132-135 °C (MeOH:CH₂Cl₂).

Diversity generating reactions from 6.3 diols

(rac)-1-[2,3-Bis-benzoyloxy-3-(4-bromo-phenyl)propionyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-(69) A round-bottom flask, equipped with a one magnetic stirrer, containing 62 (50 mg, 0.09 mmol), EDC (40 mg, 0.11 mmol), DMAP (1.4 mg, 0.01 mmol) and CH_2Cl_2 (2 ml) at room temperature was charged with benzoic acid (34 mg, 0.21 mmol) in CH_2Cl_2 (1 ml). The mixture was stirred at room temperature for 6 hours. NaHCO₃ solution was added and the resulting phases separated, the aqueous layer extracted with CH_2Cl_2 (× 3), the organic layers combined, washed with NaCl solution, dried $(MgSO_4)$ and the solvent removed in vacuo. The crude product was purified by flash column chromatography to give the TIPS protected title compound (50.2 mg, 78 %) as a white solid. Using the general method for cleavage of the TIPS group gave the title compound was obtained as a white solid (38 mg, 97 %) after

flash column chromatography.

 $R_f 0.34$ (SiO₂; 1:9 MeOH: CH₂Cl₂); ν_{max} (neat) 2914w br (alcohol) 1718s (amide), 1395m, 1245s, 1068m, 710s $\rm cm^{-1}$; δ_H (500 MHz; CDCl₃) 8.16-8.06 (2H, m, ArylCH), 8.06-8.04 (2H, m, ArylCH), 7.60-7.56 (4H, m, ArylCH), 7.55-7.43 (6H, m, 6 ArylCH), 6.85-6.83 (1H, d, J 2.5, H4), 6.72-6.70 (1H,

d, J 2.5, H3), 3.95-3.84 (3H, m, H1, Ha), 3.75-3.66 (1H, m, Ha), 3.66-3.55 (2H, m, Ha), 3.59-3.44 (2H, m, H2); δ_C (100 MHz; CDCl₃) 166.3 (C=O), 165.7 (C=O), 165.6 (C=O), 155.0 (C=O), 135.4 (C-C), 133.5 (CH), 133.4 (CH), 131.5 (CH), 130.0 (CH), 129.9 (CH), 128.6 (C), 129.2 (C), 128.4 (2 × CH), 128.4 (CH), 128.2 (CH), 122.4 (C), 75.0 (CH), 73.3 (CH), 60.8 (C[1]H₂), 46.7 (C[2]H₂), 42.9 (C[a]H₂), and 39.8 (C[a]H₂); HRMS found m/z (ESI-H⁺) 581.0920 C₂₈H₂₅⁷⁹BrN₂O₇⁺ required 581.0918, Δ ppm +0.344; mp 77 °C (MeOH: CH₂Cl₂).

(*rac*)-1-[2,3-Bis-benzyloxy-3-(4-bromo-phenyl)-propionyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-

one (70) A round-bottom flask, equipped with a magnetic stirrer, containing 62 (50 mg, 0.09 mmol), silver (I) oxide (218 mg, 0.94 mmol) and CH₂Cl₂ (2.5 ml) was charged with benzyl bromide (77 μ L, 0.94 mmol). The mixture was heated at reflux for 16 hours. After this time period the solvent had evaporated leaving a black viscous oil that was taken up in CH₂Cl₂, filtered and the solvent removed *in vacuo*. The crude compound was purified by column chromatography to give the TIPS protected dibenzyl alcohol as a colourless oil (51.2 mg, 77 %). Using the general method for cleavage of the TIPS group gave the title compound as a colourles viscous oil (27 mg, 81 %) after flash column chromatography.

 R_f 0.4 (SiO₂; 1:9 MeOH: CH₂Cl₂); ν_{max} (neat) 3450w br (alcohol), 1721s (amide), 1486m, 1404m, 1258s, 1071s, 746m, 700m cm⁻¹; δ_H (500 MHz; CDCl₃) 7.51-7.49 (2H, m, ArylCH), 7.39-7.36 (2H, m, ArylCH), 7.34-7.25 (5H, m, ArylCH), 7.19-7.13 (3H, m, ArylCH), 6.96-6.92 (2H, m, ArylCH), 5.23-5.19 (1H, d, J 3.5, H4), 4.88-4.85 (2H, d, J 3.5, H3), 4.72-4.71 (1H, d, J 12.5, H8), 4.70-4.64 (1H, d, J 12.0, H7), 4.28-4.24 (1H, d, J 12.0, H7'), 4.16-4.12 (1H, d, J 12.5, H8'), 3.80-3.66 (3H, m, H1, Ha), 3.52-3.44 (1H, m, Ha), 3.44-3.37 (1H, m, HaB), 3.31-3.16 (3H, m, Ha, H2); δ_C (100 MHz; CDCl₃); 169.7 (C=O), 154.7 (C=O), 138.0 (CH), 137.4 (C), 137.2 (C), 129.6 (CH), 128.8 (CH), 128.1 (CH), 128.0 (CH), 128.0 (CH), 127.7 (CH), 127.5 (CH), 127.4 (CH), 121.6 (C), 81.0 (CH), 78.5 (CH), 72.9 (CH₂), 70.6 (CH₂), 60.8 (C[1]H₂), 46.6 (C[2]H₂), 42.8 (C[a]H₂), and 39.7 (C[a]H₂); HRMS found m/z (ESI-H⁺) 553.1333 $C_{28}H_{30}^{79}BrN_2O_5^+$ required 553.1333, Δ ppm +0.000.

$(rac) \hbox{-} 1-[5-(4-Bromo-phenyl)-2,2-dimethyl-[1,3]-dioxolane-4-carbonyl]-3-(2-hydroxy-ethyl)-imi-$

dazolidin-2-one (71) A round-bottom flask, equipped with a magnetic stirrer containing 62 (178 mg, 0.33 mmol), *p*-toluene sulphonic acid (3 mg, 0.02 mmol), powdered activated 4Å molecular sieves (10 mg) and DMF (0.67 ml) was charged with 2,2-dimethoxypropane (1.94 ml, 15.7 mmol). The mixture was at 100 °C for 2 hours. After this time period the reaction was complete by TLC (SiO₂2:8 EtOAc: Petrol). The mixture was allowed to cool to room temperature, diluted with ether, washed with water (× 3), the organic layer dried (MgSO₄) and the solvent removed *in vacuo*. The crude product that was purified by flash column chromatography to give the TIPS protected title compound (152 mg, 80 %) as a colourless oil. Using the general method for cleavage of the TIPS group gave the title compound as a white solid (20 mg, 87 %) after flash column chromatography.

R_f 0.25 (SiO₂; EtOAc); ν_{max} (neat) 3423w br (alcohol), 2989w, 2921w, 1727m (amide), 1702m, 1682m, 1477w, 1414m, 1239m, 1044s, 1010s, 816m cm⁻¹; δ_H (500 MHz; CDCl₃) 7.45-7.49 (2H, m, H6), 7.28-7.33 (2H, m, H5), 5.49-5.53 (1H, d, J 7.5, H4), 5.39-5.43 (1H, d, J 7.5, H3), 3.95-3.82 (2H, m, Ha), 3.79-3.71 (2H, m, H1), 3.59-3.50 (2H, t, J 8.0, Ha), 3.45-3.40 (1H, m, H2), 3.32-3.26 (1H, m, H2'), 1.59 (3H, s, H7), 1.58 (3H, s, H7'); δ_C (100 MHz; CDCl₃) 168.8 (C=O), 157.0 (C=O), 136.4 (C-C), 131.6 (CH), 128.6 (CH), 123.3 (C-Br), 111.4 (C-C), 79.6 (CH), 78.9 (CH), 60.7 (C[1]H₂), 46.6 (C[2]H₂), 42.4 (C[a]H₂), 39.9 (C[a]H₂), 27.1 (CH₃), 26.4 (CH₃); HRMS found m/z (ESI-Na⁺) 435.0529 C₁₇H₂₁⁷⁹BrN₂O₅Na⁺ required 435.0526, Δ ppm -0.689; mp 120-122 °C (EtOAc: Petrol).

(*rac*)-1-[5-(4-Bromo-phenyl)-2-oxo-2[4-[1,3,2]dioxathiolane-4-carbonyl]]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (72)

silanyloxy-ethyl)-imidazolidin-2-one (72) A round-bottom flask, equipped with a magnetic stirrer, containing 62 (281 mg, 0.53 mmol), pyridine (0.13 ml, 1.59 mmol) and CH₂Cl₂ (2 ml) at 0 °C was charged with thionyl chloride (0.05 ml, 0.69 mmol) over 15 minutes. The mixture was stirred at 0 °C for 1 hour. The mixture was filtered through a plug of silica gel, the silica washed with 1:1 EtOAc: Petrol and the solvent removed *in vacuo* to give the title compound (270 mg, 88 %) as a 1:2.5 mixture of diastereoisomers as a yellow oil. The cyclic sulphite was used without further purification.

 $R_f 0.75$ (SiO₂; EtOAc: Petrol 1:1); ν_{max} (neat) 2942m, 2866m, 1732s (amide), 1689m (amide), 1400w br, 1275m, 1217m, 735w cm⁻¹; δ_H (500 MHz; CDCl₃) 7.62-7.30 (8H, m, 2 \times (4 \times ArylCH) major and minor), 6.53-6.47 (1H, d, J 3.5, H4 major), 6.44-6.40 (1H, d, J 7.5, H4 minor), 5.97-5.93 (1H, d, J 7.5, H3 minor), 5.70-5.67 (1H, d, J 3.5, H3 major), 3.99-3.79 (8H, m, $2 \times$ (H1 and Ha) major and minor), 3.76-3.61 (4H, m, 2 × Ha major and minor), 3.47-3.31 (4H, m, 2 \times H2 major and minor), 1.16-0.95 (42H, m, 2 \times TIPS major and minor); δ_C (120 MHz; CDCl₃) 166.3 (C=O, major), 164.9 (C=O, minor), 153.8 (C=O, major), 153.4 (C, major), 134.8 (C, major), 123.5 (CH, minor), 132.2 (CH, minor), 131.7 (CH, major), 129.4 (CH, major), 128.9 (CH, minor), 123.8 (C, minor), 123.3 (C, major), 85.7 (CH, major), 83.4 (CH, major), 82.4 (CH, minor), 82.0 (CH, minor), 61.8 (C[1]H₂, major and minor), 46.5 (C[2]H₂, major and minor), 43.2 (C[a]H₂, major), 42.9 (C[a]H₂, minor), 40.2 (C[a]H₂, major), 39.9 (C[a]H₂, minor), 17.9 (CH₃, major and minor), 11.8 (CH, major and minor); HRMS found m/z (ESI-H⁺) 592.1510 $C_{23}H_{39}^{79}BrN_3O_6SSi^+$ required 592.107, Δ ppm +0.566.

(*rac*)-1-[2-Azido-3-(4-bromo-phenyl)-3-hydroxypropionyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (73) A round-bottom flask, equipped with a magnetic stirrer containing 72 (77 mg, 0.13 mmol), powdered activated 4Å molecular sieves (10 mg) and DMF (2 ml) at 0 °C was charged with sodium azide (14 mg, 0.2 mmol). The reaction mixture was stirred at 70 °C for 14 hours. The orange/brown solution was allowed to cool to room temperature, diluted with Et₂O, washed with saturated aqueous NaHCO₃ solution (× 3), washed with water (× 2), dried (MgSO₄) and the solvent removed *in vacuo*. The crude product was purified by flash column chromatography to give the title compound as an orange solid (40 mg, 42 %).

R_f 0.34 (SiO₂; 3:7 EtOAc: Petrol); ν_{max} (neat) 3453w br (alcohol), 2943m, 2867m, 2105s (azide), 1733s (amide), 1685m (amide), 1271.4m, and 1110m cm⁻¹; δ_H (500 MHz; CDCl₃) 7.54-7.45 (2H, d, J 8.5, H6), 7.26-7.19 (2H, d, J 8.5, H5), 5.32-5.24 (1H, br d, J 6.5, H4), 4.97-4.92 (1H, d, J 6.5, H3), 4.15-3.97 (1H, br s, OH), 3.94-3.77 (4H, m, H1, Ha), 3.37-3.66 (2H, m, Ha), 3.49-3.37 (2H, m, H2), 1.18-0.98 (21H, m, TIPS); δ_C (500 MHz; CDCl₃) 171.05 (C=O), 154.47 (C=O), 134.55 (C-C), 131.65 (CH), 129.91 (CH), 122.79 (C-Br), 72.87 (C[3]H), 65.99 (C[4]H), 61.81 (C[1]H₂), 46.61 (C[2]H₂), 43.29 (C[a]H₂), 39.96 (C[a]H₂), 17.94 (CH₃), 11.84 (CH); HRMS found m/z (ESI-H⁺) 554.1790 C₂₃H₃₇⁷⁹BrN₅O₄Si⁺ required 554.1793, Δ ppm -0.541; mp 88-92 °C (EtOAc: Petrol).

(*rac*)-1-1-[(4-Bromo-phenyl)-hydroxy-methyl]-2oxo-2-[2-oxo-3-(2-triisopropylsilanyloxy-ethyl)imidazolidin-1-yl]-ethyl-1H-[1,2,3]triazole-4,5-dicarboxylic acid dimethyl ester (74) A round

carboxylic acid dimethyl ester (74) A round bottom flask, equipped with a magnetic stirrer, containing the **73** (140 mg, 0.25 mmol) and toluene (1 ml) was charged with dimethyl acetylenedicarboxylate (0.15 ml, 1.25 mmol). The solution was stirred at 65 °C for 5 hours. After this time period the reaction was complete by TLC (3:7 EtOAc: Petrol). The solution was cooled to room temperature and the solvent was removed *in vacuo* to give the crude product that was purified by column chromatography to give the title compound (91 mg, 52 %) as a pale orange oil.

R_f 0.14 (SiO₂; EtOAc: Petrol); ν_{max} (neat) 3446w br (alcohol), 2944m, 2867m, 1732s (amide), 1685m (amide), 1452m, 1271m, 1074m cm⁻¹; δ_H (500 MHz; CDCl₃) 7.53-7.42 (2H, d, J 8.5, H6), 7.44-7.40 (2H, d, J 8.5, H5), 6.47-6.42 (1H, d, J 10.0, H3), 5.95-5.89 (1H, dd, J 10.0 and 5.5, H4), 4.94-4.90 (1H, d, J 5.5, OH), 3.98-3.92 (6H, s, H7, H8), 3.90-3.86 (2H, t, J 5.0, H1), 3.78-3.64 (4H, m, Ha), 3.45-3.40 (2H, m, H2), 1.14-1.02 (21H, m, TIPS); δ_C (125 MHz; CDCl₃) 169.3 (C=O), 160.5 (C=O), 158.7 (C=O), 155.1 (C=O), 134.4 (C), 131.8 (CH), 130.4 (CH), 126.4 (C), 123.2 (C-Br), 71.4 (C[3]H), 63.0 (C[4]H), 61.7 (C[1]H₂), 53.3 (CH₃), 52.6 (CH₃), 46.6 (C[2]H₂), 43.4 (C[a]H₂), 39.8 (C[a]H₂), 17.9 (CH₃), 11.8 (CH); HRMS found m/z (ESI-H⁺) 696.2064 C₂₉H₄₃⁷⁹BrN₅O₈Si⁺ required 696.2059, Δ ppm +0.718.

7 Branching pathway 3 General Procedure Enantioselective Diels-Alder Reaction

7.1 Building blocks used

7.2 Enantioselective Diels Alder reaction on solid support

S-S-ligand (0.5 equiv.), copper (II) triflate (0.4 equiv.) and activated 4 Å molecular sieves in CH₂Cl₂ were stirred under nitrogen at room temperature to give a blue/green solution for 30 minutes and then added to the solid supported alkene (1 equiv.) which was suspended in CH₂Cl₂ (5 mL/g of beads). Freshly prepared cyclopentadiene (20 equiv.) was added to the reaction and the beads shaken for two weeks. The reaction was filtered and the beads washed with CH₂Cl₂ (× 3), CH₂Cl₂:MeOH (1:1, × 3), MeOH (× 3) and CH₂Cl₂ (× 3). The products were cleaved using the standard method.

(1S, 2S, 3R, 4R)-1-(2-Hydroxy-ethyl)-3-(3-methyl-bicyclo [2.2.1]hept-5-ene-2-carbonyl)-imidazolidin-2-one (75)

A yellow oil (35 mg, 79 %). $R_f 0.28$ (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3445 (OH), 1718s (C=O), 1672s (C=O) cm^{-1} ; δ_H (500 MHz; C₆D₆) 6.47 (1H, dd, J 5.5, 3.0, H6), 6.09 (1H, dd, J 5.5, 3.0, H5), 4.07 (1H, t, J 3.5, H3), 3.66 (1H, br s, H4), 3.46-3.35 (4H, m, H1, Ha), 3.04-2.98 (2H, m, Ha), 2.61- $2.51~({\rm 3H,\,m,\,H2,\,H7}),\,2.47~({\rm 1H,\,br\,\,s,\,H9}),\,1.80~({\rm 1H,\,br\,\,d},\,J~8.5,$ H8), 1.59 (1H, dd, J 8.5, 2.0, H8'), 1.22 (3H, d, J 7.0, H10); δ_C (125 MHz; C₆D₆) 173.67 (C=O), 155.52 (C=O), 139.24 (C[6]H), 131.51 (C[5]H), 60.52 (C[1]H₂), 50.99 (C[3]H), 49.86 $(C[4]H), 48.04 (C[7]H), 47.16 (C[8]H_2), 46.58 (C[2]H_2), 41.46$ $(C[a]H_2), 40.14 (C[a]H_2), 36.31 (C[9]H), 20.47 (C[10]H_3);$ LCMS (ES+) 265 (M+H⁺); HRMS (M+Na)⁺ found 287.1369 $\mathrm{C}_{14}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{3}\mathrm{Na}$ required 287.1372, Δ ppm -1.02; diastereomeric ratio 89:11 (endo:exo); 71 % e.e.; HPLC: AD-H, 10% MeOH/IPA, flow 1ml/min; retention time (1S, 2R, 3R, 4R)enantiomer 1.00 min, 1R, 2S, 3S, 4S enantiomer 1.24 min.

(1S, 2R, 3R, 4R)-1-[3-(2-Chloro-6-methoxy-quinolin-3-yl)-bi-cyclo[2.2.1]-hept-5-ene-2-carbonyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-one (76)

A yellow oil (50 mg, 53 %). R_f 0.24 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3422 (OH), 1715 (C=O), 1674 (C=O), 1235s (C-O) cm⁻¹; δ_H (500 MHz; C₆D₆) 8.01 (1H, s, H10), 7.99 (1H, d, J 9.0, H14), 7.23 (1H, dd, J 9.0, 3.0, H13), 6.75 (1H, d, J 3.0, H11), 6.64 (1H, m, H6), 6.27 (1H, m, H5), 5.00 (1H, m, H3), 4.13 (1H, d, J 5.0, H9), 3.73 (1H, br s, H4), 3.50-3.37 (7H, m, H12, Ha, H1), 3.04-2.99 (3H, m, H7, Ha), 2.68-2.62 (2H, m, H2), 1.88 (1H, d, J 8.5, H8), 1.62 (1H, d, J 9.0, H8'); δ_C (125 MHz; C₆D₆) 172.67 (C=O), 158.23 (C), 155.52 (C=O), 149.92 (C), 142.47 (C), 138.41 (C[6]H), 136.63 (C), 133.96 (CH), 133.69 (C[5]H), 129.69 (CH), 128.68 (CH), 122.23 (CH), 105.09 (C[12]H₃), 60.32 (C[1]H₂), 54.92 (C[3]H), 49.68 (C[9]H), 48.17 (C[4]H), 47.86 (C[8]H₂), 47.25 (C[7]H), 44.90 (C[2]H₂), 41.46 (C[a]H₂), 40.20 $(C[a]H_2); LCMS (ES+) 442 (M+H^+); HRMS (M+Na)^+ found$ 464.1342 C₂₃H₂₄ClN₃O₄Na required 464.1353, Δ ppm -2.4; diastereomeric ratio 78:22 (endo:exo); 96 % e.e. ; HPLC: OJ-H, 20% MeOH/IPA, flow 1ml/min; retention time (1S, 2R,3R, 4R) enantiomer 1.16 min, 1R, 2S, 3S, 4S enantiomer 1.28 min.

(1S, 2R, 3R, 4R)-1-(2-Hydroxy-ethyl)-3-[3-(3,4,5-trimethoxy-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carbonyl]-imidazolidin-2-one (77)

A yellow oil (63 %). R_f 0.23 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3453 (OH), 1719 (C=O), 1676 (C=O), 1123 (C-O) cm⁻¹; δ_H (500 MHz; C₆D₆) 6.82 (2H, s, H10), 6.64 (1H, dd, J 5.5, 3.0, H6), 6.21 (1H, dd, J 5.5, 3.0, H5), 4.85 (1H, dd, J 5.0, 3.5, H9), 3.92 (3H, s, H12), 3.85 (1H, d, J 4.0, H3), 3.81 (1H, s, H4), 3.62 (1H, s, OH), 3.59 (6H, s, H11), 3.46-3.41(4H, m, H1, Ha), 3.05-3.02 (3H, m, H2, H7), 2.75-2.59 (2H, m, Ha), 2.22 (1H, d, J 8.0, H8), 1.74 (1H, d, J 8.0, H8'); δ_C (125) MHz; C₆D₆)173.46 (C=O), 155.31 (C=O), 153.93 (C), 140.16 (C), 139.70 (C[10]H), 137.81 (C), 137.51 (C), 132.72 (C[6]H), 128.09 (C[5]H), 105.79 (CH₃), 60.30 (C[1]H₂), 55.74 (CH₃), 50.93 (C[3]H), 50.46 (C[9]H), 48.49 (C[8]H₂), 47.93 (C[4]H), 47.61 (C[7]H), 46.46 (C[2]H₂), 41.36 (C[a]H₂), 40.12 (C[a]H₂); LCMS (ES+) 417 (M+H⁺); HRMS (M+H)⁺ found 417.2021 $C_{22}H_{26}N_2O_6$ requires 417.2026, Δ ppm -1.1; diastereometric ratio 79:21 (endo:exo); HPLC - racemic compound inseparable under conditions tried. Columns: Chiralpak OD; AD; AS; AD-H. Solvent; 90:10 Hexane:IPA; 95:5 Hexane:IPA; 98:2 Hexane:IPA. Flow 1mL/min.

(1S, 2R, 3R, 4R)-1-[3-(4-Bromo-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carbonyl]-3-(2-hydroxyethyl)-imidazolidin-2-one (78)

A white solid (64 %). R_f 0.22 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3458 (OH), 1720 (C=O), 1671 (C=O) cm⁻¹; δ_H (500 MHz; C₆D₆) 7.34 (2H, d, J 8.5, H11), 7.12 (2H, d, J 8.5, H10), 6.52 (1H, dd, J 5.5, 3.0, H6), 6.14 (1H, dd, J 8.5, 3.0, H5), 4.62 (1H, dd, J 5.5, 3.0, H3), 3.79 (1H, s, H4), 3.72 (1H, br d , J 5.0, H9), 3.38-3.32 (4H, m, H1, Ha), 2.97 (2H, t, J 5.5, H2), 2.80 (1H, s, H7), 2.59-2.47 (2H, m, Ha), 1.94 (1H, d, J 8.5, H8), 1.61 (1H, d, J 8.5, H8'); δ_C (125 MHz; C₆D₆) 172.98 (C=O), 155.23 (C=O), 143.84 (C), 139.64 (C[6]H), 132.65 (C), 131.59 (C[5]H), 129.60 (C[11]H), 128.09 (C[10]H), 60.47 (C[1]H₂), 50.89 (C[3]H), 49.93 (C[9]H), 48.14 (C[8]H₂) 48.05 (C[4]H), 46.91 (C[7]H), 46.31 (C[2]H₂), 41.32 (C[a]H₂), 40.51 (C[a]H₂); LCMS (ES+) 407 (M+H⁺); HRMS $(M+Na)^+$ found 427.0634 $C_{19}H_{21}BrN_2O_3Na$ requires 427.0633, Δ ppm +0.1; diastereometric ratio 85:19 (*endo:exo*); 95.5 % e.e.; HPLC: OJ-H, 20% MeOH/IPA, flow 1ml/min; retention time (1S, 2R, 3R, 4R) enantiomer 1.15 min, 1R, 2S, 3S, 4S enantiomer 1.28 min.

7.2.1 General procedure for the enantioselective Diels Alder reaction in solution phase.

S-S-ligand (0.5 equiv.), copper (II) triflate (0.4 equiv.) and activated 4 Å molecular sieves in CH_2Cl_2 (8 mL) were stirred under nitrogen at room temperature to give a blue/green solution. The alkene (1 equiv.) was dissolved in CH_2Cl_2 (2 mL) and was added to the reaction followed by cyclopentadiene (20 equiv). The reaction was monitored by LCMS until complete conversion had occurred. The reaction was filtered and solvent removed *in vacuo.*¹ The crude product was purified by flash column chromatography to yield the desired products as brown oils.

 $^1\mathrm{Diastereoselectivities}$ were determined by NMR studies of the crude product

Number	Product	$Endo^{a}$	Exo	e.r. ^b
79	$TIPSO_{1} \overset{2}{\underset{a a}{\overset{O}{\overset{O}{\overset{O}{\underset{I}{\overset{O}{\overset{O}{\underset{I}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\underset{I}{\overset{O}{\underset{I}{\underset{I}{\overset{O}{\underset{I}{\atopI}{\underset{I}{\underset{I}{\atopI}{\underset{I}{\underset{I}{\atopI}{\underset{I}{\atopI}{\underset{I}{\atopI}{\underset{I}{\atopI}{\underset{I}{\atopI}{\atopI}{\underset{I}{\atopI}{\atopI}{\underset{I}{\atopI}{\underset{I}{\atopI}{\atopI}{\atopI}{\atopI}{\atopI}{\atopI}{\atopI}{\atopI}{{I}}{$	89	11	с
80	$\begin{array}{c} 12 \\ 0 \\ 13 \\ 11 \\ 11 \\ 0 \\ 0 \\ 1 \\ 1 \\ a \\ a \\ a \\ 4 \\ 5 \\ 6 \end{array}$	81	19	98:2
81	$12 \\ 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	79	21	d
82	$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	87	13	83:17

 $^a\mathrm{Determined}$ from ratio of the integrals of the alkene protons between 5.9 and 6.7 ppm in the crude 500 MHz NMR

 $^b {\rm calculated}$ for the deprotect compound, NMR data matched that of the compound prepared on solid phase

^cHPLC - racemic compound inseparable under conditions tried. Columns: Chiralpak OD; AD; AS; AD-H. Solvent; 90:10 Hexane:IPA; 95:5 Hexane:IPA; 98:2 Hexane:IPA. Flow 1mL/min.

^dHPLC - racemic compound inseparable under conditions tried. Columns: Chiralpak OD; AD; AS; AD-H. Solvent; 90:10 Hexane:IPA; 95:5 Hexane:IPA; 98:2 Hexane:IPA. Flow 1mL/min.

Cleavage of the TIPS group using the standard conditions generated products identical to the solid phase reaction.

7.2.2 General procedure for racemic Diels-Alder reaction

To a solution of **22-29** (1 equiv.) in CH₂Cl₂ (1 g in 10 ml) at -78 °C under an atmosphere of nitrogen was added dimethylaluminium chloride (1M in toluene, 1.4 equiv.) and cyclopentadiene (10 equiv.). The yellow reaction was stirred at -78 °C for one hour and then warmed to room temperature until complete by TLC. The reaction was quenched by addition of saturated ammonium chloride solution and extracted with CH₂Cl₂. The organic layer was washed with brine, dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield:

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -1-[3-(2-Bromo-phenyl)bicyclo[2.2.1]hept-5-ene-2-carbonyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (83)

A colourless oil (563 mg, 100 %); R_f 0.34 (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (neat) 2942, 2865, 1720 (C=O), 1679 (C=O), 1482, 1467, 1432, 1391, 1354, 1333, 1262, 1243, 1107, 727 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.53 (1H, dd, J 7.0, 1.5, H13), 7.41 (1H, dd, J 7.5, 2.0, H10), 7.22 (1H, dt, J 7.5, 1.5, H11), 7.02 (1H, dt, J 7.5, 1.5, H12), 6.51 (1H, dd, J 5.5, 3.0, H6), 5.97 (1H, dd, J 5.5, 3.0, H5), 4.55 (1H, dd, J 5.0, 3.0, H9), 3.88-3.82 (2H, m, H1), 3.76 (2H, t, J 8.0, Ha), 3.58-3.53 (3H, m, Ha, H3), 3.40-3.37 (3H, m, H4, H2), 2.93 (1H, s, H7), 1.80 (1H, d, J 8.5, H8), 1.48 (1H, ddd, J 8.5, 2.0, 1.5, H8'), 1.04 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 172.75 (C=O), 154.86 (C=O), 143.04 (C), 138.62 (C[6]H), 133.16 (C[5]H), 133.06 (C[13]H), 127.93 (C[10]H), 127.93 (C[11]H), 127.24 (C[12]H), 126.20 (C), 61.87 (C[1]H₂), 50.30 (C[7]H), 47.75 (C[4]H), 47.28 (C[3]H), 47.06 (C[9]H), 46.47 (C[2]H₂), 42.55 (C[a]H₂), 40.25 (C[a]H₂), 17.94 (C[TIPS]H₃), 11.82 $(C[TIPS]H); LCMS (ES+) 563 (M+H^+): HRMS (M+Na)^+$ found 583.1969 $C_{28}H_{41}BrN_2O_3SiNa$ required 583.1968, Δ ppm + 0.3.

A colourless oil (3.07 g, 97 %); R_f 0.33 (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (neat) 2941, 2865, 1723,(C=O), 1673 (C=O), 1488, 1413, 1383, 1354, 1264, 1246, 1107 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.39 (2H, d, J 7.5, H10), 7.25 (2H, d, J 7.5, H11), 6.50 (1H, dd, J 5.5, 3.0, H6), 5.92 (1H, dd, J 5.5, 3.0, H5), 4.31 (1H, dd, J 5.0, 3.0, H9), 3.90-3.76 (4H, m, H1, Ha), 3.63-51 (2H, m, Ha), 3.42-3.38 (3H, m, H3, H2), 3.31 (1H, d, J 4.5, H4), 2.91 (1H, s, H7), 1.91 (1H, d, J 8.5, H8), 1.54 (1H, d, J 8.5, H8'), 1.04 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 174.3 (C=O), 155.17 (C=O),

143.88 (C), 139.88 (C[6]H), 132.68 (C[5]H), 131.74 (C[10]H), 129.82 (C[11]H), 120.11 (C-Br), 62.32 (C[1]H₂), 50.68 (C[7]H), 50.07 (C[4]H), 48.23 (C[3]H), 46.90 (C[9]H), 46.58 (C[2]H₂), 43.05 (C[a]H₂), 40.63 (C[a]H₂), 18.32 (C[TIPS]H₃), 12.23 (C[TIPS]H); LCMS (ES+) 563 (M+H⁺): HRMS (M+Na)⁺ found 583.1962 C₂₈H₄₁BrN₂O₃SiNa required 583.1968, Δ ppm -1.0.

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -1-(3-Pent-4-enyl-bicyclo-[2.2.1]hept-5-ene-2-carbon-yl)-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (85)

A colourless oil (107 mg, 94 %); R_f 0.36 (SiO₂; 11:2 toluene: ethyl acetate); ν_{max} (neat) 2932, 2865, 1721 (C=O), 1676 (C=O), 1458, 1433, 1385, 1352, 1261, 1241, 1105 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.34 (1H, dd, J 5.5, 3.0, H6), 5.81-5.77 (2H, m, H5, H13), 4.98 (1H, dd, J 17.0, 2.0 H14), 4.91 (1H, dt, J 10.0, 1.0, H14'), 3.89 (2H, t, J 5.5, H1), 3.85-3.75 (2H, m, Ha), 3.70 (1H, dd, J 4.5, 3.5, H3), 3.59 (2H, m, Ha), 3.42 (2H, td, J 5.0, 1.0, H2), 3.24 (1H, s, H4), 2.61 (1H, s, H7), 2.03-2.00 (3H, m, H12, H9), 1.65 (1H, d, J 8.5, H8), 1.43-1.40 (5H, m, H10, H11, H8'), 1.06 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 174.81 (C=O), 154.82 (C=O), 139.15 (C[6]H), 139.01 (C[13]H), 131.52 (C[5]H), 114.33 (C[14]H₂), 62.03(C[1]H), 49.98 (C[3]H), 47.61 (C[7]H), 47.53 (C[8]H₂), 47.37 (C[4]H), 46.49 (C[2]H₂), 42.67 (C[a]H₂), 42.19 (C[9]H), 40.22 $(C[a]H_2), 35.19 (C[11]H_2), 34.05 (C[12]H_2), 28.18 (C[10]H_2),$ 17.95 (C[TIPS]H₃), 11.80 (C[TIPS]H); LCMS (APCI+) 475 $(M+H^+)$; HRMS $(M+Na)^+$ found 497.3163 $C_{27}H_{46}N_2O_3SiNa$ required 497.3175, Δ ppm -2.4.

7.3 Diversity generating reactions from the norbornene

7.3.1 Suzuki Coupling

(1*S*^{*}, 2*R*^{*}, 3*R*^{*}, 4*R*^{*})-1-[3-(4'-trifluoromethoxybiphenyl-4-yl)-bicyclo[2.2.1]hept-5-ene-2-carbonyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (86) To a solution of 84 (100 mg, 0.178

Zondin-2-one (**So**) To a solution of **S4** (100 mg, 0.178 mmol), triphenylphosphine (2.3 mg, 5 mol%), palladium chloride (1.6 mg, 5 mol%), and 4-(trifluoromethoxy)phenylboronic acid (73 mg, 0.356 mmol) in DME (3 ml) was added 2 N sodium carbonate solution (3 ml). The reaction was heated to reflux for 2.5 hours (until complete by LCMS), cooled to room temperature, poured into water (15 ml) and extracted with ethyl acetate. The organic layer was washed with water, brine, dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield the title compounds as a yellow oil (116 mg, 100 %).

 $R_f 0.50$ (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 1724 (C=O), 1676 (C=O), 1256 (C-O) cm⁻¹; δ_H (500 MHz; CDCl₃) 7.54 (2H, d, J 8.5, H13), 7.45 (2H, d, J 8.0, H12), 7.35 (2H, d, J 8.0, H11), 7.24 (2H, d, J 8.0, H10), 6.51 (1H, dd, J 5.5, 2.5, H6), 5.95 (1H, dd, J 5.5, 2.5, H5), 4.36 (1H, dd, J 5.0, 3.0, H9), 3.89-3.80 (4H, m, H1, Ha), 3.64-3.55 (2H, m, Ha), 3.45 (1H, s, H4), 3.41-3.39 (3H, m, H3, H2), 2.99 (1H, s, H7), 1.95 (1H, d, J 8.5, H8), 1.55 (1H, d, J 9.0, H8) 1.02 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 174.87 (C=O), 154.76 (C=O), 144.98 (C), 139.61 (CH), 137.43 (C), 132.67 (CH), 128.28 (CH), 127.04 (CH), 121.17 (CH), 61.99 (C[1]H₂), 50.22 (C[9]H), 49.92 (C[4]H), 48.12 (C[8]H₂), 47.85 (C[7]H), 46.52 (C[2]H₂), 46.41 (C), 42.68 (CH_2) , 40.26 (CH_2) , 17.94 $(C[TIPS]H_3)$, 11.83 (C[TIPS]H): LCMS (ES+) 643 (M+H⁺); HRMS (M+Na)⁺ found 665.3010 $C_{35}H_{45}N_2O_4F_3SiNa$ required 665.2998, Δ ppm +1.8.

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -1-(2-Triisopropylsilanyloxyethyl)-3-[3-(2-vinyl-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carbonyl]-imidazolidin-2-one (87) To a solution of (83) (500 mg, 0.89 mmol), triphenylphosphine (40 mg, 10 mol%), palladium chloride (23 mg, 10 mol%), and vinylboronic acid (0.3 ml, 1.77 mmol) in dioxane (3 ml) was added 2 N sodium carbonate solution (5 ml). The reaction was heated to reflux for 2.5 hours (until complete by LCMS), cooled to room temperature, poured into water (15 ml) and extracted with ethyl acetate. The organic layer was washed with water, brine, dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield the title compounds as a yellow oil (200 mg, 44 %).

A colourless oil (200 mg, 44 %); R_f 0.34 (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (neat) 2942, 2865, 1722 (C=O), 1675 (C=O), 1481, 1388, 1354, 1263, 1242, 1106 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.44 (1H, dd, J 7.5, 1.5, H13), 7.43 (1H, d, J 7.5, H10), 7.25 (1H, dt, J 7.5, 1.5, H12), 7.18 (1H, t, J 7.5, H11), 7.03 (1H, dd, J 17.0, 10.5, H14), 6.53 (1H, dd, J 5.5, 3.0, H6), 5.99 (1H, dd, J 5.5, 3.0, H5), 5.54 (1H, dd, J 17.0, 2.0, H15), 5.22 (1H, dd, J 10.5, 1.5, H15'), 4.37 (1H, dd, J 5.0, 3.5, H9), 3.90-3.87 (2H, m, H1), 3.86-3.78 (2H, m, Ha), 3.61-3.58 (2H, m, Ha), 3.53 (1H, d, J 4.5, H3), 3.42-3.39 (3H, m, H4, H2), 2.99 (1H, s, H7), 1.93 (1H, d, J 8.5, H8), 1.56 (1H, br d, J 8.5, H8'), 1.04 (21H, s, TIPS); δ_C (125) MHz; CDCl₃) 174.22 (C=O), 154.73 (C=O), 141.58 (C[14]H), 138.97 (C[6]H), 138.2 (C), 136.12 (C[5]H), 133.12 (C[13]H), 127.75 (C[10]H), 126.35 (CH), 126.20 (C), 125.81 (CH), 115.44 $(C[15]H_2), 62.08 (C[1]H_2), 49.48 (C[3]H), 48.78 (C[9]H), 47.97$ $(C[8]H_2), 47.81 (C[4]H), 46.53 (C[2]CH_2), 43.37 (C[7]H),$ 42.69 (C[a]CH₂), 40.33 (C[a]CH₂), 17.93 (C[TIPS]H₃), 11.84 $(C[TIPS]H); LCMS (APCI+) 509 (M+H^+); HRMS (M+Na)^+$ found 531.3021 $C_{30}H_{44}N_2O_3SiNa$ required 531.3019, Δ ppm +0.4.

7.3.2 Dihydroxylation reaction solid phase

To a suspension of the solid supported norbornene (1 equiv.) in acetone and water (10:1, 5 mL/g of beads) was added NMO (2 equiv.) and the reaction stirred at room temperature under nitrogen. Osmium tetroxide 2.5 % solution in propanol

(3 mol%) was added and the reaction shaken for 48 hours. Aqueous sodium sulphate was added and the reaction shaken for 2 hours. The beads were filtered and washed with CH_2Cl_2 (× 3), CH_2Cl_2 :MeoH (× 3), MeOH (× 3) and CH_2Cl_2 (× 3). The products were cleaved using the standard conditions to give:

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -1-[3-(4-Bromophenyl)-5,6-dihydroxy-bicyclo[2.2.1]heptane-2-carbonyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-one (88)

A white solid; $R_f 0.17$ (SiO₂; 10:1 CH₂Cl₂: MeOH); ν_{max} (neat) 3329 (OH), 2881, 1718 (C=O), 1670 (C=O), 1369, 1267, 1259, 1050 cm⁻¹; δ_H (500 MHz; 1:1 MeOD: CDCl₃) 7.37 (2H, d, J 8.5, H11), 7.08 (2H, d, J 8.5, H10), 4.04 (1H, dd, J 6.5, 4.5, H9), 3.93 (1H, d, J 6.0, H6), 3.94-3.83 (2H, m, Ha), 3.81 (1H, d, J 6.0, H5), 3.70 (2H, t, J 5.5, H1), 3.59-3.56 (2H, m, Ha), 3.38-3.36 (2H, m, H2), 3.28 (1H, d, J 6.5, H3), 2.64 (1H, s, H4), 2.31 (1H, s, H7), 1.98 (1H, d, J 11.0, H8), 1.69 (1H, d, J 11.0, H8'); δ_C (125 MHz; MeOD: CDCl₃) 172.91 (C=O), 154.77 (C=O), 143.71 (C-C), 131.33 (C[11]H), 129.42 (C[10]H), 119.56 (C-Br), 73.83 (C[6]H), 69.48 (C[5]H), 59.11 (C[1]H₂), 51.81 (C[3]H), 50.18 (C[7]H), 47.47 (C[4]H), 46.01 (C[2]CH₂), 43.34 (C[9]H), 41.66 (C[a]CH₂), 40.15 (C[a]CH₂), $32.41 (C[8]H_2); LCMS (ES+) 439 (M+H^+); HRMS (M+H)^+$ found 439.0869 $C_{19}H_{23}BrN_2O_5$ required 439.0863, Δ ppm +1.4; mp 132-135 °C (CH₂Cl₂: MeOH).

7.3.3 Dihydroxylation reactions solution phase

To a solution of **84** (1 equiv.) in acetone and water (10:1) was added NMO (2 equiv.) and the reaction stirred at room temperature under nitrogen. Osmium tetroxide 2.5 % solution in propanol (3 mol%) was added and the reaction stirred until complete by TLC. Aqueous sodium sulphate was added and the reaction stirred for 30 minutes. The aqueous layer was extracted with ethyl acetate (\times 3), dried (MgSO₄) and solvent removed *in vacuo*. The products were purified by flash column chromatography to yield:

 $(1R^{\ast},\ 2S^{\ast},\ 3R^{\ast},\ 4S^{\ast},\ 5S^{\ast},\ 6R^{\ast})$ -1-[3-(4-Bromophenyl)-5,6-dihydroxy-bicyclo [2.2.1]heptane-2-carbonyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2-one (89)

A white foam (895 mg, 93 %); R_f 0.26 (SiO₂; 10:1 CH₂Cl₂: MeOH); ν_{max} (neat) 3425 (OH), 2941, 2865, 1725 (C=O), 1669 (C=O), 1489, 1387, 1354, 1263, 1250, 1106, 1070, 1009 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.36 (2H, d, J 8.5, H11), 7.06 (2H, d, J 8.5, H10), 4.10-4.04 (2H, m, H3, H6), 3.91 (1H, d, J 6.0, H5), 3.86-3.79 (4H, m, Ha, H1), 3.60 (2H, t, J 5.5, H2), 3.48 (2H, s, OH), 3.45-3.30 (3H, m, 26)

Ha, H9), 2.71 (1H, s, H4), 2.34 (1H, s, H7), 1.90 (1H, d, J 10.5, H8), 1.73 (1H, d, J 10.5, H8') 1.05 (21H, s TIPS); δ_C (125 MHz; CDCl₃) 172.56 (C=O), 154.62 (C=O), 143.47 (C-C), 131.53 (C[11]H), 128.82 (C[10]H), 119.56 (C-Br), 74.43 (C[6]H), 70.29 (C[5]H), 62.01 (C[1]H₂), 51.49 (C[3]H), 50.53 (C[7]H), 47.65 (C[4]H), 46.56 (C[2]H₂), 43.38 (C[9]H), 42.61 (C[a]H₂), 40.18 (C[a]H₂), 32.76 (C[8]H₂), 17.94 (C[TIPS]H₃), 11.81 (C[TIPS]H); LCMS (ES+) 595 (M+H⁺); HRMS (M+H)⁺found 595.2196 C₂₈H₄₃BrN₂O₅Si required 595.2197, Δ ppm -0.2.

Cleavage of the TIPS group using the standard conditions generated a white solid (40 mg, 70 %). Sprectra matched that of the solid phase route.

7.3.4 Acetal formations general procedure for solid phase synthesis

To a suspension of the diol (1 equiv.) in the aldehyde/ketone (10 equiv.) was added 4Å molecular sieves and catalytic *para*toluene sulfonic acid. The reaction was shaken for two weeks then poured into water. The resin was separated from the excess reagents by filtration and washed with CH_2Cl_2 (× 3). The solid supported acetal (1 equiv.) was dissolved in THF (0.5 ml) and HF·Pyr (2.5 equiv.) was added. The vials were sealed and agitated for 2.5 h, then quenched using trimethylethoxysilane. The vials were agitated for a further 30 min to ensure complete quenching. The resin was removed by filtration and washed with CH_2Cl_2 . The filtrate was filtered through a plug of silica gel (95:5 CH_2Cl_2 : MeOH). The solvent was removed *in vacuo* and the product purified by flash column chromatography.

A white foam. NMR data matched that of the solution phase reaction.

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -1-[9-(4-Bromo-phenyl)-4-phenyl-3,5-dioxa-tri-cyclo[5.2.1.0^{2,6}]decane-8-carbonyl]-3-(2-hydroxyethyl)-imidazolidin-2-one (91)

A colourless oil. NMR data matched that of the solution phase reaction.

7.3.5 Acetal formations general procedure for solution phase synthesis

To a solution of **89** (1 equiv.) in the aldehyde/ketone (10 equiv.) was added 4Å molecular sieves and catalytic *para*toluene sulfonic acid. The reaction was stirred until complete by LCMS then poured into water and extracted with CH_2Cl_2 . The organic layer was dried (MgSO₄) and solvent removed *in vacuo*. The TIPS protected acetal (1 equiv.) was dissolved in THF (0.5 ml) and HF·Pyr (2.5 equiv.) was added. The vials were sealed and agitated for $2\frac{1}{2}$ hrs, then quenched using trimethylethoxysilane. The vials were agitated for a further 30 min to ensure complete quenching. Then the reaction mixture was filtered through a plug of silica gel (95:5 CH₂Cl₂: MeOH). The solvent was removed *in vacuo* and the product purified by flash column chromatography.

A colourless oil (34 mg, 92 %); $R_f 0.32$ (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 3265, 2929, 2857, 1718 (C=O), 1677 (C=O), 1480, 1447, 1390, 1359, 1270, 1100, cm⁻¹; δ_H (500 MHz; CDCl₃) 7.39 (2H, d, J 8.5, H11), 7.09 (2H, d, J 8.5, H10), 4.34 (1H, d, J 5.5, H5), 4.14 (1H, d, J 5.0, H6), 4.05 (1H, dd, J 6.0, 4.5, H9), 3.91-3.85 (2H, m, Ha), 3.81 (2H, t, J 5.0, H1), 3.61-3.54 (2H, m, Ha), 3.42 (2H, dt, J 5.5, 2.0, H2), 3.29 (1H, d, J 6.0, H3), 2.87 (1H, br d, J 3.0, H4), 2.50 (1H, s, H7), 1.93 (1H, dd, J 11.0, 1.5, H8), 1.70-1.30 (11H, m, H8', CyH); δ_C (125 MHz; CDCl₃) 172.44 (C=O), 154.99 (C=O), 143.35 (C-C), 131.57 (C[11]H), 128.86 (C[10]H), 119.91 (C-Br), 109.96 (C), 81.50 (C[5]H), 77.89 (C[6]H), 60.80 (C[1]H₂), 50.88 (C[3]H), 47.13 (C[7]H), 46.77 (C[2]H2), 44.56 (C[4]H), 42.25 (C[9]H), 42.03 (C[a]H₂), 40.23 (C[a]H2), 35.19 (C[Cy]H₂), 33.62 (C[Cy]H₂), 32.48 $(C[8]H_2), 25.24 (C[Cy]H_2), 24.09 (C[Cy]H_2), 23.65 (C[Cy]H_2);$ LCMS (ES+) 519 (M+H⁺); HRMS (M+H)⁺ found 519.1501 $C_{25}H_{32}BrN_2O_5$ required 519.1495, Δ ppm +1.3; mp 125 °C $(CH_2Cl_2: MeOH).$

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -1-[9-(4-Bromo-phenyl)-4-phenyl-3,5-dioxa-tri-cyclo[5.2.1.0^{2,6}]decane-8-carbonyl]-3-(2-hydroxyethyl)-imidazolidin-2-one (91)

A white solid (10 mg, 47 %); R_f 0.34 (SiO₂; 95:5 CH₂Cl₂: MeOH); ν_{max} (neat) 4337, 2932, 1724 (C=O), 1668 (C=O), 1489, 1395, 1355, 1263, 1066, 1009 cm⁻¹; δ_H (500 MHz; 27

CDCl₃) 7.54-7.49 (2H, m, ArH), 7.44-7.37 (5H, m, ArH), 7.12 (2H, d, J 8.5, H10), 5.63 (1H, s, H12), 5.31 (1H, s, OH), 4.42 (1H, d, J 5.5, H5), 4.25 (1H, d, J 5.5, H6), 4.13 (1H, dd, J 6.0, 4.5, H9), 3.93-3.89 (2H, m, Ha), 3.82 (2H, t, J 5.0, H1), 3.61-3.55 (2H, m, Ha), 3.42 (2H, t, J 5.0, H2), 3.35 (1H, d, J 6.0, H3), 3.04 (1H, s, H4), 2.67 (1H, s, H7), 2.12 (1H, d, J 11.0, H8), 1.76 (1H, d, J 11.0, H8'); δ_C (125 MHz; CDCl₃) 172.34 (C=O), 155.00 (C=O), 143.06 (C-C), 136.03 (C-C), 131.64 (CH), 129.53 (CH), 128.88 (CH), 128.42 (CH), 126.69 (CH), 120.04 (C-Br), 103.10 (C[12]H), 82.74 (C[5]H), 79.33 (C[6]H), 60.82 (C[1]H₂), 50.77 (C[3]H), 47.13 (C[7]H), 46.75 (C[2]H2), 44.45 (C[4]H), 42.34 (C[9]H), 42.26 (C[a]H₂), 40.26 (C[a]H₂), 32.84 (C[8]H₂); LCMS (APCI+) 527 (M+H⁺); HRMS (M+H)⁺ found 527.1183 C₂₆H₂₈BrN₂O₅ required 527.1182, Δ ppm +0.2. mp 125-126 °C.

7.3.6 General procedure for the oxidative cleavage, reductive amination reaction on solid support

To a solution of the diol (1 equiv.) in THF: water (1:1, 6 mL/g of beads) was added sodium periodate (1.5 equiv.) at 0 °C. The reaction was shaken for 48 hours then the beads collected by filtration and dried under suction. The beads were suspended in dry CH₂Cl₂ (6 mL/g of beads) and methylamine 40 % solution in H₂O (1 equiv.) was added. The reaction was shaken at room temperature for four hours then sodium triacetoxyborohydride (10 equiv.) was added and the reaction stirred overnight. The beads were collected by filtration and washed with CH₂Cl₂ (× 3), CH₂Cl₂:MeOH (1:1, × 3), THF (× 3) and DCM (× 3). The product was cleaved using the standard reactions conditions.

A yellow oil. NMR data matched that of the solution phase reaction.

 $(1S^*, 2R^*, 3S^*, 5R^*)$ -1-[2-(4-Bromo-phenyl)-3,5-bis-dimethylamino-methyl-cyclopentanecarbonyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-one (93)

A yellow oil. NMR data matched that of the solution phase reaction.

Oxidative cleavage, reductive amination 7.3.7reaction in solution phase

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -1-[7-(4-Bromo-phenyl)-3methyl-3-aza-bicyclo[3.2.1]-octane-6-carbonyl]-3-(2-triisopropylsilanyloxy-ethyl)-imidazolidin-2one (94) To a solution of 89 (140 mg, 0.2 mmol) in THF: water (1:1, 16 ml) was added sodium periodate (77 mg, 0.36 mmol) at 0 $^{\circ}$ C. The reaction was stirred for three hours

then extracted with chloroform. The organic layer was dried $(MgSO_4)$ and the solvent removed in vacuo. The crude product was dissolved in dry CH_2Cl_2 (10 ml) and methylamine 40 % solution in H_2O (3 ml, 0.2 mmol) was added. The reaction was stirred at room temperature for one hour then sodium triacetoxyborohydride (593 mg, 2.8 mmol) was added and the reaction stirred overnight. The reaction was poured into water and extracted with chloroform. The organic layer was dried $(MgSO_4)$, solvent removed in vacuo and the crude product purified by flash column chromatography to yield the title compound as a yellow oil (70 mg, 60 %).

 R_f 0.38 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (neat) 2941, 2865, 1723 (C=O), 1681 (C=O), 1488, 1354, 1249, 1106 cm⁻¹; δ_H (400 MHz; CDCl₃) 7.32 (2H, d, J 8.5, H11), 7.10 (2H, d, J 8.5, H10), 4.11-4.05 (2H, m, H1), 3.90-3.75 (4H, m, Ha), 3.55-3.49 (2H, m, H2), 4.30 (1H, d, J 6.0, H9), 4.17-4.06 (2H, m, H2), 3.32-3.27 (1H, m, H3), 3.14 (1H, d, J 8.5, H6), 2.87 (1H, s, H4), 2.77 (1H, d, J 11.5, H5), 2.43 (1H, d, J 10.0, H5', H6'), 2.38 (3H, s, H12), 2.26 (1H, s, H7), 2.15-2.08 (1H, m, H8), 1.61 (1H, d, J 11.5, H8'), 0.99 (21H, s, TIPS); LCMS (APCI+) 594 $(M+H^+)$.

$(1S^*, 2R^*, 3S^*, 5R^*)$ -1-[2-(4-Bromo-phenyl)-3,5-bis-dimethylamino-methyl-cyclopentanecarbonyl]-3-(2-triisopropyl-silanyloxy-ethyl)-imi-

dazolidin-2-one (95) To a solution of 89 (200 mg, 0.3 mmol) in THF: water (1:1; 16 ml) was added sodium periodate (77 mg, 0.36 mmol) at 0 °C. The reaction was stirred for three hours then extracted with chloroform. The organic layer was dried $(MgSO_4)$ and the solvent removed in vacuo. The crude product was dissolved in dry CH_2Cl_2 (10 ml) and dimethylamine (3 ml, 2.8 mmol) was added. The reaction was stirred at room temperature for one hour then sodium triacetoxyborohydride (593 mg, 2.8 mmol) was added and the reaction stirred overnight. The reaction was poured into water and extracted with chloroform. The organic layer was dried (MgSO₄), solvent removed in vacuo and the crude product purified by flash column chromatography to yield the title compound as a yellow oil (117 mg, 61 %).

1355, 1252, 1105, 1010 ${\rm cm}^{-1};\,\delta_H$ (500 MHz; CDCl3) 7.38 (2H, d, J 8.5, H13), 7.14 (2H, d, J 8.5, H12), 4.38 (1H, dd, J 11.5, 9.5, H11), 3.85-3.79 (2H, m, H1), 3.69-3.56 (2H, m, Ha), 3.54-3.48 (1H, m, Ha), 3.44-3.37 (2H, m, H2), 3.33-3.27 (1H, m, Ha), 3.11 (1H, t, J 11.5, H3), 3.03 (1H, q, J 7.25, H8), 2.99-2.90 (1H, m, H4), 2.40 (1H, dt, J 13.0, 7.5, H5), 2.33-2.26 (2H, m, H9), 2.17 (6H, s, H6), 2.10 (6H, s, H10), 1.94 (1H, dd, J 12.0, 5.5, H5'), 1.36 (2H, t, J 7.5, H7), 1.03 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 173.09 (C=O), 155.05 (C=O), 141.17 (C-C), 131.47 (C[13]H), 129.84 (C[12]H), 119.94 (C-Br), 63.68 (C[5]H₂), 62.74 (C[9]H₂), 62.29 (C[1]H₂), 53.06 (C[3]H), 51.29 $(C[11]H), 46.45 (C[2]H_2), 45.52 (C[6]H_3), 45.35 (C[10]H_3),$ 43.89 (C[4]H), 42.69 (C[a]H₂), 39.91 (C[a]H₂), 37.25 (C[8]H), 36.50 (H[7]H₂), 17.92 (C[TIPS]H₃), 11.81 (C[TIPS]H); LCMS (APCI+) 653 $(M+H^+)$: HRMS $(M+H)^+$ found 651.3303 $C_{32}H_{56}BrN_4O_3Si$ required 651.3305, $\Delta ppm - 0.5$.

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -1-[7-(4-Bromo-phenyl)-3methyl-3-aza-bicyclo[3.2.1]-octane-6-carbonyl]-3-(2-hydroxy-ethyl)-imida-zolidin-2-one (92) The TIPS group was removed using the standard conditions to yield the title compound as a yellow oil (38 mg, 73 %).

 $R_f 0.24$ (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (neat) 3452, 2936, 2778, 1721 (C=O), 1678 (C=O), 1488, 1440, 1375, 1353, 1249, 1158 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.38 (2H, d, J 8.0, H11), 7.16 (2H, d, J 8.5, H10), 4.14 (1H, d, J 7.0, H9), 4.09-4.04 (1H, m, H3), 3.95-3.84 (2H, m, Ha), 3.78 (2H, t, J 5.5, H1), 3.58-3.47 (2H, m, Ha), 3.44-3.32 (3H, m, H2, OH), 3.12 (1H, br d, J 10.4, H5), 2.93 (1H, s, H4), 2.84 (1H, d, J 11.5, H6), 2.40-3.33 (5H, m, H12, H5', H6'), 2.30 (1H, br t, J 4.0, H7), 2.20-2.14 (1H, m, H8), 1.60 (1H, d, J 11.5, H8'); δ_C (125 MHz; CDCl₃) 172.22 (C=O), 155.27 (C=O), 131.56 (C[11]H), 128.87 (C[10]H), 119.71 (C-C), 62.16 (C[1]H₂), 60.52 $(C[5]H_2), 57.66 (C[6]H_2), 56.56 (C[3]H), 46.77 (C[2]H_2), 46.63$ (C[9]H), 45.41 (C[12]H₃), 42.19 (C[a]H₂), 42.07 (C[4]H), 40.43 (C[a]H₂), 39.76 (C[7]H), 37.72 (C[8]H₂); LCMS (APCI+) 438 $(M+H^+)$; HRMS $(M+H)^+$ found 436.1243 $C_{20}H_{27}BrN_3O_3$ required 436.1236, Δ ppm -1.7.

$(1S^*, 2R^*, 3S^*, 5R^*)$ -1-[2-(4-Bromo-phenyl)-3,5-bis-dimethylamino-methyl-cyclopentanecarbonyl]-3-(2-hydroxy-ethyl)-imidazolidin-2-one

(93) The TIPS group was removed using the standard cleavage conditions to yield the title compound as a yellow oil (10 mg, 30 %)

 $R_f 0.39$ (SiO₂; 10:2:0.1 CHCl₃: MeOH: NEt₃); ν_{max} (neat) 3421, 2941, 2818, 2766, 1720 (C=O), 1671 (C=O), 1482, 1457, 1443, 1414, 1397, 1376, 1354, 1255, 1071 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.39 (2H, d, J 8.5, H13), 7.15 (2H, d,

 \mathbf{R}_f 0.37 (SiO_2; 10:2:0.1 CHCl_3: MeOH: NEt_3); ν_{max} (neat) 2942, 2865, 1765, 1722 (C=O), 1672 (C=O), 1461, 1413, 1397, 28 J 8.5, H12), 4.34 (1H, dd, J 11.5, 9.5, H11), 3.79 (2H, t, J 2865, 17

5.0, H1), 3.73-3.63 (2H, m, Ha), 3.47-3.29 (4H, m, Ha, H2), 3.12 (1H, t, J 11.0, H3), 2.99-2.90 (1H, m, H8), 2.68 (1H, br d, J 6.5, H4), 2.40-2.30 (1H, m, H5), 2.20 (1H, d, J 10.5, H9), 2.11 (6H, s, H6), 2.10 (6H, s, H10), 2.04 (1H, d, J 8.5, H5'), 1.91 (1H, dd, J 12.5, 5.0, H9'), 1.14-1.09 (3H, m, H7, OH); δ_C (125 MHz; CDCl₃) 173.17 (C=O), 156.16 (C=O), 141.36 (C-C), 131.44 (C[13]H), 129.86 (C[12]H), 119.99 (C-Br), 63.93 (C[5]H₂), 62.86 (C[9]H₂), 61.10 (C[1]H₂), 53.29 (C[3]H), 51.31 (C[11]H), 46.97 (C[2]H₂), 45.78 (C[6]H₃), 45.43 (C[10]H₃), 44.12 (C[4]H), 42.40 (C[a]H₂), 40.08 (C[a]H₂), 37.25 (C[8]H), 36.49 (H[7]H₂); LCMS (APCI+) 495 (M+H⁺): HRMS (M+H)⁺ found 495.1963, C₂₃H₃₆BrN₄O₃ required 495.1971, Δ ppm -1.7.

7.3.8 General procedure for the epoxidation reaction on solid support

To a suspension of the solid supported norbornene (1 equiv.) in CH_2Cl_2 (5 mL/g of beads) under nitrogen was added mCPBA (4 equiv.). The reaction was shaken for 48 hours then the beads collected by filtration. The beads were washed with CH_2Cl_2 (× 5) and then suspended in methanol (10mL/g of beads) and heated to 65 °C for 24 hours. The beads were separated by filtration and the filtrate concentrated in vacuo to yield:

 $(1S^*, 2S^*, 3S^*, 6S^*, 7R^*, 9R^*)$ -9-(4-Bromophenyl)-2-hydroxy-4-oxa-tri-cyclo[4.2.1.0^{3,7}]-nonan-5-one (96)

A colourless oil. NMR data matched that of the solution phase reaction.

7.3.9 General procedure for the epoxidation reaction in solution phase

 $(1S^*, 2S^*, 4R^*, 5R^*, 6S^*, 7R^*)$ -1-[7-(4-Bromophenyl)-3-oxa-tri-cyclo[3.2.1.0^{2,4}]octane-6-carbonyl]-3-(2-tri-isopropylsilanyloxy-ethyl)-imidazolidin-2-one (97) To a solution 84 (100 mg, 0.18 mmol) in CH₂Cl₂ (10 mL) under nitrogen was added mCPBA (80 mg, 0.39 mmol). The reaction was stirred for four hours then washed with sodium bicarbonate solution and the organic layer dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield the compound as a colourless oil (90 mg, 86 %).

 $\begin{array}{l} {\rm R}_f \ 0.40 \ ({\rm SiO}_2; \ 10:3 \ {\rm hexane: \ ethyl \ acetate}); \ \nu_{max} \ ({\rm neat}) \ 2944, \\ 2864, \ 1725 \ ({\rm C=O}), \ 1673 \ ({\rm C=O}), \ 1490, \ 1418, \ 1390, \ 1361, \ 1262, \\ 1247, \ 1108 \ {\rm cm^{-1}}; \ \delta_H \ (500 \ {\rm MHz}; \ {\rm CDCl}_3) \ 7.46 \ (2{\rm H}, \ {\rm d}, \ J \ 8.5, \\ {\rm H11}), \ 7.10 \ (2{\rm H}, \ {\rm d}, \ J \ 8.0, \ {\rm H10}), \ 4.52 \ (1{\rm H}, \ {\rm d}, \ J \ 5.0, \ {\rm H5}), \ 3.89 \\ (1{\rm H}, \ {\rm s}, \ {\rm H6}), \ 3.85 \ (2{\rm H}, \ {\rm t}, \ J \ 5.5, \ {\rm H1}), \ 3.65 \ (2{\rm H}, \ {\rm d}, \ J \ 8.5, \ 7.5, \\ {\rm Ha}), \ 3.44 \ (2{\rm H}, \ {\rm dd}, \ J \ 8.5, \ 6.0, \ {\rm Ha}), \ 3.34 \ (2{\rm H}, \ {\rm t}, \ J \ 5.0, \ {\rm H2}), \ 3.23 \\ (1{\rm H}, \ {\rm td}, \ J \ 4.5, \ 1.5, \ {\rm H4}), \ 3.05 \ (1{\rm H}, \ {\rm s}, \ {\rm H9}), \ 2.74 \ (1{\rm H}, \ {\rm s}, \ {\rm H7}), \ 29 \end{array}$

 $\begin{array}{l} 2.61 \ (1\mathrm{H},\,\mathrm{s},\,\mathrm{H3}),\, 2.11 \ (1\mathrm{H},\,\mathrm{dd},\,J\,\,11.5,\,1.0,\,\mathrm{H8}),\, 1.83 \ (1\mathrm{H},\,\mathrm{dd},\,J\,\,11.5,\,1.5,\,\mathrm{H8}'),\, 1.08 \ (21\mathrm{H},\,\mathrm{s},\,\mathrm{TIPS});\, \delta_C \ (125 \ \mathrm{MHz};\,\mathrm{CDCl}_3) \\ 179.19 \ (\mathrm{C=O}),\, 1163.23 \ (\mathrm{C=O}),\, 140.33 \ (\mathrm{C-C}),\, 131.80 \ (\mathrm{C[11]H}), \\ 128.79 \ (\mathrm{C[10]H}),\, 120.70 \ (\mathrm{C-Br}),\, 86.83 \ (\mathrm{C[5]H}),\, 77.83 \ (\mathrm{C[6]H}), \\ 62.93 \ (\mathrm{C[1]H}_2),\, 49.54 \ (\mathrm{C[3]H}),\, 47.84 \ (\mathrm{C[9]H}),\, 46.93 \ (\mathrm{C[a]H}_2), \\ 46.47 \ (\mathrm{C[7]H}),\, 46.27 \ (\mathrm{C[2]H}_2),\, 44.93 \ (\mathrm{C[4]H}),\, 38.55 \ (\mathrm{C[a]H}_2), \\ 31.34 \ (\mathrm{C[8]H}_2),\, 17.97 \ (\mathrm{C[TIPS]H}_3),\, 11.86 \ (\mathrm{C[TIPS]H});\, \mathrm{LCMS} \\ (\mathrm{ES+}) \ 579 \ (\mathrm{M+H^+}) \end{array}$

$(1S^*, 2S^*, 3S^*, 6S^*, 7R^*, 9R^*)$ -9-(4-Bromophenyl)-2-hydroxy-4-oxa-tri-cyclo[4.2.1.0^{3,7}]-

nonan-5-one (96) A solution of **97** (50 mg, 86 μ mol) in methanol (2.5 ml) was heated at 65 °C for six hours, cooled to room temperature and solvent removed *in vacuo*. The crude product was redissolved in CH₂Cl₂ and washed with brine. The organic layer was dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield the title compound as a colourless oil (20 mg, 75 %).

R_f 0.34 (SiO₂; 1:1 hexane: ethyl acetate); ν_{max} (neat) 3449, 1777 (C=O), 1490, 1345, 1174, 1009 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.48 (2H, d, J 8.5, H9), 7.11 (2H, d, J 8.5, H8), 4.52 (1H, d, J 5.0, H3), 3.91 (1H, s, H1), 3.25 (1H, ddd, J 9.5, 5.0, 1.5, H4), 3.06 (1H, s, H6), 2.76 (1H, d, J 1.5, H5), 2.62 (1H, s, H2), 2.19 (1H, br s, OH), 2.11 (1H, d, J 11.5, H7), 1.85 (1H, dd, J 11.5, 1.5, H7'); δ_C (125 MHz; CDCl₃) 179.17 (C=O), 140.21 (C-C), 131.84 (C[9]H), 128.78 (C[8]H), 119.21 (C-Br), 86.79 (C[3]H), 77.90 (C[1]H), 49.59 (C[2]H), 47.82 (C[6]H), 46.40 (C[5]H), 44.93 (C[4]H), 31.31 (C[7]H₂); LCMS (APCI+) 350 (M+MeCN+H⁺);

8 Diversity generating reactions preformed in solution phase

8.0.10 Alkylation reactions

To a solution of the primary amide (1 equiv.) in DMF: THF (1:1) was added sodium hydride (2 equiv.) and the reaction stirred under nitrogen at 0 °C for one hour and then warmed to room temperature. The bromide (2 equiv.) was added and the reaction stirred at 40 °C for three hours. The reaction was cooled to room temperature and quenched with saturated ammonium chloride solution. The aqueous layer was extracted with ethyl acetate, which was washed with brine, dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography to yield:

 $(1S^*,\,2S^*,\,3R^*,\,4S^*)\mbox{-}3\mbox{-}Pent-4\mbox{-}enyl\mbox{-}bicyclo[2.2.1]\mbox{-}hept-5\mbox{-}ene-2\mbox{-}carboxylic acid allyl-benzyl-amide (98)$

A vellow oil (80 mg, 41 %); R_f 0.30 (SiO₂; 10:1 toluene: ethyl acetate); ν_{max} (neat) 2964, 2924, 1638 (C=O), 1453, 1413, 1333, 1214 cm⁻¹; δ_H (500 MHz; DMSO, 100 °C) 7.33 (2H, t, J 7.5, ArH), 7.25 (1H, t, J 7.5, ArH), 7.20 (2H, d, J 7.5, ArH), 6.22 (1H, dd, J 5.5, 3.0, H6), 5.83-5.74 (3H, m, H5, H1, H13), 5.15 (1H, d, J 10.0, H15), 5.12 (1H, d, J 17.5, H15'), 5.00-4.93 (2H, m, H14), 4.70 (1H, d, J 15.0, H16), 4.46 (1H, d, J 15.0, H16'), 4.10 (1H, dd, J 17.0, 5.0, H2), 3.90 (1H, d, J 14.0, H2'), 3.02 (1H, s, H4), 2.67 (1H, t, J 3.5, H3), 2.53 (1H, s, H7), 2.03-1.96 (3H, m, H12, H9), 1.56 (1H, d, J 8.5, H8), 1.44-1.31 (5H, m, H8', H10, H11); δ_C (125) MHz; DMSO) 173.37 (C=O), 139.17 (C), 138.45 (CH), 131.89 (CH), 128.81 (CH), 127.35 (CH), 116.63 (CH₂), 114.76 (CH₂), 48.34 (CH), 47.69 (CH), 47.56 (CH), 46.82 (CH), 43.25 (CH), 35.08 (CH₂), 33.52 (CH₂), 28.04 (CH₂); LCMS (APCI+) 336 $(M+H^+)$: HRMS $(M+H)^+$ found 336.2320 C₂₃H₃₀NO required 336.2322, Δ ppm -0.7.

 $(1S^*,\ 2R^*,\ 3R^*,\ 4S^*)$ –3-(4-Bromo-phenyl)-bicy-clo[2.2.1]hept-5-ene-2-carboxylic acid allyl-ben-zyl-amide(99)

A yellow oil (33 mg, 87 %); ν_{max} (neat) 2978, 2929, 1642 (C=O), 1463, 1410, 1212 cm⁻¹; δ_H (500 MHz; DMSO, 90 °C) 7.43 (2H, d, J 8.0, H10), 7.34-7.29 (2H, m, ArH), 7.27-7.22 (1H, m, ArH), 7.20-7.12 (3H, m, ArH), 6.39 (1H, dd, J 5.5, 3.0, H6), 5.96 (1H, dd, J 5.5, 3.0, H5), 5.78-5.70 (1H, m, H1), 5.11 (1H, dd, J 10.5, 1.5, H12), 5.07 (1H, dd, J 17.5, 1.5, H12'), 4.71-4.68 (1H, m, H13), 4.47-4.41 (1H, m, H2), 4.08-4.04 (1H, m, H13'), 3.86-3.80 (1H, m, H2'), 3.22 (1H, d, J 4.0, H9), 2.99 (1H, s, H7), 2.90 (1H, s, H4), 2.51-2.50 (1H, m, H3), 1.75 (1H, d, J 8.5, H8), 1.44 (1H, d, J 8.5, H8'); LCMS (APCI+) 422 (M+H⁺)

 $(1S^*, 2R^*, 3R^*, 4S^*)$ -3-(4-Bromo-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid methylpent-4-enyl-amide (100)

A colourless oil (79 mg, 82 %); R_f 0.68 (SiO₂; 2:1 toluene: ethyl acetate); ν_{max} (DMSO) 2925, 2852, 1634 (C=O), 1486, 1457, 1376, 1259 cm⁻¹; δ_H (500 MHz; DMSO, 90 °C) 7.46 (2H, d, J 8.5, H11), 7.22 (2H, d, J 8.5, H10), 6.34 (1H, dd, J 5.0, 3.0, H6), 5.93 (1H, dd, J 5.0, 2.5, H5), 5.85-5.75 (1H, m, H14), 5.0 (1H, d, J 17.0, H15), 4.95 (1H, d, J 10.5, H15'), 3.40 (1H, dq, 8.5, 6.5, H9), 3.25-3.14 (4H, m, H2, H3), 3.98-2.86 (4H, m, H1, H4, H7), 2.00-1.95 (2H, m, H13), 1.78 (1H, d, J 8.5, H8), 1.61-1.49 (2H, m, H12), 1.46 (1H, d, J 8.5, H8'); LCMS (ES+) 375 (M+H⁺)

 $(1S^*,\ 2R^*,\ 3R^*,\ 4S^*)–3-(2-Allyloxy-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid methylpent-4-enyl-amide (101)$

A pale yellow oil (164 mg, 67 %); R_f 0.65 (SiO₂; 2:1 toluene: ethyl acetate); ν_{max} (DMSO) 3002, 1639 (C=O), 1491, 1451, 1405, 1241, 1015 cm⁻¹; δ_H (500 MHz; DMSO, 105 °C) 7.36 (1H, d, J 8.0, H10), 7.15 (1H, td, J 8.0, 2.0, H11), 6.96-6.91 (2H, m, H12, H13), 6.27 (1H, dd, J 5.5, 3.0, H6), 6.07-5.99 (1H, m, H15), 5.97 (1H, dd, J 5.5, 3.0, H5), 5.8-5.74 (1H, m, H19), 5.38 (1H, ddd, J 17.5, 3.5, 1.5, H16), 5.23 (1H, ddd, J 10.5, 3.0, 1.5, H16'), 4.98 (1H, dd, J 17.0, 1.5, H20), 4.93 (1H, ddd, J 10.5, 3.0, 1.0, H20'), 4.55-4.52 (2H, m, H14), 3.36 (2H, d, J 6.0, H1), 3.22 (1H, dd, J 5.0, 3.5, H3), 3.18-3.11 (2H, m, H9, H4), 2.87 (3H, s, H2), 2.82 (1H, s, H7), 1.94 (2H, dd, J 14.0, 6.5, H18), 1.74 (1H, d, J 8.1, H8), 1.60-1.47 (2H, m, H17), 1.39 (1H, ddd, J 8.5, 3.5, 1.5, H8'); LCMS (APCI+) 352 (M+H⁺).

 $(1S^*,\ 2R^*,\ 3R^*,\ 4S^*)–$ 3-(4-Bromo-phenyl)-bicy-clo[2.2.1]hept-5-ene-2-carboxylic acid methyl-oct-7-enyl-amide (102)

A pale yellow oil (92 mg, 88 %); R_f 0.66 (SiO₂; 2:1 toluene: ethyl acetate); ν_{max} (DMSO) 2928, 1633 (C=O), 1489 cm⁻¹; δ_H (500 MHz; DMSO, 90 °C) 7.45 (2H, d, J 8.5, H10), 7.21 (2H, d, J 8.0, H11), 6.34 (1H, dd, J 5.5, 3.0, H6), 5.93 (1H, dd, J 5.0, 2.5, H5), 5.85-5.74 (1H, m, H17), 5.00 (1H, ddd, J 17.5, 3.5, 1.5, H18), 5.94 (1H, ddd, J 10.5, 3.0, 1.5, H18'), 3.43-3.34 (1H, m, H3), 3.22-3.13 (4H, m, H4, H1, H9), 2.90 (1H, s, H7), 2.87 (3H, s, H2), 2.01 (2H, dd, J 14.0, 7.0, H16), 1.78 (1H, d, J 8.5, H8), 1.45-1.15 (9H, m, H8', H12, H13, H14, H15); LCMS (ES+) 417 (M+H⁺).

 $(1S^*,\ 2R^*,\ 3R^*,\ 4S^*)-3\-(3\-Vinyl-phenyl)\-bicyclo-[2.2.1]hept-5-ene-2-carboxylic acid methyl-pent-4-enyl-amide (103)$

A colourless oil (180 mg, 71 %); R_f 0.34 (SiO₂; 9:1 toluene: ethyl acetate); LCMS (APCI+) 322 (M+H⁺)

 $(1S^*,\ 2R^*,\ 3R^*,\ 4S^*)–3-(3-Vinyl-phenyl)-bicyclo-[2.2.1]hept-5-ene-2-carboxylic acid methyl-pent-4-enyl-amide (103)$

A colourless oil (180 mg, 71 %); R_f 0.34 (SiO₂; 9:1 toluene: ethyl acetate); LCMS (APCI+) 322 (M+H⁺)

8.0.11Grubbs metathesis reactions

 $2R^*$, $3R^*$, $4S^*$)-1-5-(2-Benzyloxycar- $(1R^{*},$ bonyl-vinyl)-2-(4-bromo-phenyl)-3-[2-oxo-3-(2triisopropylsilanyloxy-ethyl)-imidazolidine-1-carbonyl]-cyclopentyl-acrylic acid

benzyl ester (104) To a solution of 84 (40 mg, 88 μ mol) in toluene (10 ml) under an atmosphere of ethylene was added benzyl acrylate (86 mg, 0.53 mmol). The reaction was stirred at 120 °C and Grubbs 2nd Generation catalyst $(3 \text{ mg}, 4.4 \mu \text{mol})$ in toluene (6 ml) was added in three equal portions over six hours. After complete addition of the catalyst the reaction was stirred overnight and cooled to room temperature. The solvent was removed in vacuo and the crude product purified by flash column chromatography to yield the title compound as a colourless oil (25 mg, 33 %).

 $R_f 0.22$ (SiO₂; 10:1 toluene: ethyl acetate); ν_{max} (neat) 2942, 2865, 1719 (C=O), 1672 (C=O), 1414, 1393, 1355, 1261, 1162, 1105, 1009 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.42-7.26 (12H, m, ArH), 7.15-7.10 (2H, m, ArH), 6.89 (1H, dd, J 15.5, 7.5, H10), 6.81 (1H, dd, J 15.5, 9.5, H5), 5.85 (1H, d, J 15.5, H11), 5.75 (1H, d, J 15.5, H6), 5.18 (2H, d, J 2.5, H7), 5.15 (2H, s, H12), 4.58 (1H, t, J 10.5, H3), 3.81-3.75 (2H, m, H1), 3.68-3.62 (2H, m, Ha), 3.60-3.48 (2H, m, Ha), 3.46-3.40 (2H, m, H2), 3.24 (1H, td, J 9.5, 6.0, H4), 3.15 (1H, ddd, J 14.0, 6.5, 5.0, H9), 2.92-2.84 (1H, m, H13), 2.27 (1H, dt, J 13.0, 7.0, H8), 1.72 (1H, dt, J 11.5, 9.5, H8'), 1.06 (21H, s, TIPS); δ_C (125 MHz; CDCl₃) 171.00 (C=O), 165.88 (C=O), 165.71 (C=O), 154.17 (C), 149.04 (CH), 148.78 (CH), 139.60 (C), 136.11 (C), 135.96 (C), 131.71 (CH), 129.70 (CH), 128.53 (CH), 128.28 (CH), 128.18 (CH), 122.00 (CH), 121.88 (CH), 120.67 (C), 66.15 (C[12]H₂), 66.05 (C[7]H₂), 61.78 (C[1]H₂), 55.17 (C[3]H), 51.81 (C[4]H), $49.33 (C[9]H), 46.33 (C[a]H_2), 42.91 (C[13]H), 42.34 (C[a]H_2),$ $39.70 (C[2]H_2), 38.04 (C[8]H_2), 17.90 (C[TIPS]H_3) 11.79$ $(C[TIPS]H); LCMS (ES+) 857 (M+H^+): HRMS (M+H)^+$ found 857.3194 C₄₆H₅₇BrN₂O₇Si required 857.3191, Δ ppm +0.4.

8.0.12 General procedure for ring closing metathesis reactions

To a solution of the norbornene (98-103) (1 equiv.) in toluene (4 mg per ml) under an atmosphere of ethylene at 120 °C was added Grubbs 2nd generation catalyst (1 mol %) as a solution in toluene (1mg in 0.3 ml) in three equal portions over nine 31

hours. The reaction was reflux overnight then cooled to room temperature. The solvent removed in vacuo and the crude product purified by flash column chromatography.

 $(5aS^*, 7R^*, 8R^*, 8aR^*)$ -2-Benzyl-8-(4-bromophenyl)-7-vinyl-3,5a,6,7,8,8a-hexahydro-2H-cyclopenta[c]azepin-1-one (105)

A colourless oil (13 mg, 65 %); R_f 0.40 (SiO₂; 10:1 hexane: ethyl acetate); ν_{max} (neat) 2920, 2857, 1643 (C=O), 1489, 1423, 1224, 1009 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.42 (2H, d, J 8.0, H13), 7.32-7.18 (7H, m, ArH), 5.97-5.88 (1H, m, H8), 5.79 (2H, s, H2), 4.98-4.92 (2H, m, H9), 4.73 (1H, d, J 15.0, H3), 4.57 (1H, d, J 15.0, H4), 4.16-4.10 (2H, m, H1), 3.46 (1H, dd, J 9.5, 4.5, H11), 3.26-3.20 (1H, m, H10), 3.17-3.10 (1H, m, H5), 2.67-2.60 (1H, m, H7), 2.14 (1H, dt, J 12.0, 6.0, H6), 1.54 (1H, dd, J 24.5, 12.0, H6'); δ_C (125 MHz; CDCl₃) 171.83 (C=O), 144.28 (C-C), 140.16 (CH), 137.86 (C-C), 134.91 (CH), 131.51 (CH), 131.33 (CH), 129.42 (CH), 128.37 (CH), 128.33 (CH), 128.11 (C-Br), 127.22 (CH), 126.55 (CH), 114.45 (C[9]H₂), 54.26 (C[11]H), 51.41 (C[10]H), 51.32 (C[2]H₂), 50.81 (C[5]H), 43.10 (C[1]H₂), 42.27 (C[7]H), 40.12 $(C[6]H_2); LCMS (APCI+) 422 (M+H^+): HRMS (M+H)^+$ found 422.1111 C₂₄H₂₅BrNO required 422.1114, Δ ppm -0.8.

4-Benzyl-4-aza-tricyclo[8.5.0.0^{2,8}]pentadeca-6,11dien-3-one (4)

A colourless oil (20 mg, 54 %); R_f 0.26 (SiO₂; 10:0.5 hexane: ethyl acetate); ν_{max} (neat) 2916, 2836, 1642 (C=O), 1439, 1416, 1219, 1199 cm⁻¹; δ_H (500 MHz; DMSO; 115 °C) 7.35-7.20 (5H, m, ArH), 5.90-5.65 (3H, m, CH), 4.67-4.35 (2H, m, CH), 4.15-3.90 (1H, m, CH), 3.40-2.91 (2H, m, CH), 2.60-1.79 (8H, m, CH), 1.45-1.15 (3H, m, CH); LCMS (APCI+) 308 $(M+H^+)$:HRMS $(M+H)^+$ found 308.2008 C₂₁H₂₆NO required $308.2009, \Delta \text{ ppm} -0.2.$

 $(2R^*, 3R^*, 3aR^*, 10aS^*)$ -3-(4-Bromo-phenyl)-5methyl-2-vinyl-2,3,3a,5,6,7,8,10a-octahydro-1H-5-aza-cyclopentacyclononen-4-one (106)

A colourless oil (42 mg, 86 %); R_f 0.38 (SiO₂; 10:1 hexane: ethyl acetate); ν_{max} (neat) 2989, 1632 (C=O), 1486, 1410, 1261 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.39 (2H, d, J 8.0, H15), 7.15 (2H, d, J 8.0, H14), 5.72 (1H, ddd, J 17.5, 10.5, 7.5, H10), 5.62 (1H, dtd, J 10.5, 7.0, 1.5, H5), 5.41 (1H, dd, J 10.5, 8.0, H6), 4.93 (1H, d, J 17.5, H11), 4.90 (1H, d, J 10.5, H11'), 3.67 (2H, t, J 13.0, H2), 3.63 (1H, dd, J 11.5, 9.0, H12), 3.45-3.32 (2H, m, H7, H13), 3.15 (1H, dd, J 15.0, 4.5, H2'), 2.80 (3H, s, H1) 2.79-2.72 (1H, m, H9), 2.31-2.16 (3H, m, H4, H8), 1.83-1.74 (1H, m, H3), 1.72-1.64 (1H, m, H8'), 1.62-1.55 (1H, m, H3); δ_C (125 MHz; CDCl₃) 171.74 (C=O), 141.84 (C-C), 139.42 (C[10]H), 133.45 (C[6]H), 131.40 (C[15]H), 130.78 (C[5]H), 129.80 (C[14]H), 119.91 (C-Br), 115.27 (C[11]H₂), 55.66 (C[13]H), 52.90 (C[12]H), 51.48 (C[2]H₂), 50.76 (C[9]H), 40.44 (C[8]H₂), 38.50 (C[7]H), 33.26 (C[1]H₃), 28.22 (C[4]H₂), 25.86 (C[3]H₂); LCMS (APCI+) 374 (M+H⁺).

 $(2R^*, 3R^*, 3aR^*, 13aS^*)$ -3-(4-Bromo-phenyl)-5-methyl-2-vinyl-1,2,3,3a,5,6,7,8,9,10,11,13a-dodecahydro-5-aza-cyclopentacyclo-dodecen-4-one (107)

A colourless oil (40 mg, 69 %); R_f 0.68 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (neat) 2987, 1634 (C=O), 1486, 1413, 1260 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.39 (2H, d, J 8.0, H18), 7.13 (2H, d, J 8.5, H17), 5.75-5.65 (1H, m, H13), 5.49 (1H, dd, J 15.0, 9.0, H9), 5.41 (1H, ddd, J 15.0, 8.0, 6.0, H8), 4.90-4.85 (2H, m, H14), 4.40 (1H, ddd, J 15.0, 11.5, 3.5, H15), 3.50 (1H, dd, J 11.0, 9.5, H2), 3.30 (1H, t, J 11, H2'), 3.07 (1H, quintet, J 8.5, H10), 2.84 (3H, s, H1), 2.71-2.62 (1H, m, H12), 2.44 (1H, dt, J 13.5, 4.0, H16), 2.20-2.13 (2H, m, H7), 2.02-1.95 (1H, m, H11), 1.73 (1H, dt, J 11.5, 9.5, H11'), 1.59-1.20 (8H, m, H3, H4, H5, H6); δ_C (125 MHz; CDCl₃) 172.46 (C=O), 141.90 (C-C), 139.70 (C[13]H), 131.92 (C[9]H), 131.40 (C[18]H), 130.62 (C[8]H), 129.72 (C[17]H), 119.90 (C-Br), 115.07 (C[14]H₂), 54.21 $(C[16]H), 53.30 (C[15]H), 51.08 (C[12]H), 45.05 (C[2]H_2),$ 43.37 (C[10]H), 39.10 (C[11]H₂), 34.04 (C[1]H₃), 31.53 $(C[7]H_2), 26.78 (C[3]H_2), 24.92 (C[6]H_2), 24.70 (C[4]H_2),$ 23.13 (C[5]H₂); LCMS (APCI+) 416 (M+H⁺): HRMS (M+H)⁺ found 416.1591 C₂₃H₃₁BrNO required 416.1589, Δ ppm + 0.4.

 $(1R^*, 2R^*, 9R^*, 11S^*)$ -17-Methyl-3,4-phenyl-5oxa-17-azatricyclo[9.7.0.0^{2.9}] octadeca-7,12-dien-18-one (108)

A colourless oil (5.4 mg, 11 %); R_f 0.46 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (DMSO) 2916, 1630 (C=O), 1486, 1448, 1260, 1101, 1007 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.34-7.30 (1H, m, H13), 7.21-7.14 (2H, m, H15, H16), 7.03 (1H, d, J 7.5, H14), 5.71 (1H, ddd, J 11.0, 8.0, 3.0, H11), 5.65-5.59 (1H, m, H5), 5.46 (1H, dd, J 10.5, 8.0, H6), 5.38 (1H, br d, J 11.0, H10), 5.04 (1H, d, J 17.0, H12), 5.00-4.80 (1H, m, H12'), 4.36 (1H, dd, J 16.5, 3.5, H18), 4.28-4.18 (1H, m, H17), 3.85 (1H, dd, J12.5, 9.5, H2), 3.73 (1H, t
, J13.5, H2'), 3.41 (1H, dd, J12.0, 9.5, H7), 3.17 (1H, br d, J 15.5, H9), 2.91 (3H, s, H1), 2.31-2.12 (3H, m, H4, H3), 1.85-1.75 (1H, m, H8), 1.61-1.50 (2H, m, H3', H8'); LCMS (APCI+) 324 (M+H⁺)

 $(5aS^*, 7R^*, 8R^*, 8aR^*)$ -2-Methyl-7-vinyl-8-(3vinyl-phenyl)-3,5a,6,7,8,8a-hexahydro-2H-cyclopenta[c]azepin-1-one (108)

A colourless oil (10.3 mg, 21 %); R_f 0.54 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (DMSO) 2926, 2854, 1651 (C=O), 1486, 1345, 1316, 1260 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.28-7.17 (4H, m, H12, H13, H14, H17), 6.72 (1H, dd, J 17.5, 11.0, H15), 6.06-6.04 (1H, m, H8), 5.95-5.85 (2H, m, H3, H4), 5.76 (1H, d, J 17.5, H16), 5.24 (1H, d, J 11, H16'), 4.95-4.92 (2H, m, H9), 4.30 (1H, dtd, J 15.5, 5.5, 2.5, H2), 4.09 (1H, dd, J 9.0, 4.5, H2'), 3.46 (1H, dd, J 9.5, 4.5, H10), 3.18-3.12 (2H, m, H5, H11) 3.01 (3H, s, H1), 2.72-2.64 (1H, m, H7), 2.10 (1H, dt, J 11.5, 5.5, H6), 1.49 (1H, dt, J 13.5, 12.0, H6'); δ_C (125 MHz; CDCl₃) 172.21 (C=O), 145.71 (C-C), 140.51 (CH), 137.03 (CH), 135.56 (CH), 128.65 (CH), 127.28 (CH), 126.09 (CH), 125.91 (CH), 123.92 (CH), 114.37 $(C[9]H_2), 113.71 (C[16]H_2), 54.08 (C[11]H), 51.66 (C[10]H),$ 50.94 (C[5]H), 45.82 (C[2]H₂), 42.42 (C[7]H), 40.04 (C[6]H₂), $35.65 (C[1]H_3); LCMS (APCI+) 294 (M+H^+): HRMS$ $(M+H)^+$ found 294.1863 $C_{20}H_{24}NO$ required 294.1858, Δ ppm +1.7.

 $(2R^*, \ 3R^*, \ 3aR^*, \ 10aS^*)$ -5-Methyl-2-vinyl-3-(3vinyl-phenyl)-2,3,3a,5,6,7,8,10a-octahydro-1H-5aza-cyclopentacyclononen-4-one (109)

A colourless oil (15.9 mg, 31 %); R_f 0.52 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (DMSO) 3007, 2997, 1629 (C=O), 1261 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.29-7.17 (4H, m, H15, H16, 32 H14, H17), 6.71 (1H, dd, J 17.5, 11.0, H19), 5.77-5.72 (2H,

m, H10, H18), 5.62-5.60 (1H, m, H5), 5.42 (1H, dd, J 10.5, 7.25, H6), 5.22 (1H, d, J 11.0, H18'), 4.94 (1H, d, J 17.0, H11), 4.90 (1H, d, J 10.5, H11'), 3.72-3.65 (2H, m, H12, H2), 3.44-3.40 (2H, m, H2', H13), 3.13 (1H, m, H7), 2.81 (3H, s, H1), 2.27-2.20 (3H, m, H9, H4), 1.80-1.70 (3H, m, H8, H3), 1.62-1.55 (1H, m,H8'); LCMS (APCI+) 322 (M+H⁺).

A colourless oil (5.5 mg, 11 %); R_f 0.54 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (DMSO) 2993, 1632 (C=O), 1481, 1410, 1302, 1259 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.28-7.12 (4H, m, H17, H18, H19, H22), 6.70 (1H, dd, *J* 17.5, 11.0, H20), 5.79-5.72 (2H, m, H21, H13), 5.52 (1H, dd, *J* 15.0, 8.5, H9), 5.40 (1H, dt, *J* 15.0, 7.0, H8), 5.22 (1H, d, *J* 10.5, H21'), 4.93-4.87 (2H, m, H14), 4.43 (1H, td, *J* 14.5, 3.8, H15), 3.54 (1H, dd, *J* 10.5, 9.5, H2), 3.41 (1H, t, *J* 9.5, H2'), 3.12-3.05 (1H, m, H10), 2.81 (3H, s, H1), 2.74-2.67 (1H, m, H12), 2.43 (1H, dt, *J* 14.0, 4.0, H16), 2.17-2.11 (2H, m, H7), 2.06-1.95 (1H, m, H11), 1.80 (1H, dd, *J* 22.0, 12.0, H11'), 1.58-1.54 (1H, m, H3), 1.53-1.40 (3H, m, H3', H6), 1.32-1.21 (5H, m, H6, H5, H4); LCMS (APCI+) 363 (M+H⁺).

9 Cleavage of compounds to synthesise carboxylic acids

9.1 General method for solid supports

To a solution of resin (1 equiv.) in acetonitrile: water (1:1, 2 mL/g of beads) was added lithium hydroxide (10 equiv.) and the reaction stirred at 65 °C for 16 hours and then cooled to room temperature. The beads were removed by filtration and washed with ether (\times 3) and the aqueous layer was separated and neutralised using pH 7 buffer. The aqueous layer was then extracted with ether and the organic layer was dried (MgSO₄) and solvent removed *in vacuo*.

9.2 General method for solution phase synthesis

A round-bottom flask, equipped with a magnetic stirrer, containing the library compound (1 equiv.), lithium hydroxide (6 equiv.), THF (0.5 mL/200 mg of compound) and water (0.5 mL/200 mg of compound) was stirred at 50 °C for 5 hours. The resulting solution was cooled to room temperature and diluted with Et₂O and H₂O and acidified with aqueous 3N HCl solution. The aqueous layer was sequentially washed with Et₂O (× 3), basified with aqueous 10 % NaOH solution and extracted with Et₂O (× 3). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo*.

9.3 Library compounds generated using this methodology

Compounds prepared using branching pathways 1,2,3 and 4 were cleaved after each step to generate carboxylic acids using the above methodology to generate compounds with purity greater than 80 % by NMR and LCMS:

(*rac*)-3-(4-Bromo-phenyl)-2,3-dihydroxy-propionic acid (111)

A viscous oil. ν_{max} (neat) 3407w br (OH), 2521w, 1742s (acid), 1489m, 1283m, 1107s, 727s cm⁻¹; δ_H (400 MHz; CD₃OD) 7.51-7.43 (2H, d, J 8.5, H5), 7.38-7.32 (2H, d, J 8.5, H6), 5.03-4.98 (1H, br s, H3), 4.25-4.21 (1H, d, J 3.0, H2); δ_C (125 MHz; CD₃OD) 174.1 (C=O), 140.8 (C-C), 130.6 (CH), 128.2 (CH), 120.6 (C-Br), 74.7 (CH), 73.6 (CH); HRMS found m/z (ESI-H+) 282.9572 C₄H₉⁷⁹BrO₄Na⁺ required 282.9576, Δ ppm -1.4, mp 169-170 °C (Ether).

(rac)-2,3-Bis-benzyloxy-3-(4-bromo-phenyl)-propionic acid (112)

A viscous oil. ν_{max} (neat)/cm-1 2918w br, 1728m (carbonyl), 1487m, 1454m, 1072s, 1011m, 697m cm⁻¹; δ_H (400 MHz; CDCl₃) 7.51-7.45 (2H, d, J 8.3, H4), 7.30-7.17 (10H, m, H3, ArylH), 6.97-6.93 (2H, d, J 7.0, ArylH), 4.80-4.76 (1H, d, J 2.9, H2), 4.60-4.52 (2H, d, J 12.0, H5), 4.29-4.24 (2H, m, H6), 4.02-4.00 (1H, d, J 3.0, H1); δ_C (100 MHz; CDCl₃) 172.9 (C=O), 136.9 (C-C), 135.9 (C-C), 135.8 (C-C), 132.2 (CH), 131.6 (CH), 129.4 (CH), 128.4 (CH), 128.4 (CH), 128.2 (CH), 128.0 (CH), 122.3 (C-Br), 80.9 (C[1]H), 79.9 (C[2]H), 73.8 (CH₂), 71.5 (CH₂); HRMS found m/z (ESI-H⁺) 458.0960 C₂₃H₂₅⁷⁹BrNO₄⁺ required 458.0961, Δ ppm -0.3.

 $(1S^*,\ 2S^*,\ 3R^*,\ 4R^*)$ –3-Methylbicyclo
[2.2.2]oct-5-ene-2-carboxylic acid (113)

A white solid ; ν_{max} (neat) 2962, 1701 (C=O), 1273 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.30 (1H, dd, J 5.5, 3.0, H6), 6.06 (1H, dd, J 5.5, 3.0, H5), 3.15 (1H, s, H4), 2.50 (1H, s, H7), 2.44 (2H, t, J 4.5, H3), 1.86-1.83 (1H, m, H9), 1.58 (1H, d, J 8.5, H8), 1.43 (1H, dd, J 8.5, 1.5, H8'), 1.21 (3H, d, J 7.0, H10); LCMS (ES+) 153 (M+H⁺). Data in agreement with literature values [3]

 $(1S^*,\ 2S^*,\ 3R^*,\ 4R^*)$ –3-Isobutyl-bicyclo [2.2.1]-hept-5-ene-2-carboxylic acid (114)

A colourless oil ; ν_{max} (DMSO) 3364, 2961, 1700 (C=O), 1318, 1261, 1220 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.30 (1H, dd, J 5.5, 3.0, H6), 6.06 (1H, dd, J 5.5, 3.0, H5), 3.15 (1H, s, H4), 2.50 (1H, s, H7), 2.44 (1H, dd, J 4.5, 3.5, H3), 1.85-83 (1H, m, H9), 1.57 (1H, d, J 8.5, H8), 1.47 (1H, dd, J 8.5, 1.5, H8'), 1.35-1.21 (3H, m, H10, H11), 1.21 (3H, d, J 7.0, H12), 0.88 (3H, d, J 7.0, H12); LCMS (ES+) 195 (M+H⁺).

$(1S^*,\ 2R^*,\ 3R^*,\ 4R^*)$ –3-(3,4,5-Trimethoxyphenyl)-bicyclo
[2.2.1]hept-5-ene-2-carboxylic acid (115)

A colourless oil; ν_{max} (neat) 2941, 2838, 1699 (C=O), 1587, 1508, 1456, 1419, 1332, 1241, 1124 cm⁻¹; δ_H (500 MHz; MeOD) 6.35 (2H, s, H10), 6.18 (1H, dd, J 5.5, 3.0, H6), 5.93 (1H, dd, J 5.5, 3.0, H5), 3.63 (6H, s, H11), 3.58 (3H, s, H12), 3.12 (1H, dd, J 3.0, 1.5, H3), 3.07 (1H, s, H4), 2.79-2.74 (1H, m, H7), 2.73 (1H, dd, J 5.0, 1.5, H9), 1.57 (1H, d, J 8.5, H8), 1.37 (1H, dd, J 8.5, 1.5, H8'); LCMS (ES+) 305 (M+H⁺).

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(2-Chloro-6-methoxyquinolin-3-yl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (116)

A colourless oil ; ν_{max} (neat) 2917, 1702 (C=O), 1622, 1496, 1230, 1183, 1040 cm⁻¹; δ_H (400 MHz; CDCl₃) 8.07 (1H, s, H10), 7.87 (1H, d, J 9.0, H14), 7.26 (1H, dd, 9.0, 3.0, H13), 7.13 (1H, d, J 3.0, H11), 6.44 (1H, dd, J 5.5, 3.0, H6), 6.13 (1H, dd, J 5.5, 3.0, H5), 3.86 (3H, s, H12), 3.43 (1H, d, J 4.5, H3), 3.42 (1H, s, H4), 3.27 (1H, t, J 5.0, H9), 2.96 (1H, s, H7), 1.67 (1H, d, J 8.5, H8), 1.50 (1H, dd, J 8.5, 1.5, H8'); LCMS (ES+) 330 (M+H⁺).

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -3-(2-Chloro-6methoxy-quinolin-3-yl)-5,6-di-hydroxy-bicyclo-[2.2.1]heptane-2-carboxylic acid (117)

A white solid ; ν_{max} (DMSO) 2959, 1700 (C=O), 1461, 1260, 1098 cm⁻¹; δ_H (500 MHz; 1:1 MeOD: CDCl₃) 8.24 (1H, s, H10), 7.83 (1H, d, J 9.0, H14), 7.40 (1H, dd, 9.0, 3.0, H13), 7.28 (1H, d, J 3.0, H11), 3.48-3.40 (2H, m, H6, H5), 3.96 (3H, s, H12), 3.48 (1H, d, J 4.5, H3), 2.97 (1H, t, J 5.0, H9), 2.45 (1H, s, H4), 2.19 (1H, s, H7), 1.97 (1H, d, J 8.5, H8), 1.68 (1H, d, J 8.5, H8'); LCMS (ES+) 364 (M+H⁺).

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -5,6-Dihydroxy-3-methyl-bicyclo[2.2.1]heptane-2-carboxylic acid (118)

A colourless oil; ν_{max} (neat) 3353 (OH), 2962, 1702 (C=O), 1455, 1395, 1266, 1194, 1114, 1058 cm⁻¹; δ_H (500 MHz; 1:1 MeOD: CDCl₃) 3.73 (1H, s, H6), 3.70 (1H, s, H5), 2.36 (1H, s, H4), 2.09 (1H, t, *J* 5.0, H3), 1.80 (1H, s, H7), 1.77-1.69 (2H, m, H8, H9), 1.35 (1H, d, *J* 10.5, H8'), 0.94 (3H, d, *J* 7.0, H10); LCMS (ES-) 185 (M-H⁺).

 $(1R^*,\ 2S^*,\ 3R^*,\ 4S^*,\ 5S^*,\ 6R^*)$ –5,6-Dihydroxy-3-isobutyl-bicyclo
[2.2.1]heptane-2-carboxylic acid (119)

A colourless oil; ν_{max} (DMSO) 2950, 1662 (C=O), 1316, 1260 cm⁻¹; δ_H (500 MHz; 10:1 MeOD: CDCl₃) 3.91 (1H, s, H6), 3.83 (1H, s, H5), 2.46 (1H, s, H4), 2.20 (1H, d, J 4.5, H3), 1.78 (1H, s, H7), 1.82 (1H, d, J 8.5, H8), 1.79 (1H, d, J 6.0, H9), 1.51 (1H, sep, J 6.5, H11), 1.39 (1H, d, J 8.5, H8'), 1.20-1.12 (2H, m, H10), 0.87 (6H, d, J 6.5, H12); LCMS (ES-) 227 (M-H⁺).

 $(1S^*, 2S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ –9-Methyl-4cyclohexyl-3,5-dioxa-tricyclo $[5.2.1.0^{2,6}]$ decane-8carboxylic acid (120)

A colourless oil; ν_{max} (neat) 3202, 2933, 2863, 1700 (C=O), 1449, 1370, 1267, 1190, 1161, 1105, 1090, 1023 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.21 (1H, d, J 5.5, H6), 4.09 (1H, d, J 5.5, H5), 2.62 (1H, d, J 4.0, H4), 2.26 (1H, t, J 5.0, H3), 2.02 (1H, s, H7), 1.81-1.74 (2H, m, H8, H9), 1.70-1.61 (4H, m, CyH), 1.58-1.52 (4H, m, CyH), 1.44-1.36 (3H, m, CyH, H8'), 1.08 (3H, d, J 7.0, H10); δ_C (125 MHz; CDCl₃) 178.81 (C=O), 109.82 (C-C), 80.94 (C[5]H), 77.66 (C[6]H), 50.59 (C[3]H), 47.44 (C[7]H), 44.14 (C[4]H), 35.16 (CyC), 33.54 (C[9]H), 33.45 (CyC), 30.43 (C[8]H₂), 25.28 (CyC), 24.06 (CyC), 23.62 (CyC), 20.65 (C[10]H3); LCMS (APCI+) 267 (M+H⁺): HRMS (M+H)⁺ found 265.1433 C₁₅H₂₁O₄ required 265.1440, Δ ppm -3.0 $(1S^*,\,2S^*,\,4S^*,\,6R^*,\,7R^*,\,8S^*,\,9R^*)$ –9-Methyl-4-phenyl-3,5-dioxa-tricyclo
[5.2.1.0^{2,6}] decane-8-carboxylic acid (121)

A yellow oil; ν_{max} (neat) 2953, 2889, 1698 (C=O), 1459, 1422, 1400, 1311, 1295, 1270, 1231, 1193, 1085, 1066, 1007 cm^{-1}; δ_H (500 MHz; CDCl₃) 7.55-7.52 (2H, m, H12), 7.41-7.38 (3H, m, H13, H14), 5.61 (1H, s, H11), 4.71 (1H, br s, OH), 4.33 (1H, d, J 5.5, H6), 4.19 (1H, d, J 5.5, H5), 2.81 (1H, d, J 4.0, H4), 2.34 (1H, t, J 5.0, H3), 2.21 (1H, s, H7), 2.03 (1H, d, J 10.5, H8), 1.84 (1H, q, J 7.0, H9), 1.46 (1H, d, J 10.5, H8'), 1.12 (3H, d, J 7.0, H10); δ_C (125 MHz; CDCl₃) 178.82 (C=O), 136.01 (C-C), 129.54 (C[14]H), 128.42 (CH), 126.73 (CH), 103.06 (C[11]H), 82.23 (C[5]H), 79.07 (C[6]H), 50.61 (C[3]H), 47.39 (C[7]H), 44.08 (C[4]H), 33.70 (C[9]H), 30.80 (C[8]H₂) 20.61 (C[10]H₃); LCMS (ES-) 273 (M-H⁺): HRMS (M+H)⁺ found 273.1125 C₁₆H₁₇O₄ required 273.1127, Δ ppm -0.7.

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ –9-Methyl-4-thiophen-2-yl-3,5-dioxa-tricyclo $[5.2.1.0^{2,6}]$ decane-8-carboxylic acid (122)

A yellow oil; ν_{max} (neat) 2896, 1697 (C=O), 1464, 1421, 1389, 1332, 1311, 1270, 1208, 1193, 1059, 1005 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.36 (1H, d, J 5.0, H14), 7.21 (1H, d, J 3.5, H12), 7.01 (1H, dd, J 5.0, 3.5, H13), 5.88 (1H, s, H11), 4.32 (1H, d, J 5.5, H6), 4.17 (1H, d, J 5.5, H5), 2.79 (1H, s, H4), 2.33 (1H, t, J 5.0, H3), 2.19 (1H, s, H7), 2.03 (1H, d, J 10.5, H8), 1.83 (1H, q, J 7.0, H9), 1.47 (1H, d, J 10.5, H8'), 1.11 (3H, d, J 7.0, H10); δ_C (125 MHz; CDCl₃) 183.09 (C=O), 139.29 (C-C), 127.02 (CH), 126.66 (CH), 126.51 (CH), 99.49 (C[11]H), 82.35 (C[5]H), 79.23 (C[6]H), 50.50 (C[3]H), 47.37 (C[7]H), 44.07 (C[4]H), 33.65 (C[9]H), 30.67 (C[8]H₂) 20.60 (C[10]H₃); LCMS (APCI+) 281 (M+H⁺): HRMS (M+H)⁺ found 279.0688 C₁₄H₁₅O₄S required 279.0691, Δ ppm -1.1

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ –9-Isobutyl-4phenyl-3,5-dioxa-tricyclo $[5.2.1.0^{2,6}]$ decane-8-carboxylic acid (123)

A pale yellow oil; ν_{max} (DMSO) 2977, 1709 (C=O), 1457, 1377, 1220 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.59-7.49 (2H, m, H14), 7.40-7.34 (3H, m, H15, H16), 5.58 (1H, s, H13), 4.30 35

(1H, d, J 5.5, H6), 4.16 (1H, d, J 5.5, H5), 2.78 (1H, d, J 4.0, H4), 2.35 (1H, t, J 5.0, H3), 2.25 (1H, s, H7), 1.97 (1H, d, J 10.5, H8), 1.80-1.78 (1H, m, H9), 1.68-1.64 (1H, m, H11), 1.40 (1H, d, J 10.5, H8'), 1.39-1.25 (2H, m, H10), 0.92 (6H, d, J 7.0, H12); LCMS (ES-) 315 (M-H⁺).

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(4-Bromo-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (124)

A white solid; ν_{max} (DMSO) 2977, 1710 (C=O), 1490, 1261, 1220 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.44 (2H, d, J 8.5, H11), 7.23 (2H, d, J 8.5, H10), 6.45 (1H, dd, J 5.5, 3.0, H6), 6.21 (1H, dd, J 5.5, 3.0, H5), 3.48 (1H, s, H4), 3.06-3.05 (2H, m, H9, H3), 3.00 (1H, s, H7), 1.76 (1H, d, J 8.5, H8), 1.60 (1H, d, J 8.5, H8'); LCMS (ES-) 291 (M-H⁺).

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(4'-Trifluoromethoxybiphenyl-4-yl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (125)

A colourless oil; R_f 0.10 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2976 (OH), 1700 (C=O), 1256 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.57 (2H, d, J 8.5, H13), 7.49 (2H, d, J 8.0, H12), 7.41 (2H, d, J 8.0, H11), 7.27 (2H, d, J 8.5, H10), 6.46-6.44 (1H, m, H6), 6.22-6.20 (1H, m, H5), 3.35 (1H, s, H4), 3.13 (1H, d, J 5.0, H9), 3.09-3.08 (2H, m, H3, H7), 1.82 (1H, d, J 9.0, H8), 1.63 (1H, d, J 9.0, H8'); δ_C (125 MHz; CDCl₃) 180.04 (C), 148.58 (C), 143.57 (C), 139.63 (C), 139.20 (CH), 137.76 (C), 134.75 (CH), 128.36 (CH), 128.23 (CH), 128.01 (CH), 121.23 (CH), 52.15 (CH), 48.29 (CH), 47.33 (C[8]H₂), 47.25 (CH), 46.22 (CH); LCMS (ES+) 389 (M+H⁺): HRMS (M+Na)⁺ found 397.10240 C₂₁H₁₇F₃O₃Na required 397.10275, Δ ppm -0.96.

10 Cleavage of compounds to synthesise alcohols

10.1 General method for solid supports

To a suspension of the resin (1 equiv.) in THF at 0 $^{\circ}$ C under nitrogen was added a solution of lithium borohydride hydride (5 equiv.) and the reaction stirred for twenty four hours. The reaction quenched using Rochelles salt and the beads removed by filtration. The aqueous layer was extracted with ether and the organic layer was washed with brine, dried (MgSO₄) and solvent removed *in vacuo*.

10.2 General method for solution phase synthesis

A round-bottom flask, equipped with a magnetic stirrer, containing the library compound (1 equiv.) was dissolved in THF (1 mL/ 100mg of compound) at 0 °C. LiBH₄ (2.0 M solution in THF, 6 equiv.) was added and the reaction mixture was stirred for 5h at 0 °C, then left at room temperature. Saturated aqueous Roche's salt (2 mL) was added and the reaction mixture was stirred for 30 minutes. The reaction mixture was then extracted with EtOAc, dried (MgSO₄) and concentrated *in vacuo*.

10.3 Library compounds generated using this methodology

Compounds prepared using branching pathways 1,2,3 and 4 were cleaved after each step to generate carboxylic acids using the above methodology to generate compounds with purity greater than 80 % by NMR and LCMS:

 $(2S^{\ast},\ 3R^{\ast},\ 4S^{\ast},\ 5R^{\ast})\text{-}[4\text{-}(4\text{-}Bromo\text{-}phenyl)\text{-}5\text{-}hy\text{-}droxymethyl\text{-}2\text{-}phenyl\text{-}pyrrolidin\text{-}3\text{-}yl]\text{-}methanol}$ (133)

A white solid; R_f 0.43 (30-40 pet. ether:ethyl acetate 1:1); ν_{max} (thin film) 3369 (b, OH), 2936 (s, CH) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.49 (2H, d, J 8.0, ArH), 7.47-7.34 (5H, m, ArH), 7.19 (2H, d, J 8.0, ArH), 4.90 (1H, s, NH), 4.62 (1H, dd, J 9.0, 7.0, H7), 4.23 (1H, dd, J 11.0, 3.0, H6), 3.60 (1H, dd, J 11.0, 1.0, H6), 3.51 (1H, app. t, J 11.0, H4), 3.33-3.22 (3H, m, H6, H3), 2.88-2.80 (1H, m, H5); δ_C (100 MHz, CDCl3) 137.8 (C-C), 136.6 (C-C), 132.4 (CH), 129.5 (CH), 129.1 (CH), 128.7 (CH), 128.0 (CH), 121.7 (C-Br), 73.1 (C[5]H), 72.6 (C[7]H), 61.2 (C[2]H₂), 60.4 (C[6]H₂), 51.2 (C[3]H), 46.7 (C[4]H); HRMS (ES⁺) calculated for C₁₈H₂₀BrNO₂ [M+H]+ 362.0750, found 362.0748; mp 64 °C (30-40 pet. ether:ethyl acetate 1:1)

(rac)-1-(4-Bromo-phenyl)-propane-1,2,3-triol (134)

OH OH 2 J 4 1 J 3 OH BI A colourless oil; R_f 0.31 (SiO₂; 1:9 MeOH: CH₂Cl₂); ν_{max} (neat) 3416m, 3396m, 3086w br (alcohol), 2956w, 2868w, 1634s (amide), 1544m, 1054s, 729s cm⁻¹; δ_H (400 MHz; CD₃OD) 7.50-7.43 (2H, d, J 8.5, H5), 7.34-7.28 (2H, d, J 8.5, H4), 4.66-4.61 (1H, d, J 5.0, H3), 3.67-3.62 (1H, m, H2), 3.67-3.62 (1H, dd, J 4.5 11.0, H1), 3.57-3.51 (1H, dd, J 6.5, 11.0, H1^{*p*}rime); δ_C (125 MHz; CD₃OD) 141.6 (C-C), 130.8 (CH), 128.4 (CH), 120.9 (C-Br), 75.7 (CH), 73.1 (CH), 62.7 (C[1]H₂); HRMS found m/z (ESI-H+) 264.0234 $C_9H_{15}^{-79}BrNO_3^{+}$ required 264.0230, Δ ppm +1.5, mp 94-95 °C (MeOH: CH₂Cl₂).

(rac)-2,3-Bis-benzyloxy-3-(4-bromo-phenyl)propan-1-ol (135)

A viscous oil; $R_f 0.35$ (SiO₂; 3:7 EtOAc: Petrol); ν_{max} (neat) 3457w br (alcohol), 2919w, 2867w, 1486w, 1454m, 1070s, 1011
s, 735s, 697s cm^{-1}; δ_H (400 MHz; CDCl3) 7.55-7.49 (2H, d, J 8.5, H5), 7.37-7.22 (12H, m, H4, ArylH), 4.81-4.75 (1H, d, J 11.5, H6), 4.64-4.57 (1H, d, J 11.5, H6), 4.56-4.49 (2H, m, H7, H3), 4.34-4.27 (1H, d, J 11.5, H7'), 3.72-3.62 (1H, q, J 6.0, H2), 3.56-3.45 (1H, m, H1), 3.39-3.29 (1H, m, H1'), 1,99-1.90 (1H, t, J 6.5, OH); δ_C (100 MHz; CDCl₃) 138.2 (C=O), 137.8 (C-C), 137.5 (C-C), 131.7 (CH), 129.3 (CH), 128.4 (CH), 127.9 (CH), 127.8 (CH), 122.1 (C-Br), 82.3 (CH), 81.6 (CH), 73.9 (CH₂), 71.0 (CH₂), 61.9 (CH₂); HRMS found m/z (ESI-H⁺) 444.1168 C₂₃H₂₇⁷⁹BrNO₃⁺ required 444.1169, Δ ppm -0.2.

 $(1S^*, \ 2R^*, \ 3R^*,$ $4R^*$)–[3-(2-Chloro-6-methoxy-quinolin-3-yl)-bicyclo[2.2.1]hept-5-en-2-yl]methanol (136)

A colourless oil; ν_{max} (neat) 3277, 1852, 1391, 1116, 1066 cm⁻¹; δ_H (500 MHz; CDCl₃) 8.08 (1H, s, H10), 7.89 (1H, d, J 9.0, H14), 7.33 (1H, dd, J 9.0, 3.0, H13), 7.07 (1H, d, J 3.0, H11), 6.49 (1H, dd, J 5.5, 3.0, H6), 6.23 (1H, dd, J 5.5, 3.0, H5), 3.94 (3H, s, H12), 3.67 (1H, dd, J 10.5, 6.0, H2), 3.50-3.45 (1H, m, H2'), 3.18 (1H, s, H4), 3.87 (1H, s, H7), 2.71-2.67 (1H, m, H3), 2.65 (1H, d, J 5.5, H9), 1.68 (1H, d, J 8.5, H8), 1.58 (1H, d, J 8.5, H8'); δ_C (125 MHz; CDCl₃) 158.22 (C), 142.02 (C-C), 138.39 (C[6]H), 136.11 (C), 134.26 (C[5]H), 134.17 (C[10]H), 129.43 (C[14]H), 122.36 (C[13]H), 105.02 (C[11]H), 66.28 (C[2]H₂), 55.58 (C[12]H₃), 49.92 (C[7]H), 47.73 (C[3]H), 46.15 (C[8]H₂), 45.08 (C[9]H), 44.29 (C[4]H); LCMS (ES+) $316 (M+H^+).$

 $3R^*, 4R^*)$ -[3-(3,4,5-Trimethoxy- $(1S^*,$ $2R^*,$ phenyl)-bicyclo[2.2.1]hept-5-

en-2-yl]-methanol (137)

A colourless oil; ν_{max} (neat) 3421, 2939, 1587, 1509, 1462, 1420, 1330, 1240, 1126 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.55 (2H, s, H10), 6.38 (1H, dd, J 5.5, 3.0, H6), 6.16 (1H, dd, J 5.5, 3.0, H5), 3.86 (6H, s, H11, H13), 3.83 (3H, s, H12), 3.60 (1H, dd, J 9.0, 6.0, H2), 3.45 (1H, t, J 9.0, H2'), 3.06 (1H, s, H4), 2.87 (1H, m, H7), 2.37-2.34 (1H, m, H3), 2.12 (1H, d, J 4.6, H9), 1.79 (1H, d, J 8.5, H8), 1.62 (1H, br s, H8'); LCMS (ES+) 360 $(M+H^+)$.

 $(1S^*, 2S^*, 3R^*, 4R^*, 5S^*, 6S^*)$ -5-Hydroxymethyl-6-(3,4,5-trimethoxy-phenyl)-bicyclo[2.2.1]heptane-2,3-diol (138)

A colourless oil; ν_{max} (DMSO) 2910, 1587, 1507, 1461, 1410, 1325, 1260, 1126 cm^{-1} ; LCMS (ES+) 325 (M+H⁺).

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9S^*)$ -(9-Methyl-4-phenyl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]dec-8-yl)methanol (139)

A colourless oil; ν_{max} (neat) 3420, 2957, 1458, 1403, 1220, 1087, 1064 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.55-7.51 (2H, m, H12), 7.40-7.38 (3H, m, H13, H14), 5.89 (1H, s, H11), 4.38 (1H, d, J 5.5, H6), 4.07 (1H, d J 5.5, H5), 3.63-3.56 (2H, m, H2), 2.55 (1H, s, H4), 2.14 (1H, s, H7), 1.92 (1H, d, J 10.5, H8), 1.65-1.61 (1H, m, H9), 1.40 (1H, d, J 10.5, H8'), 1.39-1.37 (1H, m, H3), 1.10 (3H, d, J 7.0, H10); LCMS (ES+) 261 $(M+H^{+}).$

 $(1S^*, 2S^*, 6R^*, 7R^*, 8S^*, 9S^*)$ -(9-Methyl-4-cyclohexyl-2-yl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]dec-8yl)-methanol (140)

A colourless oil; ν_{max} (neat) 3421, 2934, 1449, 1370, 1097, 1023 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.29 (1H, d, J 5.5, H6), 3.97 (1H, d, J 5.5, H5), 3.77-3.52 (2H, m, H2), 2.38 (1H, s, H4), 1.95 (1H, s, H7), 1.72-1.62 (10H, m, CyH, H8, H9), 1.42-1.40 (2H, m, CyH), 1.30-1.28 (2H, m, H3, H8'), 1.06 (3H, d, J 7.0, H10); LCMS (APCI+) 253 (M+H⁺).

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9S^*)$ –(9-Methyl-4-thiophen-2-yl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]dec-8-yl)-methanol (141)

A yellow oil; ν_{max} (neat) 3421, 2955, 1546, 1444, 1393, 1329, 1202, 1063, 1003 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.36 (1H, d, J 5.0, H14), 7.21 (1H, d, J 3.5, H12), 7.01 (1H, dd, J 5.0, 3.5, H13), 5.88 (1H, s, H11), 4.37 (1H, d, J 5.5, H6), 4.06 (1H, d, J 5.5, H5), 3.88-3.54 (2H, m, H2), 2.54 (1H, s, H4), 2.12 (1H, s, H7), 1.96 (1H, d, J 10.5, H8), 1.63 (1H, m, H9), 1.40 (1H, d, J 10.5, H8'), 1.33-1.30 (1H, m, H3), 1.10 (3H, d, J 7.0, H10); LCMS (APCI+) 267 (M+H⁺).

 $(1S^*,\,2S^*,\,4S^*,\,6R^*,\,7R^*,\,8S^*,\,9S^*)-(9\mbox{-Isobutyl-4-thiophen-2-yl-3,5-dioxa-tricyclo}[5.2.1.0^{2,6}]\mbox{dec-8-yl})\mbox{-methanol}~(142)$

A yellow oil; ν_{max} (DMSO) 2911, 1393, 1306 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.36 (1H, d, *J* 5.0, H16), 7.21 (1H, d, *J* 3.5, H14), 7.00 (1H, m, H15), 5.88 (1H, s, H13), 4.41 (1H, d, *J* 6.0, H6), 4.05 (1H, d, *J* 5.5, H5), 3.6-3.63 (1H, m, H2), 3.51 (1H, t, *J* 9.5, H2'), 2.55 (1H, s, H4), 2.21 (1H, s, H7), 1.94 (1H, d, *J* 10.5, H8), 1-66-1.68 (2H, m, H11, H9), 1.36-1.19 (4H, m, H8', H10, H3), 0.93 (6H, d, *J* 10.0, H12); LCMS (ES+) 309 (M+H⁺).

 $(1S^*,\,2S^*,\,4S^*,\,6R^*,\,7R^*,\,8S^*,\,9S^*){-}[4{-}Thiophen-2-yl{-}9{-}(3,4,5{-}trimethoxy{-}phenyl){-}3,5{-}$ -dioxa-tricyclo $[5.2.1.0^{2,6}]$ dec-8-yl]-methanol (143)

A yellow oil; ν_{max} (DMSO) 2967, 1261, 1019 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.37 (1H, d, *J* 5.0, H16), 7.24 (1H, d, *J* 3.5, H14), 7.03 (1H, dd, 5.0, 3.5, H15), 6.52 (2H, s, H10), 5.95 (1H, s, H13), 4.55 (1H, d, *J* 5.5, H6), 4.24 (1H, d, *J* 5.5, H5), 3.89-3.83 (10H, m, H11, H12, H2), 3.72 (1H, dd, *J* 8.5, 2.2, H2'), 2.70 (1H, s, H4), 2.63 (1H, s, H7), 2.22-2.20 (1H, m, H3), 2.14-2.06 (2H, m, H8, H9), 1.63 (1H, d, *J* 10.5, H8'); LCMS (ES+) 419 (M+H⁺).

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9S^*)$ –[4-Phenyl-9-(3,4,5-trimethoxy-phenyl)-3,5-dioxa-tricyclo-[5.2.1.0^{2,6}]dec-8-yl]-methanol (144)

A colourless oil ; ν_{max} (DMSO) 2931, 1585, 1507, 1457, 1375, 1260 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.57-7.55 (2H, m, H14), 7.42-7.39 (3H, m, H15, H16), 6.52 (2H, s, H10), 5.67 (1H, s, H13), 4.55 (1H, d, J 5.5, H6), 4.25 (1H, d, J 5.5, H5), 3.91-3.80 (10H, m, H11, H12, H2), 3.74 (1H, dd, J 11.0, 8.5, H2'), 2.78 (1H, s, H4), 2.57 (1H, s, H7), 2.27 (1H, t, J 4.0, H3), 2.11-2.06 (2H, m, H8, H9), 1.60 (1H, d, J 10.5, H8'); LCMS (APCI+) 413 (M+H⁺).

 $(1S^*,\ 2R^*,\ 3R^*,\ 4R^*)–[3-(4-Bromo-phenyl)-bicy-clo[2.2.1]hept-5-en-2-yl]$ methanol (145)

A colourless oil; ν_{max} (DMSO) 2910, 1489, 1305, 1260 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.43 (2H, d, J 8.5, H11), 7.20 (2H, d, J 8.5, H10), 6.37 (1H, dd, J 5.5, 3.0, H6), 6.17 (1H, dd, J 5.5, 3.0, H5), 3.60 (1H, dd, J 10.5, 6.0, H2), 3.44 (1H, t, J 9.0, H2'), 3.05 (1H, s, H4), 3.87 (1H, s, H7), 2.34-2.29 (1H, m, H3), 2.13 (1H, d, J 4.0, H9), 1.74 (1H, d, J 8.5, H8), 1.56 (1H, dd, J 8.5, 1.5, H8'); LCMS (ES+) 332 (M+H⁺).

Structure	LCMS	Structure	LCMS
	405	но	173
146	$(M+H^+)$	147	$(M+H^+)$
но о о	295 (M+H ⁺)		$350 (M+H^+)$
но с с с с с с с с с с с с с с с с с с с	301 (M+H ⁺)	но тон он 151	214 (M+H ⁺)

11 Cleavage of compounds to synthesise amides

11.1 Building blocks used

11.2 General method for solid supports

To a suspension of the resin (1 equiv.) in toluene under nitrogen was added a solution of the amine (5 equiv.) and dimethyl aluminium chloride (1M in toluene, 5 equiv.). The reaction stirred for twenty four hours at 65 °C. The reaction was cooled and quenched using ammonium chloride solution and the beads removed by filtration. The aqueous layer was washed with toluene and the organic layer was washed with brine, dried (MgSO₄) and solvent removed *in vacuo*.

11.3 General method for solution phase synthesis

A round-bottom flask, equipped with a magnetic stirrer, containing the library compound (1 equiv.) in toluene was added a solution of the amine (3 equiv.) and dimethyl aluminium chloride (1M in toluene, 3 equiv.) in toluene and the reaction stirred at 65 °C under nitrogen for six hours. The reaction was cooled to room temperature and quenched using saturated ammonium chloride solution. The aqueous layer was extracted with toluene and the organic layer was washed with brine, dried (MgSO₄) and solvent removed *in vacuo*. The crude product was purified by flash column chromatography.

11.4 Library compounds generated using this methodology

Compounds prepared using branching pathways 1,2,3 and 4 were cleaved after each step to generate carboxylic acids using the above methodology to generate compounds with purity greater than 80 % by NMR and LCMS:

3-(4-Bromo-phenyl)-5-naphthalen-2-ylpyrrolidine-2,4-dicarboxylic acid bis-allylamide (152)

Off-white solid; $(2R^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-5-naphthalen-2-yl-pyrrolidine-2,4-dicarboxylic acid bisallylamide (18 mg, 0.04 mmol, 36 %). R_f 0.57 (ethyl acetate); ν_{max} (thin film) 3052 (s, CH), 2915 (s, CH), 1666 (s, C=O), 1648 (s, C=O), 1632 (s, C=O) cm⁻¹; δ_H (500 MHz, MeOD) 7.96 (1H, s, ArH), 7.94 (1H, d, J 9.0, ArH), 7.89-7.86 (2H, m, ArH), 7.64 (1H, dd, J 9.0, 2.0, ArH), 7.53 (2H, d, J 9.0, ArH), 7.52-7.50 (2H, m, ArH), 7.35 (2H, d, J 9.0, ArH), 5.79 (1H, ddt, J 17.0, 10.0, 5.0, H3), 5.46 (1H, ddt, J 17.0, 39

10.0, 5.0, H11), 5.10-5.05 (2H, m, H1, H12), 4.89 (1H, d, J 10 Hz, H14), 4.70 (1H, app. dq, J 10.0, 2.0, H13), 4.48 (1H, app. dq, J 17.0, 2.0, H2), 4.25 (1H, d, J 9.0, H9), 3.89-3.74 (3H, m, H4, H6), 3.53 (2H, app. dt, J 5.0, 2.0, H10), 3.37 (1H, app. t, J 10.0, H5); δ_C (125 MHz, MeOD) 172.9 (C=O), 171.7 (C=O), 138.8 (C-C), 136.5 (C-C), 135.1 (C[4]H), 134.9 (C-C), 134.8 (C-C), 134.6 (C[11]H), 133.1 (CH), 131.2 (CH), 130.0 (CH), 129.1 (CH), 128.7 (CH), 127.8 (CH), 127.6 (CH), 127.6 (CH), 125.8 (CH), 122.5 (C-Br), 116.4 (C[1,2]H₂), 115.4 (C[12,13]H₂), 68.3 (C[14]H), 68.1 (C[5]H), 63.5 (C[9]H), 56.7 (C[6]H), 42.6 (CH₂), 42.3 (CH₂); HRMS (ES⁺) calculated for C₂₈H₂₈BrN₃O₂ [M+H]⁺ 518.1438, found 518.1434; mp 179 °C (ethyl acetate).

Off white solid; $(2S^*, 3R^*, 4S^*, 5R^*)$ -3-(4-Bromo-phenyl)-5-naphthalen-2-yl-pyrrolidine-2,4-dicarboxylic acid bisallylamide (12 mg, 21 %): R_f 0.44 (ethyl acetate); ν_{max} (thin film) 3299 (s, CH), 3061 (s, CH), 1654 (s, C=O), 1635 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.88 (1H, s, ArH), 7.84-7.79 (1H, m, ArH), 7.82 (2H, d, J 8.0, ArH), 7.53-7.46 (3H, m, ArH), 7.47 (2H, d, J 8.0, ArH), 7.26 (2H, d, J 8.0, ArH), 5.90 (1H, ddt, J 17.0, 10.0, 5.0, H11), 5.27 (1H, dd, J 17.0, 1.0, H12), 5.17 (1H, dd, J 10.0, 1.0, H13), 5.04 (1H, d, J 8 Hz, C[14]H), 4.96 (1H, ddt, J 16.00, 10.0, 6.0, H3), 4.55 (1H, dd, J 9.0, 1.0, H2), 4.52 (1H, dd, J 16.0, 1.0, H1), 4.04-3.90 (4H, m, H9, H6, H10), 3.29-3.26 (2H, m, H4), 3.16 (1H, dd, J 8.0, 5.0, H5); δ_C (100 MHz, CDCl₃) 171.9 (C=O), 170.1 (C=O), 140.6 (C-C), 135.8 (C-C), 134.1 (CH), 133.2 (CH, C-C), 133.2 (C-C), 132.1 (CH), 129.6 (CH), 128.3 (CH), 127.9 (CH), 127.6 (CH), 126.4 (CH), 126.2 (CH), 126.1 (CH), 125.0 (CH), 121.1 (C-Br), 116.4 (CH₂), 116.3 (CH₂), 68.1 (CH), 65.6 (CH), 59.3 (CH), 51.6 (C[6]H), 42.0 (CH₂), 41.6 (CH₂); HRMS (ES⁺) calculated for $C_{28}H_{28}BrN_3O_2$ [M+H]⁺ 518.1438, found 518.1439; mp 112 °C (Ethyl acetate).

(rac)-3-(4-Bromo-phenyl)-2,3-dihydroxy-N-isobutyl-propionamide (153)

A pale orange oil; R_f 0.15 (SiO₂; 1:1 EtOAc: Petrol); ν_{max} (neat) 3416m, 3396m, 3086w br (alcohol), 2956w, 2868w, 1634s (amide), 1544m, 1054s, 729s cm⁻¹; δ_H (400 MHz; CD₃OD) 7.52-7.42 (2H, d, J 8.5, H5), 7.38-7.33 (2H, d, J 8.5, H4), 5.00-4.97 (1H, d, J 3.0, H3), 4.10-4.07 (1H, d, J 3.0, H2), 3.06-3.01 (2H, d, J 7.0, H6), 1.82-1.70 (1H, m, H7), 0.94-0.84 (6H, d, J 6.5, (H8); δ_C (125 MHz; CD₃OD) 173.3 (C=O), 141.3 (C-C), 130.6 (CH), 128.2 (CH), 120.6 (C-Br), 75.5 (CH), 73.3 (CH), 46.1 (C[6]H₂), 28.3 (C[7]H), 18.9 (C[8]H₃); HRMS found m/z (ESI-H+) 316.0546 C₁₃H₁₉⁷⁹BrNO₃⁺ required 316.0543, Δ +1.1, mp 130-133 °C (EtOAc: Petrol).

(rac)-2,3-Bis-benzyloxy-3-(4-bromo-phenyl)-N-isobutyl-propionamide (154)

A viscous oil; R_f 0.28 (SiO2; 7:3 EtOAc: Petrol); ν_{max} (neat) 3433m, 2999w, 2916w, 1656m (amide), 1437m, 1407m 1073s, 952s, 934m cm⁻¹; δ_H (400 MHz; CDCl₃) 7.51-7.43 (2H, d, J 8.5, H7), 7.00-6.93 (10H, m, H6, ArylH), 6.82-6.72 (2H, d, J 7.0, ArylH), 6.82-6.72 (1H, br m, NH), 4.90-4.84 (1H, d, J 2.0, H5), 4.51-4.46 (1H, d, J 11.5, H8), 4.35-4,21 (2H, 2 × d, J 11.5 11.5, H8', H9), 4.17-4.12 (1H, d, J 11.5, H9'), 3.90-3.88 (1H, d, J 2.2, H7), 3.21-3.02 (2H, m, H3), 1.82-1.68 (1H, m, H2), 0.93-0.82 (6H, 2 × d, J 5.5, H1); δ_C (100 MHz; CDCl₃) 169.8 (C=O), 137.5 (C-c), 137.4 (C-C), 136.1 (C-C), 131.4 (CH), 129.1 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.7 (CH), 121.8 (C-Br), 83.3 (CH), 80.5 (CH), 74.2 (CH₂), 71.8 (CH₂), 46.5 (CH₂), 28.4 (CH), 20.0 (CH₃); HRMS found m/z (ESI-H⁺) 496.1481 C₂₇H₃₁⁷⁹BrNO₃⁺ required 496.1482, Δ ppm -0.2.

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Methyl-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid isobutyl-amide (155)

$$1 = 1 = 10$$

A colourless oil; ν_{max} (neat) 3297, 2957, 2870, 1644 (C=O), 1541, 1464, 1230 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.34 (1H, dd, J 5.5, 3.0, H6), 6.05 (1H, dd, J 5.5, 3.0, H5), 3.10-3.01 (3H, m, H2, H4), 2.50 (1H, s, H7), 2.31 (2H, t, J 4.0, H3), 1.79-1.74 (2H, m, H1, H9), 1.58 (1H, d, J 8.5, H8), 1.46 (1H, dd, J 8.5, 1.5, H8'), 1.20 (3H, d, J 7.0, H10), 0.90 (6H, d, J 6.5, H11); LCMS (ES+) 208 (M+H⁺).

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Methyl-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid[2-(4-amino-phenyl)ethyl]-amide (156)

A colourless oil; ν_{max} (neat) 3288, 2956, 2866, 1637 (C=O), 1542, 1229 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.98 (2H, d, J 8.0, H12), 6.67 (2H, dd, J 9.0, 2.5, H11), 6.27 (1H, dd, J 5.5, 3.0, H6), 5.92 (1H, dd, J 5.5, 3.0, H5), 5.31 (1H, br s, NH), 3.63 (1H, br s, NH), 3.45-3.40 (2H, m, H2), 2.97 (1H, s, H4), 2.68 (2H, t, J 7.0, H1), 2.46 (1H, s, H7), 2.23 (1H, dd, J 4.5, 3.5, H3), 1.70-1.67 (1H, m, H9), 1.53 (1H, d, J 8.5, H8), 1.43 (1H, d, J 8.5, H8'), 1.15 (3H, d, 7.0, H10); LCMS (ES+) 271 (M+H⁺).

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Methyl-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (157)

$$11 \underbrace{\begin{array}{c} 2\\ 1\end{array}}_{1} \underbrace{\begin{array}{c} 0\\ 3\end{array}}_{4} \underbrace{\begin{array}{c} 10\\ 9\\ 7\end{array}}_{6} \underbrace{\begin{array}{c} 0\\ 7\\ 6\end{array}}_{6} \underbrace{\begin{array}{c} 0\\ 7\\ 7\end{array}}_{6} \underbrace{\begin{array}{c} 0\\ 7\\ 7\end{array}}_{7} \underbrace{\begin{array}{c} 0\\ 7\\ 7\end{array}}_{7} \underbrace{\begin{array}{c} 0\\ 7\\ 7\end{array}}_{7} \underbrace{\begin{array}{c} 0\\ 7\end{array}}_{7} \underbrace{\end{array}{\end{array}}_{7} \underbrace{\begin{array}{c} 0\\ 7\end{array}}_{7} \underbrace{\end{array}{\end{array}}_{7} \underbrace{\end{array}{\end{array}}_{7} \underbrace{\end{array}{\end{array}}_{7} \underbrace{\end{array}{}\end{array}{}\end{array}$$
}_{7} \underbrace{\begin{array}{c} 0\\ 1\end{array}}_{7} \underbrace{\end{array}{\end{array}}_{7} \underbrace{\end{array}{}\end{array}{\end{array}}_{7} \underbrace{\end{array}{\end{array}}_{7} \underbrace{\end{array}{}\end{array}{}\end{array}{\end{array}}_{7} \underbrace{\end{array}{}\end{array}{}\end{array}{}\end{array}}_{7} \underbrace{\end{array}{}\end{array}{}\end{array}

A colourless oil; ν_{max} (neat) 3288, 2956, 2866, 1637 (C=O), 1542, 1229 cm⁻¹; δ_H (400 MHz; CDCl₃) 6.31 (1H, dd, J 5.5, 3.0, H6), 6.02 (1H, dd, J 5.5, 3.0, H5), 5.85 (1H, ddt, J 17.5, 10.5, 5.5, H1), 5.39 (1H, br s, NH), 5.15-5.08 (2H, m, H11), 3.85-3.80 (2H, m, H2), 3.04 (1H, s, H4), 2.54 (1H, s, H7), 2.29 (1H, dd, J 4.5, 3.5, H3), 1.80-1.73 (1H, m, H9), 1.55 (1H, d, J 8.5, H8), 1.46 (1H, ddd, J 8.5, 3.0, 1.5, H8), 1.17 (3H, d, J 7.0, H10); LCMS (ES+) 192 (M+H⁺). $(1S^*,\ 2S^*,\ 3R^*,\ 4R^*)$ –3-Methyl-bicyclo [2.2.1]-hept
-5-ene-2-carboxylic acid 4-methoxy-benzy-lamide (158)

A colourless oil; ν_{max} (neat) 3320, 2956, 2868, 1645 (C=O), 1511, 1247 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.27 (2H, d, J 8.5, ArH), 7.18 (2H, d, J 8.5, ArH), 6.34 (1H, dd, J 5.5, 3.0, H6), 6.03 (1H, dd, J 5.5, 3.0, H5), 5.59 (1H, br s, NH), 4.34 (2H, dd, J 5.5, 3.5, H2), 3.81 (3H, s, H12), 3.06 (1H, s, H4), 2.50 (1H, s, H7), 2.32 (1H, dd, J 4.5, 3.5, H3), 1.80-1.73 (1H, m, H9), 1.59 (1H, d, J 8.5, H8), 1.42 (1H, ddd, J 8.5, 3.5, 2.0, H8'), 1.20 (3H, d, J 7.0, H10); LCMS (ES+) 272 (M+H⁺).

 $(1S^*,\ 2R^*,\ 3R^*,\ 4R^*)$ –3-(4-Bromo-phenyl)-bi-cyclo[2.2.1]hept-5-ene-2-carboxylic acid amide (159a)

A white solid; ν_{max} 0.26 (SiO₂; 8:2 ethyl acetate: hexane); ν_{max} (neat) 3348, 3186, 2971, 1662 (C=O), 1610, 1489, 1400, 1333, 1292 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.44 (2H, d, J 10.5, H11),), 7.21 (2H, d, J 10.5, H10), 6.46 (1H, dd, J 5.5, 3.0, H6), 6.20 (1H, dd, J 5.5, 3.0, H5), 5.35 (2H, br s, NH₂), 3.21 (1H, s, H4), 3.06 (1H, d, J 4.0, 1.0, H9), 3.03 (1H, s, H7), 2.84 (1H, dd, J 5.5, 3.5, H3), 1.78 (1H, d, J 8.5, H8), 1.66 (1H, d, J 8.5, H8'); δ_C (125 MHz; CDCl₃) 175.40 (C=O), 143.30 (C-C), 139.05 (C[6]H), 134.03 (C[5]H), 131.61 (C[11]H), 129.15 (C[10]H), 53.35 (C[3]H), 48.32 (C[7]H), 47.77 (C[9]H), 47.48 (C[8]H₂), 46.79 (C[4]H); LCMS (ES+) 309 (M+H⁺), (M+H)⁺ found 309.0599 C₁₄H₁₄BrNO required 309.0597, Δ ppm +0.7; mp 128-129 °C (ethyl acetate: hexane).

A white solid; R_f 0.31 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (DMSO) cm⁻¹; δ_H (500 MHz; CDCl₃) 7.40 (2H, br s, H11), 7.17 (2H, d, J 6.0, H10), 6.42 (1H, br s, H6), 6.14 (1H, br s, H5), 5.69 (1H, br s, NH), 3.16 (1H, s, H4), 3.04 (1H, d, J 9.0, H9), 2.98 (1H, s, H7), 2.77 (4H, br s, H3, H2), 1.71 (1H, d, J 4.5, H8), 1.60 (1H, d, J 4.5, 1.5, H8'); δ_C (100 MHz; CDCl₃) 173.94 (C=O), 143.61 (C-C), 138.71 (C[6]H), 134.13 (C[5]H), 131.52 (C[11]H), 129.18 (C[10]H), 119.78 (C-Br), 53.68 (C[3]H), 48.39 (C[7]H), 47.70 (C[8]H₂), 47.41 (C[9]H), 46.75 (C[4]H), 26.42 (C[2]H₃); LCMS (ES+)306 (M+H⁺). $(1S^*,\ 2R^*,\ 3R^*,\ 4R^*)$ –3-(4-Bromo-phenyl)-bicy-clo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (161)

A white solid; ν_{max} (DMSO) 2930, 1659 (C=O), 1317, 1220 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.45 (2H, d, J 8.5, H11), 7.23 (2H, d, J 8.5, H10), 6.45 (1H, dd, J 5.5, 3.0, H6), 6.35 (1H, dd, J 5.5, 3.0, H5), 5.87-5.79 (1H, m, H1), 5.32 (1H, br s, NH), 5.18-5.13 (2H, m, H12), 3.93-3.85 (2H, m, H2), 3.19 (1H, s, H4), 3.06 (1H, d, J 4.5, H9), 3.01 (1H, s, H7), 2.80 (1H, dd, J 5.0, 3.5, H3), 1.77 (1H, d, J 8.5, H8), 1.63 (1H, dd, J 8.5, 1.5, H8'); δ_C (100 MHz; CDCl₃) 173.03 (C=O), 143.53 (C-C), 138.85 (C[6]H), 134.37 (C[1]H), 134.05 (C[5]H), 131.55 (C[11]H), 129.15 (C[10]H), 119. 83 (C-Br), 116.23 (C[12]H₂), 53.86 (C[3]H), 48.23 (C[7]H), 47.73 (C[8]H₂), 47.47 (C[9]H), 46.76 (C[4]H), 41.97 (C[2]H₂); LCMS (ES+) 332 (M+H⁺): HRMS (M+H)⁺ found 332.0641 C₁₇H₁₈BrNO required 332.0645, Δ ppm -1.2; mp 95-96 °C (CH₂Cl₂).

$(1S^*,\ 2R^*,\ 3R^*,\ 4R^*)–3-(4\mbox{-Bromo-phenyl})\mbox{-bicy-clo}[2.2.1]\mbox{hept-5-ene-2-carboxylic}$ acid cyclohexy-lamide (159b)

A white solid; $R_f \ 0.52$ (SiO₂; 10:1 toluene: ethyl acetate); ν_{max} (neat) 3265, 2931, 2852, 1641 (C=O), 1556, 1487, 1453, 1009 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.43 (2H, d, J 10.5, H11), 7.18 (2H, d, J 10.5, H10), 6.42 (1H, dd, J 5.5, 3.0, H6), 6.15 (1H, dd, J 5.5, 3.0, H5), 5.30 (1H, br s, NH), 3.77-3.74 (1H, m, H2), 3.14 (1H, s, H4), 3.03 (1H, d, J 4.0, H9), 3.00 (1H, s, H7), 2.71 (1H, dd, J 5.0, 2.0, H3), 1.89 (2H, d, J 11.5, H1), 1.74 (1H, d, J 8.5, H8), 1.72-1.60 (4H, m, CyH, H8'), 1.38-1.34 (2H, m, CyH), 1.17-1.05 (3H, m, CyH); δ_C (125 MHz; CDCl₃) 172.18 (C=O), 143.78 (C-C), 138.73 (C[6]H), 134.05 (C[5]H), 131.51 (C[11]H), 129.16 (C[10]H), 119.76 (C-Br), 54.11 (C[3]H), 48.23 (C[7]H), 48.09 (C[9]H), 47.74 (C[8]H₂), 47.45 (C[2]H), 46.77 (C[4]H), 33.28 $(C[cy]H_2), 33.20 (C[cy]H_2), 25.55 (C[cy]H_2), 24.88 (C[cy]H_2),$ 24.83 (C[cy]H₂); LCMS (ES+) 374 (M+H⁺), HRMS (M+H)⁺ found 374.1118 $C_{20}H_{24}BrNO$ required 374.1114, $\Delta ppm +1.1$; mp 164-166 °C (toluene: ethyl acetate).

 $(1S^*,\ 2S^*,\ 3R^*,\ 4R^*)–$ 3-Isobutyl-bicyclo [2.2.1]-hept
-5-ene-2-carboxylic acid 4-methoxy-benzy-lamide (162)

An orange oil; R_f 0.32 (SiO₂; 10:2 toluene: ethyl acetate); ν_{max} (neat) 3270, 2956, 1633 (C=O), 1612, 1553, 1509, 1243, 1232, 1025 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.18 (2H, dd, J 6.5, 41

2.0, H13), 6.87 (2H, dd, J 6.5, 2.0, H1), 6.32 (1H, dd, J 5.5, 3.0, H6), 6.02 (1H, dd, J 5.5, 3.0, H5), 5.59 (1H, br s, NH), 4.39-4.30 (2H, m, H2), 3.81 (3H, s, H14), 3.04 (1H, s, H4), 2.58 (1H, s, H7), 2.35 (1H, dd, J 4.5, 3.5, H3), 1.79-1.77 (1H, m, H9), 1.68-1.66 (1H, m, H11), 1.54 (1H, d, J 8.0, H8), 1.45 (1H, dd, J 8.0, 3.0, H8'), 1.36-1.34 (2H, m, H10), 0.92 (3H, d, J 6.5, H12), 0.90 (3H, d, J 6.5, H12'); LCMS (ES+) 314 (M+H⁺).

 $(1S^*, 2S^*, 3R^*, 4R^*)$ –3-Isobutylbicyclo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (163)

An orange oil; R_f 0.31 (SiO₂; 10:2 toluene: ethyl acetate); ν_{max} (neat) 3303, 2959, 296, 2869, 1640 (C=O), 1548, 1234 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.34 (1H, dd, J 5.5, 3.0, H6), 6.05 (1H, dd, J 5.5, 3.0, H5), 5.86-5.79 (1H, m, H1), 5.42 (1H, br s, NH), 5.16 (1H, dd, J 17.0, 1.5, H13), 5.13 (1H, dd, J 10.5, 1.5, H13'), 3.90-3.82 (2H, m, H2), 3.06 (1H, s, H4), 2.59 (1H, s, H7), 2.35 (1H, dd, J 4.5, 3.5, H3), 1.77 (1H, dd, J 7.5, 6.0, H9), 1.68-1.63 (1H, m, H11), 1.55 (1H, d, J 8.5, H8), 1.45 (1H, dd, J 8.5, 1.5, H8'), 1.39-1.32 (2H, m, H10), 1.92 (3H, dd, J 6.5, H12), 1.91 (3H, dd, J 6.5, H12'); LCMS (ES+) 234 (M+H⁺).

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Isobutylbicyclo[2.2.1]hept-5-ene-2-carboxylic acid isobutyl-amide (164)

An colourless oil; $R_f 0.35$ (SiO₂; 10:2 toluene: ethyl acetate); ν_{max} (neat) 3267, 2953, 2898, 2868, 1637 (C=O), 1557, 1466, 1160 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.34 (1H, dd, J 5.5, 3.0, H6), 6.05 (1H, dd, J 5.5, 3.0, H5), 5.42 (1H, br s, NH), 3.09-3.00 (3H, s, H2, H4), 2.58 (1H, s, H7), 2.32 (1H, dd, J 4.5, 3.5, H3), 1.75-1.71 (2H, m, H1, H9), 1.66 (1H, septet, J 6.5, H11), 1.54 (1H, d, J 8.5, H8), 1.45 (1H, dd, J 8.5, 1.5, H8'), 1.38-1.33 (2H, m, H10), 0.91-0.89 (12H, m, H12, H13); δ_C (125 MHz; CDCl₃) 174.35 (C=O), 138.62 (C[6]H), 133.28 (C[5]H), 53.38 (C[3]H), 47.56 (C[7]H), 47.15 (C[8]H₂), 46.73 (C[9]H), 46.02 (C[2]H₂), 45.89 (C[10]H₂), 42.28 (C[4]H), 28.56 (C[1]H), 26.86 (C[11]H), 23.86 (C[12]H₃), 22.77 (C[12]H₃), 20.08 (C[13]H₃); LCMS (ES+) 250 (M+H⁺): HRMS (M+H)⁺ found 250.2161 C₁₆H₂₈NO required 250.2171, Δ ppm -4.1.

A colourless oil; $R_f 0.25$ (SiO₂; 10:2 toluene: ethyl acetate); ν_{max} (neat) 3320, 2960, 1647 (C=O), 1587, 1509, 1462, 1240, 1127 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.55 (2H, s, H10), 6.45 (1H, dd, J 5.5, 3.0, H6), 6.19 (1H, dd, J 5.5, 3.0, H5), 5.45 (1H, br s, NH), 3.86 (6H, s, H11), 3.85 (3H, s, H12), 3.18 (1H, s, H4), 3.11-3.07 (2H, m, H2), 3.00-2.97 (2H, m, H7, H9), 2.81 (1H, dd, J 4.5, 3.5, H3), 1.83 (1H, d, J 8.5, H8), 1.76 (1H, septet, J 6.5, H1), 1.45 (1H, dd, J 8.5, 1.5, H8'), 0.91 (6H, d, J 6.5, H13); LCMS (APCI+) 360 (M+H⁺).

$(1S^*, 2S^*, 3R^*, 4R^*)$ -3-(3,4,5-Trimethoxyphenyl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (166)

A colourless oil; ν_{max} (neat) 3312, 2962, 1642 (C=O), 1586, 1508, 1456, 1418, 1332, 1240, 1124 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.55 (2H, s, H10), 6.46 (1H, dd, J 5.5, 3.0, H6), 6.16 (1H, dd, J 5.5, 3.0, H5), 5.88-5.82 (1H, m, H1), 5.46 (1H, br s, NH), 5.17 (1H, d, J 17.0, H13), 5.13 (1H, dd, J 10.5, 1.0, H13'), 3.91-3.83 (11H, m, H11, H12, H2), 3.20 (1H, s, H4), 3.00-2.98 (2H, m, H7, H3), 2.83 (1H, dd, J 5.0, 3.5, H9), 1.84 (1H, d, J 8.5, H8), 1.65 (1H, d, J 8.5, H8'); LCMS (ES+) 344 $(M+H^{+}).$

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-(2-Chloro-6-methoxyquinolin-3-yl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (167)

A white solid; $R_f \ 0.05$ (SiO₂; 10:1 toluene: ethyl acetate); ν_{max} (neat) 2971, 1638 (C=O), 1374, 1238 cm⁻¹; δ_H (400 MHz; CDCl₃) 7.98 (1H, s, H10), 7.89 (1H, d, J 9.0, H14), 7.34 (1H, dd, J 9.0, 3.0, H13), 7.07 (1H, d, J 3.0, H11), 6.55 (1H, dd, J 5.5, 3.0, H6), 6.26 (1H, dd, J 5.5, 3.0, H5), 5.86-5.81 (1H, m, H1), 5.54 (1H, br s, NH), 5.17 (1H, dd, J 17.0, 3.0, H15), 5.12 (1H, dd, J 11.5, 3.0, H15'), 3.94 (3H, s, H12), 3.90-3.87 (2H, m, H2), 3.41 (1H, d, J 5.0, H3), 3.31 (1H, s, H4), 3.09 (1H, s, H7), 3.03 (1H, dd, J 5.0, 3.5, H9), 1.75 (1H, d, J 8.5, H8), 1.63 (1H, d, J 8.5, H8'); δ_C (125 MHz; CDCl₃) 172.70 (C=O), 158.28 (C), 149.54 (C-C), 138.02 (C[6]H), 135.87 (C), 134.91 (C[5]H), 134.32 (C[10]H), 133.78 (C[1]H), 129.50 (C[14]H), 128.36 (C), 122.50 (C[13]H), 116.43 $(C[15]H_2), 105.02 (C[11]H), 55.60 (C[12]H_3), 51.58 (C[3]H),$ $49.32 \ ({\rm C}[7]{\rm H}), \ 47.26 \ ({\rm C}[8]{\rm H}_2), \ 47.04 \ ({\rm C}[9]{\rm H}), \ 45.97 \ ({\rm C}[4]{\rm H}),$ $42.08 (C[2]H_2); LCMS (ES+) 369 (M+H^+): HRMS (M+H)^+$ found 369.1368 $C_{21}H_{22}N_2O_2Cl$ required 369.1370, Δ ppm -0.4; mp 182-183 °C (toluene: ethyl acetate).

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-(2-Chloro-6-methoxyquinolin-3-yl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid isobutyl-amide (168)

A colourless oil; ν_{max} (DMSO) 2987, 2910, 1618 (C=O), 1498, 1305, 1228 cm⁻¹; δ_H (500 MHz; CDCl₃) 8.00 (1H, s, H10), 7.90 (1H, d, J 9.0, H14), 7.35 (1H, dd, 9.0, 3.0, H13), 7.07 (1H, d, J 3.0, H11), 6.55 (1H, dd, J 5.5, 3.0, H6), 6.26 (1H, dd, J 5.5, 3.0, H5), 5.47 (1H, br s, NH), 3.94 (3H, s, H12), 3.40 (1H, d, J 5.0, H3), 3.30 (1H, s, H4), 3.11-3.02 (4H, m, H9, H7, H2), 1.79-1.74 (2H, m, H8, H1), 1.63 (1H, d, J 8.5, H8'), 0.90 (6H, d, J 6.5, H15); LCMS (APCI+) 385 (M+H⁺).

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-(2-Vinyl-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (169)

A cream solid; $R_f 0.24$ (SiO₂; 10:3 toluene: ethyl acetate); ν_{max} (neat) 3292, 1641 (C=O), 1541, 1262, 1125 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.05 (1H, dd, J 7.5, 10, H10), 7.35 (1H, d, J 7.5, H13), 7.28 (1H, t, J 7.5, H11), 7.23 (1H, t, J 7.5, H12), 7.05 (1H, dd, J 17.0, 11.0, H14), 6.48 (1H, dd, J 5.5, 3.0, H6), 6.21 (1H, dd, J 5.5, 3.0, H5), 5.83-5.78 (1H, m, H1), 5.59 (1H, dd, J 17.0, 4.0, H15), 5.46 (1H, br s, NH), 5.28 (1H, dd, J 11.0, 1.5, H15'), 5.13 (1H, dd, J 17.0, 1.5, H16), 5.10 (1H, dd, J 10.5, 1.1, H16'), 3.88-3.80 (2H, m, H2), 3.26 (1H, d, J 5.0, H3), 3.19 (1H, s, H4), 2.96 (1H, s, H7), 2.85 (1H, dd, J 5.0, 3.5, H9), 1.83 (1H, d, J 8.5, H8), 1.59 (1H, dd, J 8.5, 1.5, H8'); δ_C (125 MHz; CDCl₃) 173.34 (C=O), 141.21 (C), 138.23 (C[6]H), 138.17 (C), 135.40 (CH), 134.59 (C[5]H), 134.43 (CH), 127.90 (CH), 126.58 (CH), 126.37 (CH), 125.37 (CH), 116.19 (C[16]H₂), 52.31 (C[3]H), 49.35 (C[9]H), $47.53 (C[7]H), 47.18 (C[8]H_2), 44.90 (C[4]H), 42.01 (C[2]H_2);$ LCMS (ES+) 280 (M+H⁺): HRMS (M+Na)⁺ found 302.1521 $C_{19}H_{21}NONa$ required 302.1521, Δ ppm +0.2.

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Pent-4-enyl-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid allylamide (170)

A white solid; $R_f = 0.25$ (SiO₂; 10:1 toluene: ethyl acetate); ν_{max} (neat) 3064, 2972, 1641 (C=O), 1533, 1451, 1418, 1333, 1265, 1219, 1046 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.32 (1H, dd, J 5.5, 3.0, H6), 6.04 (1H, dd, J 5.5, 3.0, H5), 5.82-5.78 (2H, m, H13, H1), 5.46 (1H. br s, NH), 5.16 (1H, d, J 17.0, H15), 5.12 (1H, d, J 10.5, H15'), 5.01 (1H, dq, J 17.0, 1.5, H14), 4.95 (1H, dd, J 10.0, 1.0, H14'), 3.86-3.84 (2H, m, H2), 3.06 (1H, s, H4), $\begin{array}{c} 2.62 \ (1\mathrm{H, s, H7}), \ 2.35 \ (1\mathrm{H, dd}, \ J \ 4.5, \ 4.0, \ \mathrm{H3}), \ 2.08 \ (2\mathrm{H, br d}, \\ 42 \end{array}$

J 6.5, H12), 1.68-1.66 (1H, m, H9), 1.15-1.45 (6H, m, H8, H10, H11); δ_C (125 MHz; CDCl₃) 174.07 (C=O), 138.76 (C[6]H), 138.66 (C[13]H), 134. 59 (C[1]H), 133.18 (C[5]H), 115.98 $(C[15]H_2), 114.33 (C[14]H_2), 43.12 (C[3]H), 47.13 (C[7]H),$ 47.10 (C[8]H₂), 46.51 (C[4]H), 44.23 (C[9]H), 41.80 (C[2]H₂), $35.69 (C[11]H_2), 33.90 (C[12]H_2), 27.95 (C[10]H_2); LCMS$ (APCI+) 246 (M+H⁺): HRMS (M+H)⁺ found 246.1852 $\rm C_{16}H_{24}ON$ required 246.1852, Δ ppm +0.0; mp 34-35 $^{\circ}\rm C$ (toluene: ethyl acetate).

11.5Combined diels-alder and amide cleavage reactions

To a solution of HWE product (1 equiv.) in CH_2Cl_2 (25 mL/g) at -78 $^{\circ}$ C under nitrogen was added dimethylaluminium chloride (1M solution in hexane; 5 equiv.) and cyclopentadiene (20 equiv.). The yellow solution was stirred at -78 °C for one hour then allowed to warm to room temperature. After four hours toluene (25 mL/g) was added to the reaction followed by a solution of methylamine.HCl (10 equiv.) and dimethylaluminium chloride (4 equiv.) in toluene (20 ml). The reaction was stirred at 50 $^{\circ}$ C overnight and the reaction cooled to room temperature and guenched with ammonium chloride solution. The organic layer was separated, washed with brine, dried $(MgSO_4)$ and the solvent removed in vacuo. The product was purified by flash column chromatography to yield:

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(2-Allyloxy-phenyl)-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid methylamide (175)

A yellow oil (500 mg, 23 %); $R_f 0.24$ (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (DMSO) 2992, 1668 (C=O), 1544, 1489, 1408, 1242 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.33 (1H, d, J 7.5, H10), 7.20 (1H, td, J 7.5, 1.5, H11), 6.97 (1H, td, J 7.5, 1.5, H12), 6.87 (1H, d, J 8.0, H13), 6.42 (1H, dd, J 5.5, 3.0, H6), 6.24 (1H, dd, J 5.5, 3.0, H5), 6.10-6.03 (2H, m, H15, NH), 5.41 (1H, dd, J 17.5, 1.5, H16), 5.31 (1H, dd, J 10.5, 1.0, H16'), 4.59-4.52 (2H, m, H14), 3.31 (1H, s, H4), 3.08 (1H, d, J 5.0, H9), 3.01 (1H, s, H7), 2.77-2.74 (4H, m, H3, H2), 1.81 (1H, d, J 8.5, H8), 1.58 (1H, dd, J 8.5, 1.5, H8'); δ_C (125 MHz; CDCl₃) 174.60 (C=O), 156.27 (C), 138.14 (C[6]H), 135.78 (C[13]H), 133.29 (C[5]H), 133.05 (C), 127.15 (CH), 126.42 (CH), 121.07 (CH), 117.87 (C[16]H₂), 111.58 (C[15]H), 69.28 (C[14]H₃), 53.60 (C[3]H), 48.48 (C[9]H), 47.41 (C[8]H₂), 46.56 (C[7]H), 41.81 (C[4]H), 26.20 (C[2]H₂); LCMS (APCI+) 284 $(M+H^+)$: HRMS $(M+Na)^+$ found 306.1476 $C_{18}H_{21}NO_2Na$ required 306.1470, Δ ppm +2.1.

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(3-Vinyl-phenyl)-bicyclo-[2.2.1]hept-5-ene-2-carboxylic acid methylamide (176)

Colourless oil (300 mg, 17 %); R_f 0.28 (SiO₂; 1:1 toluene: ethyl acetate); ν_{max} (neat) 3274, 3076, 2976, 1665 (C=O), 1262, 1556, 1411, 1341, 1295, 1233, 1106 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.33 (1H, s, H13), 7.28-7.18 (3H, m, H11, H10, H12), 6.75-6.68 (1H, m, H14), 6.44 (1H, dd, J 5.5, 3.0, H6), 6.18 (1H, dd, J 5.5, 3.0, H5), 5.76 (1H, d, J 17.0, H15), 5.67 (1H, br s, NH), 5.25 (1H, dd, J 11.0, 1.0, H15'), 3.19 (1H, s, H4), 3.04 (1H, d, J 5.5, H9), 3.01 (1H, s, H7), 3.29 (1H, dd, J 5.0, 3.5, H9), 2.78 (3H, d, J 5.0, H2), 1.81 (1H, d, J 8.5, H8), 1.59 $(1H, dd, J 8.5, 1.5, H8'); LCMS (APCI+) 254 (M+H^+).$

12Cleavage of compounds to synthesise esters

12.1General method for solid supports

To a suspension of the resin (1 equiv.) in (m)ethanol at 0 $^\circ\mathrm{C}$ under nitrogen was added a sodium (m)ethoxide (5 equiv.) and the reaction stirred for twenty four hours. The reaction quenched using water and the beads removed by filtration. The aqueous layer was extracted with ethyl acetate and the organic layer was washed with brine, dried $(MgSO_4)$ and solvent removed in vacuo.

General method for solution phase 12.2synthesis

A round-bottom flask, equipped with a magnetic stirrer, containing the library compound (1 equiv.) was added a solution of sodium ethoxide (1.5 equiv.) in ethanol (10 mL/g of com-)pound). The reaction was stirred at 0 $^{\circ}$ C for three hours under nitrogen then a further portion of sodium ethoxide (1.5 equiv.) in ethanol (2 ml) was added and the reaction stirred until complete by TLC. The reaction was poured into water and extracted with ethyl acetate. The organic layer was dried (MgSO₄) and solvent removed *in vacuo*.

12.3 Library compounds generated using this methodology

Compounds prepared using branching pathways 1,2,3 and 4 were cleaved after each step to generate carboxylic acids using the above methodology to generate compounds with purity greater than 80 % by NMR and LCMS:

 $(2S^*, 3R^*, 4S^*, 5R^*)$ -1-Butyryl-3-(2-chloro-6methoxy-quinolin-3-yl)-5-phenyl-pyrrolidine-2,4dicarboxylic acid dimethyl ester (177)

A colourless oil. $R_f 0.19$ (ethyl acetate); ν_{max} (thin film) 2954 (s, CH), 2874 (s, CH), 1742 (s, C=O), 1647 (s, C=O), 1624 (s, C=O) cm⁻¹; δ_H (400 MHz, CDCl₃) 8.01 (1H, s, ArH), 7.89 (1H, d, J 9.0, ArH), 7.76 (2H, d, J 7.0, ArH), 7.44-7.33 (4H, m, ArH), 7.03 (1H, s, ArH), 5.47 (1H, d, J 8.0, H10), 4.62 (2H, m, H3, H5), 4.10 (1H, m, H4), 3.92 (3H, s, OCH₃), 3.72 (3H, s, OCH₃), 3.25 (3H, s, OCH₃), 2.23-2.18 (1H, m, H7), 1.99-1.96 $(1H, m, H7'), 1.59-1.52 (2H, m, H8), 0.79 (3H, t, J 7.0, H9); \delta_C$ (125 MHz, CDCl₃) 172.9 (C=O), 171.0 (C=O), 168.0 (C=O), 158.5 (C-O), 148 (C-Cl), 143.0 (C-C), 137.7 (C-C), 136 (CH), 129.7 (CH), 128.8 (CH), 128.3 (C-C), 127.3 (CH), 127 (C-C), 123.7 (CH), 104.7 (CH), 65.5 (C[5]H), 63.2 (C[10]H), 55.6 (CH₃r), 55.5 (C[3]H), 52.6 (C[2]H₃), 52.0 (C[6]H₃), 43.5 (C[4]H), 35.7 (C[7]H₂), 17.9 (C[8]H₂), 13.7 (C[9]H₃); HRMS (ES⁺) calculated for $\rm C_{28}H_{29}ClN_2O_6~[M+H]^+$ 525.1787, found 525.1784.

 $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Methyl-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid ethyl ester (178)

A colourless oil; $R_f 0.34$ (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (neat) 2962, 1728 (C=O), 1463, 1178, 1033 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.26 (1H, dd, J 5.5, 3.0, H6), 5.99 (1H, dd, J 5.5, 3.0, H5), 4.10-4.05 (2H, m, H2), 3.11 (1H, s, H3), 2.47 (1H, s, H4), 2.37 (1H, t, J 4.0, H7), 1.85-1.82 (1H, m, H9), 1.55 (1H, d, J 8.5, H8), 1.43 (1H, dq, J 8.5, 1.5, H8'), 1.24 (3H, t, J 7.0, H1), 1.18 (3H, d, J 7.0, H10); δ_C (125 MHz; CDCl₃) 174.70 (C=O), 138.62 (C[6]H), 133.24 (C[5]H), 60.01 (C[2]H₂), 52.56 (C[3]H), 48.84 (C[7]H), 45.97 (C[8]H₂), 45.93 (C[4]H), 37.80 (C[9]H), 20.94 (C[10]H₃), 14.27 (C[1]H₃); LCMS (ES+) 181 (M+H⁺). Data agrees with literature values [4] $(1S^*, 2S^*, 3R^*, 4R^*)$ -3-Isobutylbicyclo[2.2.1]hept-5-ene-2-carboxylic acid ethyl ester (179)

An colourless oil; R_f 0.54 (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (neat) 2957, 1733 (C=O), 1467, 1367, 1333, 1178 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.27 (1H, dd, J 5.5, 3.0, H6), 6.00 (1H, dd, J 5.5, 3.0, H5), 4.10-4.05 (2H, m, H2), 3.11 (1H, s, H4), 2.55 (1H, s, H7), 2.40 (1H, dd, J 4.0, 3.5, H3), 1.85 (1H, m, H9), 1.53 (1H, septet, J 6.5, H11), 1.52 (1H, d, J 8.5, H8), 1.38 (1H, d, J 8.5, H8'), 1.32-1.27 (2H, m, H10), 1.23 (3H, t, J 7.0, H1), 0.93-0.89 (6H, m, H12); δ_C (125 MHz; CDCl₃) 174.80 (C=O), 138.50 (C[6]H), 133.42 (C[5]H), 60.02 (C[2]H₂), 51.44 (C[3]H), 47.40 (C[7]H), 46.40 (C[8]H₂), 45.95 (C[9]H), 45.67 (C[10]H₂), 41.23 (C[4]H), 26.83 (C[11]H), 23.09 (C[12]H₃), 22.71 (C[12]H₃), 14.26 (C[1]H₃); LCMS (ES+) 223 (M+H⁺); HRMS (M+H)⁺ found 223.1709 C₁₄H₂₃O₂ required 223.1689, Δ ppm +4.9.

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(2-Chloro-6-methoxyquinolin-3-yl)-bicyclo[2.2.1]-hept-5-ene-2-carboxylic acid ethyl ester (180)

A cream solid; $R_f 0.62$ (SiO₂; 10:1 toluene: ethyl acetate); ν_{max} (DMSO) 2989, 1727 (C=O), 1618, 1496, 1343, 1229, 1185 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.96 (1H, s, H10), 7.90 (1H, d, J 9.0, H14), 7.35 (1H, dd, 9.0, 3.0, H13), 7.08 (1H, d, J 3.0, H11), 6.53 (1H, dd, J 5.5, 3.0, H6), 6.18 (1H, dd, J 5.5, 3.0, H5), 4.19-4.12 (2H, m, H2), 3.94 (3H, s, H12), 3.50 (1H, d, J 5.0, H3), 3.37 (1H, s, H4), 3.18 (1H, t, J 4.5, H9), 3.08 (1H, s, H7), 1.73 (1H, d, J 8.5, H8), 1.61 (1H, d, J 8.5, H8'), 1.27 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 173.52 (C=O), 158.84 (C), 149.52 (C), 142.00 (C), 138.20 (C[6]H), 135.40 (C), 134.55 (C[10]H), 133.72 (C[5]H), 129.36 (C), 128.30 (C[14]H), 122.41 (C[13]H), 104.99 (C[11]H), 60.52 (C[2]H₂), 55.53 (C[12]H₃), 49.47 (C[3]H), 49.06 (C[7]H), 46.84 (C[4]H), 46.59 (C[8]H₂), 45.28 (C[9]H), 14.24 (C[1]H₃); LCMS (ES+) 358 (M+ H^+); HRMS (M+ H^+)⁺ found 358.1219 $C_{20}H_{21}CINO_3$ required 358.1210, Δ ppm +2.5; mp 97-99 °C (toluene: ethyl acetate).

 $(1R^*,\ 2S^*,\ 3R^*,\ 4S^*,\ 5S^*,\ 6R^*)\text{-}5,6\text{-}Dihydroxy-$ 3-isobutyl-bicyclo[2.2.1]heptane-2-carboxylic acid ethyl ester (181)

A white foam; ν_{max} (neat) 2954, 1722 (C=O), 1464, 1385, 1299, 1254, 1184 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.16-4.12

(2H, m, H2), 3.85 (1H, s, H6), 3.82 (1H, s, H5), 2.89 (2H, s, OH), 2.43 (1H, s, H4), 2.20 (1H, dd, J 10.0, 5.5, H3), 1.96 (1H, s, H7), 1.84 (1H, m, H8), 1.75 (1H, s, H9), 1.51 (1H, sep, J 6.5, H11), 1.38 (1H, d, J 10.5, H8'), 1.28-1.13 (5H, m, H1, H10), 0.89 (6H, d, J 6.5, H12); δ_C (125 MHz; CDCl₃) 173.84 (C=O), 74.13 (C[6]H), 70.48 (C[5]H), 60.52 (C[2]H₂), 50.83 (C[3]H), 48.96 (C[4]H), 47.09 (C[7]H), 45.05 (C[10]H₂), 38.00 (C[9]H), 30.99 (C[8]H₂), 25.93 (C[11]H), 22.82 (C[12]H₃), 22.60 (C[12]H₃), 14.23 (C[1]H₃); LCMS (ES+) 257 (M+H⁺); HRMS (M+Na)⁺ found 279.1591 C₁₄H₂₃O₄Na required 279.1596, Δ ppm -1.7.

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -5,6-Dihydroxy-3-(3,4,5-trimethoxy-phenyl)-bicyclo[2.2.1]heptane-2-carboxylic acid ethyl ester (182)

A yellow solid; ν_{max} (neat) 2971, 2910, 1724 (C=O), 1588, 1510, 1464, 1330, 1244, 1180, 1126 cm⁻¹; δ_H (500 MHz; MeOD: CDCl₃) 6.43 (2H, s, H10), 4.17-4.14 (2H, m, H2), 3.85-3.77 (11H, m, H6, H5, H11, H12), 2.95 (1H, d, J 6.0, H9), 2.73 (1H, dd, J 6.5, 4.5, H3), 2.54 (1H, s, H7), 2.35 (1H, s, H4), 1.95 (1H, d, J 10.5, H8), 1.61 (1H, dd, J 10.5, 1.5, H8'), 1.26 (3H, t, J 7.0, H1); δ_C (125 MHz; MeOD: CDCl₃) 173.84 (C=O), 153.04 (C-O), 153.00 (C-O), 140.35 (C-C), 103.88 (C[10]H), 73.54 (C[6]H), 69.82 (C[5]H), 60.93 (C[2]H₂), 60.70 (C[12]H₃), 55.92 (C[11]H₃), 52.60 (C[3]H₂), 49.66 (C[4]H), 46.94 (C[7]H), 44.79 (C[9]H), 32.21 (C[8]H₂), 14.04 (C[1]H₃); LCMS (ES+) 367 (M+H⁺); HRMS (M+H)⁺ found 367.1773 C₁₉H₂₇O₇ required 367.1757, Δ ppm +4.4; mp 149-152 °C (CH₂Cl₂: MeOH).

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -3-(2-Chloro-6methoxy-quinolin-3-yl)-5,6-dihydroxy-bicyclo-[2.2.1]heptane-2-carboxylic acid ethyl ester (183)

A yellow solid; $R_f 0.22$ (SiO₂; 10:1 CH₂Cl₂: MeOH); ν_{max} (DMSO) 3002 (OH), 2910, 1725 (C=O), 1618, 1590, 1496, 1383, 1342, 1230, 1185 cm⁻¹; δ_H (400 MHz; MeOD: CDCl₃) 8.00 (1H, s, H10), 7.76 (1H, d, J 9.0, H14), 7.31 (1H, dd, 9.0, 3.0, H13), 7.13 (1H, d, J 3.0, H11), 4.15 (2H, q, J 7.0, H2), 4.04 (1H, d, 6.0, H6), 3.96 (1H, d, J 5.0, H5), 3.89 (3H, s, H12), 3.47 (1H, d, J 6.0, H3), 3.04 (1H, dd, J 6.0, 4.5, H9), 2.61 (1H, s, H7), 2.26 (1H, s, H4) 1.96 (1H, dd, J 11.0, 1.5, H8), 1.57 (1H, d, J 11.0, H8'), 1.23 (3H, t, J 7.0, H1); δ_C (125) MHz; MeOD: CDCl₃) 173.10 (C=O), 158.46 (C), 148.76 (C), 141.69 (C), 135.16 (C), 134.18 (C[10]H), 128.35 (C), 128.35 (C[14]H), 122.89 (C[13]H), 105.15 (C[11]H), 73.17 (C[6]H), 69.59 (C[5]H), 60.98 (C[2]H₂), 55.29 (C[12]H₃), 50.25 (C[4]H), 48.85 (C[9]H), 47.12 (C[7]H), 42.42 (C[3]H), 31.14 (C[8]H₂), 13.75 (C[1]H₃); LCMS (ES+) 392 (M+H⁺); HRMS (M+H)⁺ found 392.1267 $C_{20}H_{23}CINO_5$ required 392.1265, $\Delta ppm + 0.7$; mp 183-186 °C (CH₂Cl₂: MeOH).

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -5,6-Dihydroxy-3-methyl-bicyclo[2.2.1]heptane-2-carboxylic acid ethyl ester (184)

A white foam; R_f 0.31 (SiO₂; 10:1 CH₂Cl₂: MeOH); ν_{max} (DMSO) 2911, 1722 (C=O), 1390, 1299, 1192 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.15 (2H, q, J 7.0, H2), 3.84 (1H, s, H6), 3.79 (1H, s, H5), 2.44 (1H, s, H4), 2.18 (1H, dd, J 9.0, 4.0, H3), 1.88 (1H, s, H7), 1.83 (1H, d, J 10.5, H8), 1.42 (1H, dd, J 10.5, 1.0, H8'), 1.34-1.31 (1H, m, H9), 1.25 (3H, t. J 7.0, H1), 1.02 (3H, d, J 7.0, H10); δ_C (125 MHz; CDCl₃) 173.80 (C=O), 73.83 (C[6]H), 70.23 (C[5]H), 60.56 (C[2]H₂), 51.95 (C[3]H), 50.53 (C[4]H), 47.23 (C[7]H), 34.67 (C[9]H), 30.55 (C[8]H₂), 20.89 (C[10]H₃), 14.26 (C[1]H₃); LCMS (APCI++) 214 (M+H⁺); HRMS (M+Na)⁺ found 237.1124 C₁₁H₁₇O₄Na required 237.1127, Δ ppm -1.0.

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-(2-Chloro-6-methoxyquinolin-3-yl)-3-cyclohexyl-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (185)

Yellow oil; \mathbf{R}_f 0.42 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2931, 1726 (C=O), 1464, 1365, 1264, 1187 cm⁻¹; δ_H (400 MHz CDCl₃) 7.87 (1H, d, J 9.0, H14), 7.85 (1H, s, H10), 7.30 (1H, dd, J 9.0, 2.5, H13), 7.04 (1H, d, J 2.5, H11), 4.30 (1H, d, J 6.0, H9), 4.17-4.06 (2H, m, H2), 3.90 (3H, s, H12), 3.27 (1H, t, J 6.0, H3), 3.15 (1H, dd, J 10.5, 3.5, H6), 3.04 (1H, dd, J 10.5, 3.5, H5), 2.71 (1H, d, J 4.5, H4), 2.46 (1H, d, J 10.0, H5'), 2.32 (1H, d, J 10.5, H6'), 2.25 (1H, br s, H15), 2.07 (1H, s, H7), 1.81-65 (5H, m, CyH, H8), 1.59-1.55 (1H, br d, J 10.5, CyH), 1.43 (1H, d, J 11.5, H8'), 1.26-1.0 (8H, m, H1, CyH); LCMS (ES+) 457 (M+H⁺).

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -3-Cyclohexyl-7-(3,4,5-trimethoxy-phenyl)-3-aza-bi-cyclo[3.2.1]octane-6-carboxylic acid ethyl ester (186)

Colourless oil; R_f 0.29 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (neat) 2930, 2853, 1727 (C=O), 1587, 1508, 1453, 1421, 1327,1242, 1226, 1127 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.59 (2H, s, H10), 4.19-4.12 (2H, m, H2), 3.86 (6H, s, H11), 3.82 (3H, s, H12), 3.76 (1H, d, J 5.5, H9), 2.99 (1H, d, J 10.5, H6), 2.80 (1H, t, J 6.0, H3), 2.76 (1H, dd, J 10.5, 3.5, H5), 2.56 (1H, d, J 3.5, H4), 2.43 (1H, d, J 10.5, H6'), 2.30 (1H, s, H7), 2.26 (1H, d, J 10.5, H5'), 2.21 (1H, br s,

H13), 2.07-2.05 (1H, m, H8), 1.76-1.74 (3H, d, J 8.5, CyH), 1.67 (1H, br s, CyH), 1.56-1.54 (2H, m, CyH, H8), 1.29 (3H, t, J 7.0, H1), 1.27-1.17 (5H, m, CyH); δ_C (125 MHz; CDCl₃) 173.84 (C=O), 153.06 (C-O), 143.53 (C-O), 136.13 (C-C), 104.13 (C[10]H), 62.70 (C[13]H), 60.80 (C[12]H₃), 60.12 (C[2]H₂), 56.89 (C[5]H₂), 56.22 (C[3]H), 56.10 (C[11]H₃), 50.43 (C[6]H₂), 48.72 (C[9]H), 42.13 (C[7]H), 39.03 (C[4]H), 38.14 (C[8]H₂), 29.56 (C[Cy]H₂), 28.10 (C[Cy]H₂), 26.43 (C[Cy]H₂), 25.87 (C[Cy]H₂), 25.72 (C[Cy]H₂), 14.40 (C[1]H₃); LCMS (ES+) 431 (M+H⁺); HRMS (M+H)⁺ found 432.2755 C₂₅H₃₈NO₅ required 432.2750, Δ ppm +1.0.

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-(2-Chloro-6-methoxyquinolin-3-yl)-3-[2-(5-nitro-pyridin-2-ylamino)ethyl]-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (187)

Yellow oil; R_f 0.26 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2946, 1717 (C=O), 1607, 1542, 1497, 1469, 1327, 1291, 1042 cm⁻¹; δ_H (500 MHz; CDCl₃) 9.05 (1H, d, J 3.5, H19), 8.07 (1H, dd, J 9.5, 2.5, H18), 7.88 (1H, d, J 7,5, H14), 7.86 (1H, s, H10), 7.32 (1H, dd, J 9.0, 2.5, H13), 7.04 (1H, d, J 2.5, H11), 6.87 (1H, br s, NH), 6.80 (1H, br d, J 9.0, H17), 4.40 (1H, d, J 6.0, H9), 4.18-4.14 (2H, m, H2), 3.90 (3H, s, H12), 3.55 (2H, br s, H16), 3.39 (1H, t, J 6.0, H3), 3.14 (1H, d, J 10.0, H6), 2.86-2.84 (2H, m, H4, H5), 2.80-2.65 (1H, m, H15), 2.60-2.54 (1H, m, H15'), 2.38 (1H, d, J 9.5, H5'), 2.24-2.20 (2H, m, H6', H7), 2.01-1.99 (1H, m, H8), 1.57 (1H, d, J 11.5, H8'), 1.24 (3H, t, J 7.0, H1); LCMS (ES+) 540 (M+H⁺).

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -3-Cyclohexyl-7-methyl-3aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (188)

Colourless oil; R_f 0.48 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2931, 1725 (C=O), 1456, 1375, 1282, 1191, 1155 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.16-4.11 (2H, m, H2), 2.99 (1H, d, J 9.0, H6), 2.65 (1H, d, J 9.5, H5), 2.54-2.52 (1H, m, H9), 2.40 (1H, d, J 3.5, H4), 2.33 (1H, d, J 10.0, H6'), 2.21 (1H, t, J 5.5, H3), 2.18-2.14 (2H, m, H5', H11), 1.75-1.70 (5H, m, CyH, H7, H8), 1.63 (1H, br s, CyH), 1.55 (1H, m, CyH), 1.35 (1H, d, J 10.5, H8'), 1.27 (3H, t, J 7.0, H1), 1.27-1.07 (5H, m, CyH), 1.04 (3H, d, J 7.0, H10); δ_C (125 MHz; CDCl₃) 174.49 (C=O), 62.76 (C[11]H), 59.76(C[2]H₂), 56.12 (C[5]H₂), 55.15 (C[3]H), 50.65 (C[6]H₂), 42.20 (C[7]H), 38.90 (C[4]H), 38.06 (C[9]H), 35.83 (C[8]H₂), 29.24 (CyC), 28.24 (CyC), 26.42 (CyC), 25.73 (CyC), 25.65 (CyC), 22.49 (C[10]H₃), 14.40 (C[1]H₃); LCMS (ES+) 280 (M+H⁺).

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-Methyl-3-[2-(5-nitropyridin-2-ylamino)-ethyl]-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester(189)

Brown oil, R_f 0.31 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (neat) 3339, 2946, 2796, 1714 (C=O), 1601, 1529, 1497, 1472, 1320, 1289, 1260, 1114, 1030 cm⁻¹; δ_H (500 MHz; CDCl₃) 9.03 (1H, d, J 2.5, H15), 8.10 (1H, dd, J 9.5, 2.5, H14), 6.82 (1H, br s, NH), 6.73 (1H, br s, H13), 4.15 (2H, t, J 7.0, H2), 3.51-3.44 (2H, m, H12), 2.81 (1H, dd, J 7.0, 3.5, H6), 2.76 (1H, br d, H5), 2.61 (1H, t, J 6.5, H3), 2.56-2.54 (2H, m, H4, H6'), 2.47-2.42 (1H, m, H9), 2.41 (1H, dd, J 6.0, 5.5, H5'), 2.24 (1H, d, J 11.0, H11), 2.01 (1H, d, J 10.0, H11'), 1.89-1.86 (1H, m, H8), 1.82 (1H, s, H7), 1.47 (1H, d, J 11.5, H8'), 1.23 (3H, t, J 7.0, H1), 1.04 (1H, d, J 7.0, H10); LCMS (ES+) 363 (M+H⁺).

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -3-[2-(5-Nitro-pyridin-2-ylamino)-ethyl]-7-(3,4,5-trimethoxy-phenyl)-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (190)

Brown oil; R_f 0.26 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2945, 1716 (C=O), 1608, 1547, 1500, 1469, 1328, 1290, 1126 cm⁻¹; δ_H (500 MHz; CDCl₃) 9.05 (1H, s, H17), 8.13 (1H, dd, J 9.5, 2.5, H16), 6.91 (1H, br s, H15), 6.76 (1H, br s, NH), 6.48 (2H, s, H10), 4.19-4.15 (2H, m, H2), 3.87 (6H, s, H11), 3.83 (3H, s, H12), 3.77 (1H, d, J 6.0, H9), 3.54 (2H, br s, H14), 2.99 (1H, t, J 6.0, H3), 2.94 (1H, d, J 10.0, H6), 2.78 (1H, d, J 10.5, H5), 2.72 (1H, d, J 4.0, H4), 2.68-2.62 (1H, m, H13), 2.58-2.52 (1H, m, H13'), 2.39 (1H, s, H7), 2.32 (1H, d, J 10.5, H6'), 2.22 (1H, d, J 10.5, H5'), 2.12-2.10 (1H, m, H8), 1.66 (1H, d, J 11.5, H8'), 1.24 (3H, t, J 7.0, H1); LCMS (ES+) 514 (M+H⁺).

Yellow oil; R_f 0.47 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2972, 2910, 1724 (C=O), 1497, 1388, 1335, 1261, 1228 cm⁻¹;

$$\begin{split} &\delta_{H} \ (400 \ \mathrm{MHz; \ CDCl_3}) \ 4.14\text{-}4.07 \ (2\mathrm{H}, \ \mathrm{m}, \ \mathrm{H2}), \ 2.94 \ (1\mathrm{H}, \ \mathrm{dd}, \ J \\ &10.5, \ 4.0, \ \mathrm{H6}), \ 2.59 \ (1\mathrm{H}, \ \mathrm{d}, \ J \ 10.5, \ \mathrm{H5}), \ 2.49\text{-}2.45 \ (1\mathrm{H}, \ \mathrm{m}, \ \mathrm{H9}), \\ &2.40\text{-}2.35 \ (2\mathrm{H}, \ \mathrm{m}, \ \mathrm{H4}, \ \mathrm{H6}'), \ 2.23 \ (1\mathrm{H}, \ \mathrm{t}, \ J \ 5.5, \ \mathrm{H3}), \ 2.17\text{-}2.10 \\ &(2\mathrm{H}, \ \mathrm{m}, \ \mathrm{H5}', \ \mathrm{H13}), \ 1.77 \ (1\mathrm{H}, \ \mathrm{s}, \ \mathrm{H7}), \ 1.68\text{-}1.64 \ (3\mathrm{H}, \ \mathrm{m}, \ \mathrm{CyH}, \\ &\mathrm{H8}), \ 1.62\text{-}1.53 \ (3\mathrm{H}, \ \mathrm{m}, \ \mathrm{CyH}, \ \mathrm{H11}), \ 1.33 \ (1\mathrm{H}, \ \mathrm{d}, \ J \ 10.5, \ \mathrm{H8}'), \\ &1.25 \ (3\mathrm{H}, \ \mathrm{t}, \ J \ 7.0, \ \mathrm{H1}), \ 1.20\text{-}1.12 \ (8\mathrm{H}, \ \mathrm{m}, \ \mathrm{H10}, \ \mathrm{CyH}), \ 0.93 \\ &(3\mathrm{H}, \ \mathrm{d}, \ J \ 6.5, \ \mathrm{H12}), \ 0.90 \ (3\mathrm{H}, \ \mathrm{d}, \ J \ 6.5, \ \mathrm{H12}); \ \mathrm{LCMS} \ (\mathrm{ES+}) \\ &457 \ (\mathrm{M+H}^+). \end{split}$$

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-Isobutyl-3-[2-(5-nitropyridin-2-ylamino)-ethyl]-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (191)

Orange oil; R_f 0.31 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2962, 2910, 1717 (C=O), 1607, 1539, 1464, 1327, 1291, 1261 cm⁻¹; δ_H (400 MHz; CDCl₃) 9.00 (1H, s, H17), 8.07 (1H, dd, J 9.5, 2.5, H16), 6.87 (1H, br s, NH), 6.81 (1H, br d, J 8.0, H15), 4.15-4.10 (2H, m, H2), 3.47-3.44 (4H, m, H14, H9, H3), 2.76 (1H, d, J 11.0, H6), 2.62 (1H, d, J 10.5, H5), 2.56-2.52 (2H, m, H13, H4), 2.44-2.43 (1H, m, H13'), 2.26 (1H, d, J 10.5, H5'), 2.08 (1H, d, J 10.5, H6'), 1.85 (1H, s, H7), 1.82-1.78 (1H, m, H8), 1.44-1.35 (2H, m, H8', H11), 1.27-1.17 (5H, m, H1, H10), 0.91 (3H, d, J 6.5, H12), 0.88 (3H, d, J 6.5, H12); LCMS (ES+) 405 (M+H⁺).

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -9-Methyl-4phenyl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]-decane-8-carboxylic acid ethyl ester (210)

A colourless oil; R_f 0.40 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2950, 1726 (C=O), 1459, 1400, 1375, 1265, 1187, 1087, 1026 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.55-7.51 (2H, m, H12), 7.41-7.38 (3H, m, H13, H14), 5.59 (1H, s, H11), 4.22-4.12 (4H, m, H2, H5, H6), 2.75 (1H, d, J 4.0, H4), 2.26 (1H, t, J 5.0, H3), 2.18 (1H, s, H7), 1.97 (1H, d, J 10.5, H8), 1.87 (1H, q, J 7.0, H9), 1.44 (1H, d, J 10.5, H8'), 1.30 (3H, t, J 7.0, H1), 1.10 (3H, d, J 7.0, H10); LCMS (ES+) 302 (M+H⁺).

 $(1S^*, 2S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ –9-Methyl-4-cyclohexyl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]-decane-8-carboxylic acid ethyl ester (211)

A colourless oil; R_f 0.32 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2933, 1728 (C=O), 1449, 1370, 1182, 1161, 1105, 1091, 1034 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.16-4.07 (4H, m, H2, H5, H6), 2.57 (1H, d, J 4.0, H4), 2.19 (1H, t, J 5.0, H3), 1.99 (1H, s, H7), 1.76 (1H, d, J 10.5, H8), 1.68-1.60 (5H, m, H9, CyH), 1.54-1.52 (3H, m, H8', CyH), 1.41-1.32 (4H, m, CyH), 1.27 (3H, t, J 7.0, H1), 1.04 (3H, d, J 7.0, H10); LCMS (ES+) 295 (M+H⁺). $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -9-Methyl-4thiophen-2-yl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]decane-8-carboxylic acid ethyl ester (212)

A yellow oil; $R_f 0.36$ (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (neat) 2962, 1726 (C=O), 1541, 1445, 141, 1374, 1329, 1264, 1187, 1099 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.36 (1H, d, J 5.0, H14), 7.21 (1H, d, J 4.0, H12), 7.01 (1H, dd, J 5.0, 4.0, H13), 5.87 (1H, s, H11), 4.20-4.15 (4H, m, H2, H5, H6), 2.74 (1H, s, H4), 2.26 (1H, t, J 5.0, H3), 2.17 (1H, s, H7), 2.01 (1H, d, J 10.0, H8), 1.56 (1H, q, J 7.0, H9), 1.45 (1H, d, J 10.0, H8'), 1.28 (3H, t, J 7.0, H1), 1.08 (3H, d, J 7.0, H10); LCMS (ES+) 309 $(M+H^+)$.

 $(1S^*,\,2S^*,\,4S^*,\,6R^*,\,7R^*,\,8S^*,\,9R^*)$ –9-(2-Chloro-6-methoxy-quinolin-3-yl)-4-thiophen-2-yl-3,5dioxa-tricyclo $[5.2.1.0^{2,6}]$ decane-8-carboxylic acid ethyl ester (213)

A yellow oil; $R_f = 0.35$ (SiO₂; 10:4 hexane: ethyl acetate); ν_{max} (neat) 2962, 1726 (C=O), 1541, 1445, 141, 1374, 1329, 1264, 1187, 1099 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.93-7.90 (2H, m, H10, H14), 7.38-7.36 (2H, m, H13, H18), 7.25 (1H, d, J 3.5, H16), 7.09 (1H, d, J 2.5, H11), 7.03 (1H, dd, J 5.0, 4.0, H17), 5.98 (1H, s, H15), 4.56 (1H, d, J 6.0, H6), 4.48 (1H, d, J 6.0, H5), 4.23 (2H, q, J 7.0, H2), 3.95 (3H, s, H12), 3.51 (1H, d, J 5.5, H3), 3.07 (1H, t, J 5.0, H9), 2.96 (1H, s, H4), 2.77 (1H, s, H7), 2.22 (1H, d, J 11.0, H8), 1.64 (1H, d, J 11.0, H8'), 1.27 (3H, t, J 7.0, H1); LCMS (ES+) 486 (M+H⁺).

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -9-Isobutyl-4thiophen-2-yl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]decane-8-carboxylic acid ethyl ester (214)

A yellow oil; $R_f 0.29$ (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (DMSO) 2956, 1726 (C=O), 1259, 1180 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.35 (1H, d, J 4.0, H16), 7.20 (1H, d, J 3.5, H14), 7.00 (1H, dd, J 4.0, 3.5, H15), 5.87 (1H, s, H13), 4.22-4.11 (4H, m, H6, H5, H2), 2.73 (1H, s, H4), 2.30 (1H, t, J 5.0, H3), 2.20 (1H, s, H7), 1.99 (1H, d, J 10.5, H8), 1.81 (1H, m, H9), 1.55 (1H, m, H11), 1.41 (1H, d, J 10.5, H8'), 1.31-1.22 (5H, m, H1, H10), 0.91 (6H, d, J 6.5, 49

H12); δ_C (125 MHz; CDCl₃) 173.47 (C=O), 139.44 (C-C), 126.90 (CH), 126.56 (CH), 126.48 (CH), 99.39 (C[13]H), 82.62 (C[5]H), 79.54 (C[6]H), 60.58 (C[2]H₂), 49.68 (C[3]H), 45.86 (C[7]H), 44.76 (C[10]H₂), 44.10 (C[4]H), 36.35 (C[9]H), 31.06 $(C[8]H_2), 26.05 (C[11]H), 22.89 (C[12]H_3), 22.61 (C[12]H_3),$ 14.26 (C[1]H₃); LCMS (ES+) 351 (M+H⁺): HRMS (M+H)⁺ found 351.1628 $C_{19}H_{27}O_4S$ required 351.1624, Δ ppm -1.1.

 $(1S^*, 2S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -9-Isobutyl-4-cyclohexyl-2-yl-3,5-dioxa-tricyclo[5.2.1.0^{2,6}]decane-8-carboxylic acid ethyl ester (215)

A colourless oil; $R_f 0.42$ (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (DMSO) 2910, 1725 (C=O), 1451, 1369, 1305, 1261, 1162 cm⁻¹; δ_H (500 MHz; CDCl₃) 4.17-4.10 (4H, m, H6, H5, H2), 2.55 (1H, s, H4), 2.21 (1H, t, J 5.0, H3), 2.06 (1H, s, H7), 1.76-1.71 (2H, m, H8, H9), 1.65-1.60 (6H, m, CyH), 1.39-1.38 (2H, m, H10), 1.30-1.18 (5H, m, H8', H1, H11), 0.88 (6H, d, J 6.5, H12); δ_C (125 MHz; CDCl₃) 173.63 (C=O), 109.62 (C-C), 81.17 (C[5]H), 77.92 (C[6]H), 60.46 (C[2]H₂), 49.82 (C[3]H), 45.71 (C[7]H), 44.83 (C[10]H₂), 44.00 (C[4]H), 36.68 $(C[9]H), 35.17 (C[Cy]H_2), 33.53 (C[Cy]H_2), 30.81 (C[8]H_2),$ 26.99 (C[11]H), 25.27 (C[Cy]H₂), 24.05 (C[Cy]H₂), 23.60 $(C[Cy]H_2), 22.75 (C[12]H_3), 22.64 (C[12]H_3), 14.23 (C[1]H_3);$ LCMS (APCI+) 337 (M+H⁺);

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -4-Phenyl-9-(3,4,5-trimethoxy-phenyl)-3,5-dioxa-tri-cyclo[5.- $2.1.0^{2.6}$]decane-8-carboxylic acid ethyl ester (216)

A colourless oil; $R_f = 0.34$ (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (DMSO) 2910, 1724 (C=O), 1588, 1509, 1462, 1305, 1244, 1125 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.55-7.54 (2H, m, H14), 7.41-7.39 (3H, m, H15, H16), 6.50 (2H, s, H10), 5.66 (1H, s, H13), 4.35 (1H, d, J 5.5, H6), 4.29 (1H, d, J 5.5, H5), 4.24 (2H, q, J 7.0, H2), 3.86 (6H, s, H11), 3.84 (3H, s, H12), 3.03 (1H, d, J 6.0, H9), 2.90 (1H, s, H4), 2.84 (1H, dd, 6.0, 4.5, H3), 2.74 (1H, s, H7), 2.15 (1H, d, J 10.5, H8), 1.67 (1H, d, J 10.5, H8'), 1.25 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 173.11 (C=O), 153.29 (C-C), 129.61 (CH), 128.45 (CH), 126.67 (CH), 103.62 (CH), 103.26 (CH), 82.52 (C[5]H), 79.48 (C[6]H), 61.03 (C[11]H₃), 60.85 (C[2]H₂), 56.16 (C[12]H₃), 51.54 (C[3]H), 46.47 (C[7]H), 44.15 (C[4]H), 43.69 (C[9]H), 32.54 (C[8]H₂), 14.32 (C[1]H₃); LCMS (ES+) 455 $(M+H^+)$: HRMS $(M+H)^+$ found 455.2066 $C_{26}H_{31}O_7$ required 455.2070, Δ ppm -0.8.

 $(1S^*, 2S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -4-Phenyl-9-(3,4,5-trimethoxy-cyclohexyl)-3,5-dioxa-tri-cyclo-[5.2.1.0^{2,6}]decane-8-carboxylic acid ethyl ester (217)

A colourless foam; \mathbf{R}_f 0.32 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2931, 1725 (C=O), 1587, 1509, 1461, 1420, 1369, 1332, 1260, 1242, 1125, 1100 cm⁻¹; δ_H (500 MHz; CDCl₃) 6.47 (2H, s, H10), 4.27-4.18 (4H, m, H6, H5, H2), 3.85 (6H, s, H11), 3.83 (3H, s, H12), 2.98 (1H, d, J 5.5, H9), 2.79 (1H, dd, J 6.0, 4.5, H3), 2.73 (1H, d, J 4.5, H4), 2.58 (1H, s, H7), 1.95 (1H, d, J 10.5, H8), 1.73-1.40 (11H, m, H8', CyH), 1.31 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 173.25 (C=O), 153.24 (C-C), 110.13 (C), 103.95 (C[10]H), 81.27 (C[5]H), 78.08 (C[6]H), 60.91 (C[2]H₂), 60.82 (C[11]H₃), 56.14 (C[12]H₃), 51.46 (C[3]H), 46.51 (C[7]H), 44.24 (C[4]H), 43.58 (C[9]H), 35.18 (C[Cy]H₂), 33.60 (C[8]H₂), 32.17 (C[Cy]H₂), 25.25 (C[Cy]H₂), 24.07 (C[Cy]H₂), 23.62 (C[Cy]H₂), 14.28 (C[1]H₃); LCMS (ES+) 447 (M+H⁺): HRMS (M+Na)⁺ found 447.2367 C₂₅H₃₅O₇Na required 447.2383, Δ ppm -3.5.

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ -4-Thiophen-2-yl-9-(3,4,5-trimethoxy-phenyl)-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-carboxylic acid ethyl ester (218)

A yellow foam; R_f 0.35 (SiO₂; 10:3 hexane: ethyl acetate); ν_{max} (neat) 2979, 2934, 2839, 1723 (C=O), 1587, 1508, 1461, 1330, 1240, 1184, 1124 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.38 (1H, d, J 5.0, H16), 7.23 (1H, d, J 3.5, H14), 7.01 (1H, dd, J 5.0, 3.5, H15), 6.49 (2H, s, H10), 5.93 (1H, s, H13), 4.33 (1H, d, J 5.5, H6), 3.28 (1H, d, J 5.5, H5), 4.26-4.18 (2H, m, H2), 3.87 (6H, s, H11), 3.84 (3H, s, H12), 3.01 (1H, d, J 6.0, H9), 2.89 (1H, br s, H4), 2.84 (1H, m, H3), 2.73 (1H, s, H7), 2.19 (2H, d, J 11.5, H8), 1.71 (1H, d, J 11.5, H8'), 1.31 (3H, t, J 7.0, H1); LCMS (ES+) 461 (M+H⁺).

 $(1S^*, 2S^*, 4S^*, 6R^*, 7R^*, 8S^*, 9R^*)$ –9-Isobutyl-4phenyl-3,5-dioxatricyclo[5.2.1.0^{2,6}] decane-8-carboxylic acid ethyl ester (219)

A colourless oil; R_f 0.35 (SiO₂; 10:2 hexane: ethyl acetate); ν_{max} (DMSO) 2987, 1719 (C=O), 1278, 1181, 1116 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.55-7.51 (3H, m, H16, H15), 7.41-7.38 (2H, m, H14), 5.59 (1H, s, H13), 4.22-4.10 (4H, m, H6, H5, H2), 2.75 (1H, br s, H4), 2.30 (1H, t, *J* 5.0, H3), 2.25 (1H, s, H7), 1.97 (1H, d, *J* 10.5, H8), 1.87-1.81 (1H, m, H9), 1.57-1.51 (1H, m, H11), 1.41 (1H, d, *J* 10.5, H8'), 1.32-1.23 (5H, m, H1, H10), 0.93 (3H, d, *J* 6.0, H12), 0.90 (3H, d, *J* 6.0, H12'); LCMS (APCI+) 345 (M+H⁺).

 $(1S^*, 2R^*, 3R^*, 4R^*)$ -3-(4'-Trifluoromethoxybiphenyl-4-yl)-bi-cyclo[2.2.1]hept-5-ene-2carboxylic acid methyl ester (220

A colourless oil; $R_f 0.51$ (SiO₂; 11:1 hexane: ethyl acetate); ν_{max} (DMSO) 2989, 1730(C=O), 1496, 1306, 1257, 1224, 1167 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.57 (2H, d, J 8.5, H13), 7.49 (2H, d, J 8.0, H12), 7.40 (2H, d, J 8.0, H11), 7.27-7.25 (2H, d, J 8.5, H10), 6.44-6.41 (1H, m, H6), 6.14-6.12 (1H, m, H5), 3.68 (3H, s, H1), 3.31 (1H, s, H4), 3.13 (1H, d, J 5.0, H9), 3.06 (1H, s, H7), 3.02 (1H, t, J 5.0, H3), 1.80 (1H, d, J 8.5, H8), 1.60 (1H, d, J 8.5, H8'); δ_C (125 MHz; CDCl₃) 174.69 (C=O), 148.55 (C), 143.88 (C), 139.66 (C), 139.09 (C), 137.63 (CH), 136.79 (C), 134.68 (CH), 128.38 (CH), 128.26 (CH), 128.26 (CH), 119.51 (CH), 52.11 (C[3]H), 51.96 (C[9]H), 48.41 (C[4]H), 47.31 (C[7]H), 47.21 (C[8]H₂), 46.24 (C[1]H₃); LCMS (ES+) 389 (M+H⁺): HRMS (M+Na)⁺ found 411.1184 $C_{22}H_{19}O_3F_3Na$ required 411.1173, Δ ppm -1.0.

13 Preparation of analogues in solution phase for SAR analysis

3-[2-(4-Chloro-phenylsulfanyl)-phenyl]acrylic acid ethyl ester (221) To a solution of triethylphosphonacetate (4 ml, 18.8 mmol), lithium bromide (1.6 g, 18.8 mmol) and DBU (3.7 ml, 18.8 mmol) in acetonitrile (40 ml) under nitrogen was added 2-(4-chlorophenylthio)benzaldehyde (4.68 g, 18.8 mmol). The solution was stirred for three hours until complete by TLC, then saturated ammonium chloride solution was added. The reaction was extracted with ethyl acetate and the organic layer washed with brine, dried (MgSO₄) and solvent removed *in vacuo* to yield the title compound as a yellow solid (5.86 g, 98 %).

 $\begin{array}{l} {\rm R}_f \ 0.45 \ ({\rm SiO}_2; \ 3:1 \ 40:60 \ {\rm petrol:} \ {\rm ether}); \ \nu_{max} \ ({\rm neat}) \ 2989, \\ 2901, \ 1711 \ ({\rm C=O}), \ 1633, \ 1473, \ 1315, \ 1180, \ 1090 \ {\rm cm^{-1}}; \ \delta_H \\ (400 \ {\rm MHz}; \ {\rm CDCl}_3) \ 8.20 \ (1{\rm H}, \ {\rm d}, \ J \ 16.0, \ {\rm H4}), \ 7.62 \ (1{\rm H}, \ {\rm dd}, \\ J \ 9.0, \ 5.0, \ {\rm H8}), \ 7.37\text{-}7.30 \ (3{\rm H}, \ {\rm m}, \ {\rm H5}, \ {\rm H6}, \ {\rm H7}), \ 7.24 \ (2{\rm H}, \\ {\rm d}, \ J \ 8.5, \ {\rm H9}), \ 7.17 \ (2{\rm H}, \ {\rm d}, \ J \ 8.5, \ {\rm H10}), \ 6.35 \ (1{\rm H}, \ {\rm d}, \ J \ {\rm d}) \\ \end{array}$

16.0, H3), 4.24 (2H, q, J 7.0, H2), 1.31 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 166.49 (C=O), 141.70 (C[4]H), 136.46 (C), 135.44 (C), 134.54 (CH), 133.83 (C), 133.00 (CH), 131.58 (CH), 130.55 (CH), 128.46 (CH), 127.42 (CH), 120.75 (C[3]H), $60.56 \ (C[2]H_2), \ 14.29 \ (C[1]H_3); \ (M+H)^+ \ found \ 319.0573$ $C_{17}H_{16}O_2SCl$ requires 319.0560, Δ ppm +4.1

$(1S^*, 2R^*, 3R^*, 4R^*)$ -3-[2-(4-Chloro-phenylsulfanyl)-phenyl]-bi-cyclo[2.2.1]hept-5-ene-2-car-

boxylic acid ethyl ester (222) To a solution of 221 (5.70 g, 17.9 mmol) in $\rm CH_2Cl_2$ (140 ml) at - 78 $^{\circ}\rm C$ under nitrogen was added dimethylaluminium chloride (17.9 ml, 17.9 mmol) and cyclopentadiene (13.0 ml, 179 mmol). The reaction was stirred for one hour then allowed to warm to room temperature for four hours until complete by TLC. The reaction was quenched by addition of saturated ammonium chloride solution (200 ml), the organic layer was separated and washed with brine. The organic layer was dried $(MgSO_4)$ and solvent removed in vacuo. The crude product was purified by flash column chromatography to yield the title compound as a yellow foam (5.38 g, 78 %).

 $R_f 0.22$ (Si; 3:1 40:60 petrol: ether); ν_{max} (neat) 3060, 2977, 1730 (C=O), 1474, 1160, 1091 cm⁻¹; δ_H (400 MHz; CDCl₃) 7.40 (1H, d, J 7.5, ArH), 7.32-7.29 (2H, m, ArH), 7.25-7.23 (2H, m, ArH), 7.18-7.15 (3H, m, ArH), 6.38 (1H, dd, J 5.0, 3.0, H6), 6.10 (1H, dd, J 5.5, 3.0, H5), 4.10-3.95 (2H, m, H2), 3.53 (1H, d, J 5.0, H9), 3.28 (1H, s, H4), 3.13 (1H, t, J 4.5, H3), 2.77 (1H, s, H7), 1.78 (1H, d, J 8.5, H8), 1.50 (1H, d, J 8.5, H8'), 1.17 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 173.96 (C=O), 145.06 (C-Cl), 138.68 (C[6]H), 135.27 (C-S), 134.97 (C-S), 134.33 (C[5]H), 133.81 (C[13]H), 132.57 (C-C), 131.49 (C[14]H), 129.22 (C[15]H), 128.13 (C[10]H), 127.08 (C[11]H), 126.64 (C[12]H), 60.33 (C[2]H₂), 50.19 (C[7]H), 49.99 (C[3]H), 46.58 (C[8]H₂), 46.51 (C[4]H), 45.78 (C[9]H), 14.23 (C[1]H₃); LCMS (APCI+) 385 $(M+H^+)$: HRMS $(M+H)^+$ found 385.1041 C₂₂H₂₂O₂ClS required 385.1029, Δ ppm +3.1.

 $(1R^*, 2S^*, 3R^*, 4S^*, 5S^*, 6R^*)$ -3-[2-(4-Chlorophenylsulfanyl)-phenyl]-5,6-dihydroxy-bicyclo-[2.2.1]heptane-2-car-boxylic acid ethyl ester (223) To a solution of **222** (5.3 g, 13.8 mmol) in acetone (200 ml) and water (20 ml) was added NMO (3.2 g, 27.6 mmol) and osmium tetroxide (2.5 mol% solution in pentane; 0.1ml). The reaction was stirred for four hours until complete by TLC and then quenched with saturated sodium sulfite solution (200 ml). The aqueous layer was extracted with ethyl acetate (2 \times 300 ml) and the organic layer was dried $(MgSO_4)$ and solvent removed in vacuo. The crude product was purified by flash column chromatography to yield the title compound as a white foam (5.30 g, 92 %).

 $R_f 0.19$ (SiO₂; 10:1 CH₂Cl₂: MeOH); ν_{max} (neat) 3379 (OH), 2976, 1724 (C=O), 1474, 1176, 1091, 1031 cm⁻¹; δ_H (400 51

MHz; 9:1 CDCl₃: MeOD) 7.29-7.22 (5H, m, ArH), 7.18-7.12 (3H, m, ArH), 4.05 (2H, q, J 7.0, H2), 4.02 (1H, d, J 5.5, H5), 3.96 (1H, d, J 5.5, H6), 3.54 (1H, d, J 6.0, H9), 2.97 (1H, dd, J 6.0, 4.5, H3), 2.87 (2H, br s, OH), 2.59 (1H, d, J 2.5, H4), 2.15 (1H, s, H7), 1.93 (1H, d, J 11.0, H8), 1.62 (1H, d, J 11.0, H8'), 1.19 (3H, t, J 7.0, H1); δ_C (125 MHz; 9:1 CDCl₃:MeOD) 173.03 (C=O), 144.72 (C-Cl), 135.200 (C-S), 134.45 (C-S), 133.80 (C[13]H), 132.69 (C-C), 131.42 (C[14]H), 129.29 (C[15]H), 128.16 (C[10]H), 127.32 (C[11]H), 126.29 (C[12]H), 73.76 (C[6]H), 70.28 (C[5]H), 60.86 (C[2]H₂), 51.35 (C[7]H), 49.94 (C[3]H), 47.21 (C[4]H), 42.71 (C[9]H), 31.64 $(C[8]H_2)$, 14.16 $(C[1]H_3)$; LCMS (APCI+) 418 $(M+Na^+)$: HRMS $(M+Na)^+$ found 441.0885 $C_{22}H_{23}O_4SCINa$ required 441.0903, Δ ppm -4.1.

General Procedure for oxidative cleavage reductive amination reactions To a solution of 223 (1.0 equiv.) in THF: water (1:1) was added sodium periodate (1.8 equiv.) at 0 °C. The reaction was stirred for three hours then extracted with chloroform. The organic layer was dried $(MgSO_4)$ and the solvent removed in vacuo. The crude product was dissolved in dry CH_2Cl_2 and the amine (1.0 equiv.) was added. The reaction was stirred at room temperature for one hour then sodium triacetoxyborohydride (2.0 equiv.) was added and the reaction stirred overnight. The reaction was poured into water and extracted with chloroform. The organic layer was dried (MgSO₄), solvent removed in vacuo and the crude product purified by flash column chromatography to yield:

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-[2-(4-Chloro-phenylsulfanyl)-phenyl]-3-[2-(5-nitropyridin-2-ylamino)ethyl]-3-aza-bicyclo[3.2.1]-octane-6-carboxylic acid ethyl ester (224)

Yellow oil, (52 mg, 38 %). R_f 0.32 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2976, 1716 (C=O), 1601, 1529, 1320, 1201 cm⁻¹; δ_H (500 MHz; CDCl₃) 9.04 (1H, d, J 2.5, H20), 8.02 (1H, dd, J 9.0, 2.0, H19), 7.41 (1H, d, J 8.0, H10), 7.36 (2H, d, J 4.0, H11, H12), 7.21-7.17 (1H, m, H13), 7.13 (2H, d, J 8.0, H15), 6.95 (1H, br s, NH), 6.84 (2H, d, J 8.0, H14), 6.78 (1H, d, J 9.0, H18), 4.57 (1H, d, J 6.0, H9), 4.19-4.08 (2H, m, H2), 3.51 (1H, m, H17), 3.36 (1H, m, H17'), 3.31 (1H, t, J 6.0, H3), 2.77-2.75 (2H, m, H4, H7), 2.62 (1H, d, J 8.5, H5), 2.58-2.51 (2H, m, H16), 2.38 (1H, d, J 10.5, H6), 2.12 (1H, m, H8), 1.95 (1H, d, J 10.0, H6'), 1.90 (1H, s, H8), 1.53 (1H, d, J 11.0, H8′), 1.23 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 174.39 (C=O), 161.49 (C-N), 148.42 (C-Cl), 146. 95 (C[20]H), 136.29 (C-NO₂), 135.26 (C[19]H), 135.11 (C-C), 132.96 (C-S), 131.85 (C-S), 131.50 (C[13]H), 129.52 (C[12]H), 129.15 (C[14]H), 129.04 (C[15]H), 127.14 (C[10]H), 126.52 (C[11]H), 60.75 $(C[2]H_2), 57.29 (C[5]H_2), 56.68 (C[6]H_2), 54.55 (C[16]H_2),$ 54.06 (C[3]H), 45.42 (C[9]H), 44.08 (C[7]H), 40.49 (C[4]H), $37.80 (C[17]H_2), 31.64 (C[8]H_2), 14.36 (C[1]H_3); LCMS$ (APCI+) 567 $(M+H^+)$; HRMS $(M+H)^+$ found 567.1829 $C_{29}H_{32}N_4O_4ClS$ required 567.1833, Δ ppm -0.6; MRSA 15 - MIC_{50} : > 64 µg/ml, MRSA 16 - MIC_{50} : > 64 µg/ml.

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-[2-(4-Chloro-phenylsulfanyl)-phenyl]-3-(2-phenyl-amino-ethyl)-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (225)

Colourless oil (58.5 mg, 47 %); R_f 0.48 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2951, 2927, 2850, 1721 (C=O), 1603, 1475, 1290 cm⁻¹; δ_H (500 MHz; CDCl₃) 7.45 (1H, d, J 8.0, H10), 7.38-7.34 (2H, m, H11, H12), 7.23-7.11 (3H, m, H13, H19), 7.10 (2H, d, J 8.5, H14), 6.85 (2H, d, J 7.5, H18), 6.76 (2H, d, J 8.5, H15), 6.71 (1H, t, J 7.0, H20), 4.95 (1H, br s, NH), 4.66 (1H, d, J 6.0, H9), 4.15 (2H, ddq, J 47.0, 11.0, 7.0, H2), 3.26 (1H, t, J 6.0, H3), 3.05-3.03 (1H, m, H17), 2.98-2.95 (1H, m, H17'), 2.92 (1H, d, J 12.5, H6), 2.74 (1H, d, J 3.0, H4), 2.60-2.58 (1H, m, H16), 2.54-2.51 (1H, m, H16'), 2.41 (1H, d, J 8.0, H5), 2.25 (1H, d, J 11.0, H6'), 2.11 (1H, dd, J 11.0, 5.5, H8), 1.83 (1H, d, J 10.0, H5'), 1.79 (1H, s, H7), 1.47 (1H, d, J11.0, H8'), 1.22 (3H, t, J 7.0, H1); δ_C (125 MHz; CDCl₃) 173.47 (C=O), 149.79 (C-Cl), 135.44 (C[10]H), 133.08 (C-S), 131.43 (C-S), 130.48 (CH), 129.77 (CH), 129.08 (CH), 128.95 (CH), 128.80 (CH), 126.84 (CH), 126.68 (CH), 116.77 (C), 113.34 (C[18]H), 60.52 (C[2]H₂), 58.03 (C[5]H₂), 56.66 $(C[6]H_2), 55.54 (C[16]H_2), 54.31 (C[3]H), 45.46 (C[9]H), 44.10$ (C[7]H), 40.01 (C[17]H₂), 39.78 (C[4]H), 37.26 (C[8]H₂), 14.43 $(C[1]H_3);$ LCMS (APCI+) 521 (M+H⁺): HRMS (M+H)⁺ found 521.2027 $\mathrm{C_{30}H_{34}ClN_2O_2S}$ required 521.2030, Δ ppm -0.5; MRSA 15 - MIC₅₀: > 64 µg/ml, MRSA 16 - MIC₅₀: > 64 μ g/ml.

 $(1S^*, 5R^*, 6S^*, 7R^*)$ -7-[2-(4-Chloro-phenylsulfanyl)-phenyl]-3-isobutyl-3-aza-bicyclo[3.2.1]octane-6-carboxylic acid ethyl ester (226)

A yellow solid, (32 mg, 30 %); R_f 0.22 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2965, 1711 (C=O), 1471, 1385, 1254, 1218 cm $^{-1};\;\delta_{H}$ (500 MHz; CDCl_3) 7.40 (1H, dd, J 8.0, 1.0, H10), 7.37 (1H, d, J 7.5, H12), 7.33 (1H, d, J 7.5, H11), 7.22 (2H, d, J 8.5, H14), 7.18 (1H, td, J 7.5, 1.5, H13), 7.12 (2H, d, J 8.5, H15), 4.51 (1H, d, J 6.5, H9), 4.10-4.02 (2H, m, H2), 3.21 (1H, t, J 6.0, H3), 3.07 (1H, d, J 10.5, H6), 2.64 (1H, dd, J 9.0, 4.5, H7), 2.60 (1H, dd, J 10.0, 3.5, H5), 2.04 (1H, d, J 11.0, H6'), 2.10-1.94 (3H, m, H8, H16), 1.82 (1H, d, J 10.0, H5'), 1.81-1.79 (1H, m, H4), 1.65-1.63 (1H, m, H17), 1.41 (1H, d, J 11.0, H8'), 1.19 (3H, t, J 7.0, H1), 0.86 (3H, d, J 6.0, H18), 0.84 (3H, d, J 6.5, H18'); δ_C (125 MHz; CDCl₃) 173.36 (C=O), 149.27 (C-Cl), 136.66 (C-C), 134.81 (C[10]H), 133.50 (C-S), 131.83 (C-S), 130.33 (C[15]H), 128.99 (C[14]H), 128.68 (C[13]H), 126.64 $(C[11]H), 126.36 (C[12]H), 66.34 (C[16]H_2), 60.08 (C[2]H_2),$ 44.53 (C[7]H), 38.80 (C[4]H), 36.87 (C[8]H₂), 25.52 (C[17]H), 20.89 (C[18]H₃), 20.51 (C[18']H₃), 14.20 (C[1]H₃); LCMS (APCI+) 458 (M+H⁺); HRMS (M+H)⁺ found 458.1915 $C_{26}H_{33}CINO_2S$ required 458.1921, Δ ppm -1.2; mp 85-87 °C (CHCl₃; MeOH); MRSA 15 - MIC₅₀: > 64 μ g/ml, MRSA 16 - MIC₅₀: > 64 μ g/ml.

Colourless oil (55 mg, 53 %); R_f 0.39 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2906, 2794, 1721 (C=O), 1475 cm⁻¹; δ_H (400 MHz; CDCl₃) 7.36-7.32 (3H, m, ArH), 7.22 (2H, d, J 8.5, H15), 7.16.13 (3H, m, ArH), 5.77-5.68 (1H, m, H17), 5.13 (1H, dd, J 17.0, 1.5, H18), 5.04 (1H, dd, J 9.0, 1.0, H18'), 4.49 (1H, d, J 6.0, H9), 4.11-4.02 (2H, m, H2), 3.23 (1H, t, J 6.0, H3), 3.08 (1H, d, J 10.5, H6), 2.94-2.85 (2H, m, H16), 2.72 (1H, dd, J 10.0, 4.0, H5), 2.64 (1H, d, J 4.0, H7), 2.01 (1H, d, J 10.5, H6'), 1.96-1.93 (2H, m, H8, H5'), 1.83 (1H, s, H4), 1.39 (1H, d, J 11.5, H8'), 1.19 (3H, t, J 7.0, H1); δ_C (100 MHz; CDCl₃) 173.39 (C=O), 148.55 (C-Cl), 136.23 (C-C), 136.19 (C[10]H), 134.22 (C[17]H), 134.03 (C-S), 132.1 (C-S), 130.95 (C[15]H), 129.07 (C[14]H), 128.33 (C[13]H), 126.67 (C[11]H), 126.28 (C[12]H), 116.40 (C[18]H₂), 60.65 (C[16]H₂), 60.07 (C[2]H₂), 59.73 $(C[5]H_2), 55.45 (C[6]H_2), 52.93 (C[3]H_2), 45.85 (C[9]H), 44.43$ (C[7]H), 38.84 (C[4]H), 36.54 (C[8]H₂), 14.20 (C[1]H₃); LCMS (APCI+) 442 $(M+H^+)$; HRMS $(M+H)^+$ found 442.1607 $C_{25}H_{29}CINO_2S$ required 442.1608, Δ ppm -0.1; MRSA 15 - MIC₅₀: > 64 μ g/ml, MRSA 16 - MIC₅₀: > 64 μ g/ml.

Colourless oil (87 mg, 72 %); R_f 0.15 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2941, 2784, 1719 (C=O), 1475, 1221 (APCI+); δ_H (400 MHz; CDCl₃) 7.39-7.29 (3H, m, ArH), 7.22 (2H, d, J 8.5, H15), 7.17 (1H, td, J 7.5, 1.5, H13), 7.12 (2H, d, J 8.5, H14), 7.07 (1H, dd, J 5.0, 1.0, H20), 6.89 (1H, dd, J 5.0, 3.5, H19), 6.82 (1H, d, J 3.5, H18), 4.51 (1H, d, J 6.0, H9), 4.04 (2H, q, J 7.0, H2), 3.24 (1H, t, J 6.0, H3, H5), 2.87 (2H, t, J 7.0, H17), 2.75 (1H, dd, J 10.0, 3.5, H6), 2.67 (1H, d, J 3.5, H4), 2.56 (1H, t, J 6.5, H16), 2.10 (1H, d, J 10.5, H5'), 2.04 (1H, d, J 10.0, H6'), 1.98-1.96 (1H, m, H8), 1.85 (1H, s, H7), 1.43 (1H, d, J 11.5, H8'), 1.18 (3H, t, J 7.0, H1); δ_C (100 MHz; CDCl₃) 173.31 (C=O), 148.85 $59.92 (C[5]H_2), 56.73 (C[6]H_2), 53.40 (C[3]H_2), 45.70 (C[9]H), \\ 52 (C-Cl), 143.47 (C-C), 136.55 (C-C), 134.59 (C[10]H), 133.75 (C-C), 134.59 (C[10]H), 133.75 (C-C), 134.59 (C[10]H), 133.75 (C-C), 134.59 (C[10]H), 133.75 (C-C), 134.59 (C-C), 134.59$

(C-S), 131.94 (C-S), 130.59 (C[15]H), 129.08 (C[14]H), 128.57 (C[13]H), 126.75 (C[11]H), 126.63 (C[20]H), 126.30 (C[12]H), 124.43 (C[19]H), 122.99 (C[18]H), 60.13 (C[16]H₂), 60.07 (C[2]H₂), 59.82 (C[5]H₂), 59.28 (C[17]H₂), 55.55 (C[6]H₂), 52.99 (C[3]H₂), 45.76 (C[9]H), 44.43 (C[7]H), 38.53 (C[4]H), 36.65 (C[8]H₂), 27.74 (C[16]H₂), 14.34 (C[1]H₃); LCMS (APCI+) 512 (M+H⁺); HRMS (M+Na)⁺ found 534.1306 C₂₈H₃₀ClNO₂SNa required 534.1304, Δ ppm +0.4; MRSA 15 - MIC₅₀: > 64 µg/ml, MRSA 16 - MIC₅₀: > 64 µg/ml.

(1 S^* , 5 R^* , 6 S^* , 7 R^*)–7-[2-(4-Chloro-phenylsul-fanyl)-phenyl]-3-cyclohexyl-3-aza-bicyclo[3.2.1]-octane-6-carboxylic acid ethyl ester (229)

Colourless oil (66 mg, 57 %); R_f 0.16 (SiO₂; 10:1 CHCl₃: MeOH); ν_{max} (DMSO) 2930, 1718 (C=O), 1466, 1378, 1256 cm^{-1} ; δ_H (500 MHz; CDCl₃) 7.35-7.30 (3H, m, ArH), 7.23 (2H, d, J 8.5, H15), 7.16-7.14 (3H, m, H13, H14), 4.51 (1H, d, J 6.0, H9), 4.13-4.04 (2H, m, H2), 3.20 (1H, t, J 6.0, H3), 3.10 (1H, d, J 10.5, H6), 2.73-2.69 (2H, m, H5, H4), 2.43 (1H, dd, J 10.5, 10.0, H6'), 2.31 (1H, s, H5'), 1.98-1.96 (1H, m, H8), 1.91 (1H, s, H7), 1.59-1.57 (4H, br s, H8', CyH), 1.59-1.36 (2H, m, CyH), 1.15-1.11 (7H, m, H1, CyH); δ_C (125 MHz; CDCl₃) 173.83 (C=O), 148.35 (C-Cl), 136.21 (C-C), 134.22 (C[10]H), 133.85 (C-S), 132.15 (C-S), 130.85 (C[15]H), 129.10 (C[14]H), 128.45 (C[13]H), 126.77 $(C[11]H), 126.26 (C[12]H), 62.88 (C[16]H), 60.29 (C[2]H_2),$ $55.62 (C[5]H_2), 52.96 (C[3]H_2), 51.04 (C[6]H_2), 46.05 (C[9]H),$ 44.18 (C[7]H), 38.85 (C[4]H), 36.18 (C[8]H₂), 28.87 (C[17]H₂), 28.70 (C[17']H₂), 26.28 (C[18]H₂), 25.53 (C[18']H₂), 20.97 $(C[19]H_2), 14.26 (C[1]H_3); LCMS (APCI+) 484 (M+H^+);$ HRMS $(M+H)^+$ found 484.2076 $C_{28}H_{35}ClNO_2S$ required 484.2077, Δ ppm -0.3; MRSA 15 - MIC₅₀: > 64 μ g/ml, MRSA 16 - MIC₅₀: > 64 μ g/ml.

14 Core Skeletal Structures

18 Core structures synthesised were synthesised in the library.

15 PCA analysis

In order to assess the diversity of the small molecule collection, we calculated 184 physicochemical and topological molecular descriptors properties (e.g. size, polarity, charges, degree of branching) using MOE 2005.06 [MOE (Molecular Operating Environment); Chemical Computing Group Inc.: Montreal, Quebec, Canada]. Structures were washed (ionized to formal charge, acids and bases protonated according to neutral pH) and PEOE partial charges [5] were assigned for the calculation of descriptors involving partial surface charges. Subsequently, principal component analysis (PCA) of the resulting property space was performed for visualization and numerical diversity estimation using Statistica 6.[6] Numerical diversity values were calculated as the product of the standard deviations of the first three principal components, which gives an estimate of the average size of chemical space occupied per compound in this representation. To gauge the degree of overall diversity obtained in our diversity oriented synthesis we compared the diversity of our library to the chemical space spanned by benchmark collections: (1) the MDL Drug Data Report (MDDR) database [MDL Drug Data Report, Elsevier MDL, http://www.mdli.com] and (2) a focused library of histamine H3 receptor antagonists (where a common biphenyl scaffold was functionalized at two positions).[7]

16 Screening Data

Standardised antimicrobial activity of gemmacin: performed by Dr Derek F. J. Brown (Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QW, United Kingdom). gemmacin was dissolved in DMSO at a concentration of $10^4 \ \mu g/ml$ and stock solutions further diluted to $10^3 \ \mu g/ml$ in water. Organisms tested were Cambridge culture collection isolates of Staphylococcus aureus (7), Enterococcus spp (5), Enterobacteriaceae (7), Pseudomonas aeruginosa (2), Acinetobacter sp (1), Streptococcus spp (11), Heamophilus influenzae (6), Moraxella catarrhalis (2) and yeasts (7). Stock solutions of agents were used to prepare a twofold dilution series of 0.03-64 g/ml in IsoSensitest agar (with 5 % defibrinated horse blood and 20 g/ml NAD for streptococci, *Haemophilus influenzae*, *Moraxella catarrhalis* and yeasts). Organisms were inoculated onto plates at a concentration of approximately 10^4 cfu/spot. Plates were incubated at 35-37 °C for 24 h in air. The minimum inhibitory concentration (MIC) endpoints were read as the lowest concentration showing no visible growth. The lowest concentration showing a marked antibacterial effect as seen by a significant reduction in growth (MAE) was also recorded.

Species	Strain	Antimicrobial	
Species	5 of diffi	activity	
		MIC	MAE
S. aureus	NCTC 6571	32	32
5. aareas	ATCC 29213	32	32
	ATCC 25923	32	32
	NCTC 12493 MBSA	32	16
	Mu50 GISA	32	16
	EMRSA 15	32	16
	EMRSA 16	32	16
E. faecalis	ATCC 29212	64	32
	vanA 56059	64	32
	vanB 78097	64	32
E. faecium	vanA 56001	64	32
	vanB 129036	64	32
E. coli	NCTC 10418	>64	>64
	ATCC 29212	>64	>64
	ESBL CTX-M 42037	>64	>64
	ESBL CTX-M-15 42039	>64	>64
Enterobacter sp	AmpC 66086	>64	>64
Enterocactor op	ESBL CTX-M-9 42033	>64	>64
Klebsiella sp	78065	>64	>64
Acinetobacter sp	165041	>64	>64
P aeruainosa	NCTC 10662	>64	>64
1. acraginosa	ATCC 27853	>64	>64
S. nneumoniae	ATCC 49619	64	32
F	110040	64	64
	110041	64	64
Strep Group A	110070	>64	64
Storp Storp 11	110071	>64	64
Strep Group B	110097	>64	>64
Storp Storp =	110098	>64	>64
Strep Group G	152043	>64	64
	152045	>64	64
S. oralis	152019	>64	64
	152025	>64	>64
S. intermedius	152022	>64	64
S. parasanquis	152027	64	64
H. influenzae	110026	>64	>64
	110027	>64	>64
	3034	>64	>64
	3037	>64	>64
M. catarrhalis	110001	16	1
	110002	16	1
C. albicans	ATCC 90028	>64	8
C. parapsilosis	107002	>64	8
C. lusitaniae	107003	>64	64
C. tropicalis	107011	>64	64
C. alabrata	107012	>64	>64
C. auilliermondii	107028	>64	>64
2. 9 autor	101020	1 / 01	

17 Screening against EMRSA 15 and 16

Bacterial Growth Assays. Overnight (stationary-phase) cultures of S. aureus strains (EMRSA 15 and EMRSA 16) were grown in Luria Broth (10 g l⁻¹ tryptone, 5 g l⁻¹ Yeast Extract, 5 g l⁻¹ NaCl, pH 7.0) at 37 °C in 25 ml Universal tubes mounted in a rolling drum. These cultures were used to inoculate aliquots (200 μ l) of LB dispensed into the central 60 wells of a 96-well polystyrene microtitre plate. The outside wells were filled with water. Each well was also supplemented with the compound of interest at the indicated concentration. Control wells were supplemented with DMSO alone. The plates were then taped to the surface of an orbital platform and incubated at 37 °C to ensure good aeration of the cultures. Each hour, the plates were removed for spectrophotometric determination (absorbance was measured at 595 nm) of the cell density. After this, the plates were returned as soon as

possible to the orbital shaker to ensure continuous aeration and growth. In this way, growth curves could be constructed for each strain in the presence of the appropriate compounds. This allowed the assessment of the effects of these compounds on (i) the growth rate during exponential-phase growth, and (ii) the final optical density achieved by each culture during the stationary-phase. All experiments were performed independently in triplicate. $MIC_{50} = Minimum$ Inhibitory Concentration required to inhibit the growth of 50 % of organisms after 8 h when the control has reached the stationary-phase.

18 Human Cell Cytotoxicity Assay

Cell cytotoxicity was determined using the CCK8 assay (Dojinodo Molecular Technologies, Gaithersburg, MD, USA), which measures the reduction of WST-8, a water soluble tetrazolium salt by dehydrogenases in viable cells. HEK cells in Dulbecco's modified Eagle's medium supplemented with 10 %heat-inactivated fetal bovine serum, $2~\mathrm{mM}$ L-glutamine, and 50units/ml penicillin and streptomycin, were seeded out at 200,000 per well of a 96-well plate and allowed to grow overnight at 37 $^{\circ}\mathrm{C}$ with 5 % CO_2 . The plates were incubated for 48 hours and then each well was also supplemented with gemmacin (dissolved in PBS buffer with 5 % DMSO) at the indicated concentration. Two different controls were used: (i) wells containing PBS buffer with no media and (ii) media with PBS buffer. The plates were then incubated in a CO_2 incubator at 37 °C for 48 hours. The media was removed and replaced with fresh HEK media (100 $\mu l)$ and CCK8 solution (10 $\mu l)$ was added to each well and incubated for 2 hours at 37 °C. Absorbance was measured at 450 nm. The CCK8 assay measures viable cells as a per cent of control cells. All experiments were performed independently in triplicate.

19 Membrane Disrupter Assay

An overnight (stationary-phase) culture of EMRSA 16 was grown in brain-heart infusion (BHI) culture at 37 °C, and then aliquoted into eight 25 ml Universal tubes and maintained in the shaking water bath. The number of viable bacteria in each tube was estimated by spectrophotometric optical density by taking an aliquot of 200 μ l of culture and diluting it with 800 μ l of BHI media and measuring optical density at 600 nm on a spectrophotometer. Four different experiments in duplicate were carried out, and the vials were inoculated with either: DMSO (negative control), gemmacin at inhibitory concentration (34 μ g ml⁻¹), gemmacin at sub-inhibitory concentration (4 μ g ml⁻¹), or nothing (negative control). After two hours incubation, optical density was determined again. To remove the test compounds, cultures were spun down on a centrifuge at 8000 rpm for four minutes and the media removed. The cells were re-suspended in TES buffer (10 mM Tris-HCl [pH 7.5], 1 mM EDTA and 100 mM NaCl), spun down on a centrifuge at 8000 rpm for four minutes and the buffer removed. The cells were re-suspended in NaCl buffer (7.1 g NaCl in 50 ml TES buffer), and optical density determined again. The bacteria were then treated with 10 μ l of lysostaphin and shaken in a waterbath at 37 $^{\circ}C$ for 30 minutes. Lysostaphin specifically digests the pentaglycine bridge between peptidoglycan strands in the S. aureus cell wall, leading to a cell wall weakening and a reduction in optical density, but does not disrupt the cellular membrane resulting in cell lysis. Optical density was tested again. Finally, 100 μ l of 20 % sarkosyl was added to the samples which is a detergent sufficient to disrupt S. aureus cell membranes and lyse the cells. Optical density was tested again.

References

- Evans, D. A.; Peterson, G. S.; Johnson, J. S.; Barnes, D. M.; Campos, K. R.; Woerpel, K. A. J. Org. Chem. 1998, 63, 4541-4544.
- [2] Tsuge, O.; Kanemasa, S.; Yoshioka, M. J.Org. Chem. 1988, 53, 1384-1391.
- [3] Wrobleski, A.; Sahasrabudhe, K.; Aube, J. J. Am. Chem. Soc. 2004, 126, 5475-5481.
- [4] Ryu, D. H.; Thomas, T. W.; Corey, E. J. J. Am. Chem. Soc 2002, 124, 9992-9993.
- [5] Gasteiger, J.; Marsili, M. Tetrahedron Lett. 1978, 34, 3181-3184.
- [6] StatSoft, Inc. 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com. Distributor: Stat-Soft Inc., Tulsa, OK. .
- [7] Faghih, R.; Dwight, W.; Pan, J. B.; Fox, G. B.; Krueger, K. M.; Esbenshade, T. A.; McVey, J. M.; Marsh, K.; Bennani, Y. L.; Hancock, A. A. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1325-1328.