

Supporting Information © Wiley-VCH 2008

69451 Weinheim, Germany

Pd(II)-Catalyzed *mono*-Selective *ortho*-Halogenation of C-H Bonds Assisted by Counter Cations: An Orthogonal Method to Directed *ortho*-Lithiation

Tian-Sheng Mei, Ramesh Giri, Nathan Maugel, Jin-Quan Yu*

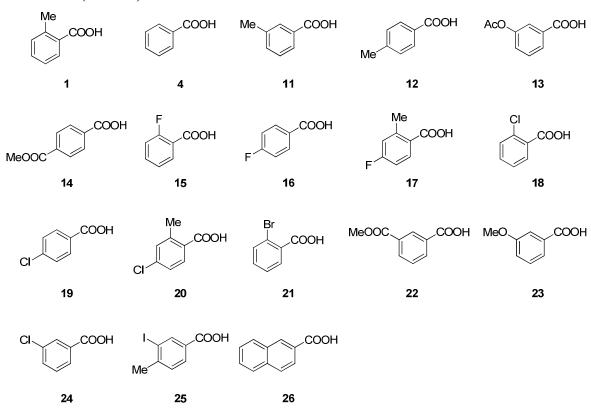

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Table of Contents

General Information	SI 2
Effects of inorganic counter cations	SI 3
Effects of organic counter cations	SI 4
ortho-Iodination of arene carboxylic acids	SI 4
mono-Selective iodination of meta-substituted arene carboxylic acids	SI 9
mono-Selective bromination of arene carboxylic acids	SI 12

General Information: Solvents were obtained from Sigma-Aldrich and Acros and used directly without further purification. Arene carboxylic acids (Table 1) were obtained from the commercial sources. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. NMR spectra were recorded on a Varian Inova-400 instrument and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer Using ESI-TOF (electrospray ionization-time of flight). IR spectra were recorded on a Perkin Elmer Spectrum BX FTIR spectrometer.

Substrates (Table 1)

Experimental Section

The reaction was carried out under atmospheric air. Solvents were used as received without further distillation.

Effects of inorganic counter cations (Table 2)^[a,b]

		_	
Entry	Additive	Yield [%]	
1	1 equiv Lil	36	
2	1 equiv LiOAc∙H ₂ O	20	
3	1 equiv NaF	40	
4	1 equiv NaCl	50	
5	1 equiv Nal	70	
6	1 equiv NaOAc	85	
7	0.5 equiv Na ₂ CO ₃	65	
8	1 equiv Na ₂ CO ₃	50	
9	2 equiv Na ₂ CO ₃	10	
10	1 equiv KI	30	
11	1 equiv K ₂ HPO ₄	50	
12	0.5 equiv K ₂ HPO ₄	20	
13	1 equiv Csl	30	
14	1 equiv CsOAc	33	
15	0.5 equiv Cs ₂ CO ₃	77	
16	1 equiv Cs ₂ CO ₃	50	
17	1 equiv Mg(OAc) _{2*} 4H ₂ O	10	
18	1 equiv Ba(OAc) ₂	18	
19	1 equiv Mn(OAc) ₂	41	

[a] IOAc was generated in situ from 1 equiv I₂ and 1 equiv PhI(OAc)₂. [b] Isolated yield.

Procedure: In a 20 mL glass tube, substrate 1 (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), iodobenzene diacetate (64.4 mg, 0.2 mmol), I₂ (50.8 mg, 0.2 mmol) and additive (as specified in the Table 2) were dissolved in CH₂ClCH₂Cl(1 mL) under atmospheric air. The tube was sealed with a cap and the reaction mixture was stirred at 100 °C for 24 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na₂CO₃ (5 mL) was

added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL \times 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL \times 3) and dried over Na₂SO₄. The solvent was removed in a rotary evaporator and the residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the white needle solid **3**. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (bs, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 139.0, 136.7, 136.6, 131.0, 129.8, 91.4, 20.2; IR (neat) ν 1694, 1444, 1290, 768 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₆IO₂ [M-H]⁻: 260.9413; found: 260.9401.

Effects of organic counter cations (Table 3)[a,b]

Entry	Additive	Yield [%]
1	0.5 equiv DABCO	70
2	0.5 equiv DBU	40
3	1 equiv DMF	77
4	5 equiv DMF	88
5	DMF as solvent	95 (90)
6	1 equiv DMA	14
7	DMA as solvent	10
8	1 equiv NMP	10
9	NMP as solvent	30
10	0.2 equiv Dimethylamine	2
11	1 equiv Dimethylamine	2

[a] Yield was determined by ¹H NMR. [b] Isolated yield in parenthesis.

Procedure: In a 20 mL glass tube, substrate 1 (0.2 mmol), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), iodobenzene diacetate (64.4 mg, 0.2 mmol), I_2 (50.8 mg, 0.2 mmol) and additive (as specified in the Table 3) were dissolved in a solvent (1 mL) under atmospheric air. The tube was sealed with a cap and the reaction mixture was stirred at 100 °C for 24 hours. The

reaction mixture was cooled to room temperature and 10% aqueous Na_2CO_3 (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL \times 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL \times 3) and dried over Na_2SO_4 . The solvent was removed in a rotary evaporator and the residue was analyzed by 1H NMR to determine the yield.

ortho-Iodination of arene carboxylic acids (4, 11-14, 16, 19)

General procedure: In a 20 mL glass tube, substrate (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), iodobenzene diacetate (96.6 mg, 0.3 mmol) and I₂ (76.1 mg, 0.3 mmol) were dissolved in DMF (1 mL) under atmospheric air. The tube was sealed with a cap and the reaction mixture was stirred at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (50 mL) and then washed with 0.5 N HCl (10 mL × 4). The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in a rotary evaporator. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the iodination product.

2,6-Diiodobenzoic acid (4a)

Substrate **4** was iodinated following the general procedure. After purification by column chromatography, **4a** was obtained as a white solid (63.5 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (bs, 1H), 7.84 (d, J = 8.0 Hz, 2H), 6.82 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 144.5, 138.7 (2 C), 132.1, 90.7 (2 C); IR (neat) v 1702, 1230, 920, 761 cm⁻¹; HRMS (ESI-TOF) Calcd for C₇H₃I₂O₂ [M-H]⁻: 372.8223; found: 372.8238.

2,6-Diiodo-3-methylbenzoic acid (11a)

Substrate 11 was iodinated following the general procedure. After purification by column chromatography, 11a was obtained as a white solid (62.0 mg, 80%). ¹H NMR (400 MHz,

CDCl₃) δ 8.10 (bs, 1H), 7.70 (d, J = 8.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H); 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 145.5, 142.6, 138.6, 131.4, 97.8, 86.5, 28.6; IR (neat) v 1707, 1432, 1280, 804 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₅I₂O₂ [M-H]⁻: 386.8379; found: 386.8370.

2,6-Diiodo-4-methylbenzoic acid (12a)

Substrate **12** was iodinated following the general procedure. After purification by column chromatography, **12a** was obtained as a white solid (67.4 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 142.8, 141.5, 139.4 (2 C), 90.4 (2 C), 20.3; IR (neat) v 1583, 1287, 908 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₅I₂O₂ [M-H]⁻: 386.8379; found: 386.8363.

3-Acetoxy-2,6-diiodobenzoic acid (13a)

Substrate **13** was iodinated following the general procedure. After purification by column chromatography, **13a** was obtained as a white solid (56.1 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 168.2, 151.6, 146.3, 140.0, 125.1, 89.2, 86.8, 21.2; IR (neat) v 1712, 1703, 1370, 1192, 906, 730 cm⁻¹; HRMS (ESI-TOF) Calcd for C₉H₅I₂O₄ [M-H]⁻: 430.8278; found: 430.8291.

2,6-Diiodo-4-(methoxycarbonyl) benzoic acid (14a)

Substrate **14** was iodinated following the general procedure. After purification by column chromatography, **14a** was obtained as a white solid (63.9 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 2H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 163.5, 148.0, 139.7 (2 C), 133.2, 90.2 (2 C), 53.0; IR (neat) v 1711, 1701, 1694, 1531, 1452, 1274, 1266, 906, 730 cm⁻¹; HRMS (ESI-TOF) Calcd for C₉H₅I₂O₄ [M-H]⁻: 430.8278; found: 430.8287.

4-Fluoro-2,6-diiodobenzoic acid (16a)

Substrate 16 was iodinated following the general procedure. After purification by column chromatography, 16a was obtained as a white solid (56.4 mg, 72%). ¹H NMR (400 MHz, acetone- d_6) δ 7.80 (d, $J_{\text{H-F}}$ = 8.0 Hz, 2H); ¹³C NMR (100 MHz, acetone- d_6) δ 170.2, 162.4 (d, $J_{\text{C-F}}$ = 128.2 Hz), 145.1, 127.7 (d, 2 C, $J_{\text{C-F}}$ = 23.6 Hz), 91.7 (d, 2 C, $J_{\text{C-F}}$ = 8.4 Hz); IR (neat) v 1702, 1576, 1390, 1284, 861 cm⁻¹; HRMS (ESI-TOF) Calcd for C₇H₂FI₂O₂ [M-H]⁻ 390.8129; found: 390.8138.

4-Chloro-2,6-diiodobenzoic acid (19a)

Substrate **19** was iodinated following the general procedure. After purification by column chromatography, **19a** was obtained as a white solid (65.3 mg, 80%). 1 H NMR (400 MHz, acetone- d_6) δ 7.98 (s, 2H); 13 C NMR (100 MHz, CDCl₃) δ 168.6, 145.7, 140.5 (2 C), 135.2, 90.8 (2 C); IR (neat) v 1700, 1557, 1363, 1274, 866 cm⁻¹; HRMS (ESI-TOF) Calcd for $C_7H_2CII_2O_2$ [M-H]⁻: 406.7833; found: 406.7831.

ortho-Iodination of arene carboxylic acids (15, 17-18, 20-21)

General procedure: In a 20 mL glass tube, substrate (0.2 mmol), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), iodobenzene diacetate (64.4 mg, 0.2 mmol) and I_2 (50.8 mg, 0.2 mmol) were dissolved in DMF (1 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 100 °C for 24 hours. The reaction mixture cooled to room

temperature and was diluted with 50 mL of ethyl acetate and then washed with HCl (0.5 N, $10 \text{ mL} \times 4$) solution to get rid of DMF. The organic phase was washed with saturated brine, dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the iodination product.

2-Fluoro-6-iodobenzoic acid (15a)¹

Substrate **15** was iodinated following the general procedure. After purification by column chromatography, **15a** was obtained as a white solid (42.5 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (t, J = 8.0 Hz, 1H), 7.14-7.17 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 159.5 (d, $J_{C-F} = 256$ Hz), 135.8 (d, $J_{C-F} = 4$ Hz), 133.2 (d, $J_{C-F} = 11$ Hz), 127.2 (d, $J_{C-F} = 18$ Hz), 116.2 (d, $J_{C-F} = 21$ Hz), 92.7 (d, $J_{C-F} = 2$ Hz); IR (neat) v 1707, 1447, 1297, 864, 785 cm⁻¹.

4-Fluoro-2-iodo-6-methylbenzoic acid (17a)

Substrate **17** was iodinated following the general procedure. After purification by column chromatography, **17a** was obtained as a white solid (49.8 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, $J_{\text{H-F}}$ = 8.0 Hz, 1H), 6.97 (d, $J_{\text{H-F}}$ = 8.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 162.1 (d, $J_{\text{C-F}}$ = 254 Hz), 139.0 (d, $J_{\text{C-F}}$ = 8 Hz), 135.2, 124.0 (d, $J_{\text{C-F}}$ = 24 Hz), 117.2 (d, $J_{\text{C-F}}$ = 21 Hz), 91.6 (d, $J_{\text{C-F}}$ = 9 Hz), 20.5; IR (neat) v 1702, 1571, 1283, 867 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₅FIO₂N [M-H]⁻: 278.9319; found: 278.9316.

2-Chloro-6-iodobenzoic acid (18a)²

Substrate **18** was iodinated following the general procedure. After purification by column chromatography, **18a** was obtained as a white solid (49.1 mg, 87%). ¹H NMR (400 MHz, acetone- d_6) δ 7.89 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, acetone- d_6) δ 168.5, 142.4, 139.3, 133.2, 131.3, 130.7, 93.0; IR (neat) v 1706, 1388, 1280, 745 cm⁻¹.

4-Chloro-2-iodo-6-methylbenzoic acid (20a)

Substrate **20** was iodinated following the general procedure. After purification by column chromatography, **20a** was obtained as a white solid (52.1 mg, 88%). 1 H NMR (400 MHz, CDCl₃) δ 9.90 (bs, 1H), 7.71 (s, 1H), 7.23 (s, 1H), 2.44 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 174.3, 138.3, 137.7, 136.5, 136.3, 130.4, 92.1, 20.6; IR (neat) v 1701, 1577, 1390, 1284, 863, 732 cm⁻¹; HRMS (ESI-TOF) Calcd for $C_8H_5CIIO_2$ [M-H]⁻: 294.9023; found: 294.9022.

2-Bromo-6-iodobenzoic acid (21a)

Substrate **21** was iodinated following the general procedure. After purification by column chromatography, **21a** was obtained as a white solid (55.4 mg, 85%). ¹H NMR (400 MHz, acetone- d_6) δ 10.40 (bs, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, acetone- d_6) δ 169.0, 144.0, 139.7, 133.8, 133.4, 119.3, 92.8; IR (neat) v 1706, 1576, 1291, 914, 764 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₅ClIO₂ [M-H]⁻: 324.8361; found: 324.8373.

mono-Selective iodination of meta-substituted arene carboxylic acids

General procedure **a**: In a 20 mL glass tube, substrate (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), iodobenzene diacetate (64.4 mg, 0.2 mmol), I₂ (50.8 mg, 0.2 mmol) and tetrabutyl

ammonium iodide (73.8 mg, 0.2 mmol) were dissolved in dichloroethane (1 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 80 °C for 2 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na_2CO_3 (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL \times 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL \times 3) and dried over Na_2SO_4 and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the iodination product.

General procedure **b**: In a 20 mL glass tube, substrate (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), iodobenzene diacetate (64.4 mg, 0.2 mmol), I_2 (50.8 mg, 0.2 mmol) and tetrabutyl ammonium iodide (73.8 mg, 0.2 mmol) were dissolved in dichloroethane (2 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 100 °C for 2 hours. After the reaction mixture cooled to room temperature, iodobenzene diacetate (64.4 mg, 0.2 mmol), I_2 (50.8 mg, 0.2 mmol) were added under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 100 °C for another 4 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na_2CO_3 (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL \times 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL \times 3) and dried over Na_2SO_4 and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the iodination product.

General procedure c: In a 20 mL glass tube, substrate (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), iodobenzene diacetate (64.4 mg, 0.2 mmol), I₂ (50.8 mg, 0.2 mmol) and tetrabutyl ammonium iodide (73.8 mg, 0.2 mmol) were dissolved in dichloroethane (1 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 60 °C for 12 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na₂CO₃ (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL × 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL × 3) and dried over Na₂SO₄ and concentrated under

vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the iodination product.

2-Iodo-5-methylbenzoic acid (11b)

Substrate **11** was iodinated following the procedure **a**. After purification by column chromatography, **11b** was obtained as a white solid (39.3 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.04 (d, J = 8.0 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 141.7, 138.2, 134.6, 132.9, 132.8, 90.6, 20.8; IR (neat) v 1737, 1698, 1560, 1216, 820 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₈IO₂ [M+H]⁺: 262.9564; found: 262.9558.

5-Acetoxy-2-iodobenzoic acid (13b)

Substrate **13** was iodinated following the general procedure **b**. After purification by column chromatography, **13b** was obtained as a white solid (38.5 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 4.0 Hz, 1H), 6.97 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 168.8, 150.5, 142.8, 134.0, 127.2, 125.5, 90.5, 21.0; IR (neat) v 1758, 1706, 1566, 1192, 905 cm⁻¹; HRMS (ESI-TOF) Calcd for C₉H₈IO₄ [M+H]⁺: 306.9462; found: 306.9466.

2-Iodo-5-(methoxycarbonyl)benzoic acid (22a)

Substrate **22** was iodinated following the general procedure **b**. After purification by column chromatography, **22a** was obtained as a white solid (37.9 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 3.97 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 165.7, 142.5, 133.7, 133.5, 132.7, 130.3, 100.9,

52.6; IR (neat) v 1719, 1364, 1230, 749 cm⁻¹; HRMS (ESI-TOF) Calcd for $C_9H_8IO_4$ [M+H]⁺: 306.9462; found: 306.9462.

2-Iodo-5-methoxybenzoic acid (23a)

Substrate **23** was iodinated following the general procedure **c**. After purification by column chromatography, **23a** was obtained as a white solid (36.1 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 4.0 Hz, 1H), 6.77 (dd, J = 4.0 Hz, J = 8.0 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 159.7, 142.7, 134.0, 120.7, 117.5, 83.3, 55.8; IR (neat) v 1694, 1566, 1260, 821 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₈IO₃ [M+H]⁺: 278.9513; found: 278.9514.

5-Chloro-2-iodobenzoic acid (24a)

Substrate **24** was iodinated following the general procedure **b**. After purification by column chromatography, **24a** was obtained as a white solid (41.7 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 143.0, 134.7, 134.4, 133.7, 132.1, 91.9; IR (neat) v 1700, 1297, 1251, 817 cm⁻¹; HRMS (ESI-TOF) Calcd for C₇H₅ClIO₂ [M+H]⁺: 282.9017; found: 282.9015.

2,5-Diiodo-4-methylbenzoic acid (25a)

Substrate **25** was iodinated following the general procedure **b**. After purification by column chromatography, **25a** was obtained as a white solid (55.9 mg, 72%). 1 H NMR (400 MHz, acetone-d₆) δ 8.25 (s, 1H), 7.95 (s, 1H), 2.40 (s, 3H); 13 C NMR (100 MHz, acetone-

d₆) δ 165.2, 147.1, 142.1, 140.8, 134.5, 99.7, 93.7, 26.8; IR (neat) v 1694, 1572, 1298, 931 cm⁻¹; HRMS (ESI-TOF) [M+H]⁺: Calcd for C₈H₇I₂O₂ 388.8530; found: 388.8529.

mono-Selective bromination of arene carboxylic acids

General procedure **a**: In a 20 mL glass tube, iodobenzene diacetate (128.8 mg, 0.4 mmol) and I_2 (101.6 mg, 0.4 mmol) were dissolved in dichloroethane (2 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at room temperature for 1 hour to generate iodoacetate *in-situ*. Substrate (0.2 mmol), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), and tetrabutylammonium bromide (99.6 mg, 0.3 mmol) were added under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 100 °C for 24 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na_2CO_3 (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL × 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL × 3) and dried over Na_2SO_4 and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the bromination product.

General procedure **b**: In a 20 mL glass tube, iodobenzene diacetate (128.8 mg, 0.4 mmol) and I₂ (101.6 mg, 0.4 mmol) were dissolved in dichloroethane (2 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at room temperature for 1 hour to generate iodoacetate *in-situ*. Substrate (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), and tetramethylammonium bromide (46.2 mg, 0.3 mmol) were added under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 100 °C for 24 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na₂CO₃ (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL × 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL × 3) and dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the bromination product.

General procedure \mathbf{c} : In a 20 mL glass tube, iodobenzene diacetate (64.4 mg, 0.2 mmol) and I_2 (50.8 mg, 0.2 mmol) were dissolved in dichloroethane (2 mL) under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at room temperature

for 1 hour to generate iodoacetate *in-situ*. Substrate (0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), and tetrabutylammonium bromide (99.6 mg, 0.3 mmol) were added under atmospheric air. The tube was sealed with a cap, and the reaction mixture was stirred at 100 °C for 24 hours. The reaction mixture was cooled to room temperature and 10% aqueous Na₂CO₃ (5 mL) was added. The organic layer was separated and the aqueous layer was washed with diethyl ether (5 mL × 2). The aqueous layer was acidified with 2N HCl, extracted with ethyl acetate (10 mL × 3) and dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane:ether/8:1) to give the bromination product.

2-Bromobenzoic acid (4b)

Substrate **4** was brominated following the procedure **a**. After purification by column chromatography, **4b** was obtained as a white solid (26 mg, 65%). 1 H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.41 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 171.2, 134.9, 133.6, 132.5, 130.3, 127.3, 122.6; IR (neat) v 1676, 1590, 1309, 741 cm⁻¹; HRMS (ESI-TOF) Calcd for $C_7H_6BrO_2$ [M+H]⁺: 200.9546; found: 200.9540.

2-Bromo-5-methylbenzoic acid (11c)

Substrate **11** was brominated following the procedure **a**. After purification by column chromatography, **11c** was obtained as a white solid (32.9 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 137.6, 134.6, 133.2, 133.1, 130.4, 119.3, 20.9; IR (neat) v 1699, 1560, 1301, 1259, 816 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₈BrO₂ [M+H]⁺: 214.9702; found: 214.9707.

2-Bromo-4-methylbenzoic acid (12b)

Substrate **12** was brominated following the procedure **a**. After purification by column chromatography, **12b** was obtained as a white solid (29.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 1H), 7.55 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 144.8, 135.5, 132.6, 128.1, 127.1, 122.7, 21.1; IR (neat) v 1737, 1602, 1216, 766 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₈BrO₂ [M+H]⁺: 214.9702; found: 214.9699.

2-Bromo-4-(methoxycarbonyl)benzoic acid (14b)

Substrate **14** was brominated following the procedure **b**. After purification by column chromatography, **14b** was obtained as a white solid (21.7 mg, 42%). ¹H NMR (400 MHz, methanol-d₄) δ 8.25 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4 (2 C), 135.7, 134.5, 131.6, 129.3, 121.4, 106.2, 53.1; IR (neat) v 1707, 1298, 910, 744 cm⁻¹; HRMS (ESI-TOF) Calcd for C₉H₈BrO₄ [M+H]⁺: 258.9600; found: 258.9606.

2-Bromo-4-fluorobenzoic acid (16b)

Substrate 16 was brominated following the general procedure **b**. After purification by column chromatography, 16b was obtained as a white solid (21.4 mg, 49%). ¹H NMR (400 MHz, acetone-d₆) δ 7.99 (m, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 163.9 (d, J_{C-F} = 253 Hz), 133.7 (d, J_{C-F} = 10 Hz), 129.3 (d, J_{C-F} = 4 Hz), 122.5 (d, J_{C-F} = 10 Hz), 121.6 (d, J_{C-F} = 25 Hz), 114.9 (d, J_{C-F} = 21 Hz); IR (neat) v 1697, 1591, 1261, 870 cm⁻¹; HRMS (ESI-TOF) Calcd for C₇H₅BrFO₂ [M+H]⁺: 218.9451; found: 218.9450.

2-Bromo-5-methoxybenzoic acid (23b)

Substrate **23** was brominated following the general procedure **c**. After purification by column chromatography, **23b** was obtained as a white solid (33.1 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.39 (s, 1H), 7.05 (d, J = 8.0 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 159.1, 135.1, 134.1, 118.7, 116.5, 111.0, 55.4; IR (neat) v 1702, 1561, 1264, 817 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₈BrO₃ [M+H]⁺: 230.9651; found: 230.9651.

3-Bromo-2-naphthoic acid (26a)

Substrate **26** was brominated following the general procedure **b**. After purification by column chromatography, **26a** was obtained as a white solid (36.5 mg, 73%). ¹H NMR (400 MHz, CD₃OD) δ 8.37 (s, 1H), 8.22 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H); 7.57-7.65 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 169.7, 136.5, 133.9, 132.7, 132.6, 131.6, 129.9, 129.7, 128.3, 127.8, 116.5; IR (neat) v 1696, 1457, 1296, 742 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₁H₇BrO₂ [M+H]⁺: 250.9702; found: 250.9698.

References:

- 1. T. Rausis, M. Schlosser, Eur. J. Org. Chem. 2002, 3351.
- 2. C. Heiss, E. Marzi, M. Schlosser, Eur. J. Org. Chem. 2003, 4625.