

Supporting Information © Wiley-VCH 2008

69451 Weinheim, Germany

Supporting Information for

Chiral Brönsted Acid Catalyzed Asymmetric Baeyer-Villiger Reaction of 3-Substituted Cyclobutanones Using Aqueous H₂O₂

Senmiao Xu,^[1] Zheng Wang,^[1] Xue Zhang,^[1] Xumu Zhang,^[2] Kuiling Ding*^[1]

[1] S. Xu, Dr. Z. Wang, Dr. X. Zhang, Prof. Dr. K. Ding State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (P. R. China)

Fax: Int. code + (21)-6416-6128

E-mail: kding@mail.sioc.ac.cn

[2] Prof. Dr. X. Zhang

Department of Chemistry and Chemical Biology, Center of Molecular Catalysis, Rutgers, The State University of New Jersey, 610 Taylor, Piscataway, New Jersey 08854-8066 (USA)

General Methods. Melting point was measured with XT-4 micro melting point apparatus and uncorrected. NMR spectra were recorded on a Varian Mercury 300 (1 H 300 MHz; 19 F 282 MHZ) spectrometer in CDCl₃. Chemical shifts are expressed in ppm with TMS as an internal standard ($\delta = 0$ ppm) for 1 H NMR. Coupling constants, J, are listed in hertz. Data for 19 F NMR were reported in terms of chemical shift (δ , ppm). HPLC analysis was carried out on a JASCO PU 2089 liquid chromatograph with a UV 2075 detector. Specific optical rotations and CD spectra were obtained on PE-341 and JASCO 810 spectrometers, respectively. Unless stated otherwise, all solvents were purified and dried according to standard methods prior to use.

General Procedure for Asymmetric Baeyer-Villiger Oxidation

To a 5-mL Schlenk tube was charged 7.6 mg of ($\it R$)-1 $\it r$ (10 mol %, 0.01 mmol), 0.1 mmol of 3-substituted cyclobutanone 2 and 1 mL of CHCl₃. The mixture was stirred and cooled to -40°C, and then 1.5 equiv. of aqueous H₂O₂ (30%) was added at this temperature. The reaction mixture was stirred for 18-36 h at -40°C. After completion of the reaction, H₂O₂ was decomposed with aqueous Na₂SO₃ and the product 3 was isolated by column chromatography on silica gel with petroleum ether / ethyl acetate = 6/1 as the eluent. The enantiomeric excess was determined by chiral HPLC analysis.

(-)-(*R*)-4-phenyldihydrofuran-2(3H)-one (3a)^[1]: white solid, 99% yield, m.p. 60-62°C (lit^[1] 59-60°C); $[\alpha]_D^{20} = -46.7$ (c 0.48, CHCl₃), 88.0% ee; $[Lit.^{[1]}: [\alpha]_D^{20} = -67.2$ (c 2.0, CHCl₃) for *R*-isomer with 99% ee]. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.22$ -7.41 (m, 5 H), 4.68 (dd, J = 9.0, 8.6 Hz, 1 H), 4.28 (dd, J = 8.4, 8.4 Hz, 1 H), 3.74-3.86 (m, 1 H), 2.94 (dd, J = 17.4, 9.0 Hz, 1 H), 2.68 (dd, J = 17.4, 9.0 Hz, 1 H) ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AS-H column (hexane/2-PrOH = 95/5, flow rate = 1.0 mL/min, $\lambda = 220$ nm), $t_R = 40.4$ min (major); 46.9 min (minor).

(-)-(*R*)-4-(4-tolyl)dihydrofuran-2(3H)-one (3b)^[2]: yellow solid; 99% yield, m.p. 66-68°C (lit^[2] 63.5-65°C); $[\alpha]_D^{20} = -31.5$ (*c* 0.67, CHCl₃), 93% *ee*; [Lit.^[2]: $[\alpha]_D^{21} = -31.5$ (*c* 0.67, CHCl₃), 93% *ee*; [Lit.^[2]: $[\alpha]_D^{21} = -31.5$ (*c* 0.67)

+50 (c = 1.25, CHCl₃) for S-isomer]. ¹H NMR (300 MHz, CDCl₃) δ = 7.10-7.20 (m, 4 H), 4.65 (dd, J = 8.4, 8.4 Hz, 1 H), 4.24 (dd, J = 8.5, 8.4 Hz, 1 H), 3.72-3.79 (m, 1 H), 2.90 (dd, J = 17.1, 8.7 Hz, 1 H), 2.65 (dd, J = 17.1, 8.7 Hz, 1 H), 2.35 (s, 3 H) ppm; The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 214 nm), t_R = 17.9 min (minor), 18.9 min (major).

(-)-(*R*)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (3c)^[3]: yellow solid; 99% yield, m.p. 92-94°C; $[\alpha]_D^{20} = -28.3$ (*c* 0.90, CHCl₃) for *R*-isomer with 85% ee. ¹H NMR (300 MHz, CDCl₃) δ = 7.15 (d, *J* = 7.3, 2.1 Hz, 2 H), 6.90 (dd, *J* = 7.2, 2.4 Hz, 2 H), 4.64 (dd, *J* = 8.7, 8.1 Hz, 1 H), 4.22 (dd, *J* = 8.7, 8.4 Hz, 1 H), 3.81 (s, 3 H), 3.71-3.83 (m, 1 H), 2.90 (dd, *J* = 17.4, 8.7 Hz, 1 H), 2.63 (dd, *J* = 17.4, 9.3 Hz, 1 H) ppm; The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 214 nm), t_R = 31.8 min (minor), 33.5 min (major).

(-)-(*R*)-4-(4-bromophenyl)dihydrofuran-2(3*H*)-one (3d)^[3]: yellow soild; 99% yield, m.p. 84-86°C; $[\alpha]_D^{20} = -30.7$ (*c* 1.18, CHCl₃) for *R*-isomer with 83% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, J = 8.7 Hz, 1 H), 7.12 (d, J = 8.4 Hz, 1 H), 4.66 (dd, J = 8.7, 7.8 Hz, 1 H), 4.23 (dd, J = 8.4, 7.5 Hz, 1 H), 3.73-3.79 (m, 1 H), 2.94 (dd, J = 17.7, 8.7 Hz, 1 H), 2.63 (dd, J = 17.4, 8.4 Hz, 1 H); The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 230 nm), t_R = 31.9 min (minor), 33.8 min (major).

(-)-(R)-4-(4-chlorophenyl)dihydrofuran-2(3H)-one (3e) [4]: yellow solid; 99%

yield, m.p. 72-74°C (lit^[4] 73-75°C); [α]_D²⁰ = -47.2 (c 0.90, CHCl₃) for R-isomer with 81.7% ee [Lit.^[4]: [α]_D²⁰ = -48.5 (c 1.38, CHCl₃) for R-isomer]. ¹H NMR (300 MHz, CDCl₃) δ = 7.35 (d, J = 8.4 Hz, 2 H), 7.17 (d, J = 7.8 Hz, 2 H), 4.66 (dd, J = 8.4, 8.4 Hz, 1 H), 4.24 (dd, J = 9.0, 8.2 Hz, 1 H), 3.74-3.81 (m, 1 H), 2.94 (dd, J = 17.7, 8.7 Hz, 1 H), 2.63 (dd, J = 17.7, 8.7 Hz, 1 H) ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 230 nm), t_R = 28.9 min (minor), 30.5 min (major).

(-)-(*R*)-4-(4-fluorophenyl)dihydrofuran-2(3H)-one (3f) ^[3]: yellow solid; 99% yield, m.p. 58-60°C; $[\alpha]_D^{20} = -40.2$ (c 0.85, CHCl₃) for *R*-isomer with 84% ee. ¹H NMR (300 MHz, CDCl₃) δ = 7.19-7.24 (m, 2 H), 7.03-7.10 (m, 2 H), 4.66 (dd, *J* = 9.3, 8.1 Hz, 1 H), 4.24 (dd, *J* = 9.0, 7.8 Hz, 1 H), 3.75-3.82 (m, 1 H), 2.94 (dd, *J* = 17.1, 8.4 Hz, 1 H), 2.64 (dd, *J* = 17.1, 8.7 Hz, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ = -114.88 ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 214 nm), t_R = 27.2 min (minor), 28.4 min (major).

(-)-(*R*)-4-(naphthalen-2-yl)dihydrofuran-2(3H)-one (3g)^[5]: white powder, 91% yield, m.p. 116-117°C; $[\alpha]_D^{20} = -57.9$ (*c* 0.90, CHCl₃) for *R*-isomer with 86% ee. ¹H NMR (300 MHz, CDCl₃) δ = 7.80-7.89 (m, 3 H), 7.68 (s, 1 H), 7.48-7.53 (m, 2 H), 7.33-7.37 (m, 1 H), 4.75 (dd, J = 9.0, 8.1 Hz, 1 H), 4.39 (dd, J = 9.0, 8.1 Hz, 1 H), 3.94-4.00 (m,1 H), 3.02 (dd, J = 17.4, 8.7 Hz, 1 H), 2.79 (dd, J = 17.4, 9.0 Hz, 1 H) ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 254 nm), t_R = 29.1 min (minor), 31.9 min (major).

(-)-(S)-4-benzyldihydrofuran-2(3H)-one (3h) [6]: yellow oil; 99% yield, $[\alpha]_D^{20}$ =

-3.8 (*c* 0.80, CHCl₃) for S-isomer with 58% ee [Lit.^[6]: [α]_D³⁰ = -8.64 (*c* 0.71, CHCl₃) for S-isomer). ¹H NMR (300 MHz, CDCl₃) δ = 7.14-7.35 (m, 5 H), 4.34 (dd, J = 8.7, 6.6 Hz, 1 H), 4.04 (dd, J = 8.7, 6.6 Hz, 1 H), 2.76-2.89 (m, 3 H), 2.61 (dd, J = 17.5, 7.5 Hz, 1 H), 2.29 (dd, J = 17.5, 6.9 Hz, 1 H) ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 214 nm), t_R = 23.2 min (minor), 25.0 min (major).

(-)-(*S*)-4-(4-methoxybenzyl)dihydrofuran-2(3H)-one (3i) ^[7]: white solid; 99% yield, m.p. 58-60°C (lit^[7] 56.5-59°C); [α]_D²⁵ = -4.2 (c 1.0, CHCl₃) for *S*-isomer with 57% *ee*; [Lit.^[5]: [α]_D²⁰ = -5.8 (c 2.18, CHCl₃) for *S*-isomer]. ¹H NMR (300 MHz, CDCl₃) δ = 7.07 (d, J =8.7 Hz, 2 H), 6.84 (d, J = 8.1 Hz, 2 H), 4.33 (dd, J = 9.3, 6.9 Hz, 1 H), 4.03 (dd, J = 9.3, 6.0 Hz, 1 H), 3.80 (s, 3 H), 2.70-2.85 (m, 3 H), 2.59 (dd, J = 17.4, 8.1 Hz, 1 H), 2.27 (dd, J = 17.1, 7.2 Hz, 1 H) ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, δ = 214 nm), δ = 32.7 min (minor), 34.7 min (major).

(-)-(*S*)-4-(3,4-dimethoxybenzyl)dihydrofuran-2(3H)-one(3j)^[8]: colorless oil, 99% yield, $[\alpha]_D^{20} = -3.9$ (*c* 1.1, CHCl₃) for *S*-isomer with 55% *ee*; [Lit.^[8]: $[\alpha]_D^{23} = -7.54$ (*c* 1.9, CHCl₃) for *S*-isomer]. ¹H NMR (300 MHz, CDCl₃) $\delta = 6.82$ (d, J = 8.1 Hz, 1 H), 6.66-6.72 (m, 2 H), 4.33 (dd, J = 9.3, 6.6 Hz, 1 H), 4.05 (dd, J = 9.3, 6.3 Hz, 1 H), 3.88 (s, 3 H), 3.87 (s, 3 H), 2.70-2.87 (m, 3 H), 2.61 (dd, J = 17.4, 8.1 Hz, 1 H), 2.33 (dd, J = 18.0, 9.3 Hz, 1 H) ppm. The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 95/5, flow rate = 0.7 mL/min, $\lambda = 214$ nm), $t_R = 57.5$ min (minor), 59.0 min (major).

(+)-4-methyl-4-phenyldihydrofuran-2(3H)-one (3k) ^[9]: yellow oil, 99% yield, $[\alpha]_D^{20} = +7.3$ (*c* 0.73, CHCl₃) for the isomer with 61% ee. ¹H NMR (300 MHz,

CDCl₃) δ 7.17-7.41 (m, 5 H), 4.42 (s, 2 H), 2.92 (d, J = 16.8 Hz, 1 H), 2.67 (d, J = 16.8 Hz, 1 H), 1.52 (s, 3 H). The enantiomeric excess was determined by chiral HPLC analysis on a Chiralpak AD-H column (hexane/2-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 214 nm), t_R = 13.4 min (minor), 16.8 min (major).

References:

- [1] B. H. Lipshutz, J. M. Servesko, B. R. Taft, J. Am. Chem. Soc. 2004, 126, 8352-8353.
- [2] L. W. Lawston, T. D. Inch, *J. Chem. Chem.*, *Perkin Tran.* 1 **1983**, 2629-2635.
- [3] S. Murahashi, S. Ono, Y. Imada, *Angew. Chem.* **2002**, *114*, 2472-2474; *Angew. Chem. Int. Ed. Engl.* **2002**, *41*, 2366-2368.
- [4] M. Hayahsi, K. Ogasawara, *Heterocycles*, **2003**, *59*, 785-792.
- [5] K. Ito, A. Ishii, T. Kuroda, T. Katsuki, Synlett **2003**, 643-646.
- [6] S. Takano, K. Ohashi, T. Sujihara, K. Ogasawara, *Chem. Lett.* **1991**, 203-206.
- [7] S. Shiotani, H. Okada, T. Yamamoto, K. Nakamata, *Heterocycles* **1996**, *43*, 113-126.
- [8] E. Brown, A. Daugan, *Tetrahedron* **1989**, *45*, 141-145.
- [9] H. Toshio, K. Nobuaki, T. Masayoshi, *Tetrahedron: Asymmetry* **1993**, *4*, 1475-1478.

Table S1. Solvent effect on the BV oxidation of **2a** using 1.5 equiv. of aqueous H_2O_2 (30%) in the presence of **1m** as the catalyst.^[a]

Ph—O +
$$H_2O_2$$
 $\frac{1m (10 \text{ mol}\%)}{\text{solvent, r.t.}}$ $\frac{O}{*}$ O

Entry	Sovent	Yield [%] ^[b]	Ee [%] ^[c]
1	CH ₂ Cl ₂	68	45
2	CHCl ₃	72	54
3	CCI ₄	69	28
4	CICH ₂ CH ₂ CI	80	44
5	Toluene	93	33
6	Hexane	48	2
7	Et ₂ O	21	-6
8	MeOH	no reaction	n.d.
9	EtOH	no reaction	n.d.
10	EtOAc	no reaction	n.d.
11	THF	no reaction	n.d.
12	CH₃CN	no reaction	n.d.

[a] The reaction was carried out at room temperature with [2a] = 0.1 M to give 3a. [b] The yield of isolated product. [c] The enantiomeric excess of 3a was determined by HPLC analysis on a chiral column (Chiralpak AS-H).

Table S2. Relationship between the *ee* of the product and the *ee* of the catalyst.^[a]

Ph
$$\rightarrow$$
 0 + H₂O₂ $\xrightarrow{\text{cat (10 mol\%)}}$ $\xrightarrow{\text{CHCl}_3, r.t.}}$ $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{3a}}$ $\xrightarrow{\text{CHCl}_3}$ $\xrightarrow{\text{CHCl$

ee of cat. [%]	ee of 3a [%] ^[b]
0	0
20	8
40	18
80	41
100	51

[a] The reaction was carried out at room temperature with [2a] = 0.1 M in CHCl₃. [b] The enantiomeric excess of 3a was determined by HPLC analysis on a chiral column (Chiralpak AS-H).

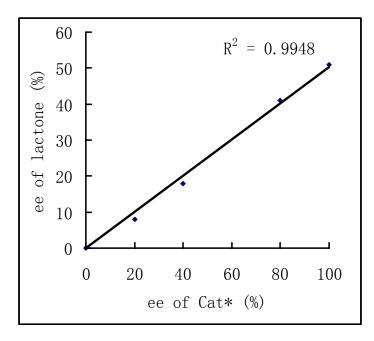


Figure S1. NLE effect in the catalysis of BV oxidation of **3a** using a chiral phosphoric acid as the catalyst in CHCl₃ at room temperature.

Table S3. Concentration effect on the enantioselectivity of BV oxidation of ${\bf 2a}$ in the presence of ${\bf 1m}$

Ph—O +
$$H_2O_2$$
 $1m (10 mol\%)$ \star O \star O \star Ph \bullet 3a

Entry	Time(h)	[1m] (M)	Yield(%) ^[a]	E.e.(%) ^[b]
1	24	0.02	84	51
2	24	0.01	90	53
3	24	0.0067	83	55
4	24	0.005	79	55
5	24	0.004	83	55
6	24	0.0033	83	55
7	24	0.0028	83	55

[[]a] The yield of isolated product. [b] The enantiomeric excess of **3a** was determined by HPLC analysis on a chiral column (Chiralpak AS-H).

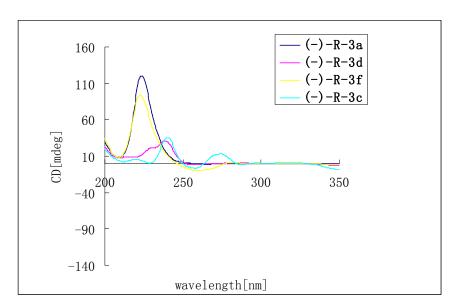
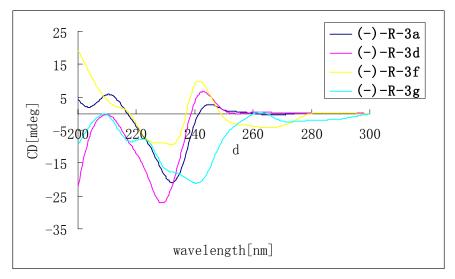
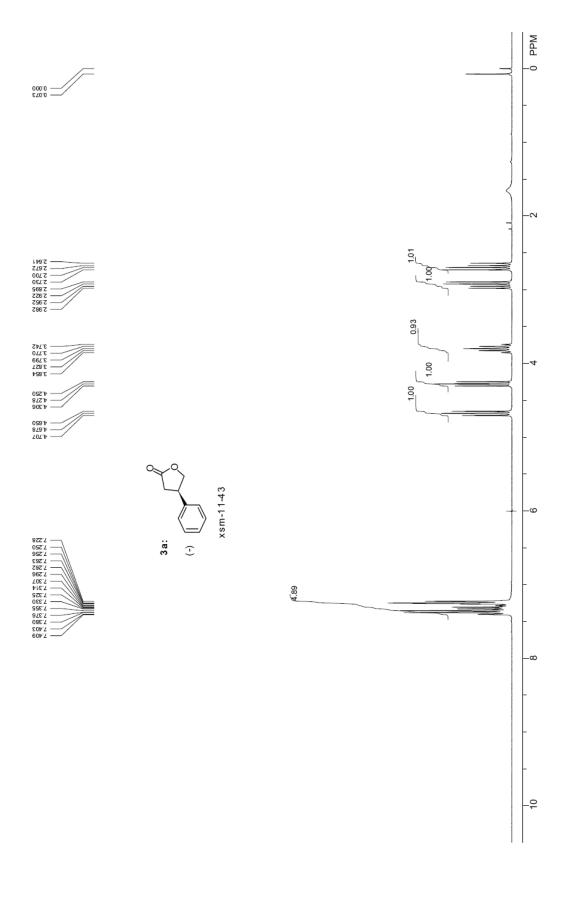
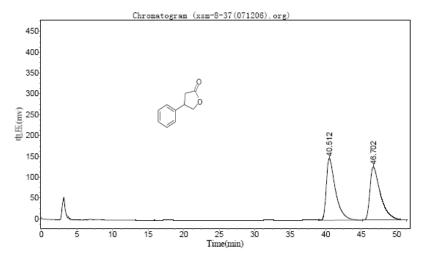
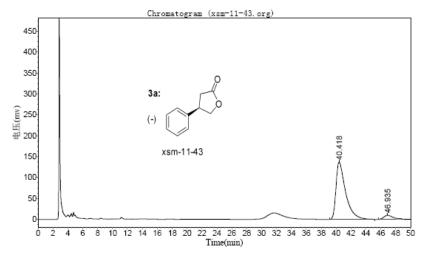
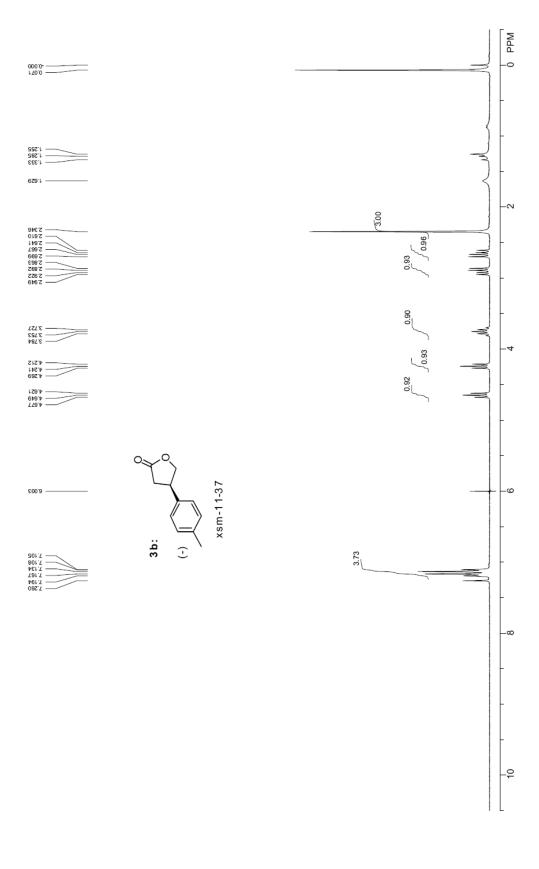


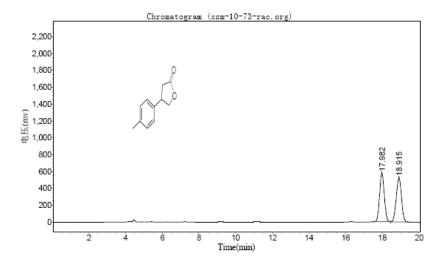
Figure S2. CD spectra for **3a**, **3c**, **3d** and **3f** in methanol, (*R*)-**3a** is an authentic sample.

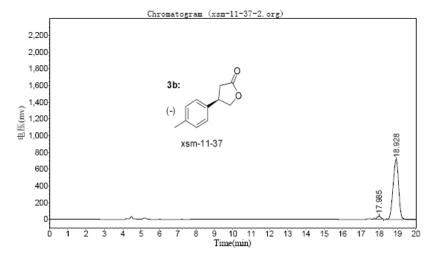

Figure S3. CD spectra of 3a, 3d, 3f and 3g in chloroform, (R)-3a is an authentic sample.

From Figure S2 and S3, it can be concluded that **3c**, **3d**, **3f** and **3g** should have the same absolute configuration as that of **3a**.

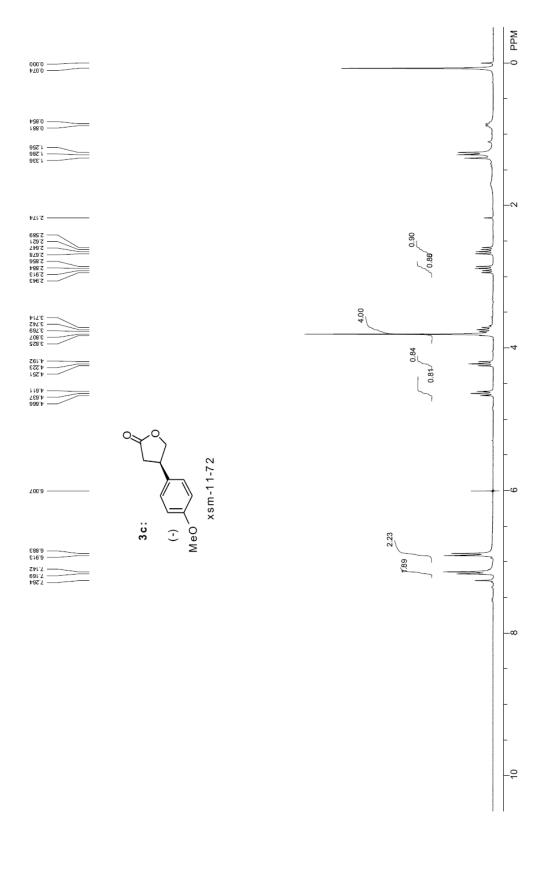


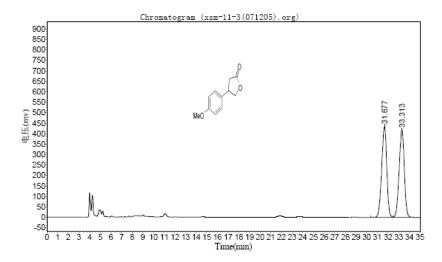


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		40.512	148461.172	13324734.000	50.0986	_
2		46.702	127987.039	13272300.000	49.9014	
Total			276448.211	26597034.000	100.0000	

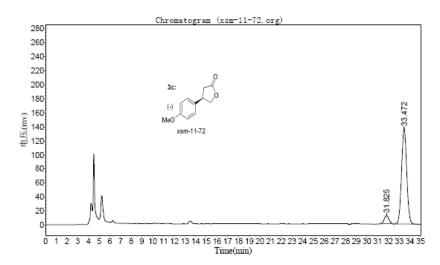


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		40.418	136511.922	12186496.000	94.0317	_
2		46.935	9336.074	773484.875	5.9683	
Total			145847.996	12959980.875	100.0000	

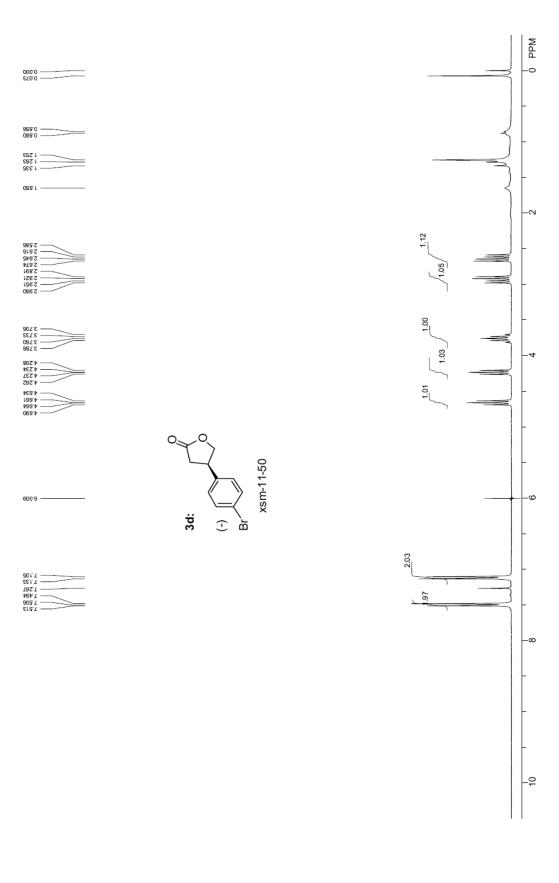


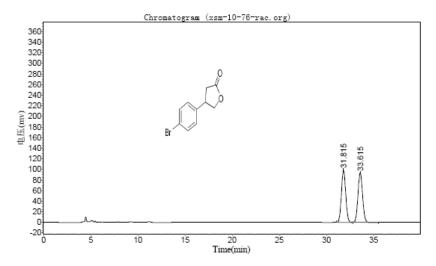


Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		17.982	577510.188	10543849.000	49.9838
2		18.915	522548.313	10550693.000	50.0162
Total			1100058.500	21094542.000	100.0000

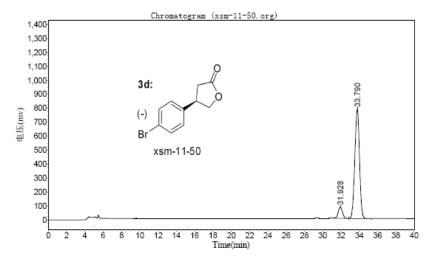


	Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
•	1		17.985	34570.641	543436.813	3.4990	
	2		18.928	713920.688	14987666.000	96.5010	
	Total			748491.328	15531102.813	100.0000	

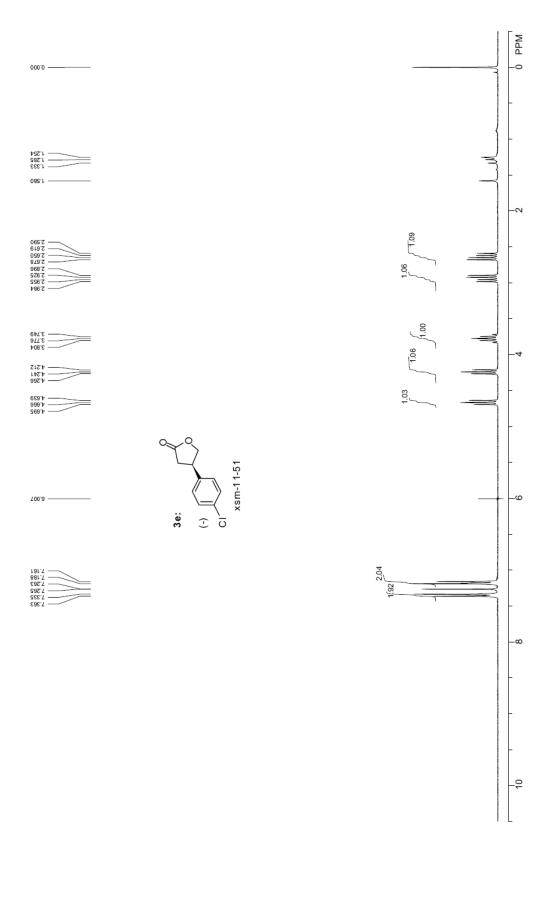


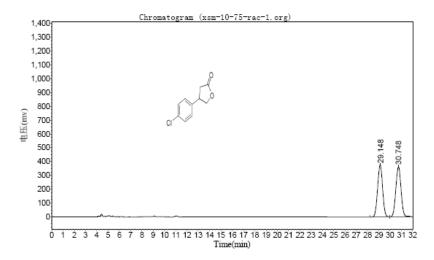


Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		31.677	433089.281	14371134.000	50.4848
2		33.313	416969.563	14095121.000	49.5152
Total			850058.844	28466255.000	100.0000

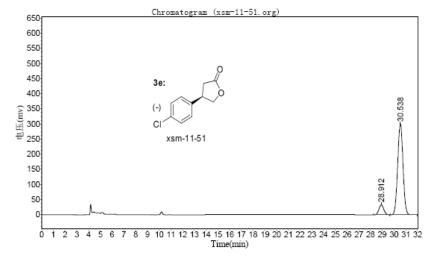


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		31.825	11903.113	368892.094	7.4513	
2		33.472	136356.969	4581846.000	92.5487	
Total			148260.082	4950738.094	100.0000	

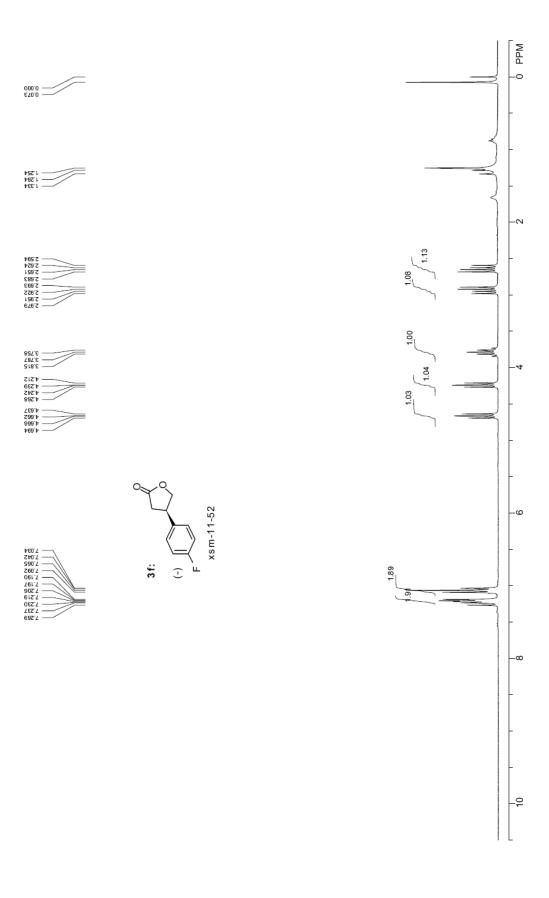




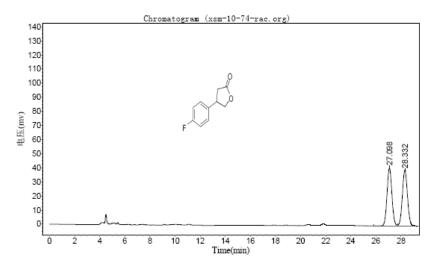
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		31.815	97797.234	3170604.000	49.7894
2		33.615	93569.594	3197429.250	50.2106
Total			191366.828	6368033.250	100.0000



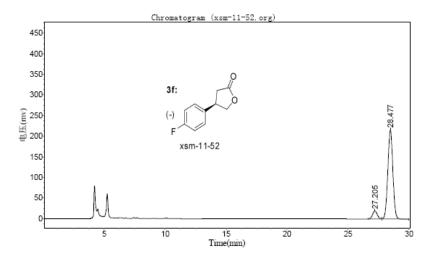
	Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
•	1		31.928	80181.266	2594646.000	8.5116	_
	2		33.790	782434.813	27888898.000	91.4884	
	Total			862616.078	30483544.000	100.0000	



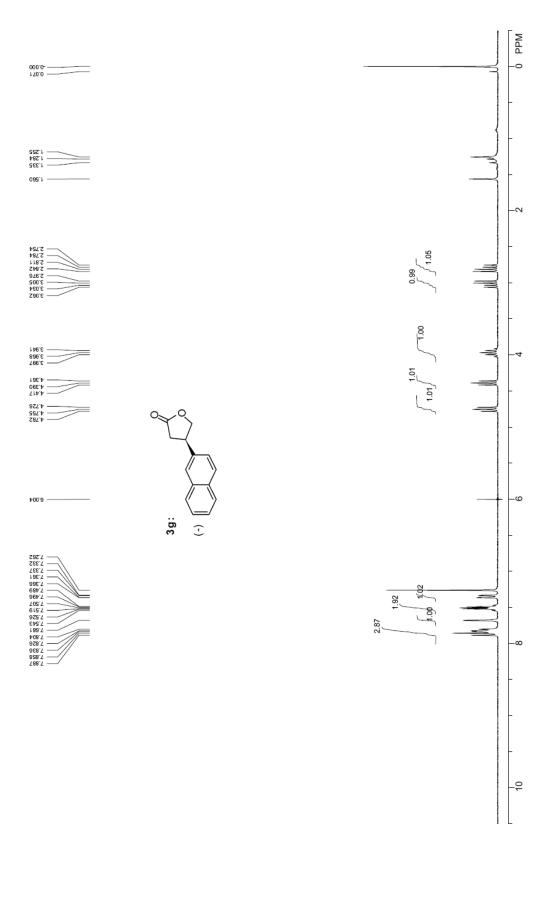
	Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
•	1		29.148	375561.094	11562442.000	49.5773	
	2		30.748	361990.281	11759593.000	50.4227	
	Total			737551.375	23322035.000	100.0000	

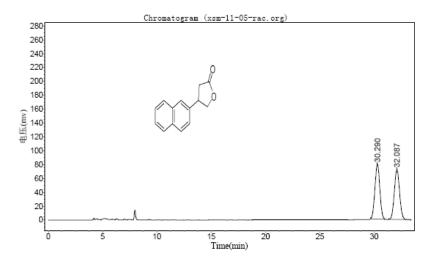


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		28.912	32965.449	956492.313	9.1461	_
2		30.538	300592.750	9501417.000	90.8539	
Total			333558.199	10457909.313	100.0000	

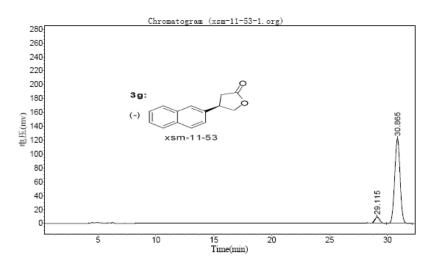


PPM -150 -100 -29 20

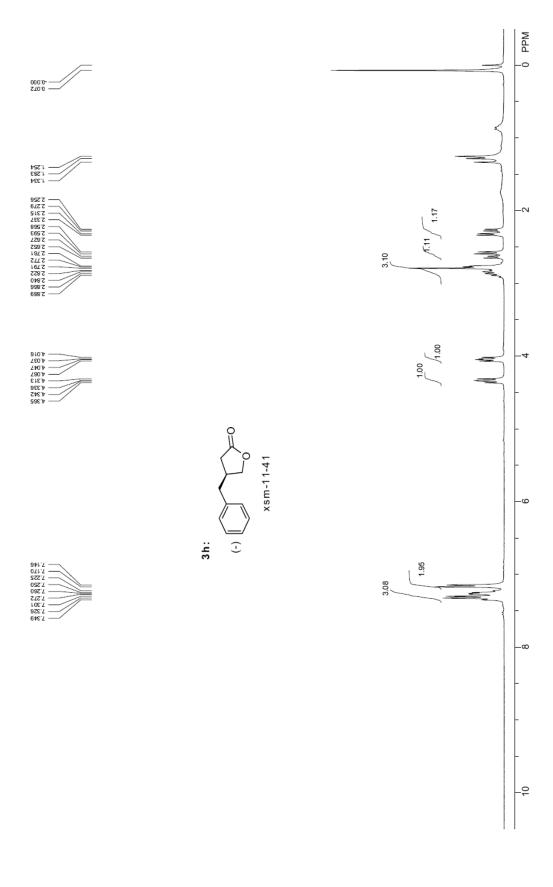

498.411-----

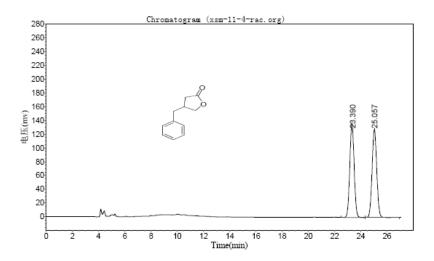


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		27.098	41054.000	1107401.250	50.0175	
2		28.332	39423.000	1106625.750	49.9825	
Total			80477.000	2214027.000	100.0000	

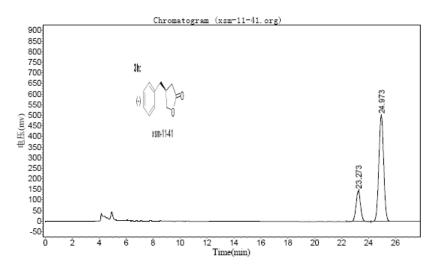


	Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
•	1		27.205	19225.258	510590.094	7.6431	
	2		28.477	215268.156	6169790.500	92.3569	
	Total			234493.414	6680380.594	100.0000	

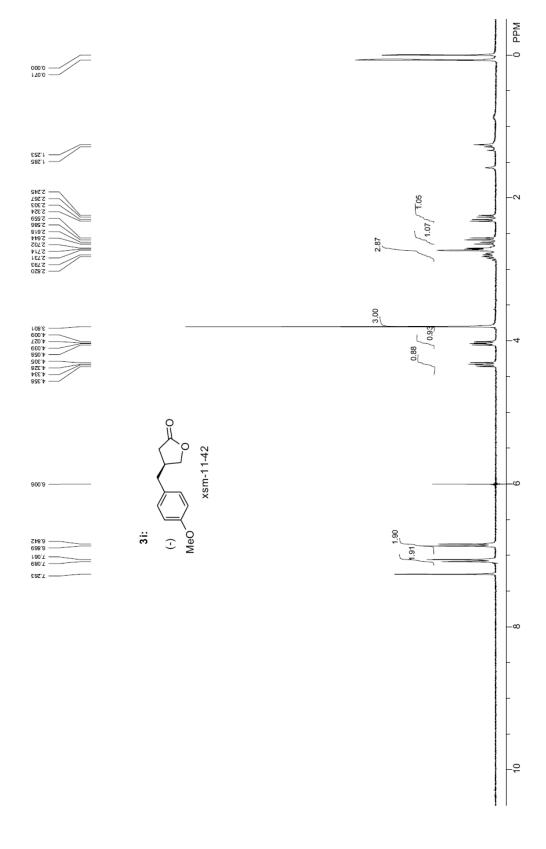


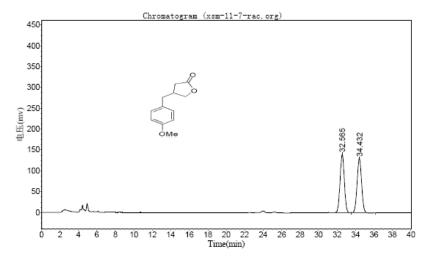


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		30.290	78845.227	2470052.000	50.5412	
2		32.087	71845.039	2417152.750	49.4588	
Total			150690.266	4887204.750	100.0000	

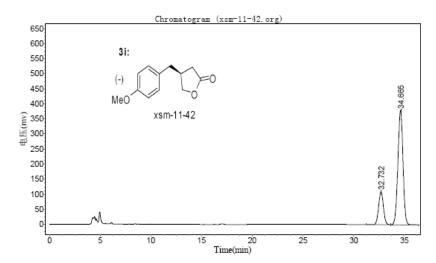


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		29.115	9389.758	283649.000	6.6930	
2		30.865	122228.852	3954341.500	93.3070	
Total			131618.609	4237990.500	100.0000	

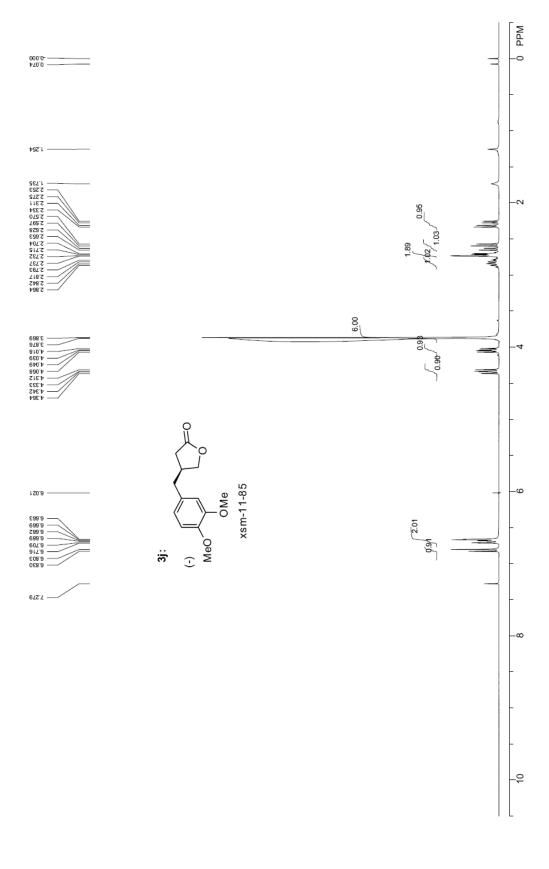




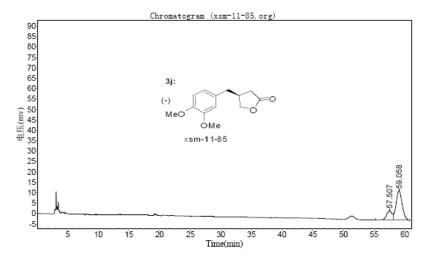
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		23.390	133838.203	3170580.250	50.0038	_
2		25.057	126396.320	3170098.000	49.9962	
Total			260234.523	6340678.250	100.0000	



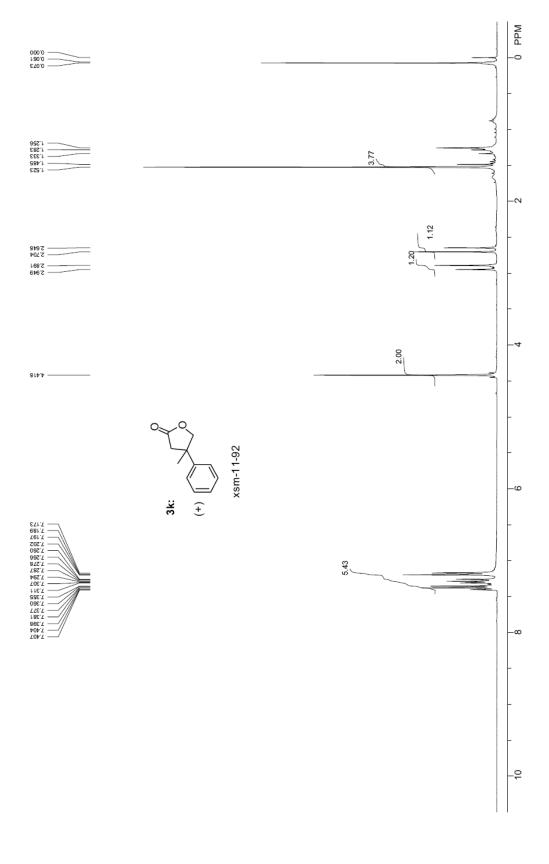
	Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
•	1		23.273	143389.531	3325873.000	20.9169	
	2		24.973	501076.125	12574528.000	79.0831	
	Total			644465.656	15900401.000	100.0000	

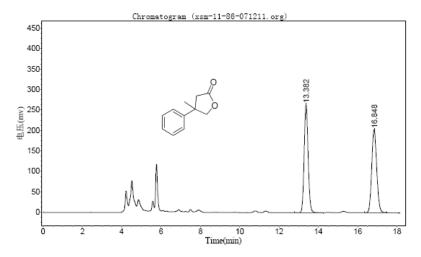


Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		32.565	139715.344	4566143.000	50.3963
2		34.432	130618.414	4494321.000	49.6037
Total			270333.758	9060464.000	100.0000

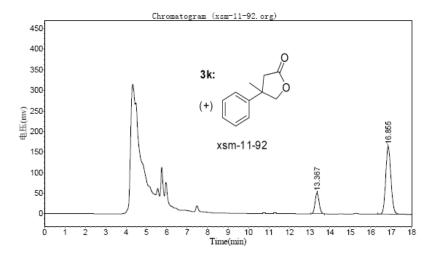


Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		32.732	108294.406	3581633.500	21.2789	
2		34.665	378413.344	13250196.000	78.7211	
Total			486707.750	16831829.500	100.0000	





Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		57.382	49456.828	3184712.500	49.5002
2		58.982	46582.254	3249021.750	50.4998
Total			96039.082	6433734.250	100.0000



Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		57.507	4370.330	272590.719	22.1782	
2		59.058	14005.797	956500.875	77.8218	
Total			18376.126	1229091.594	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		13.382	262657.563	3689598.750	50.6919	
2		16.848	202464.406	3588880.000	49.3081	
Total			465121.969	7278478.750	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		13.367	50854.379	704733.688	19.4390
2		16.855	163899.297	2920622.500	80.5610
Total			214753.676	3625356.188	100.0000