

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

A Metal-Mediated Conformational Switch That Controls G-Quadruplex Binding Affinity

David Monchaud, Peng Yang, Laurent Lacroix, Marie-Paule Teulade-Fichou and Jean-Louis Mergny*

Dr. D. Monchaud, Dr. M.-P. Teulade-Fichou, Institut Curie, Section Recherche, CNRS, UMR176, Centre Universitaire Paris XI, Bâtiment 110, 91405 Orsay (France), Fax: (+33) 1-69-07-53-81, E-mail: marie-paule.teulade-fichou@curie.fr

Dr. P. Yang, Dr. L. Lacroix, Dr. J.-L. Mergny, INSERM, U565, Acides Nucléiques : Dynamique, Ciblage et Fonctions Biologiques, CNRS, UMR5153, Laboratoire des Régulations et Dynamique du Génome, Muséum National d'histoire Naturelle, 43, Rue Cuvier, 75005 Paris (France), Fax: (+33) 1-40-79-37-05, E-mail: mergny@mnhn.fr

Experimental CD procedures	p1
Interaction 360A /Cu(II): UV titration of 360A & MMQ₁₆ with Cu(II).....	Fig. S1, p2
Interaction 22AG /Cu(II): Thermal denaturation of 22AG with Cu(II).....	Fig. S2, p2
Influence of Cu concentration: CD exp. with 22AG and 10, 20 & 30eq. Cu(II)....	Fig. S3, p3
Influence of quadruplex nature: CD exp. with 22AG (Na ⁺ and K ⁺) & TBA.....	Fig. S4, p3
Affinity for quadruplex-DNA (1): FRET-melting exp. with 360A & MMQ₁₆	Fig. S5, p4
Affinity for quadruplex-DNA (2): G4-FID exp. with 360A & MMQ₁₆	Fig. S6, p5

Experimental CD procedure:

CD spectra were recorded on a JASCO J-710 circular dichroism spectropolarimeter using a 10-mm path length quartz cuvette. Scans were performed at controlled temperature (20°C) over a wavelength range of 210-380nm (only 240-330 is shown), with response time of 0.5s, 1nm pitch, 1nm bandwith and a scanning speed of 200nm/min. Blank spectra of sample containing buffer were subtracted from collected data. The CD spectra represent an average of three scans and are zero-corrected at 330nm.

Oligonucleotides (22AG (5'-AG₃(T₂AG₃)₃-3') or TBA (5'-G₂T₂G₂TGTG₂T₂G₂-3')) were purchased from Eurogentec (Belgium) as RP-HPLC purified oligonucleotides and were used without further purification. Quadruplexes were annealed by heating the oligonucleotide at 90°C for 5min in sodium cacodylate buffer (10mM, pH 7.4) with 100mM of KCl (22AG K⁺, TBA) or NaCl (22AG Na⁺), and cooled directly to 4°C to favor the intramolecular folding by kinetic trapping. Concentrations are evaluated by UV measurements (after thermal denaturation for annealed 22AG (5min at 90°C)) before use.

22AG and TBA were used at 3μM in sodium cacodylate buffer (10mM, pH 7.4) with 100mM of KCl or NaCl where appropriate. **360A** and **MMQ₁₆** were used as 0.5mM solution in DMSO; CuSO₄ and Na₂EDTA were used as 2mM solution in water.

*For studying the modification of the quadruplex-structure induced by **360A** or **MMQ₁₆**:*
A solution of annealed 22AG (3μM) in 10mM sodium cacodylate buffer with 100mM of KCl (pH 7.4, 20°C) is added of increasing amounts (from 0 to 3equiv., with 0.5equiv. step) of **360A** or **MMQ₁₆** (500μM in DMSO); each addition is followed by a 2min equilibration time, after which the CD spectrum is recorded.

*For studying the effect of sequential addition of Cu(II) ions and EDTA on quadruplex-structure stabilized by **360A** or **MMQ₁₆**:*

A $3\mu\text{M}$ solution of **360A**- or **MMQ₁₆**-stabilized 22AG quadruplex (obtained as indicated above) in 10mM sodium cacodylate buffer with 100mM of KCl (pH 7.4, 20°C) is added of 30equiv. of CuSO₄ (2mM in water); the CD spectrum is recorded after 10min equilibration time. To renature the quadruplex signal, 30equiv. of Na₂EDTA (2mM in water) is added; the CD spectrum is recorded after 20min equilibration time.

Fig. S1. UV-Vis titration of **360A** and **MMQ₁₆** upon sequential addition of CuSO₄ (from 0 to 2equiv., 0.1equiv. pitch) in 10mM sodium cacodylate buffer (pH 7.4), 100mM KCl (20°C). Upper panel: dose-response curves of UV-Vis signal at 274 (blue curve) or 343nm (red curve) for **360A** and **MMQ₁₆** respectively as a function of the number of equivalents of Cu(II) salts added. Lower panels: related UV-vis spectra.

Fig. S2. Thermal denaturation of 22AG ($3\mu\text{M}$, in 20mM lithium cacodylate, 100mM KCl, pH 7.2) in absence (black curve) or in presence of various concentrations of Cu(II) ions (3, 30 and 60 μM , red, orange and green curves respectively) followed by the DNA absorbance at 295nm: while the typical denaturation sigmoid-shaped curve of quadruplex-DNA is monitored with 0 and $3\mu\text{M}$ of Cu(II) (black and red curves), no transitions are observed with higher copper concentrations, meaning that in these cases, the quadruplex-DNA has been already unfolded by the action of Cu(II) ions. Similar results have been obtained with less quadruplex-stabilizing initial cationic conditions (90mM lithium cacodylate + 10mM KCl and 99mM lithium cacodylate + 1mM KCl, not

shown), thus demonstrating that the loss of transitions with high copper loadings is only due to the Cu-destabilization of quadruplex-DNA (and not to the formation of complexes of higher stability).

Fig. S3. **360A**-stabilized 22AG quadruplex denaturation as a function of Cu(II) ion concentration, followed by CD spectroscopy. **360A** (9 μ M) is added on 22AG (3 μ M) in 10 mM sodium cacodylate buffer (pH 7.4), 100 mM KCl (20°C); after 5 min of equilibration, the **360A**-stabilized quadruplex (black curve) is added of 30 μ M (10 equiv., ~0.4 atom/nucleotide, **A**), 60 μ M (20 equiv., ~0.9 atom/nucleotide, **B**) or 90 μ M (30 equiv., ~1.4 atom/nucleotide, **C**) of CuSO₄. CD spectra (green curve) were recorded after 10 min equilibration time.

Fig. S4. Denaturation of various quadruplex-DNA by Cu(II) ions. To a solution of 22AG K⁺ (**A**), 22AG Na⁺ (**B**) or TBA (**C**), as 3 μ M solution in 10 mM sodium cacodylate buffer (pH 7.4), 100 mM KCl (**A,C**) or 100 mM NaCl (**B**) was added of 90 μ M of CuSO₄ (30 equiv., ~1.4 atom/nucleotide); CD spectra were recorded after 10 (**A, B**) or 60 min (**C**) equilibration time.

FRET-melting experiments:

a) Principles:

FRET-melting is based on the use of a quadruplex-forming oligonucleotide (F21T) doubly-labeled with a pair of FRET donor and acceptor (usually *FAM*: 6-carboxyfluorescein and *Tamra*: 6-carboxy-tetramethylrhodamine) that allows to monitor the melting of the quadruplex *via* a FRET (*fluorescence resonance energy transfer*) effect. Semi-quantitative evaluation of ligand binding affinity is obtained by measuring of the increase in melting temperature induced by the ligand ($\Delta T_{1/2}$). The quadruplex- over duplex-DNA selectivity is established *via* competitive FRET-melting which is carried out in presence of competitive duplex-DNA.

For a complete article, see: A. De Cian, L. Guittat, M. Kaiser, B. Saccà, S. Amrane, A. Bourdoncle, P. Alberti, M.-P. Teulade-Fichou, L. Lacroix, J.-L. Mergny, *Methods*, **2007**, 42, 183.

b) Protocol:

Labelled oligonucleotide is purchased from Eurogentec (Belgium); after an initial dilution at 100 μ M concentration in purified water, further dilutions are carried out in the relevant buffer.

FRET assay is performed as a high-throughput screen in a 96-well format, with F21T (*FAM*-G₃[T₂AG₃]₃-*Tamra*, with *FAM*: 6-carboxyfluorescein and *Tamra*: 6-carboxy-tetraethylrhodamine). Fluorescence melting curves were determined with a Stratagene Mx3000P real-time PCR machine, using a total reaction volume of 25 μ L, with 0.2 μ M of tagged oligonucleotide in a buffer containing 10mM lithium cacodylate pH 7.2 and 100mM NaCl. After a first equilibration step at 25°C during 5 minutes, a stepwise increase of 1°C every minute for 71 cycles to reach 95°C was performed and measurements were made after each “cycle” with excitation at 492nm and detection at 516nm. The melting of the G-quadruplex was monitored alone or in the presence of various concentrations of compounds and/or of double-stranded competitor ds26 (5'-CAATCGGATCGAATTGATCCGATTG-3').

Final analysis of the data was carried out using Excel and Kaleida graph software. Emission of FAM was normalized between 0 and 1, and $T_{1/2}$ was defined as the temperature for which the normalized emission is 0.5. $\Delta T_{1/2}$ values are mean of 2 to 4 experiments \pm standard deviation.

c) Results:

Fig. S5. FRET-melting curves obtained with F21T (0.2 μ M) alone (black circles) and with 1 μ M of **360A** (right) or **MMQ₁₆** (left) in absence (white squares) or presence (3 (black triangles) or 10 μ M (black crosses)) of competitive duplex-DNA ds26.

G4-FID experiments:

a) Principles:

Fluorescent Intercalator Displacement (G4-FID) assay is based on the displacement by ligands of the fluorescent probe thiazole orange (TO) from quadruplex- and duplex-DNA matrices. This test allows a convenient ranking of putative ligands as a function of their quadruplex-DNA affinities and their quadruplex- over duplex-DNA selectivities. This assay is based on the use of quadruplex-forming oligonucleotide 22AG (that mimics the human-telomeric sequence ([5'-AG₃(T₂AG₃)₃-3']]) or TBA (thrombin binding aptamer, [5'-G₂T₂G₂TGTG₂T₂G₂-3']]). The quadruplex- vs duplex-selectivity is estimated by comparison of the results obtained with a 17-bp duplex (ds17, [5'-CCAGTCGTAGTAACCC-3']/[5'-GGGTTACTACGAACCTGG-3']).

For a complete article, see: D. Monchaud, C. Allain, H. Bertrand, N. Smargiasso, F. Rosu, V. Gabelica, A. De Cian, J.-L. Mergny, M.-P. Teulade-Fichou, *Biochimie*, **2008**, doi:10.1016/j.biochi.2008.02.019

b) Protocol:

A temperature of 20 °C is kept constant with thermostated cell holders. Each experiment is performed in a 3-mL cell, in 10 mM sodium cacodylate buffer pH 7.3 with 100 mM KCl or 100 mM NaCl depending on the experiments, in a total volume of 3 mL. The G4-FID assay is designed as follows: 0.25 μM pre-folded DNA target is mixed with thiazole orange (0.50 μM). Each ligand addition step (from 0.5 to 10 equivalents) is followed by a 3-min equilibration period after which the fluorescence spectrum is recorded. The percentage of displacement is calculated from the fluorescence area (FA, 510-750nm, $\lambda_{ex} = 501\text{nm}$), using: percentage of displacement = $100 - [(FA/FA_0) \times 100]$, FA_0 being the fluorescence of TO bound to DNA without added ligand. The percentage of displacement is then plotted as a function of the concentration of added ligand.

c) Results:

Fig. S6. G4-FID results obtained with **360A** (right) and **MMQ₁₆** (left) with quadruplex- (22AG (blue line) and TBA (black line)) or duplex-DNA (ds17, red line).