

Supporting Information © Wiley-VCH 2008

69451 Weinheim, Germany

Pd^{II}-Catalyzed Enantioselective Activation of sp² and sp³ C-H Bonds Using *mono*-Protected Amino Acids as Chiral Ligands

Bing-Feng Shi, Nathan Maugel, Yang-Hui Zhang, Jin-Quan Yu*

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Email: yu200@scripps.edu

Table of Contents	S1			
General Information	S1-S2			
Experimental Procedures	S2-S21			
Preparation of substrates and chiral ligands	S2-S10			
General Procedure for Grignard Formation and Carboxylate Addition	S2-S4			
General Procedure for the Reduction of S1-S3 with HI	S4-S6			
Preparation of Bis(3-methoxylphenyl)-2-pyridylmethane	S6			
Preparation of Bis(3-acetoxylphenyl)-2-pyridylmethane	S6-S7			
General Procedure for the Preparation of L-leucine Derived Chiral Ligands	S7-S9			
Preparation of N,N-Di-tert-butoxycarbonyl-L-leucine	S10			
Eantioselective C-H activation and C-C coupling reactions	S10-S21			
Synthesis of the acetate-bridged dinuclear cyclopalladated complex 2b	S10			
X-ray Crystal Structure Data for 2b	S11-S12			
Preliminary Results Obtained with Chiral Carboxylic Acids	S12			
Influence of Ligand Structures on Enantioselectivity	S13-S14			
Optimization of Chiral Ligands for Butylation of Prochiral sp ² C-H Bonds	S15			
General Procedure for the Enantioselective Alkylation of sp ² C-H Bonds with	Boronic Acids			
	S16-S20			
Enantioselective Butylation of Prochiral sp ³ C-H Bonds with Butylboronic acid S21				
Chiral HPLC Data	S22-S30			
References	S31			

General Information: Unless otherwise noted all commercial materials were used without further purification. Solvents were obtained from Acros or Sigma-Aldrich and used directly without further purification. Infrared spectra were recorded on a Perkin Elmer FT-IR Spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded with Varian Inova-400, Bruker DRX-500. ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CHCl₃ = 7.26) unless otherwise noted. Multiplicities are reported using the following abbreviations: s =

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. Optical rotations were measured using a 2 mL cell with a 1 dm path length on a Perkin Elmer polarimeter at 589 nm. High resolution mass spectra for new compounds were recorded at Mass Spectrometry Facilities, The Scripps Research Institute (TSRI). Enantiomeric excesses (ees) were determined on a Hitachi LaChrow Elite HPLC system using commercially available chiral columns. X-ray diffraction was recorded at X-Ray Facility, The Scripps Research Institute (TSRI).

All amino acids (**7a-7c**, **7e**, **7g-7h** and **8-**16) were purchased from Bachem or EMD except **3-5** and **S6-S11** which were purchased from Acros. **6** was synthesized according to the method of Burgess.^[1] **21** was prepared from a lithium salt of 2-ethylpyridine reacted with the corresponding alkyl bromide.^[2] **2** was prepared according to the literature procedure.^[3]

Experimental Procedures:

General Procedure for Grignard Formation and Carboxylate Addition: Preparation of Compound S1-S4 [4]

Br i) Mg,
$$I_2$$
 (cat.), THF

N CO₂Et

THF, 0 °C

S1 R = o-methyl

S2 R = m-methyl

S3 R = p-methyll

S4 R = m-methoxy

Magnesium (1.17 g, 48.13 mmol) was placed in a 250 mL, oven-dried flask under a nitrogen atmosphere. Anhydrous THF (80 mL) and iodine (*cat.* 40 mg) were added. The reaction mixture was heated at reflux until the purple iodine color disappeared. To this was added dropwise 2-bromotoluene (5.27 mL, 43.75 mmol) in THF (40 mL) via pressure-equalizing addition funnel. The reaction mixture was heated at reflux for about 3 h until a cloudy gray color formed. The resulting Grignard reagent was then cooled to 0 °C and treated with methyl picolinate (2.05 mL, 17.50 mmol) in THF (40 mL). The mixture was allowed to warm to room temperature and stir overnight. The reaction mixture was quenched by *aqueous* NH₄Cl and extracted with Et₂O. The combined organic layers were dried over MgSO₄ and the solvent was evaporated. The residue was purified by flash chromatography with ethyl acetate/hexanes as the solvent.

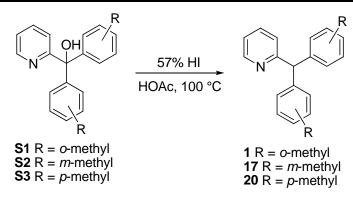
Bis(2-methylphenyl)-2-pyridylmethanol S1

The title compound **S1** was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 15:1). **S1** was obtained as a white solid (3.85 g, 76%). HNMR (400 MHz, CDCl₃): δ 8.65 (dd, J = 0.8, 4.0 Hz, 1 H), 7.60 (dt, J = 1.6, 8.0 Hz, 1 H), 7.26-7.23 (m, 1 H), 7.20-7.15 (m, 4 H), 7.00-6.96 (m, 2 H), 6.90 (d, J = 8.0 Hz, 1 H), 6.59 (d, J = 8.0 Hz, 2 H), 6.21 (s, 1 H), 2.20 (s, 6 H); 13 C NMR (100 MHz, CDCl₃): δ 163.4, 147.9, 144.0, 139.1, 136.5, 132.8, 128.6, 127.7, 125.1, 123.8, 122.5, 83.3, 22.4; HRMS (ESI) m/z: 290.1546 (M+H⁺); calc. for C₂₀H₂₀NO: 290.1539.

Bis(3-methylphenyl)-2-pyridylmethanol S2

The title compound **S2** was prepared according to the general procedure and was purified by flash chromatography (hexanes : ethyl acetate = 15 : 1). **S2** was obtained as a white solid (5.12 g, 92%). ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, J = 4.4 Hz, 1 H), 7.60 (dt, J = 7.6, 1.6 Hz, 1 H), 7.21-7.11 (m, 6 H), 7.07 (d, J = 7.6 Hz, 2 H), 7.01 (d, J = 8.0 Hz, 2 H), 6.26 (s, 1 H), 2.29 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.5, 147.8, 146.3, 137.7, 136.5, 128.9, 128.2, 127.9, 125.5, 123.1, 122.5, 81.0, 21.8; HRMS (ESI) m/z: 290.1535 (M+H⁺); calc. for C₂₀H₂₀NO: 290.1539.

Bis(4-methylphenyl)-2-pyridylmethanol S3


The title compound **S3** was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 20 : 1 to 15 : 1). **S3** was obtained as a white solid (5.32 g, 90%). ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, J = 4.4 Hz, 1 H), 7.59 (dt, J = 1.6, 8.0 Hz, 1 H), 7.21 (d, J = 8.4 Hz, 4 H), 7.19-7.15 (m, 2 H), 7.12 (d, J = 8.0 Hz, 4 H), 6.25 (s, 1 H), 2.34 (s, 6 H); ¹³C NMR (100

MHz, CDCl₃): δ 163.8, 147.9, 143.6, 137.0, 136.5, 128.8, 128.3, 123.0, 122.4, 80.8, 21.3; HRMS (ESI) m/z: 290.1538 (M+H⁺); calc. for C₂₀H₂₀NO: 290.1539.

Bis(3-methoxylphenyl)-2-pyridylmethanol S4

The title compound **S4** was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 5:1). **S4** was obtained as a white solid (2.93 g, 81%). ¹H NMR (400 MHz, CDCl₃): δ 8.59-8.57 (m, 1 H), 7.53 (dt, J = 1.6, 8.0 Hz, 1 H), 7.2-7.19 (m, 3 H), 7.13 (dt, J = 0.8, 8.0 Hz, 1 H), 6.93 (t, J = 2.0 Hz, 2 H), 6.82 (d, J = 2.0 Hz, 2 H), 6.80 (d, J = 2.0 Hz, 2 H), 6.27 (s, 1 H), 3.75 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 159.5, 147.9, 147.7, 136.6, 129.0, 123.0, 122.6, 120.9, 114.1, 112.9, 80.9, 55.4, 55.3; HRMS (ESI) m/z: 322.1439 (M+H⁺); calc. for $C_{20}H_{20}NO_3$: 322.1438.

General Procedure for the Reduction of S1-S3 with HI: Preparation of Compound 1, 17 and 20. [5]

A mixture of **S1** (300 mg, 1.04 mmol), *aqueous* 57% HI (0.8 mL), and HOAc (4 mL) was heated to 100 °C for 4 hours. The resulting mixture was then cooled to 0 °C, basified to pH 9 with *aqueous* NaOH, diluted with ethyl acetate and washed successively with *aqueous* NaHSO₃ and brine. The combined organic layers were dried over MgSO₄ and the solvent was evaporated. The residue was purified by flash chromatography with ethyl acetate/hexanes as the solvent.

Bis(2-methylphenyl)-2-pyridylmethanol (1)

The title compound **S1** was prepared according to the general procedure and was purified by flash chromatography (hexanes : ethyl acetate = 8 : 1). **1** was obtained as a white solid (259 mg, 91%). 1 H NMR (400 MHz, CDCl₃): δ 8.62-8.60 (m, 1 H), 7.58 (dt, J = 2.0, 7.6 Hz, 1 H), 7.16-7.13 (m, 5 H), 7.09(dt, J = 2.0, 7.2 Hz, 2 H), 6.90 (d, J = 8.0 Hz, 1 H), 6.71 (d, J = 7.2 Hz, 2 H), 5.90 (s, 1 H), 2.20 (s, 6 H); 13 C NMR (100 MHz, CDCl₃): δ 163.0, 150.0, 141.1, 137.0, 136.5, 130.7, 129.2, 126.8, 126.1, 124.1, 121.5, 53.6, 19.9; HRMS (ESI) m/z: 274.1600 (M+H⁺); calc. for C₂₀H₂₀N: 274.1590.

Bis(3-methylphenyl)-2-pyridylmethanol (17)

The title compound **S2** was prepared according to the general procedure and was purified by flash chromatography (hexanes : ethyl acetate = 8 : 1). **17** was obtained as a white solid (1.36 g, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.62-8.60 (m, 1 H), 7.60 (dt, J = 2.0, 7.6 Hz, 1 H), 7.20 (t, J = 7.6 Hz, 2 H), 7.15-7.09 (m, 2 H), 7.07 (d, J = 7.6 Hz, 2 H), 7.02 (s, 2 H), 6.97 (d, J = 7.6 Hz, 2 H), 5.65 (s, 1 H), 2.31 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 149.6, 142.8, 138.1, 136.5, 130.3, 128.4, 127.4, 126.6, 123.8, 121.5, 59.5, 21.7; HRMS (ESI) m/z: 274.1589 (M+H⁺); calc. for C₂₀H₂₀N: 274.1590.

Bis(4-methylphenyl)-2-pyridylmethanol (20)

The title compound **S3** was prepared according to the general procedure and was purified by flash chromatography (hexanes : ethyl acetate = 15 : 1 to 10 : 1). **20** was obtained as a yellow oil (1.68 g, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.63 (dd, J = 5.2, 2.0 Hz, 1 H), 7.60 (dt, J = 2.0, 7.6 Hz, 1 H), 7.16-7.10 (m, 2 H), 7.15 (d, J = 8.4 Hz, 4 H), 7.11(d, J = 8.4 Hz, 4 H), 5.68 (s, 1 H), 2.36 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 149.7, 140.2, 136.5, 136.1, 129.4, 129.3, 123.8, 121.5, 58.8, 21.2; HRMS (ESI) m/z: 274.1594 (M+H⁺); calc. for C₂₀H₂₀N: 274.1590.

Preparation of Bis(3-methoxylphenyl)-2-pyridylmethane (18) [6]

Zinc (3.36 g, 51.7 mmol) was added to a solution of **S4** (1.663 g, 5.17 mmol) in formic acid (15 mL). The mixture was vigorously stirred under reflux for 16 h and then filtered. The filter cake was washed with formic acid and the filtrate concentrated under reduced pressure. The residue was taken up in water and the pH adjusted to 9 with aqueous NaOH. The solution was extracted with ethyl acetate, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (hexanes: ethyl acetate = 5: 1 to 2: 1) to give **18** (967 mg, 61%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 8.58 (d, J = 5.2 Hz, 1 H), 7.57 (dt, J = 2.0, 10.4 Hz, 1 H), 7.25-7.06 (m, 4 H), 6.76-6.72 (m, 6 H), 5.63 (s, 1 H), 3.72 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.1, 159.8, 149.7, 144.2, 136.6, 129.5, 123.8, 122.0, 121.6, 115.6, 111.8, 59.5, 55.3; HRMS (ESI) m/z: 306.1492 (M+H⁺); calc. for C₂₀H₂₀NO₂: 306.1488.

Preparation of Bis(3-acetoxylphenyl)-2-pyridylmethane 19

Bis(3-hydroxylphenyl)-2-pyridylmethane was prepared according to the general procedure as described for the preparation of $\mathbf{1}$ and was purified by flash chromatography (hexanes : ethyl acetate = 1 : 3) to give $\mathbf{S5}$ as a white solid (1.50 g, 89%).

To a solution of bis(3-hydroxylphenyl)-2-pyridylmethane (1.50 g, 5.41 mmol) and DMAP (150 mg) in dry pyridine (mL) was added Ac₂O (1.5 mL, 16.23 mmol) dropwise under N₂ at 0 °C. The reaction mixture was allowed to warm to rt and stir overnight after which the solvent was evaporated under reduced pressure and the resulting residue was diluted with ethyl acetate, washed successively with

saturated NaHCO₃ and brine. The combined organic layers were dried over MgSO₄ and the solvent was evaporated. The residue was purified by flash chromatography (hexanes : ethyl acetate = 3:1) to give 19 (1.88 g, 96%) as a white solid.

Bis(3-hydroxylphenyl)-2-pyridylmethane S5

¹H NMR (400 MHz, DMSO- d_6): δ 9.22 (s, 2 H), 8.48 (d, J = 3.6 Hz, 1 H), 7.68 (dt, J = 1.6, 7.6 Hz, 1 H), 7.20-7.15 (m, 2 H), 7.04-7.00 (m, 2 H), 6.55-6.54 (m, 6 H), 5.42 (s, 1 H); ¹³C NMR (100 MHz, DMSO- d_6): δ 163.2, 157.8, 149.7, 145.0, 137.2, 129.7, 124.1, 122.2, 120.4, 116.7, 113.9, 58.7; HRMS (ESI) m/z: 278.1179 (M+H⁺); calc. for C₁₈H₁₆NO₂: 278.1175.

Bis(3-acetoxylphenyl)-2-pyridylmethane (19)

¹H NMR (400 MHz, CDCl₃): δ 8.56 (dd, J = 1.6, 4.4 Hz, 1 H), 7.56 (dt, J = 1.6, 7.6 Hz, 1 H), 7.28 (t, J = 8.0 Hz, 2 H), 7.11-7.08 (m, 2 H), 7.04 (d, J = 8.0 Hz, 2 H), 6.98 (dd, J = 1.6, 8.0 Hz, 2 H), 6.90 (s, 2 H), 5.67 (s, 1 H), 2.20 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 162.1, 150.9, 149.8, 144.1, 136.9, 129.5, 126.9, 124.0, 122.6, 121.9, 120.2, 58.8, 21.3; HRMS (ESI) m/z: 362.1394 (M+H⁺); calc. for $C_{22}H_{20}NO_4$: 362.1387.

General Procedure for the Preparation of L-leucine Derived Chiral Ligands [7]

L-Leucine ROCOCI (or RCOCI)

1 N NaOH, 0 °C to rt

7i R = Methyl

7j R =
$$\frac{1}{2}$$
 CCI₃

7k R = (1S)-(+)-Menthyl

7l R = (1R)-(-)-Menthyl

To a magnetically stirred solution at 0 °C of L-leucine (5 g, 38.12 mmol) and 1 N NaOH (100 mL) was added methyl chloroformate (3.84 mL, 49.55 mmol) in portions over 0.5 h. The reaction mixture was allowed to warm to rt and stir overnight, and then was extracted with ether. The aqueous phase was

cooled to 0 $^{\circ}$ C, adjusted to pH 1 by the addition of HCl and then extracted with ethyl acetate. The combined organic layers were dried over MgSO₄ and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (methanol : dichloromethane = 1:15) to give **7i** (6.06 g, 84%) as a yellow liquid.

N-Pivalyl-L-leucine 7f

The title compound **7f** was prepared according to the general procedure and was purified by recrystallization from ethyl acetate/hexanes. **7f** was obtained as a white solid (6.06 g, 91%). $[\alpha]_D^{20} = -15.19$ (c 1.31, ethyl acetate); ^[9] ¹H NMR (400 MHz, CDCl₃): δ 11.43 (br, 1 H), 6.26 (d, J = 8.4 Hz, 1 H), 4.53-4.48 (m, 1 H), 1.60-1.49 (m, 3 H), 1.09 (s, 9 H), 0.82 (d, J = 6.0 Hz, 3 H), 0.81 (d, J = 5.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 179.3, 176.4, 50.9, 41.3, 38.8, 27.4, 25.0, 22.9, 22.1; IR (neat) 2956, 1724, 1618, 1545, 1209 cm⁻¹; HRMS (ESI) m/z: 216.1592 (M+H⁺); calc. for C₁₁H₂₂NO₃: 216.1594.

N-Methoxycarbonyl-L-leucine 7i

 $[\alpha]_D^{20}$ = -18.21 (*c* 1.06, CHCl₃);^{[8] 1}H NMR (400 MHz, DMSO-*d*₆): δ 7.46 (d, *J* = 6.8 Hz, 1 H), 4.03-3.99 (m, 1 H), 3.60 (s, 3 H), 1.71-1.69 (m, 1 H), 1.59-1.51 (m, 2 H), 0.94 (d, *J* = 5.2 Hz, 3 H), 0.91 (d, *J* = 5.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 177.8, 157.1, 52.6, 52.5, 41.4, 24.8, 23.0, 21.7; IR (neat) 2958, 1701, 1541, 1230 cm⁻¹; HRMS (ESI) *m/z*: 190.1068 (M+H⁺); calc. for C₈H₁₆NO₄: 190.1074.

N-[2,2,2-trichloro-1,1-dimethylethoxycarbonyl]-L-leucine 7j

The title compound **7j**was prepared according to the general procedure and was purified by recrystallization from ethyl acetate/hexanes. **7j** was obtained as a white solid (6.13 g, 87%). $[\alpha]_D^{20} = -5.47$ (c 1.28, CHCl₃); ¹H NMR (400 MHz, DMSO- d_6): δ 7.64 and 7.25 (d, J = 8.0 Hz, 1 H), 4.02-3.99 (m, 1 H), 1.90, 1.88 and 1.85 (s, 6 H), 1.69-1.66 (m, 1 H), 1.52 (m, 2 H), 0.94 (d, J = 7.0 Hz, 6 H), 0.95 (d, J = 6.5 Hz, 3 H), 0.92 (d, J = 6.5 Hz, 3 H), 0.79 (d, J = 6.5 Hz, 3 H); IR (neat) 2953, 1719, 1541, 1223 cm⁻¹; HRMS (ESI) m/z: 334.0382 (M+H⁺); calc. for C₁₁H₁₉Cl₃NO₄: 334.0374.

N-[(+)-Menthoxylcarbonyl]-L-leucine 7k

The title compound **7k**was prepared according to the general procedure and was purified by flash chromatography (dichloromethane: methanol = 15:1). **7k** was obtained as a white foam (2.13 g, 85%). $[\alpha]_D^{20} = 39.58$ (c 0.95, CHCl₃); ¹H NMR (500 MHz, DMSO- d_6): δ 7.33 (d, J = 8.0 Hz, 1 H), 4.48 (dt, J = 4.0, 11.0 Hz, 1 H), 4.04-4.01 (m, 1 H), 1.95-1.93 (m, 2 H), 1.71-1.66 (m, 3 H), 1.59-1.56 (m, 1 H), 1.52-1.48 (m, 2 H), 1.37-1.32 (m, 1 H), 1.10-1.04 (m, 1 H), 1.01-0.99 (m, 1 H), 0.94 (d, J = 6.5 Hz, 3 H), 0.93 (d, J = 6.5 Hz, 3 H), 0.92 (d, J = 7.5 Hz, 3 H), 0.90 (d, J = 6.5 Hz, 3 H), 0.79 (d, J = 7.0 Hz, 3 H); ¹³C NMR (125 MHz, DMSO- d_6): δ 175.2, 156.9, 73.9, 52.8, 47.9, 42.2, 34.7, 31.8, 26.6, 25.2, 24.0, 23.6, 22.7, 21.9, 21.3, 17.1; IR (neat) 2958, 1717, 1541, 1228 cm⁻¹; HRMS (ESI) m/z: 314.2329 (M+H⁺); calc. for $C_{17}H_{32}NO_4$: 314.2326.

N-[(-)-Menthoxylcarbonyl]-L-leucine 7l

The title compound **71** was prepared according to the general procedure and was purified by flash chromatography (dichloromethane: methanol = 15:1). **71** was obtained as a white foam (4.31 g, 91%). $[\alpha]_D^{20} = -54.19$ (c 1.36, CHCl₃); ¹H NMR (500 MHz, DMSO- d_6): δ 7.29 (d, J = 8.5 Hz, 1 H), 4.47 (dt, J = 4.0, 11.0 Hz, 1 H), 4.00-3.99 (m, 1 H), 2.04-2.01 (m, 1 H), 1.95-1.92 (m, 1 H), 1.71-1.66 (m, 3 H), 1.59-1.58 (m, 1 H), 1.53-1.47 (m, 2 H), 1.37-1.31 (m, 1 H), 1.12-1.04 (m, 1 H), 1.00-0.97 (m, 1 H), 0.94 (d, J = 7.0 Hz, 6 H), 0.92 (d, J = 7.0 Hz, 3 H), 0.91 (d, J = 6.0 Hz, 3 H), 0.79 (d, J = 6.5 Hz, 3 H); ¹³C NMR (125 MHz, DMSO- d_6): δ 175.0, 156.7, 73.5, 52.7, 47.6, 41.8, 34.4, 31.5, 26.1, 24.9, 23.6, 23.4, 22.5, 21.7, 21.1, 16.8; IR (neat) 2958, 1717, 1541, 1228 cm⁻¹; HRMS (ESI) m/z: 314.2329 (M+H⁺); calc. for $C_{17}H_{32}NO_4$: 314.2326.

Preparation of N,N-Di-tert-butoxycarbonyl-L-leucine 7d

To a stirred solution of BocLeu-OBn (8.09 g, 25.17 mmol) and DMAP (615 mg, 5.03 mmol,) in dry CH₃CN (90 ml) was added (Boc)₂O (6.04 g, 27.69 mmol) at rt. The mixture was stirred for 2 h, after which TLC showed that some starting material still remained. Another portion of (Boc)₂O (3.02 g, 13.84 mmol) was added and the mixture was additionally stirred overnight. The solvent was evaporated,

and the resulting residue was purified by flash chromatography to afford Boc₂Leu-OBn (10.83 g, 98% yield) as an oil.

To a mixture containing Boc₂Leu-OBn (6.46 g, 15.33 mmol) and 10% palladium on activated carbon (323 mg) in methanol (100 mL) was added a balloon of hydrogen, and the flask was evacuated and flushed with hydrogen from the balloon several times. After stirring at rt overnight, the hydrogen was removed and the mixture was filtered through a plug of Celite 545. The plug was rinsed with methanol (150 mL), and the combined filtrates were concentrated under reduced pressure. The residue was recrystalized from ethyl acetate/hexanes to give **7d** (4.83 g, 95%) as a white solid.

N,N-Di-tert-butoxycarbonyl L-leucine 7d

[α]_D²⁰ = -26.31 (c 1.25, CH₂Cl₂); [10] ¹H NMR (400 MHz, CDCl₃): δ 11.24 (br, 1 H), 4.91 (dd, J = 5.2, 9.2 Hz, 1 H), 1.82-1.75 (m, 2 H), 1.57-1.53 (m, 1 H), 1.42 (s, 18 H), 0.86 (d, J = 6.8 Hz, 3 H), 0.85 (d, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 178.0, 152.1, 83.3, 56.5, 38.6, 28.0, 25.2, 23.3, 21.9; IR (neat) 2361, 1735, 1712, 1699, 1366, 1129 cm⁻¹; HRMS (ESI) m/z: 354.1887 (M+Na⁺); calc. for C₁₆H₂₉NNaO₆: 354.1887.

Synthesis of the Acetato-bridged Dinuclear Cyclopalladated Complex 2b:

Pd(OAc)₂ (471.5 mg, 2.1 mmol, 1.0 equiv) and **2** (515.2 mg, 2.1 mmol, 1.0 equiv) were combined in CH₂Cl₂ (30 mL). The reaction was stirred at 60 °C for 24 h, and then was filtered through celite to remove the palladium black and washed thoroughly with dichloromethane. The solvent was removed under reduced pressure. Hexanes was added to the resulting yellow solid, and this suspension was sonicated for 5 minutes. The yellow precipitate was collected by vacuum filtration, washed with hexanes, and dried under vacuum to afford **2b** (730 mg, 85%) as a yellow powder. ¹H NMR (500 MHz, DMSO- d_6): δ 8.82 (m, 2 H), 8.10 (t, J = 5.0 Hz, 2 H), 7.96 (d, J = 7.5 Hz, 2 H), 7.51-7.45 (m, 4 H), 7.32-7.30 (m, 6 H), 7.27-7.18 (m, 6 H), 7.02 (t, 2 H), 6.91 (t, J = 5.5 Hz, 2 H), 5.85 (s, 2 H), 1.74 (s, 6 H); ESI-MS m/z: 819.05 (M+H⁺).

X-ray crystal structure data for 2b:



Table S1. Crystal data and structure refinement for 2b.

X-ray ID	2b
-	

Empirical formula C41H34N2O4Pd2·CH2Cl2

Formula weight 904.42

Temperature 296(2) K

Wavelength 0.71073 Å

Crystal system orthorhombic

Space group $\operatorname{Pna2}_{1}(\operatorname{No. 33}, \operatorname{C}_{2v}^{9})$

Unit cell dimensions a = 47.632 (10) Å $\alpha = 90^{\circ}$.

b = 11.154(2) Å $\beta = 113.995(5)^{\circ}$.

c = 14.125(3) Å $\gamma = 90^{\circ}$.

Volume 7505(3) Å³

Z 8

Density (calculated) 1.601 Mg/m³

Absorption coefficient 1.145 mm⁻¹

F(000) 3632

Crystal size $0.22 \times 0.18 \times 0.03 \text{ mm}^3$

Crystal color/habit yellow plate-like

Theta range for data collection 1.68 to 25.00°.

Index ranges -56<=h<=56, -13<=k<=13, -16<=l<=16

Reflections collected 53475

Independent reflections 13227 [R(int) = 0.0502]

Completeness to theta = 25.00° 100 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9665 and 0.7868

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 13227 / 10 / 715

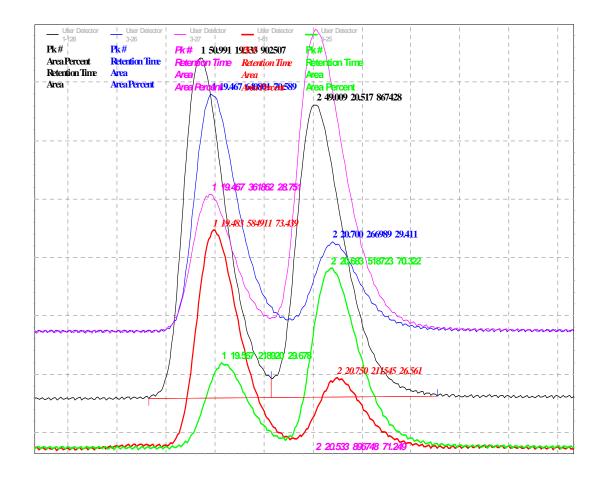
Goodness-of-fit on F^2 1.055

Final R indices [I>2sigma(I)] R1 = 0.0646, wR2 = 0.1514

R indices (all data) R1 = 0.0878, wR2 = 0.1660

Absolute structure parameter 0.55(6)

Extinction coefficient 0.00000(2)


Largest diff. peak and hole 1.330 and -1.107 e.Å-3

Preliminary Results Obtained with Chiral Carboxylic Acids

Influence of Ligand Structures on Enantioselectivity

Entry	Ligand	Yield (%) ^a	Ee (%) ^b	Entry	Ligand	Yield (%)ª	Ee (%) ^b
1	Ph COOH (R) (S) NHBoc	46	46	4	(S), COOH (S) (S) Ph' NHBoc	69	41
2	Ph NHBoc (R) COOH	71	-41 ^c	5	Ph (R) COOH (R) NHBoc	58	2
3	NHBoc (S) (R) Ph COOH	63	-42 ^c		6		

^aIsolated yields. ^bEnantiomeric excess (ee) was determined by chiral HPLC. ^cOpposite enantiomer was obtained.

Area % report for entry 1 (red line):

User detector results

Retention Time	Area	Area %	Height	Height %
19.483	584911	73.44	18603	75.54
20.750	211545	26.56	6023	24.46
Totals	796456	100.00	24626	100.00

Area % report for entry 2 (green line):

User detector results

Retention Time	Area	Area %	Height	Height %
19.567	218920	29.68	7171	31.97
20.683	518723	70.32	15258	68.03
Totals	737643	100.00	22429	100.00

Area% report for entry 3 (pink line):

User detector results

Retention Time	Area	Area %	Height	Height %
19.467	361862	28.75	11804	31.40
20.533	896748	71.25	25787	68.60
Totals	1258610	100.00	37591	100.00

Area% report for entry 4 (blue line):

User detector results

Retention Time	Area	Area %	Height	Height %
19.467	640801	70.59	20324	72.71
20.700	266989	29.41	7627	27.29
Totals	907790	100.00	27951	100.00

Area% report for entry 5 (black line):

User detector results

Retention Time	Area	Area %	Height	Height %
19.333	902507	50.99	29169	53.82
20.517	867428	49.01	25027	46.18
Totals	1769935	100.00	54196	100.00

Optimization of Chiral Ligands for Butylation of Prochiral sp² C-H Bonds

Entry	Ligand	Yield (%) ^b	Ee (%) ^c	Entry	Ligand	Yield	Ee (%) ^c
1	COOH NHBoc 7a	63	90	12	CO ₂ Me NHBoc 7c	(%) ^a 86	0
2	СООН	60	52	13	COOH N(Boc) ₂ 7d	74	7
3	8 соон	69	70	14	BocN COOH	63	6 ^d
4	NHBoc 9 COOH	85	72	15	COOH NHPiv 7f	58	7
5	NHBoc 10 COOH	60	80	16	COOH NHFormyl 7g	53	6
	NHBoc 11 COOH			17	COOH	74	80
6	NHBoc 12	66	81	18	7h COOH HN O	88	79
7	NHBoc 13	83	83		OMe 7i COOH		
8	COOH NHBoc 14	47	85	19	HN O CCI3	89	85
9	H O COOH NHBoc 15	65	88	20	7j COOH	87	85
10	COOH NHMe	nr	\		O-(+)-Menthyl 7k		
11	16 COOH NH ₂ 7b	nr	\	21	COOH HN O O-(-)-Menthyl	91	87

^aAll reactions were performed with **1** (0.2 mmol) and BuB(OH)2 (0.6 mmol) in the presence of Pd(OAc)₂ (10 mol%), chiral lignad (20 mol%), BQ (0.5 equv.), and Ag₂O (1.0 equiv.) in 2 mL of anhydrous THF at 60 °C for 20 h. ^bYields were based on isolated products. ^cEnantiomeric excesses (ees) were determined by chiral HPLC. ^dOpposite enantiomer was obtained.

(Table 1)

General Procedure for the Enantioselective Alkylation of sp² C-H Bonds with Boronic Acids

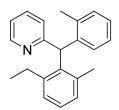
Entry	Substrate	R ₁	R	T (°C)	7I (mol%)	Time (h)	Yield (%) ^a	ee (%) ^b
1	1	o-Me	<i>n</i> -Butyl	60	20	20	91	87
2	1	o-Me	n-Butyl	50	20	20	50	95
3	1	o-Me	<i>n</i> -Butyl	60	10	20	96	88
4	2	Н	n-Butyl	80	20	20	47	79
5	2	Н	n-Butyl	80	10	20	56	74
6	1	o-Me	Ethyl	60	10	20	81	84
7	1	o-Me	Cyclopropyl	60	10	20	61	89
8 ^c	17	<i>m</i> -Me	<i>n</i> -Butyl	60	10	40	58	84
9^c	18	m-OMe	n-Butyl	80	10	20	55	54
10 ^c	19	<i>m</i> -OAc	<i>n</i> -Butyl	80	10	20	43	72
11	20	<i>p</i> -Ме	<i>n</i> -Butyl	80	10	20	61	78

^aIsolated yields. ^bEes were determined by chiral HPLC. ^cAlkylation occured only at the less hindered position.

(Table 2)

In a 20 mL tube, the substrate (0.2 mmol, 1 equiv.), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), boronic acid (0.6 mmol, 3 equiv.), Ag₂O (46.3 mg, 0.2 mmol, 1 equiv.), benzoquinone (10.8 mg, 0.1 mmol, 0.5 equiv.) and **71** (equivalent as described in Table 2) were dissolved in 2 mL of anhydrous THF under atmospheric air. The tube was sealed with a Teflon lined cap, and the reaction mixture was stirred at desired temperature and time as shown in Table 2. The reaction mixture was filtered through a pad of Celite, and the Celite was washed with 20 mL of CH₂Cl₂. The filtrate was concentrated under vacuum. The residue was purified by column chromatography to give the alkylated product and enantiomeric excesses (ees) were determined on a Hitachi LaChrow Elite HPLC system using commercially available chiral columns as described below.

(2-Butyl-6-methylphenyl)(2-pyridyl)(o-tolyl)methane 1a


(Table 2, entry 2): The title compound 1a was prepared according to the general procedure and was purified by flash chromatography (hexanes : ethyl acetate = 15 : 1). 2 was obtained as a white solid (32.9 mg, 50%). ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, J = 4.0 Hz, 1 H), 7.53 (t, J = 7.6 Hz, 1 H), 7.21-7.10 (m, 6 H), 7.01 (d, J = 7.2 Hz, 1 H), 6.93 (d, J = 7.6 Hz, 1 H), 6.85 (d, J = 7.6 Hz, 1 H), 6.12 (s, 1 H), 2.51-2.44 (m, 2 H), 2.15 (s, 3 H), 1.94 (s, 3 H), 1.28-1.14 (m, 4 H), 0.75 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 149.5, 142.5, 139.5, 139.1, 137.9, 137.5, 136.3, 130.5, 129.5, 129.4,

128.5, 127.0, 126.8, 126.2, 123.6, 120.9, 52.3, 52.3, 34.7, 33.2, 23.1, 22.4, 20.0, 14.0; HRMS (ESI) m/z: 330.2223 (M+H⁺); calc. for C₂₄H₂₈N: 330.2216; [α]_D²⁰ = -86.60 (c 0.50, CHCl₃); HPLC chiralcel OD-H then OD column (0.25% isopropanol in hexanes, 1 mL/min) t_r 17.983 min (major), 19.433 min (minor): 95% ee.

(2-Butylphenyl)phenyl-2-pyridylmethane 2g

(Table 2, entry 4): The title compound 2g was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 15:1). 2g was obtained as a white solid (28.3 mg, 47%). 1 H NMR (400 MHz, CDCl₃): δ 8.60 (dd, J = 0.8, 4.8 Hz, 1 H), 7.57 (dt, J = 2.0, 7.6 Hz, 1 H), 7.30-7.23 (m, 2 H), 7.21-7.18 (m, 3 H), 7.17-7.06 (m, 4 H), 6.98 (d, J = 8.0 Hz, 1 H), 6.87 (d, J = 7.6 Hz, 1 H), 5.96 (s, 1 H), 2.60-2.56 (m, 2 H), 1.46-1.40 (m, 2 H), 1.33-1.26 (m, 2 H), 0.84 (t, J = 7.6 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃): δ 163.5, 149.7, 143.0, 141.5, 140.6, 136.5, 129.8, 129.7, 129.6, 128.5, 126.7, 126.5, 125.9, 124.1, 121.4, 77.5, 77.2, 76.8, 55.5, 33.3, 32.7, 22.9, 14.1; HRMS (ESI) m/z: 302.1908 (M+H⁺); calc. for $C_{22}H_{24}N$: 302.1903; $[\alpha]_{D}^{20}$ = 3.27 (c 0.52, CHCl₃); HPLC chiralcel OD then AD column (5% isopropanol in hexanes, 1 mL/min) t_{T} 9.273 min (major), 7.545 min (minor): 79% ee.

(2-Ethyl-6-methylphenyl)(2-pyridyl)(o-tolyl)methane 1b

(Table 2, entry 6): The title compound 1b was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 15:1). 1b was obtained as a white solid (48.8 mg, 81%). 1 H NMR (400 MHz, CDCl₃): δ 8.58 (dd, J = 0.8, 4.8 Hz, 1 H), 7.53 (dt, J = 2.0, 7.6 Hz, 1 H), 7.22-7.16 (m, 3 H), 7.16-7.14 (m, 3 H), 7.01 (d, J = 7.6 Hz, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 6.83 (d, J = 7.6 Hz, 1 H), 6.11 (s, 1 H), 2.57-2.42 (m, 2 H), 2.14 (s, 3 H), 1.94 (s, 3 H), 0.88 (t, J = 7.6 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃): δ 163.5, 149.5, 143.6, 139.4, 139.0, 137.8, 137.5, 136.3, 130.5, 129.5, 129.4, 127.6, 127.1, 126.8, 126.2, 123.6, 121.0, 52.2, 27.5, 22.4, 20.0, 14.8; HRMS (ESI) m/z: 302.1910 (M+H⁺); calc. for C₂₂H₂₄N: 302.1903. [α]_D²⁰ = -99.31 (c 0.72, CHCl₃); HPLC chiralcel OD-H then OD column (0.25% isopropanol in hexanes, 1 mL/min) t_r 22.000 min (major), 25.767 min (minor): 84% ee.

(2-Cyclopropyl-6-methylphenyl)(2-pyridyl)(o-tolyl)methane 1c

(Table 2, entry 7): The title compound 1c was prepared according to the general procedure and was purified by flash chromatography (hexanes : ethyl acetate = 15 : 1). 1c was obtained as a white solid (38.2 mg, 61%). 1 H NMR (400 MHz, CDCl₃): δ 8.57 (dd, J = 1.2, 4.8 Hz, 1 H), 7.52 (dt, J = 2.0, 7.6 Hz, 1 H), 7.21-7.09 (m, 5 H), 6.99 (d, J = 7.6 Hz, 1 H), 6.94 (t, J = 8.8 Hz, 2 H), 6.85 (d, J = 7.6 Hz, 1 H), 6.51 (s, 1 H), 2.15 (s, 3 H), 1.86 (s, 3 H), 1.71-1.67 (m, 1 H), 0.73-0.70 (m, 1 H), 0.61-0.52 (m, 2 H), 0.46-0.44 (m, 1 H); 13 C NMR (100 MHz, CDCl₃): δ 163.7, 149.5, 142.1, 141.1, 139.6, 137.7, 136.3, 130.5, 129.9, 129.4, 127.0, 126.7, 126.2, 125.0, 123.6, 121.0, 52.5, 22.3, 20.1, 15.4, 7.4, 7.3; HRMS (ESI) m/z: 314.1900 (M+H⁺); calc. for C₂₃H₂₄N: 314.1903; [α]_D²⁰ = -77.27 (c 0.44, CHCl₃); HPLC chiralcel AD then AD column (0.3% isopropanol in hexanes, 1 mL/min) t_r 16.117 min (major), 21.950 min (minor): 89% ee.

(2-Butyl-5-methylphenyl)(2-pyridyl)(*m*-tolyl)methane 17a

(Table 2, entry 8): The title compound 17a was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 15:1). 17a was obtained as a yellow liquid (38.2 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (dd, J = 1.2, 4.8 Hz, 1 H), 7.58 (dt, J = 2.0, 7.6 Hz, 1 H), 7.17 (t, J = 7.6 Hz, 1 H), 7.14-7.10 (m, 2 H), 7.08-6.99 (m, 3 H), 6.91 (s, 1 H), 6.86 (d, J = 7.6 Hz, 1 H), 6.71 (s, 1 H), 5.89 (s, 1 H), 2.56-2.52 (m, 2 H), 2.29 (s, 3 H), 2.22 (s, 3 H), 1.45-1.39 (m, 2 H), 1.33-1.28 (m, 2 H), 0.85 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 149.7, 142.9, 140.4, 138.4, 138.0, 136.3, 135.1, 130.4, 129.6, 128.3, 127.5, 127.3, 126.8, 124.0, 121.3, 77.5, 77.2, 76.9, 55.6, 33.5, 32.4, 22.9, 21.7, 21.4, 14.1; HRMS (ESI) m/z: 330.2228 (M+H⁺); calc. for C₂₄H₂₈N: 330.2216; $[\alpha]_D^{20}$ = 6.41 (c 0.39, CHCl₃); HPLC chiralcel OD then AD column (5% isopropanol in hexanes, 1 mL/min) t_r 7.840 min (major), 10.713 min (minor): 84% ee.

(2-Butyl-5-methoxylphenyl)(*m*-methoxylphenyl)-2-pyridylmethane 18a

(Table 2, entry 9): The title compound 18a was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 8:1 to 5:1). 18a was obtained as a yellow liquid (39.8 mg, 55%). 1 H NMR (400 MHz, CDCl₃): δ 8.59 (d, J = 4.8 Hz, 1 H), 7.57 (dt, J = 1.6, 7.6 Hz, 1 H), 7.20 (t, J = 8.0 Hz, 1 H), 7.11 (d, J = 8.4 Hz, 2 H), 7.01 (d, J = 8.0 Hz, 1 H), 6.77-6.64 (m, 4 H), 6.48 (d, J = 2.0 Hz, 1 H), 5.88 (s, 1 H), 3.73 (s, 3 H), 3.67 (s, 3 H), 2.51 (t, J = 8.8 Hz, 2 H), 1.44-1.38 (m, 2 H), 1.32-1.26 (m, 2 H), 0.84 (t, J = 7.6 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃): δ 163.3, 159.8, 157.6, 149.7, 144.4, 141.7, 136.5, 133.8, 130.5, 129.5, 124.0, 122.2, 121.5, 116.4, 116.4, 115.8, 111.6, 111.3, 77.5, 77.2, 76.9, 55.7, 55.7, 55.3, 55.2, 55.2, 33.5, 31.9, 22.9, 14.1; HRMS (ESI) m/z: 362.2116 (M+H⁺); calc. for $C_{24}H_{28}NO_{2}$: 362.2114; $[\alpha]_{D}^{20}$ = 1.98 (c 0.81, CHCl₃); HPLC chiralcel OD then AD column (5% isopropanol in hexanes, 1 mL/min) t_{r} 14.293 min (major), 24.733 min (minor): 54% ee.

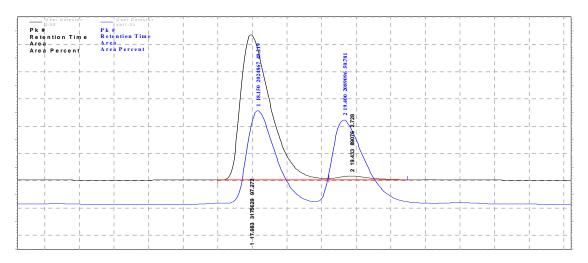
(3-Acetoxyl-6-butylphenyl)(*m*-acetoxylphenyl)-2-pyridylmethane 19a

(<u>Table 2, entry 10):</u> The title compound **19a** was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 3:1). **19a** was obtained as a white solid (35.9 mg, 43%). ¹H NMR (500 MHz, CDCl₃): δ 8.60-8.59 (m, 1 H), 7.60 (dt, J = 2.0, 8.0 Hz, 1 H), 7.29 (t, J = 8.0 Hz, 1 H), 7.19 (d, J = 8.5 Hz, 1 H), 7.16 (m, 1 H), 7.01 (d, J = 8.0 Hz, 1 H), 7.00-6.98 (m, 1 H), 6.95-6.93 (m, 2 H), 6.77 (t, J = 2.0 Hz, 1 H), 6.61 (d, J = 2.5 Hz, 1 H), 5.91 (s, 1 H), 2.57-2.53 (m, 2 H), 2.24 (s, 3 H), 2.21 (s, 3 H), 1.44-1.41 (m, 2 H), 1.33-1.28 (m, 2 H), 0.85 (t, J = 7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 169.6, 162.6, 151.2, 150.1, 149.0, 144.5, 141.8, 139.2, 137.0, 130.8, 129.7, 127.3, 124.3, 122.9, 122.8, 122.0, 120.3, 55.4, 33.4, 32.5, 30.1, 23.1, 21.5, 14.3; HRMS (ESI) m/z: 418.2019 (M+H⁺); calc. for C₂₆H₂₈NO₄: 418.2013; [α]_D²⁰ = -2.38 (c 0.21, CHCl₃); HPLC chiralcel OD then AD column (6% isopropanol in hexanes, 1 mL/min) t_r 17.300 min (major), 20.033 min (minor): 72% ee.

(2-Butyl-4-methylphenyl)(2-pyridyl)(p-tolyl)methane 20a

(Table 2, entry 11): The title compound 20a was prepared according to the general procedure and was purified by flash chromatography (hexanes: ethyl acetate = 15:1). 20a was obtained as a yellow oil (40.2 mg, 61%). ¹H NMR (400 MHz, CDCl₃): δ 8.60-8.58 (m, 1 H), 7.56 (dt, J = 1.6, 6.4 Hz, 1 H), 7.12-7.10 (m, 2 H), 7.08 (s, 1 H), 7.00 (d, J = 6.8 Hz, 2 H), 6.97 (d, J = 6.8 Hz, 2 H), 6.91 (dd, J = 6.4, 1.2 Hz, 1 H), 6.79 (d, J = 6.0 Hz, 1 H), 5.87 (s, 1 H), 2.57-2.53 (m, 2 H), 2.32 (s, 3 H), 2.30 (s, 3 H), 1.47-1.41 (m, 2 H), 1.34-1.27 (m, 2 H), 0.86 (t, J = 6.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 149.9, 141.5, 140.4, 138.1, 136.5, 136.3, 136.1, 130.7, 129.9, 129.7, 129.4, 126.8, 124.2, 121.5, 55.1, 33.7, 33.0, 23.2, 21.4, 14.3; HRMS (ESI) m/z: 330.2225 (M+H⁺); calc. for C₂₄H₂₈N: 330.2216; [α]_D²⁰ = 8.18 (c 0.33, CHCl₃); HPLC chiralcel OD then AD column (0.5% isopropanol in hexanes, 1 mL/min) t_r 15.420 min (major), 21.293 min (minor): 78% ee.

Enantioselective Butylation of Prochiral sp³ C-H Bonds with Butylboronic Acid


 * Isolated yields. $^{\dagger}\textsc{Enantiomeric}$ excess (ee) was determined by chiral HPLC.

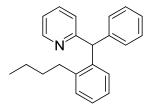
2-(Heptane-2-yl)pyridine 21a

(Entry 4): In a 20 mL tube, 21 (24.2 mg, 0.2 mmol, 1 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 0.1 eq), boronic acid (0.6 mmol, 3 equiv), Ag₂O (46.3 mg, 0.2 mmol, 1 equiv), benzoquinone (10.8 mg, 0.1 mmol, 0.5 equiv) and 3 (11.1 mg, 0.04 mmol, 0.2 eq) were dissolved in 2 mL of anhydrous *t*-amyl alcohol under atmospheric air. The tube was sealed with a Teflon lined cap, and the reaction mixture was stirred at 100 °C for 6 h. The reaction mixture was filtered through a pad of Celite, and the Celite was washed with 20 mL of CH₂Cl₂. The filtrate was concentrated under vacuum. The residue was purified by PTLC (hexanes: ethyl acetate = 9:1) to give 21a as a yellow oil (13.5 mg, 38%). NMR spectra were consistent with that previously reported. [11] HPLC chiralcel OD-H then OD column (1% isopropanol in hexane, 1 mL/min) t_r 8.733 min (major), 9.387 min (minor): 37% ee.

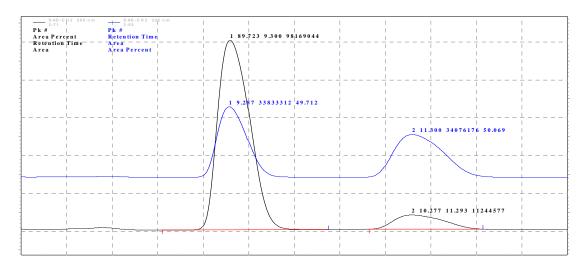
Chiral HPLC Data:

HPLC chiralcel OD-H then OD (0.25% isopropanol in hexanes, 1 mL/min), 95% ee.

Area% report for enantioselective (black line):


User detector results:

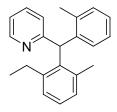
Retention Time	Area	Area %	Height	Height %
17.983	3175629	97.27	106548	97.40
19.433	89076	2.73	2844	2.60
Totals	3264705	100.00	109392	100.00


Area% Report for Racemic (blue line):

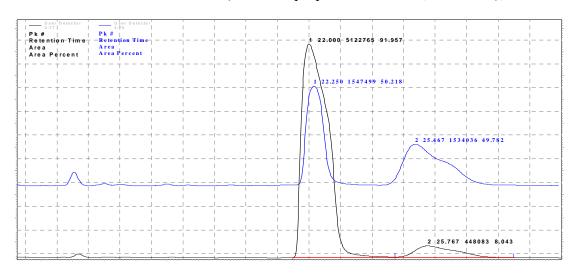
User detector results:

Retention Time	Area	Area %	Height	Height %
18.150	2024867	49.22	68689	52.65
19.400	2089096	50.78	61769	47.35
Totals	4113963	100.00	130458	100.00

HPLC chiralcel OD then AD (5% isopropanol in hexanes, 1 mL/min), 79% ee.


DAD-CH2 205 nm results

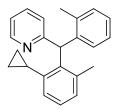
Retention Time	Area	Area %	Height	Height %
9.300	98169044	89.72	4011913	93.02
11.293	11244577	10.28	301264	6.98
Totals	109413621	100.00	4313177	100.00


Area% Report for Racemic (blue line):

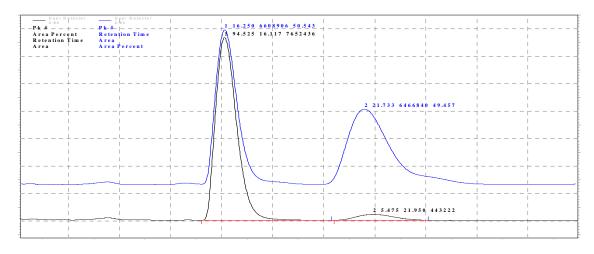
DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
9.287	3315047	49.94	147783	62.58
11.300	3323577	50.06	88374	37.42
Totals	6638624	100.00	236157	100.00

HPLC chiralcel OD-H then OD (0.25% isopropanol in hexanes, 1 mL/min), 84% ee.


User detector results:

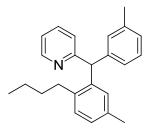
Retention Time	Area	Area %	Height	Height %
22.000	5122765	91.96	89812	94.76
25.767	448083	8.04	4963	5.24
Totals	5570848	100.00	94775	100.00


Area% report for racemic (blue line):

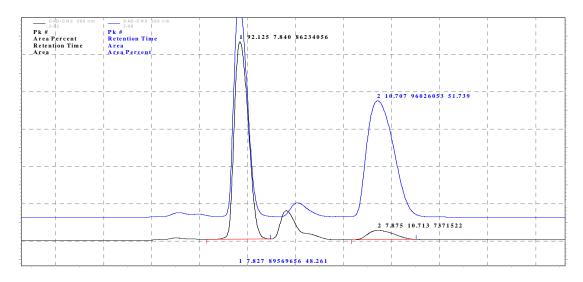
User detector results:

Retention Time	Area	Area %	Height	Height %
22.250	1547499	50.22	41535	70.80
25.467	1534036	49.78	17134	29.20
Totals	3081535	100.00	58669	100.00

HPLC chiralcel AD then AD (0.3% isopropanol in hexanes, 1 mL/min), 89% ee


User detector results:

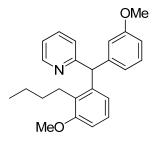
Retention Time	Area	Area %	Height	Height %
16.117	7652436	94.53	133085	96.84
21.950	443222	5.47	4349	3.16
Totals	8095658	100.00	137434	100.00


Area% report for racemic (blue line):

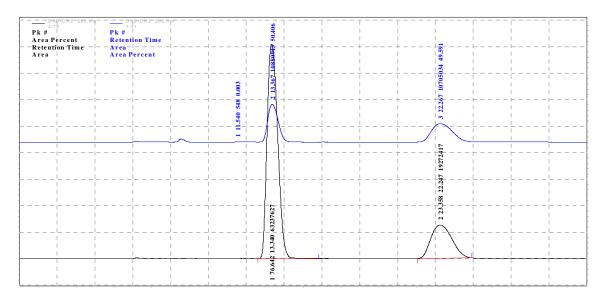
User detector results:

Retention Time	Area	Area %	Height	Height %
16.250	6608906	50.54	112129	67.15
21.733	6466840	49.46	54864	32.85
Totals	13075746	100.00	166993	100.00

HPLC chiralcel OD then AD (5% isopropanol in hexane, 1 mL/min), 84% ee


DAD-CH2 205 nm results

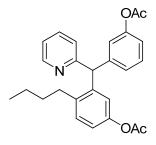
Retention Time	Area	Area %	Height	Height %
7.840	86234056	92.12	4232729	95.56
10.713	7371522	7.88	196813	4.44
Totals	93605578	100.00	4429542	100.00


Area% report for racemic (blue line):

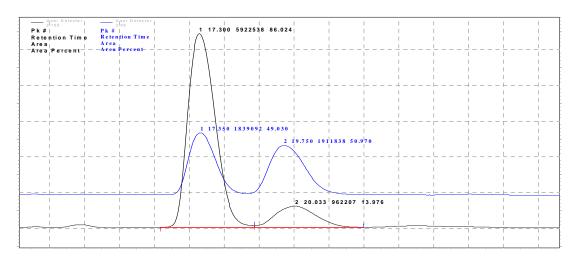
DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
7.827	89569656	48.26	4583817	64.81
10.707	96026053	51.74	2489062	35.19
Totals	185595709	100.00	7072879	100.00

HPLC chiralcel OD then AD (5% isopropanol in hexane, 1 mL/min), 54% ee


DAD-CH2 205 nm results

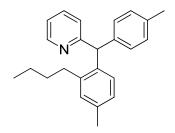
Retention Time	Area	Area %	Height	Height %
13.340	63237627	76.64	1619666	86.61
22.247	19272417	23.36	250295	13.39
Totals	82510044	100.00	1869961	100.00


Area% report for racemic (blue line):

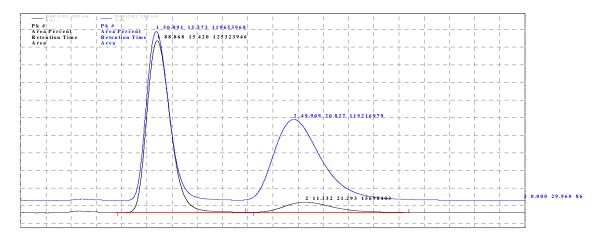
DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
13.367	10880945	50.41	286617	67.31
22.267	10705034	49.59	139102	32.67
Totals	21586527	100.00	425822	100.00

HPLC chiralcel OD then AD (6% isopropanol in hexanes, 1 mL/min), 72% ee


User detector results:

Retention Time	Area	Area %	Height	Height %
17.300	5922538	86.02	108320	90.12
20.033	962207	13.98	11880	9.88
Totals	6884745	100.00	120200	100.00


Area% report for racemic (blue line):

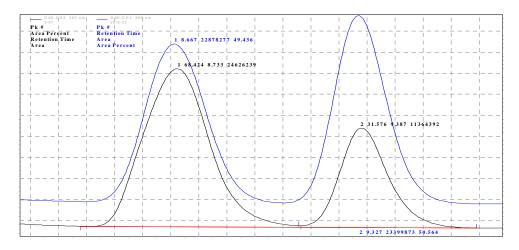
User detector results:

Retention Time	Area	Area %	Height	Height %
17.350	1839092	49.03	34444	55.88
19.750	1911838	50.97	27198	44.12
Totals	3750930	100.00	61642	100.00

HPLC chiralcel OD then AD (0.5% isopropanol in hexanes, 1 mL/min), 78% ee

DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
15.420	125323946	88.87	1946476	94.35
21.293	15698403	11.13	116504	5.65
Totals	141022401	100.00	2062980	100.00


Area% report for racemic (blue line):

DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
15.373	9046483	51.10	148247	68.26
20.827	8655610	48.90	68930	31.74
Totals	17702093	100.00	217177	100.00

HPLC chiralcel OD-H then OD (1% isopropanol in hexane, 1 mL/min), 37% ee

DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
8.733	24626239	68.42	1498695	61.38
9.387	11364392	31.58	942950	38.62
Totals	35990631	100.00	2441645	100.00

Area% report for racemic (blue line):

DAD-CH2 205 nm results

Retention Time	Area	Area %	Height	Height %
8.667	22878277	49.44	1499785	45.76
9.327	23399873	50.56	1777587	54.24
Totals	46278150	100.00	3277372	100.00

References and notes:

- [1]. Moye-Sherman, D.; Jin, S.; Ham, I.; Lim, D.; Scholtz, J.; Burgess, K. J. Am. Chem. Soc. 1998, 120, 9435.
- [2]. Bohme, T. M.; Keim, C.; Kreutzmann, K.; Linder, M.; Dingermann, T.; Dannhartd, G.; Mutschler, E.; Lambrecht, G. *J. Med. Chem.* **2003**, *46*, 856.
- [3]. Klumpp, D. A.; Zhang, Y.; Kindelin, P. J.; Lau, S. Tetrahedron 2006, 62, 5915.
- [4]. Jones, C. D.; Winter, M. A.; Hirsch, K. S.; Stamm, N.; Taylor, H. M. H.; Holden, E.; Davenport, J.
- D.; Krumkalns, E. V.; Suhr, R. G. J. Med. Chem. 1990, 33, 416.
- [5]. Julia, L.; Riera, J.; Teixido, R. J. Chem. Soc., Perkin Trans. 1 1991, 1101.
- [6]. Efange, S. M. N.; Michelson, R. H.; Remmel, R. P.; Boudreau, R. J.; Dutta, A. K; Freshler, A. J. Med. Chem. 1990, 33, 3133.
- [7]. General procedure for the synthesis of L-Leucine chiral ligands: Buckley, T. F.; Rapport, H.; *J. Am. Chem. Soc.* **1981**, *103*, 6157.
- [8]. Itoh, O.; Honnami, T.; Amano, A.; Murata, K.; Koichi, Y.; Sugita, T. J. Org. Chem. 1992, 57, 7334.
- [9]. Balog, A.; Breazu, D.; Voinescu, V.; Herman, M.; Vargha, E.; Ramontian, E. Rev. Roum. Chim. 1973, 18, 123.
- [10]. Gunnarsson, K.; Grehn, L.; Ragnarsson, U. Angew. Chem. 1988, 100, 411.
- [11]. Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634.