

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

Supporting Information

for

**[Ru(phgly)₂(binap)]–Li₂CO₃: A Highly Active,
Robust, and Enantioselective Catalyst for
Cyanosilylation of Aldehydes**

Nobuhito Kurono, Kenta Arai, Masato Uemura and

Takeshi Ohkuma*

Division of Chemical Process Engineering,
Graduate School of Engineering
Hokkaido University, Sapporo 060-8628, Japan.

CONTENTS

(A) General Remarks	Page 2
(B) Preparation of [Ru{(S)-phgly}₂{(S)-binap}] [(S,S,S)-3]	Page 3
(C) General Procedure of Asymmetric Cyanosilylation (S/C = 10,000)	Page 4
(D) Analytical Data of Asymmetric Cyanosilylation Products	Page 5
(E) Determination of the Absolute Configuration of Products	Page 12
(F) Asymmetric Cyanosilylation of Benzaldehyde (1a) with an S/C of 100,000	Page 16
(G) ESI-MS and ¹H-NMR Spectra of Ru Species	Page 17
(H) Experimental Data on Nonlinear Effect and Effect of the Concentration of the Ru Complex (3)	Page 19
(I) References	Page 20

(A) General Remarks

Gas chromatographic (GC) analysis was conducted on a Shimadzu GC-17A or GC-2010 instrument using helium carrier gas (72.0 kPa). NMR spectra were obtained on a JEOL JNM-EX270 or JNM-A400 spectrometer. Carbon multiplicity was assigned by DEPT experiments. IR spectra were recorded on a JASCO FT/IR-4100 spectrophotometer. Optical rotations were taken on a JASCO DIP-360 polarimeter. Silica-gel column chromatography was performed with Silica Gel 60N (63–210 µm; Kanto Chemical Co. Inc). Preparative thin layer chromatography (TLC) was carried out with PLC plates (20 x 20 cm, silica gel 60F₂₅₄, 1.0 mm; Merck Ltd). Mass-spectrometry measurements were carried out at the Center for Instrumental Analysis, Hokkaido University.

(B) Preparation of [Ru{(S)-phgly}₂{(S)-binap}] [(S,S,S)-3]

A dry, 100-mL Schlenk tube [Note 1] connected to a supply of argon [Note 2] was equipped with a Teflon-coated magnetic stirring bar and a glass stopper. The vessel was charged with [RuCl₂(benzene)]₂ (258 mg, 0.52 mmol) [Note 3] and (S)-BINAP (661 mg, 1.06 mmol) [Note 4], and then was evacuated and filled with argon. *N,N*-Dimethylformamide (DMF) (15 mL) [Note 5] was introduced with a syringe under a stream of argon. The reddish brown suspension was stirred at 100 °C for 10 min and the resulting clear reddish brown solution including a BINAP–Ru(II) complex was cooled to 25 °C.^[1]

Another dry, 50-mL Schlenk tube was charged with sodium (S)-phenylglycinate (533 mg, 3.08 mmol) [Note 6] and CH₃OH (30 mL) [Note 7], and the solution was degassed by three freeze-thaw cycles. It was transferred into the DMF solution of the BINAP–Ru(II) complex described above by a syringe under a stream of argon, and the obtained light red solution was stirred at 25 °C for 12 h. Water (50 mL) was added to the solution with vigorous stirring, precipitating a yellowish orange solid. After filtration, the collected solid was dissolved in CH₂Cl₂ (40 mL). The solution was washed with three 50-mL-portions of water, and dried over MgSO₄. After filtration through a celite pad, the solution was concentrated under reduced pressure (0.4 mmHg) to give a yellowish orange solid. The crude product was purified by preparative TLC (silica gel, eluent; ethyl acetate, *R*_f = 0.45–0.61, extraction with a mixture of CH₂Cl₂ and CH₃OH (10:1)). The obtained yellow solid was reprecipitated with a mixture of CH₂Cl₂ (10 mL) and pentane (100 mL) followed by filtration and drying under the reduced pressure to afford (S,S,S)-3 as a light yellow powder (787 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.45 (brs, 2H, NHH), 3.23 (brs, 2H, NHH), 3.63 (t, 2H, *J* = 8.3 Hz, 2PhCH), 6.24 (d, 2H, *J* = 9.3 Hz, aromatic H), 6.50 (m, 6H, aromatic H), 6.71 (m, 6H, aromatic H), 7.07–7.67 (m, 24H, aromatic H), 8.06 ppm (m, 4H, aromatic H); ³¹P NMR (161.7 MHz, CDCl₃): δ = 52.3 ppm (s); ESI-MS: *m/z* calcd for C₆₀H₄₈N₂O₄P₂Ru: 1024.21494 ([M]⁺); found: 1024.21231.

Notes

[1] All apparatuses were dried in a 55 °C oven before use.

[2] Argon of 99.99% purity was used.

[3] [RuCl₂(benzene)]₂ was obtained from Aldrich Co.

[4] (S)-BINAP was available from Kanto Chemical Co.

[5] Anhydrous DMF (99.5% purity) was purchased from Kanto Chemical Co., and was degassed by three freeze-thaw cycles before use.

[6] (S)-Phenylglycine was available from Acros Co. Its sodium salt was prepared by mixing with equimolar amounts of NaOH in an aqueous solution.

[7] Anhydrous CH₃OH (99.9% purity) was purchased from Kanto Chemical Co.

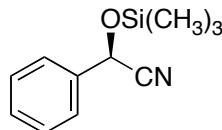
(C) General Procedure of Asymmetric Cyanosilylation (S/C = 10,000)

Cyanosilylation of benzaldehyde (**1a**) was described as the typical reaction procedure.

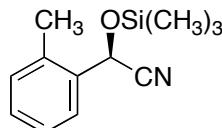
Caution: (CH₃)₃SiCN must be used in a well-ventilated hood due to its high toxicity.

A 40-mL Schlenk flask equipped with a Teflon-coated magnetic stirring bar was filled with argon.[Note 1] (CH₃)₃SiCN (1.19 g, 12.0 mmol) [Note 2] and 0.10 M aqueous solution of Li₂CO₃ (10 μ L, 1.0 μ mol) [Note 3] were placed in the flask, and the mixture was stirred for 20 min at 25 °C. To the pale yellow solution were added (C₂H₅)₂O (10 mL) [Note 4] and a 20 mM-THF solution [Note 4] of (S,S,S)-**3** (50 μ L, 1.0 μ mol), and the mixture was stirred for 30 min. The resulting yellow solution was cooled down to -78 °C. Then **1a** (1.05 g, 9.9 mmol) was charged into the flask, and the mixture was stirred for 12 h. After the solvent and the volatile compounds were evaporated under reduced pressure at ambient temperature, the residue was purified by a short-path distillation to give (R)-2-phenyl-2-trimethylsilyloxyacetonitrile [(R)-**2a**] (1.99 g, 98% yield, 97% ee) as a colorless oil. Bp 68 °C / 0.08 mmHg; $[\alpha]_D^{23} = +28.4$ ($c = 1.12$, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 0.23 (s, 9H, Si(CH₃)₃), 5.50 (s, 1H, CHCN), 7.37–7.50 ppm (m, 5H, aromatic H); ¹³C NMR (100 MHz, CDCl₃): δ = -0.3, 63.9, 119.2, 126.3, 128.9, 129.3, 136.2 ppm; HRMS (EI): *m/z* calcd for C₁₁H₁₅NOSi: 205.0923 ([M]⁺); found: 205.0931. The ee of **2a** was determined by GC analysis: column, CP-Chirasil-Dex (0.32 mm i.d. x 25 m, df = 0.25 μ m, Varian); column temp, 110 °C; injection temp, 220 °C; retention time (*t_R*) of (R)-**2a**, 14.7 min (98.4%); *t_R* of (S)-**2a**, 14.3 min (1.6%).

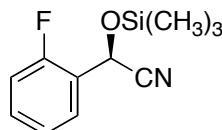
Notes


[1] Argon of 99.99% purity was used.

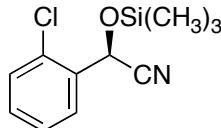
[2] (CH₃)₃SiCN purchased from Wako Pure Chemical Industries, Ltd. was purified by distillation before use.


[3] Li₂CO₃ was available from Aldrich Co., Ltd.

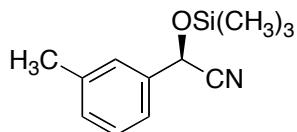
[4] Anhydrous $(C_2H_5)_2O$ (99.5% purity) and THF (99.5% purity) were purchased from Kanto Chemical Co.


(D) Analytical Data of Asymmetric Cyanosilylation Products

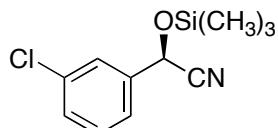
(R)-2-Phenyl-2-trimethylsilyloxyacetonitrile [(R)-2a]. See Part C.



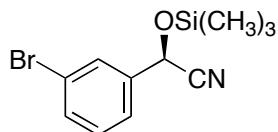
(R)-2-(2-Methylphenyl)-2-trimethylsilyloxyacetonitrile [(R)-2b]. 99% (isolated yield). Bp 75 °C / 0.08 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +24.7$ ($c = 1.00, CHCl_3$), 96% ee; 1H NMR (400 MHz, $CDCl_3$): $\delta = 0.20$ (s, 9H, $Si(CH_3)_3$), 2.44 (s, 3H, $CH_3C_6H_4$), 5.57 (s, 1H, CHCN), 7.20–7.30 (m, 3H, aromatic H), 7.52 ppm (d, $J = 6.8$ Hz, 1H, aromatic H); ^{13}C NMR (100 MHz, $CDCl_3$): $\delta = -0.3, 18.8, 62.0, 118.8, 126.4, 127.0, 129.4, 131.1, 134.1, 135.6$ ppm; HRMS (EI): m/z calcd for $C_{12}H_{17}NOSi$: 219.1080 ($[M]^+$); found: 219.1065; GC: column, CP-Chirasil-Dex; column temp, 140 °C; injection temp, 220 °C; t_R of (R)-2b, 19.5 min (98.0%); t_R of (S)-2b, 18.9 min (2.0%).



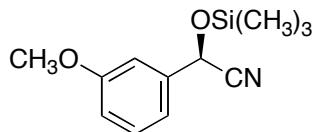
(R)-2-(2-Fluorophenyl)-2-trimethylsilyloxyacetonitrile [(R)-2c]. 97% (isolated yield). Bp 63 °C / 0.08 mmHg (bulb-to-bulb); $[\alpha]_D^{22} = +24.6$ ($c = 1.00, CHCl_3$), 96% ee; 1H NMR (270 MHz, $CDCl_3$): $\delta = 0.24$ (s, 9H, $Si(CH_3)_3$), 5.76 (s, 1H, CHCN), 7.10 (m, 1H, aromatic H), 7.23 (m, 1H, aromatic H), 7.40 (m, 1H, aromatic H), 7.65 ppm (m, 1H, aromatic H); ^{13}C NMR (67.8 MHz, $CDCl_3$): $\delta = -0.5, 57.6$ (d, $^3J_{C-F} = 5.0$ Hz), 115.6 (d, $^2J_{C-F} = 20.7$ Hz), 118.3, 123.8 (d, $^2J_{C-F} = 13.2$ Hz), 124.7 (d, $^3J_{C-F} = 3.3$ Hz), 128.4 (d, $^4J_{C-F} = 2.5$ Hz), 131.3 (d, $^3J_{C-F} = 8.3$ Hz), 159.4 ppm (d, $^1J_{C-F} = 248.9$ Hz); HRMS (EI): m/z calcd for $C_{11}H_{14}FNOSi$: 223.0829 ($[M]^+$); found: 223.0846; GC: column,


CP-Chirasil-Dex; column temp, 110 °C; injection temp, 220 °C; t_R of (*R*)-**2c**, 11.5 min (97.9%); t_R of (*S*)-**2c**, 11.1 min (2.1%).

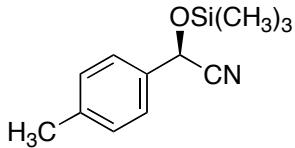
(R)-2-(2-Chlorophenyl)-2-trimethylsilyloxyacetonitrile [(R)-2d]. 97% (isolated yield). Bp 71 °C / 0.06 mmHg (bulb-to-bulb); $[\alpha]_D^{22} = +6.9$ (*c* = 1.00, CHCl₃), 94% *ee*; ¹H NMR (270 MHz, CDCl₃): δ = 0.26 (s, 9H, Si(CH₃)₃), 5.80 (s, 1H, CHCN), 7.34–7.40 (m, 3H, aromatic H), 7.73 ppm (dd, 1H, *J* = 2.4 and 7.3 Hz, aromatic H); ¹³C NMR (67.8 MHz, CDCl₃): δ = -0.3, 60.7, 118.3, 127.5, 128.3, 129.7, 130.6, 132.0, 133.9 ppm; HRMS (EI): *m/z* calcd for C₁₁H₁₄ClNOSi: 239.0533 ([M]⁺); found: 239.0543; GC: column, CP-Chirasil-Dex; column temp, 110 °C; injection temp, 220 °C; t_R of (*R*)-**2d**, 25.3 min (97.2%); t_R of (*S*)-**2d**, 24.5 min (2.8%).

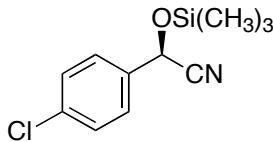


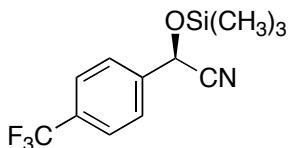
(R)-2-(3-Methylphenyl)-2-trimethylsilyloxyacetonitrile [(R)-2e]. 99% (isolated yield). Bp 85 °C / 0.10 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +30.1$ (*c* = 1.00, CHCl₃), 97% *ee*; ¹H NMR (400 MHz, CDCl₃): δ = 0.24 (s, 9H, Si(CH₃)₃), 2.39 (s, 3H, CH₃C₆H₄), 5.46 (s, 1H, CHCN), 7.19–7.33 ppm (m, 4H, aromatic H); ¹³C NMR (100 MHz, CDCl₃): δ = -0.3, 21.3, 63.6, 119.2, 123.4, 127.0, 128.8, 130.1, 136.1, 138.8 ppm; HRMS (EI): *m/z* calcd for C₁₂H₁₇NOSi: 219.1080 ([M]⁺); found: 219.1087; GC: column, InertCap CHIRAMIX (0.25 mm i.d. x 30 m, df = 0.25 μm, GL science); column temp, 150 °C; injection temp, 220 °C; t_R of (*R*)-**2e**, 23.3 min (98.3%); t_R of (*S*)-**2e**, 24.0 min (1.7%).



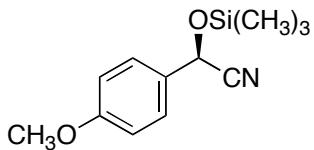
(R)-2-(3-Chlorophenyl)-2-trimethylsilyloxyacetonitrile [(R)-2f]. 98% (isolated


yield). Bp 84 °C / 0.10 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +25.3$ ($c = 1.00$, CHCl_3), 98% ee ; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.25$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.47 (s, 1H, CHCN), 7.35–7.38 (m, 3H, aromatic H), 7.47 ppm (d, 1H, $J = 1.5$ Hz, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.3$, 62.9, 118.7, 124.3, 126.5, 129.5, 130.2, 134.9, 138.1 ppm; HRMS (EI): m/z calcd for $\text{C}_{11}\text{H}_{14}\text{ClNOSi}$: 239.0533 ($[\text{M}]^+$); found: 239.0547; GC: column, Chiraldex γ -TA (0.25 mm i.d. x 30 m, df = 0.25 μm , Superco); column temp, 130 °C; injection temp, 220 °C; t_R of (*R*)-**2f**, 23.4 min (98.9%); t_R of (*S*)-**2f**, 24.6 min (1.1%).

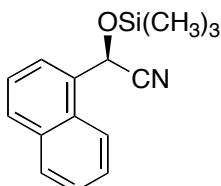

(*R*)-2-(3-Bromophenyl)-2-trimethylsilyloxyacetonitrile [(*R*)-2g]. 98% (isolated yield). Bp 85 °C / 0.05 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +20.2$ ($c = 1.00$, CHCl_3), 98% ee ; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.26$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.46 (s, 1H, CHCN), 7.29 (t, 1H, $J = 7.8$ Hz, aromatic H), 7.40 (d, 1H, $J = 7.8$ Hz, aromatic H), 7.53 (d, 1H, $J = 7.8$ Hz, aromatic H), 7.62 ppm (s, 1H, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.3$, 62.8, 118.6, 122.9, 124.8, 129.3, 130.5, 132.5, 138.3 ppm; HRMS (EI): m/z calcd for $\text{C}_{11}\text{H}_{14}\text{BrNOSi}$: 283.0028 ($[\text{M}]^+$); found: 283.0022; GC: column, Chiraldex γ -TA; column temp, 135 °C; injection temp, 220 °C; t_R of (*R*)-**2g**, 29.8 min (98.8%); t_R of (*S*)-**2g**, 30.9 min (1.2%).


(*R*)-2-(3-Methoxyphenyl)-2-trimethylsilyloxyacetonitrile [(*R*)-2h]. 97% (isolated yield). Bp 87 °C / 0.08 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +25.3$ ($c = 1.00$, CHCl_3), 95% ee ; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.23$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 3.83 (s, 3H, CH_3O), 5.46 (s, 1H, CHCN), 6.91–7.04 (m, 3H, aromatic H), 7.32 ppm (t, 1H, $J = 7.9$ Hz, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.3$, 55.3, 63.5, 111.8, 114.9, 118.5, 119.1, 130.0, 137.7, 160.0 ppm; HRMS (EI): m/z calcd for $\text{C}_{12}\text{H}_{17}\text{NO}_2\text{Si}$: 235.1029 ($[\text{M}]^+$); found: 235.1017; GC: column, InertCap CHIRAMIX; column temp, 140 °C; injection temp, 220 °C; t_R of (*R*)-**2h**, 61.1 min (97.5%); t_R of (*S*)-**2h**, 62.4 min (2.5%).

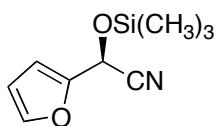
(R)-2-(4-Methylphenyl)-2-trimethylsilyloxyacetonitrile [(R)-2i]. 95% (isolated yield). Bp 69 °C / 0.10 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +29.9$ ($c = 1.00$, CHCl_3), 97% ee ; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.22$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 2.37 (s, 3H, $\text{CH}_3\text{C}_6\text{H}_4$), 5.45 (s, 1H, CHCN), 7.22 (d, 2H, $J = 8.3$ Hz, aromatic H), 7.35 ppm (d, 2H, $J = 8.3$ Hz, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.3$, 21.2, 63.5, 119.3, 126.4, 129.6, 133.4, 139.3 ppm; HRMS (EI): m/z calcd for $\text{C}_{12}\text{H}_{17}\text{NOSi}$: 219.1080 ($[\text{M}]^+$); found: 219.1069; GC: column, Chiraldex γ -TA; column temp, 120 °C; injection temp, 220 °C; t_R of (R)-2i, 26.4 min (98.3%); t_R of (S)-2i, 27.5 min (1.7%).

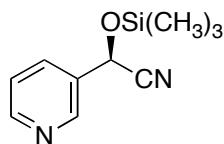


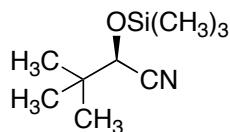
(R)-2-(4-chlorophenyl)-2-trimethylsilyloxyacetonitrile [(R)-2j]. 96% (isolated yield). Bp 83 °C / 0.15 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +20.3$ ($c = 1.00$, CHCl_3), 97% ee ; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.24$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.47 (s, 1H, CHCN), 7.40 ppm (s, 4H, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.3$, 62.9, 118.8, 127.6, 129.1, 134.8, 135.3 ppm; HRMS (EI): m/z calcd for $\text{C}_{11}\text{H}_{14}\text{ClNOSi}$: 239.0533 ($[\text{M}]^+$); found: 239.0528; GC: column, Chiraldex γ -TA; column temp, 135 °C; injection temp, 220 °C; t_R of (R)-2j, 24.5 min (98.4%); t_R of (S)-2j, 25.6 min (1.6%).

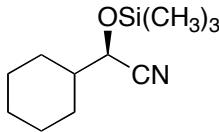


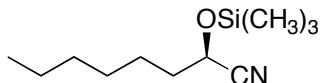
(R)-2-(4-Trifluoromethylphenyl)-2-trimethylsilyloxyacetonitrile [(R)-2k]. 98% (isolated yield). Bp 67 °C / 0.15 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +19.6$ ($c = 1.00$, CHCl_3), 94% ee ; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.27$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.55 (s, 1H, CHCN), 7.61 (d, 2H, $J = 8.6$ Hz, aromatic H), 7.70 ppm (d, 2H, $J = 8.6$ Hz, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.4$, 63.0, 118.5, 123.7 (q, $^1J_{\text{C-F}} = 272.5$ Hz), 126.0 (q, $J_{\text{C-F}} = 4.1$ Hz), 126.6, 131.6 (q, $^2J_{\text{C-F}} = 32.3$ Hz), 140.1 ppm; HRMS (EI): m/z

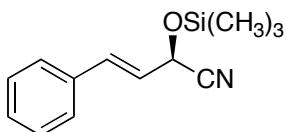

calcd for $C_{12}H_{14}F_3NOSi$: 273.0797 ($[M]^+$); found: 273.0788; GC: column, CP-Chirasil-Dex; column temp, 130 °C; injection temp, 220 °C; t_R of (*R*)-**2k**, 6.7 min (97.2%); t_R of (*S*)-**2k**, 7.0 min (2.8%).


(*R*)-2-(4-Methoxyphenyl)-2-trimethylsilyloxyacetonitrile [(*R*)-2l]. 99% (isolated yield). Bp 96 °C / 0.10 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +19.9$ ($c = 1.00, CHCl_3$), 96% *ee*; 1H NMR (400 MHz, $CDCl_3$): $\delta = 0.21$ (s, 9H, $Si(CH_3)_3$), 3.82 (s, 3H, CH_3O), 5.43 (s, 1H, CHCN), 6.93 (d, 2H, $J = 8.9$ Hz, aromatic H), 7.39 ppm (d, 2H, $J = 8.9$ Hz, aromatic H); ^{13}C NMR (100 MHz, $CDCl_3$): $\delta = -0.2, 55.3, 63.3, 114.3, 119.3, 127.9, 128.5, 160.3$ ppm; HRMS (EI): m/z calcd for $C_{12}H_{17}NO_2Si$: 235.1029 ($[M]^+$); found: 235.1014; GC: column, Chiraldex γ -TA; column temp, 140 °C; injection temp, 220 °C; t_R of (*R*)-**2l**, 25.5 min (97.8%); t_R of (*S*)-**2l**, 26.6 min (2.2%).

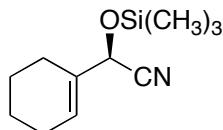

(*R*)-2-(Naphth-1-yl)-2-trimethylsilyloxyacetonitrile [(*R*)-2m]. 97% (isolated yield). Bp 116 °C / 0.15 mmHg (bulb-to-bulb); $[\alpha]_D^{22} = +31.9$ ($c = 1.50, CHCl_3$), 95% *ee*; 1H NMR (400 MHz, $CDCl_3$): $\delta = 0.20$ (s, 9H, $Si(CH_3)_3$), 6.05 (s, 1H, CHCN), 7.47–7.64 (m, 3H, aromatic H), 7.71 (d, 1H, $J = 6.8$ Hz, aromatic H), 7.91 (m, 2H, aromatic H), 8.17 ppm (d, 1H, $J = 8.8$ Hz, aromatic H); ^{13}C NMR (100 MHz, $CDCl_3$): $\delta = -0.2, 62.7, 119.1, 123.1, 125.1, 125.4, 126.3, 127.0, 128.9, 129.9, 130.4, 131.3, 133.9$ ppm; HRMS (EI): m/z calcd for $C_{15}H_{17}NOSi$: 255.1079 ($[M]^+$); found: 255.1073. GC: column, CP-Chirasil-Dex; column temp, 160 °C; injection temp, 220 °C; t_R of (*R*)-**2m**, 19.9 min (97.4%); t_R of (*S*)-**2m**, 3.2 min (2.6%).


(R)-2-(Fur-2-yl)-2-trimethylsilyloxyacetonitrile [(R)-2n]. 97% (isolated yield). Bp 59 °C / 0.15 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +22.3$ ($c = 1.00$, CHCl_3), 93% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.20$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.54 (s, 1H, CHCN), 6.41 (dd, 1H, $J = 2.0$ and 3.4 Hz, aromatic H), 6.54 (d, 1H, $J = 3.4$ Hz, aromatic H), 7.46 ppm (d, 1H, $J = 2.0$ Hz, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.4$, 57.4, 109.7, 110.8, 117.1, 143.9, 148.2 ppm; HRMS (EI): m/z calcd for $\text{C}_9\text{H}_{13}\text{NO}_2\text{Si}$: 195.0716 ($[\text{M}]^+$); found: 195.0722; GC: column, CP-Chirasil-Dex; column temp, 130 °C; injection temp, 220 °C; t_R of (R)-2n, 3.4 min (96.3%); t_R of (S)-2n, 3.2 min (3.7%).


(R)-2-(Pyridin-3-yl)-2-trimethylsilyloxyacetonitrile [(R)-2o]. 99% (GC yield); 93% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.26$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.55 (s, 1H, CHCN), 7.38 (dd, 1H, $J = 4.9$ and 7.8 Hz, aromatic H), 7.84 (d, 1H, $J = 7.8$ Hz, aromatic H), 8.66 ppm (dd, 1H, $J = 1.5$ and 4.9 Hz, aromatic H), 8.70 (d, 1H, $J = 1.5$ Hz, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.4$, 61.6, 118.3, 123.7, 132.2, 134.0, 147.8, 150.7 ppm; HRMS (EI): m/z calcd for $\text{C}_{10}\text{H}_{14}\text{N}_2\text{OSi}$: 206.0875 ($[\text{M}]^+$); found: 206.0878; GC: column, Chiraldex γ -TA; column temp, 130 °C; injection temp, 220 °C; t_R of (R)-2o, 19.5 min (96.3%); t_R of (S)-2o, 20.8 min (3.7%). The corresponding cyanohydrin was obtained as the isolated product in the yield of 91%.

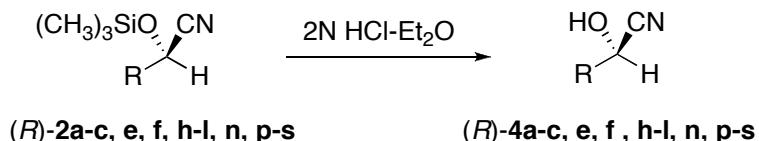

(R)-3,3-dimethyl-2-trimethylsilyloxybutanenitrile [(R)-2p]. 92% (isolated yield). Bp 90 °C / 45 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +68.5$ ($c = 1.00$, CHCl_3), 95% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.21$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 1.01 (s, 9H, $\text{C}(\text{CH}_3)_3$), 3.99 ppm (s, 1H, CHCN); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.5$, 24.9, 35.8, 70.8, 119.3 ppm; HRMS (EI): m/z calcd for $\text{C}_9\text{H}_{19}\text{NOSi}$: 185.1236 ($[\text{M}]^+$); found: 185.1239; GC: column, CP-Chirasil-Dex; column temp, 70 °C; injection temp, 220 °C; t_R of (R)-2p, 8.7 min (97.7%); t_R of (S)-2p, 9.3 min (2.3%).

(R)-2-Cyclohexyl-2-trimethylsilyloxyacetonitrile [(R)-2q]. 97% (isolated yield). Bp 65 °C / 0.17 mmHg (bulb-to-bulb); $[\alpha]_D^{25} = +44.6$ ($c = 1.00$, CHCl_3), 88% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.20$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 1.03–1.28 (m, 5H, *cyclo-C₆H₁₁*), 1.64–1.89 (m, 6H, *cyclo-C₆H₁₁*), 4.14 ppm (d, 1H, $J = 6.4$ Hz, CHCN); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.5$, 25.5, 26.0, 27.9, 28.1, 42.9, 66.5, 119.4 ppm; HRMS (EI): *m/z* calcd for $\text{C}_{11}\text{H}_{21}\text{NOSi}$: 211.1392 ($[\text{M}]^+$); found: 211.1388; GC: column, Chiraldex γ -TA; column temp, 110 °C; injection temp, 220 °C; t_R of (R)-2q, 17.2 min (93.8%); t_R of (S)-2q, 18.3 min (6.2%).



(R)-2-Trimethylsilyloxyoctanenitrile [(R)-2r]. 98% (isolated yield). Bp 58 °C / 0.15 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +34.1$ ($c = 1.00$, CHCl_3), 70% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.21$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 0.89 (t, 3H, $J = 6.8$ Hz, CH_3CH_2), 1.30–1.55 (m, 8H, $(\text{CH}_2)_4$), 1.75–1.81 (m, 2H, CH_2CH), 4.38 ppm (t, 1H, $J = 6.6$ Hz, CHCN); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.4$, 14.0, 22.5, 24.5, 28.6, 31.5, 36.2, 61.5, 120.1 ppm; HRMS (EI): *m/z* calcd for $\text{C}_{11}\text{H}_{23}\text{NOSi}$: 213.1549 ($[\text{M}]^+$); found: 213.1535; GC: column, CP-Chirasil-Dex; column temp, 100 °C; injection temp, 220 °C; t_R of (R)-2r, 15.5 min (84.9%); t_R of (S)-2r, 16.5 min (15.1%).

(R)-(E)-4-phenyl-2-trimethylsilyloxy-3-butenenitrile [(R)-2s]. 93% (isolated yield). Bp 87 °C / 0.08 mmHg (bulb-to-bulb); $[\alpha]_D^{23} = +4.3$ ($c = 1.00$, CHCl_3), 91% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.26$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 5.12 (dd, 1H, $J = 1.5$ and 5.9 Hz, CHCN), 6.19 (dd, 1H, $J = 5.9$ and 15.6 Hz, $\text{C}_6\text{H}_5\text{CH}=\text{CH}$), 6.81 (dd, 1H, $J = 1.5$ and 15.6 Hz, $\text{C}_6\text{H}_5\text{CH}=\text{CH}$), 7.31–7.42 ppm (m, 5H, aromatic H); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.1$, 62.2, 118.4, 123.5, 126.9, 128.7, 128.8, 133.9, 135.0 ppm; HRMS (EI): *m/z* calcd for $\text{C}_{13}\text{H}_{17}\text{NOSi}$: 231.1079 ($[\text{M}]^+$); found: 231.1074; GC: column,


CP-Chirasil-Dex; column temp, 140 °C; injection temp, 220 °C; t_R of (*R*)-**2s**, 17.3 min (95.3%); t_R of (*S*)-**2s**, 18.2 min (4.7%).

(*R*)-2-(Cyclohexen-1-yl)-2-trimethylsilyloxyacetonitrile [(*R*)-2t**].** 92% (isolated yield). Bp 56 °C / 0.17 mmHg (bulb-to-bulb); $[\alpha]_D^{24} = +15.5$ ($c = 1.00$, CHCl_3), 93% *ee*; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.21$ (s, 9H, $\text{Si}(\text{CH}_3)_3$), 1.58–1.71 (m, 4H, $\text{CH}_2(\text{CH}_2)_2\text{CH}_2$), 2.08–2.10 (m, 4H, $\text{CH}_2\text{C}=\text{CHCH}_2$), 4.76 (s, 1H, CHCN), 5.94 ppm (m, 1H, $\text{C}=\text{CH}$); ^{13}C NMR (100 MHz, CDCl_3): $\delta = -0.3, 21.8, 22.1, 23.8, 24.9, 66.1, 118.8, 127.3, 133.3$ ppm; HRMS (EI): m/z calcd for $\text{C}_{11}\text{H}_{19}\text{NOSi}$: 209.1236 ($[\text{M}]^+$); found: 209.1231; GC: column, Chiraldex γ -TA; column temp, 110 °C; injection temp, 220 °C; t_R of (*R*)-**2t**, 23.7 min (96.5%); t_R of (*S*)-**2t**, 24.5 min (3.5%).

(E) Determination of the Absolute Configuration of Products

The absolute configuration of products **2a–c**, **e**, **f**, **h–l**, **n**, **p–s** were determined by the sign of optical rotation of the corresponding cyanohydrins **4**, which were obtained by treatment of **2** with 2N HCl in $(\text{C}_2\text{H}_5)_2\text{O}$.

(*R*)-2-Hydroxy-2-phenylacetonitrile [(*R*)-4a**].** $[\alpha]_D^{25} +45.4$ ($c = 1.40$, CHCl_3) [lit.^[2] $[\alpha]_D^{24} +36.8$ ($c = 2.00$, CHCl_3) for *R* enantiomer in 85% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.68$ (d, 1H, $J = 6.9$ Hz, OH), 5.56 (d, 1H, $J = 6.9$ Hz, CHCN), 7.45–7.48 (m, 3H, aromatic H), 7.54–7.88 ppm (m, 2H, aromatic H).

(*R*)-2-Hydroxy-2-(2-methylphenyl)acetonitrile [(*R*)-4b**].** $[\alpha]_D^{26} +48.2$ ($c = 0.50$, CHCl_3) [lit.^[3] $[\alpha]_D^{26} +21.3$ ($c = 1.00$, CHCl_3) for *R* enantiomer in 51% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.41$ (s, 3H, CH_3), 3.19 (d, 1H, $J = 6.4$ Hz, OH), 5.62 (d, 1H, $J = 6.4$ Hz, CHCN), 7.21–7.34 (m, 3H, aromatic H), 7.62 ppm (d, 1H, $J = 7.3$ Hz, aromatic H).

(R)-2-Hydroxy-2-(2-fluorophenyl)acetonitrile [(R)-4c]. $[\alpha]_D^{27} +26.4$ ($c = 1.00$, CHCl_3) [lit.^[4] $[\alpha]_D^{20} +21.9$ ($c = 3.60$, CHCl_3) for *R* enantiomer in 84% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.76$ (d, 1H, $J = 6.8$ Hz, OH), 5.80 (d, 1H, $J = 6.8$ Hz, CHCN), 7.16 (ddd, 1H, $J = 1.0$, 8.3, and 9.3 Hz, aromatic H), 7.26 (dt, 1H, $J = 1.0$ and 6.3 Hz, aromatic H), 7.42–7.48 (m, 1H, aromatic H), 7.61–7.65 ppm (m, 1H, aromatic H).

(R)-2-Hydroxy-2-(3-methylphenyl)acetonitrile [(R)-4e]. $[\alpha]_D^{27} +43.4$ ($c = 1.50$, CHCl_3) [lit.^[3] $[\alpha]_D +41.2$ ($c = 3.30$, CHCl_3) for *R* enantiomer in 91% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.39$ (s, 3H, CH_3), 3.05 (d, 1H, $J = 6.8$ Hz, OH), 5.48 (d, 1H, $J = 6.8$ Hz, CHCN), 7.23 (m, 1H, aromatic H), 7.30–7.34 ppm (m, 3H, aromatic H).

(R)-2-Hydroxy-2-(3-chlorophenyl)acetonitrile [(R)-4f]. $[\alpha]_D^{27} +42.3$ ($c = 0.90$, CHCl_3) [lit.^[3] $[\alpha]_D +32.0$ ($c = 1.30$, CHCl_3) for *R* enantiomer in 57% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.89$ (d, 1H, $J = 6.8$ Hz, OH), 5.53 (d, 1H, $J = 6.8$ Hz, CHCN), 7.39–7.41 (m, 3H, aromatic H), 7.55 ppm (brs, 1H, aromatic H).

(R)-2-Hydroxy-2-(3-methoxyphenyl)acetonitrile [(R)-4h]. $[\alpha]_D^{26} +38.1$ ($c = 1.40$, CHCl_3) [lit.^[3] $[\alpha]_D +36.9$ ($c = 1.60$, CHCl_3) for *R* enantiomer in 90% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.88$ (d, 1H, $J = 6.8$ Hz, OH), 3.83 (s, 1H, CH_3O), 5.51 (d, 1H, $J = 6.8$ Hz, CHCN), 6.96 (dd, 1H, $J = 2.4$ and 8.3 Hz, aromatic H), 7.06 (brs, 1H, aromatic H), 7.10 (d, 1H, $J = 7.8$ Hz, aromatic H), 7.36 ppm (t, 1H, $J = 7.8$ Hz, aromatic H).

(R)-2-Hydroxy-2-(4-methylphenyl)acetonitrile [(R)-4i]. $[\alpha]_D^{26} +46.5$ ($c = 1.40$, CHCl_3) [lit.^[3] $[\alpha]_D +47.4$ ($c = 1.60$, CHCl_3) for *R* enantiomer in 92% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.38$ (s, 1H, CH_3), 3.12 (d, 1H, $J = 6.8$ Hz, OH), 5.46 (d, 1H, $J = 6.8$ Hz, CHCN), 7.23 (d, 1H, $J = 8.0$ Hz, aromatic H), 7.39 ppm (d, 1H, $J = 8.0$ Hz, aromatic H).

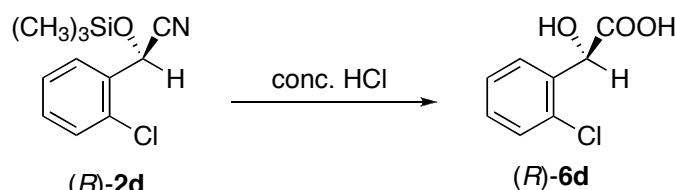
(R)-2-Hydroxy-2-(4-chlorophenyl)acetonitrile [(R)-4j]. $[\alpha]_D^{27} +39.7$ ($c = 0.70$, CHCl_3) [lit.^[3] $[\alpha]_D +27.2$ ($c = 1.50$, CHCl_3) for *R* enantiomer in 66% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.76$ (d, 1H, $J = 6.8$ Hz, OH), 5.54 (d, 1H, $J = 6.8$ Hz, CHCN), 7.42–7.49 ppm (m, 4H, aromatic H).

(R)-2-Hydroxy-2-(4-trifluoromethylphenyl)acetonitrile [(R)-4k]. $[\alpha]_D^{26} +25.0$ ($c = 1.00$, CHCl_3) [lit.^[3] $[\alpha]_D +19.0$ ($c = 1.80$, CHCl_3) for *R* enantiomer in 80% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 3.14$ (d, 1H, $J = 6.8$ Hz, OH), 5.64 (d, 1H, $J = 6.8$ Hz, CHCN), 7.66 (d, 1H, $J = 8.8$ Hz, aromatic H), 7.72 ppm (d, 1H, $J = 8.8$ Hz, aromatic H).

(R)-2-Hydroxy-2-(4-methoxyphenyl)acetonitrile [(R)-4l]. $[\alpha]_D^{26} +40.7$ ($c = 0.90$, CHCl_3) [lit.^[3] $[\alpha]_D +36.3$ ($c = 1.00$, CHCl_3) for *R* enantiomer in 83% *ee*]; ^1H NMR (400

MHz, CDCl_3): $\delta = 2.71$ (d, 1H, $J = 6.8$ Hz, OH), 3.83 (s, 3H, CH_3O), 5.48 (d, 1H, $J = 6.8$ Hz, CHCN), 6.93–6.97 (m, 2H, aromatic H), 7.44–7.47 ppm (m, 2H, aromatic H).

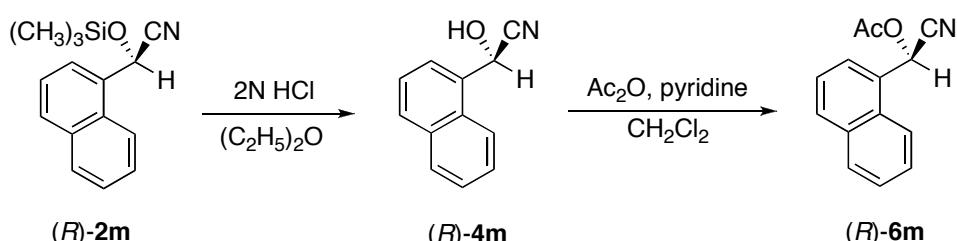
(R)-2-Hydroxy-2-(2-furyl)acetonitrile [(R)-4n]. $[\alpha]_D^{25} +42.2$ ($c = 1.10$, CHCl_3) [lit.^[3] $[\alpha]_D +14.0$ ($c = 1.90$, CHCl_3) for *R* enantiomer in 79% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 3.77$ (d, 1H, $J = 8.0$ Hz, OH), 5.54 (d, 1H, $J = 8.0$ Hz, CHCN), 6.41 (dd, 1H, $J = 2.0$ and 3.4 Hz, aromatic H), 6.58 (d, 1H, $J = 3.4$ Hz, aromatic H), 7.48 ppm (brs, 1H, aromatic H).


(R)-2-Hydroxy-3,3-dimethylbutanenitrile [(R)-4p]. $[\alpha]_D^{26} +21.5$ ($c = 0.70$, CHCl_3) [lit.^[2] $[\alpha]_D^{24} +14.5$ ($c = 1.00$, CHCl_3) for *R* enantiomer in 70% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 1.08$ (s, 9H, $\text{C}(\text{CH}_3)_3$), 2.91 (d, 1H, $J = 6.3$ Hz, OH), 4.13 ppm (d, 1H, $J = 6.3$ Hz, CHCN).

(R)-2-Cyclohexyl-2-hydroxyacetonitrile [(R)-4q]. $[\alpha]_D^{26} +8.5$ ($c = 1.30$, CHCl_3) [lit.^[2] $[\alpha]_D^{24} +6.1$ ($c = 3.80$, CHCl_3) for *R* enantiomer in 65% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 1.05$ –1.33 (m, 5H, *cyclo-C₆H₁₁*), 1.68–1.91 (m, 6H, *cyclo-C₆H₁₁*), 2.89 (d, 1H, $J = 6.3$ Hz, OH), 4.26 ppm (t, 1H, $J = 6.3$ Hz, CHCN).

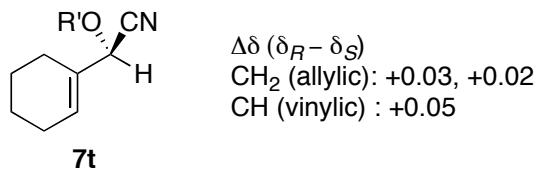
(R)-2-Hydroxyoctanenitrile [(R)-4r]. $[\alpha]_D^{26} +9.7$ ($c = 0.70$, CHCl_3) [lit.^[5] $[\alpha]_D^{26} +9.1$ ($c = 2.80$, CHCl_3) for *R* enantiomer in 66% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 0.90$ (t, 3H, $J = 6.8$ Hz, CH_3CH_2), 1.28–1.39 (m, 6H, $(\text{CH}_2)_3$), 1.47–1.54 (m, 2H, CH_2), 1.83–1.88 (m, 2H, CH_2CH), 2.31 (d, 1H, $J = 6.3$ Hz, OH). 4.48 ppm (q, 1H, $J = 6.8$ Hz, CHCN).

(R)-2-Hydroxy-4-phenyl-3-butenenitrile [(R)-4s]. $[\alpha]_D^{25} +26.6$ ($c = 1.10$, CHCl_3) [lit.^[3] $[\alpha]_D^{24} +19.2$ ($c = 1.90$, CHCl_3) for *R* enantiomer in 72% *ee*]; ^1H NMR (400 MHz, CDCl_3): $\delta = 2.54$ (d, 1H, $J = 7.3$ Hz, OH), 5.17 (ddd, 1H, $J = 1.5$, 5.9 and 7.3 Hz, CHCN), 6.27 (dd, 1H, $J = 5.9$ and 15.6 Hz, $\text{C}_6\text{H}_5\text{CH}=\text{CH}$), 6.93 (dd, 1H, $J = 1.0$ and 15.6 Hz, $\text{C}_6\text{H}_5\text{CH}=\text{CH}$), 7.31–7.44 ppm (m, 5H, aromatic H).


The absolute configuration of **2d** and **2g** were determined by the sign of rotation after conversion to the corresponding mandelic acids **5d** and **5g** according to the procedure described in the literature.^[6]

(R)-2-(2-Chlorophenyl)-2-hydroxyacetic acid [(R)-5d]. $[\alpha]_D^{22} -153$ ($c = 0.60$, C_2H_5OH) [lit.^[7] $[\alpha]_D^{20} -138$ ($c = 0.50$, C_2H_5OH) for *R* enantiomer in 96% *ee*]; 1H NMR (400 MHz, $DMSO-d_6$): $\delta = 3.37$ (brs, 1H, $CHOH$), 5.34 (s, 1H, $CHCN$), 7.30–7.38 (m, 2H, aromatic H), 7.44 (dd, 1H, $J = 2.0$ and 7.7 Hz, aromatic H), 7.51 (dd, 1H, $J = 2.0$ and 7.2 Hz, aromatic H), 12.7 ppm (brs, 1H, $COOH$); ^{13}C NMR (100 MHz, $DMSO-d_6$): $\delta = 69.6, 127.5, 128.9, 129.4, 129.6, 132.4, 138.2, 173.3$ ppm.

(R)-2-(3-Bromophenyl)-2-hydroxyacetic acid [(R)-5g]. $[\alpha]_D^{24} -86.8$ ($c = 0.50$, C_2H_5OH) [lit.^[7] $[\alpha]_D^{20} -84.8$ ($c = 0.50$, C_2H_5OH) for *R* enantiomer in 98% *ee*]; 1H NMR (400 MHz, $DMSO-d_6$): $\delta = 3.35$ (brs, 1H, $CHOH$), 5.06 (s, 1H, $CHCN$), 7.33 (t, 2H, $J = 7.8$ Hz, aromatic H), 7.41 (d, 1H, $J = 7.8$ Hz, aromatic H), 7.57 (d, 1H, $J = 8.3$ Hz, aromatic H), 7.70 (brs, 1H, aromatic H), 12.6 ppm (brs, 1H, $COOH$); ^{13}C NMR (100 MHz, $CDCl_3$): $\delta = 71.8, 121.6, 125.9, 129.4, 130.6, 130.7, 143.1, 173.7$ ppm.


The absolute configuration of product **2m** was determined after conversion to the corresponding acetate **6m** by the following procedures: a) Deprotection of the silyl group by treatment with 2N HCl in $(C_2H_5)_2O$, b) acetylation of the hydroxy group with acetic anhydride and pyridine in CH_2Cl_2 .

(R)-2-Acetoxy-2-(naphth-1-yl)acetonitrile [(R)-6m]. $[\alpha]_D^{25} = +35.2$ ($c = 1.10$,

CHCl₃) [lit.^[8] $[\alpha]_D^{25} -25.6$ (*c* = 1.00, CHCl₃) for *S* enantiomer in 70% *ee*]; ¹H NMR (400 MHz, CDCl₃): δ = 2.21 (s, 3H, COCH₃), 7.04 (s, 1H, CHCN), 7.51–7.66 (m, 3H, aromatic H), 7.82 (d, 1H, *J* = 7.0 Hz, aromatic H), 7.94 (d, 1H, *J* = 7.8 Hz, aromatic H), 7.98 (d, 1H, *J* = 8.4 Hz, aromatic H), 8.03 ppm (d, 1H, *J* = 8.3 Hz, aromatic H); GC: column, CP-Chirasil-Dex; column temp, 160 °C; injection temp, 220 °C; *t*_R of (*R*)-**6m**, 19.9 min; *t*_R of (*S*)-**6m**, 20.6 min.

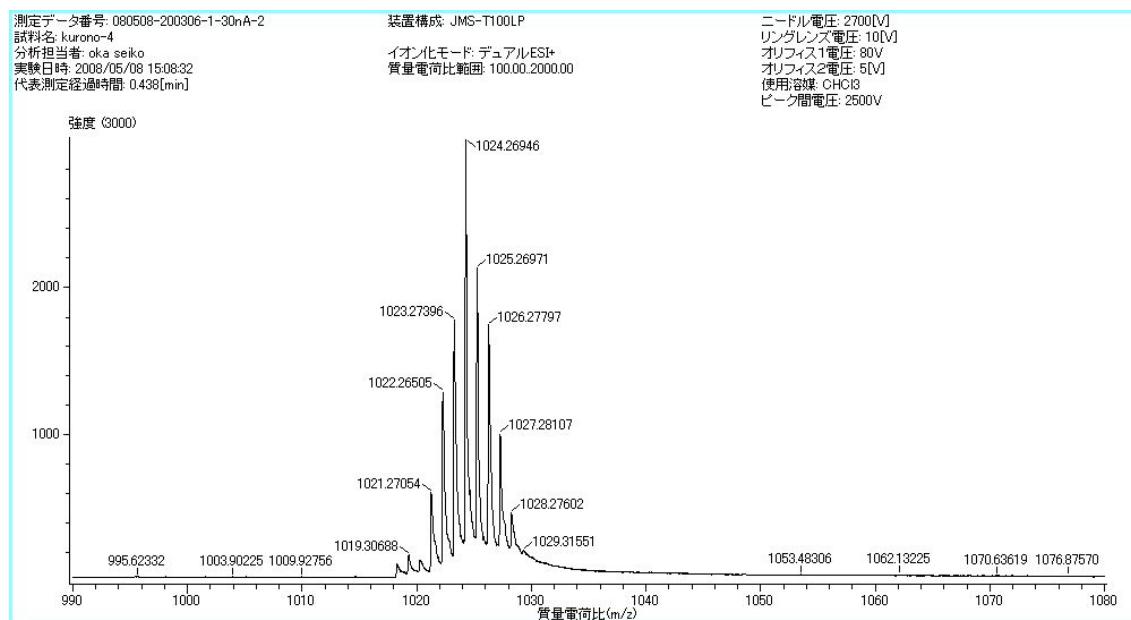
The absolute configuration of **2t** was estimated by ¹H-NMR analysis after conversion to the (*R*)- and (*S*)-2-methoxy-2-phenyl-2-(trifluoromethyl)acetic acid (MTPA) esters **7t** according to the procedure described in the literature.^[9] The values of $\Delta\delta$ ($\delta_R - \delta_S$) listed in Figure S1 were all plus for two allylic and a vinylic protons. Thus, the absolute configuration of **2t** was determined to be *R*.

R' = (*R* or *S*)-MTPA

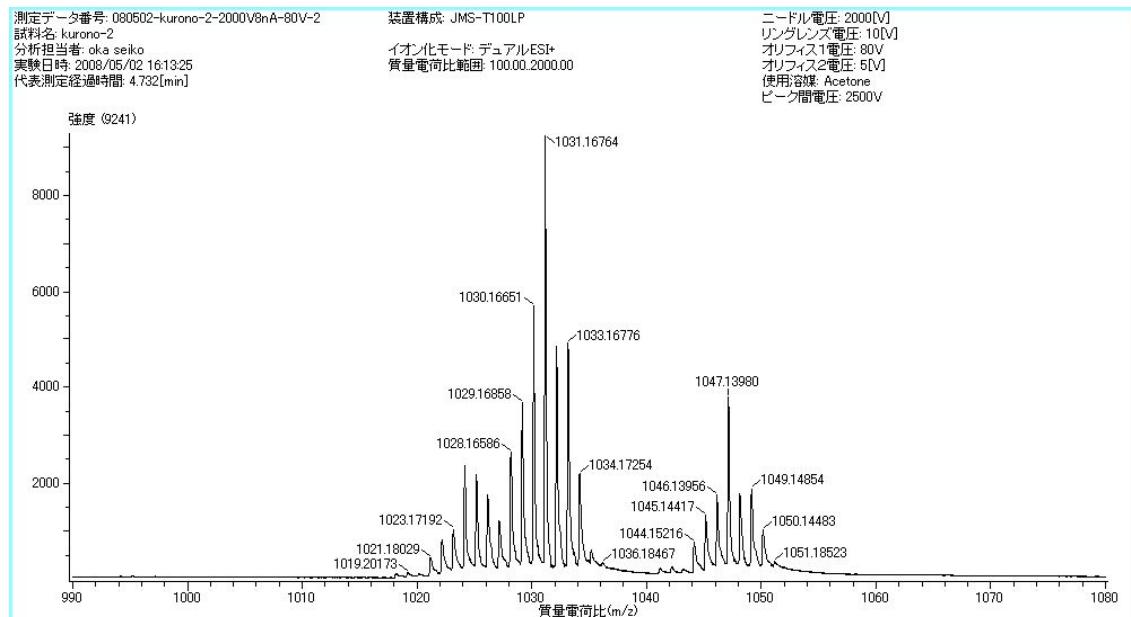
Figure S1. Determination of the absolute configuration

(F) Asymmetric Cyanosilylation of Benzaldehyde (**1a**) with an S/C of 100,000 [Note 1]

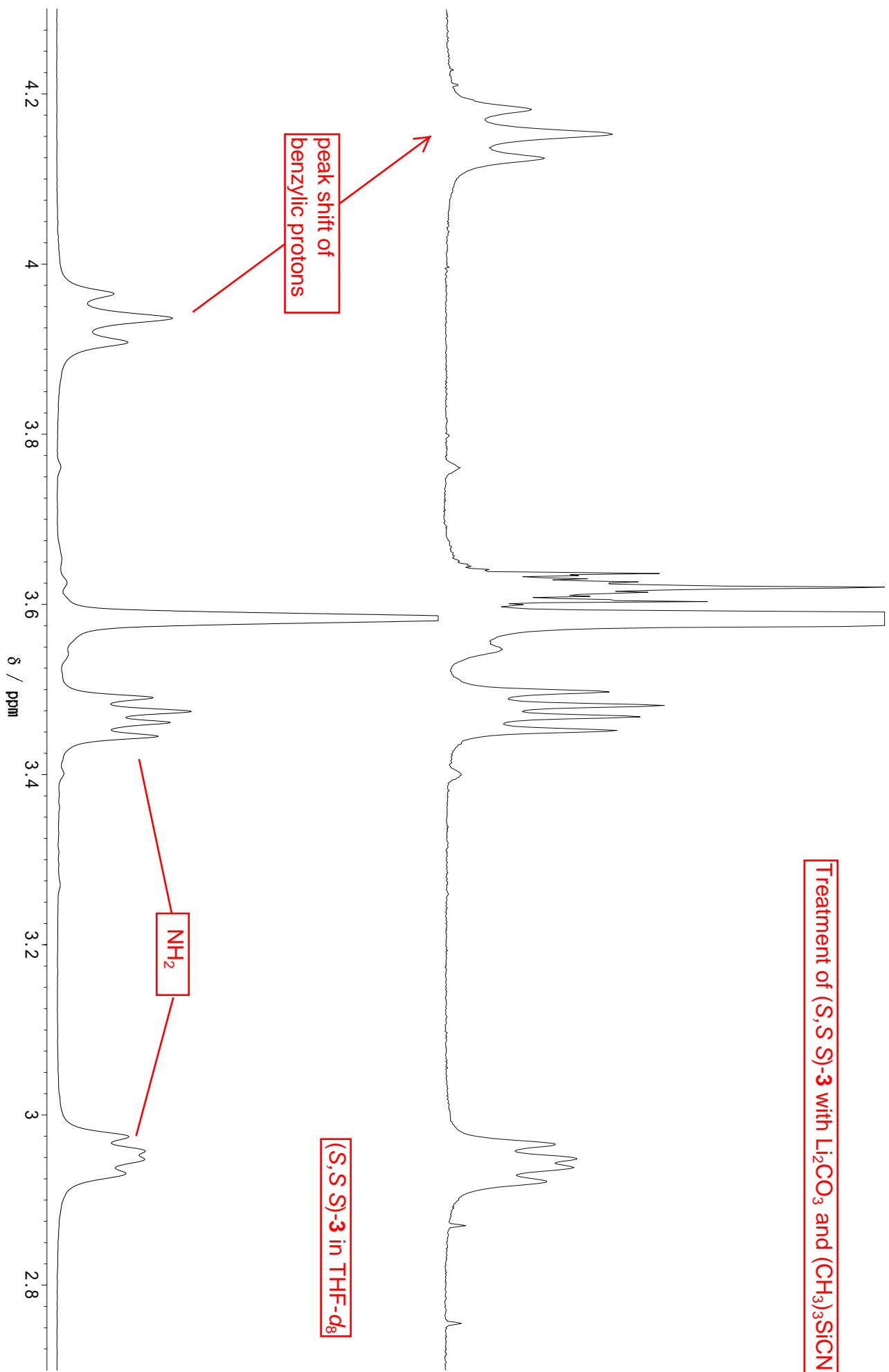
A 100-mL Schlenk flask equipped with a Teflon-coated magnetic stirring bar was filled with argon. (CH₃)₃SiCN (6.20 g, 62.5 mmol) and 0.05 M aqueous solution of Li₂CO₃ (10 μ L, 0.5 μ mol) were placed in the flask, and the mixture was stirred for 20 min at 25 °C. To the pale yellow solution was added a 20 mM-THF solution of (*S,S,S*)-**3** (25 μ L, 0.5 μ mol), and the mixture was stirred for 30 min. The resulting solution was diluted with (C₂H₅)₂O (50 mL) and cooled down to –40 °C. Then **1a** (5.38 g, 50.7 mmol) was charged into the flask, and the mixture was stirred for 24 h. After the solvent and the volatile compounds were evaporated under reduced pressure at ambient temperature, the residue was purified by a short-path distillation to give (*R*)-**2a** (9.74 g, 94% yield, 90% *ee*).[Note 2]


Notes

[1] See Notes in Part C.


[2] For analytical data of (*R*)-**2a** see Part C.

(G) ESI-MS and ^1H -NMR Spectra of Ru Species


a)

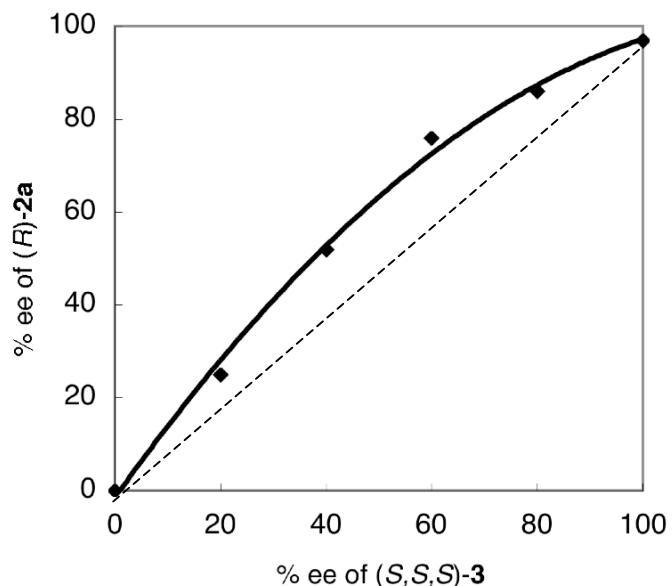
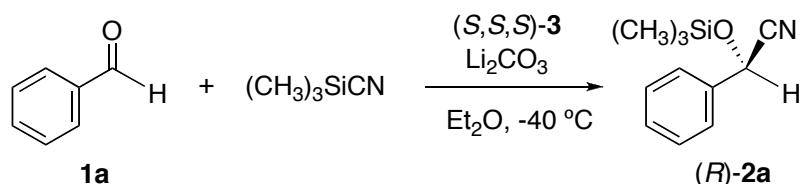

b)

Figure S2. ESI-MS spectra of a) (S,S,S) -3 and b) mixture of (S,S,S) -3, Li_2CO_3 ($3:\text{Li}_2\text{CO}_3 = 1:1$), and excess amount of $(\text{CH}_3)_3\text{SiCN}$. (S,S,S) -3: $m/z = 1024$, $[(S,S,S)\text{-}3\text{-Li}]: m/z = 1031$.



(H) Experimental Data on Nonlinear Effect and Effect of the Concentration of the Ru Complex (3)

Figure S3. Nonlinear effect between the ee of (S,S,S)-3 and the ee of (R)-2a. Weak positive nonlinear effect was observed on the cyanosilylation of **1a** at $-78\text{ }^{\circ}\text{C}$ using (S,S,S)-3 with an S/C of 10,000. All reactions proceeded quantitatively.

Table S1. Effect of the concentration of catalyst (S,S,S)-3 on the cyanosilylation of **1a**^[a].

Entry	1a : 3 : Li_2CO_3	[3] [mM] ^[b]	Yield [%] ^[c]	ee [%] ^[c]
1	5000:1:1	0.16	>99	82
2	10,000:1:1	0.08	>99	85
3	50,000:1:1	0.016	>99	91
4	100,000:1:1	0.008	>99	90

[a] Reactions were conducted using **1a** (10 mmol) and $(\text{CH}_3)_3\text{SiCN}$ (12 mmol) in Et_2O (10 mL) under $-40\text{ }^{\circ}\text{C}$ for 12 h. [b] Concentration of **3**. [c] Yields and ees were determined by GC analysis.

(I) References

- [1] M. Kitamura, M. Tokunaga, T. Ohkuma, R. Noyori, *Org. Synth.* **1993**, *71*, 1–13.
- [2] M. Hayashi, Y. Miyamoto, T. Inoue, N. Oguni, *J. Org. Chem.* **1993**, *58*, 1515–1522.
- [3] B. R. Matthews, W. R. Jackson, G. S. Jayatilake, C. Wilshire, H. A. Jacobs, *Aust. J. Chem.*, **1988**, *41*, 4697-1709.
- [4] S. Han, P. Chen, G. Lin, H. Huang, Z. Li, *Tetrahedron: Asymmetry*, **2001**, *12*, 843-846.
- [5] H. Nitta, D. Yu, M. Kudo, A. Mori, S. Inoue, *J. Am. Chem. Soc.*, **1992**, *114*, 7969-7975.
- [6] F. Effenberger, B. Hörsch, S. Förster, T. Ziegler, *Tetrahedron Lett.*, **1990**, *31*, 1249-1452.
- [7] G. DeSantis, Z. Ahu, W. A. Greenberg, K. Wong, J. Chaplin, S. R. Hanson, B. Farwell, L. W. Nicholson, C. L. Rand, D. P. Weiner, D. E. Robertson, M. J. Burk, *J. Am. Chem. Soc.*, **2002**, *124*, 9024-9025.
- [8] M. Itagaki, J. Hiratake, T. Nishioka, J. Oda, *J. Org. Chem.*, **1992**, *57*, 5643–5649.
- [9] I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, *J. Am. Chem. Soc.* **1991**, *113*, 4092–4096.