

Supporting Information © Wiley-VCH 2008

69451 Weinheim, Germany

Enantioselective Nucleophilic Catalysis: The Synthesis of Aza-β-Lactams via [2+2] Reactions of Ketenes with Azo Compounds

Supporting Information

Jacob M. Berlin and Gregory C. Fu*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Table of Contents

I.	General	S-2
II.	Preparation of Materials	S-2
III.	Enantioselective Synthesis of Aza-β-Lactams (Table 2)	S-3
IV.	Derivatization of the Aza-β-Lactams	S-13
V.	Assignment of Absolute Configuration	S-15
VI.	References	S-28

¹H NMR Spectra

I. General

Phenyl methyl ketene,¹ phenyl ethyl ketene,² *m*-tolyl ethyl ketene,³ *o*-tolyl ethyl ketene,⁴ phenyl benzyl ketene,⁵ phenyl isobutyl ketene,⁶ phenyl cyclopentyl ketene,⁶ phenyl isopropyl ketene,⁶ p-anisyl isopropyl ketene,⁶ p-chlorophenyl isopropyl ketene,⁶ 3-thiophenyl isopropyl ketene,⁶ catalysts (–)-1 and (+)-1,¹⁰ and SmI₂ (0.1 M in THF)¹¹ were prepared according to literature procedures. All of the azodicarboxylates were purchased and used as received (dimethyl azodicarboxylate was also prepared according to a literature procedure¹²). CH₂Cl₂ was purified by passage through activated alumina. Other chemicals were purchased from commercial suppliers and used as received.

All reactions were carried out in oven-dried glassware with magnetic stirring.

II. Preparation of Materials

o-Anisyl ethyl ketene. Step 1: Synthesis of the α , α ,-disubstituted acid. A solution of 2-(2-methoxyphenyl)acetic acid (5.0 g, 31 mmol) in THF (31 mL) was cooled to –78 °C, and then *n*-BuLi (1.6 M in THF; 47 mL, 75 mmol) was added. The reaction was stirred for 30 minutes, and then bromoethane (9.2 mL, 125 mmol) was added. The reaction mixture was allowed to warm to room temperature and stirred for 16 hours. Next, the reaction was quenched by the addition of aqueous HCl (1 N; 100 mL), and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers were washed with aqueous Na₂S₂O₃ (5%), dried over MgSO₄, concentrated, and passed through a glass frit. The resulting clear yellow oil (5.65 g) was used in the next step without further purification.

Step 2: Synthesis of the acid chloride. $SOCl_2$ (6.4 mL) was added to the yellow oil obtained in Step 1, and the resulting mixture was stirred at reflux for 2.5 hours. Next, the excess $SOCl_2$ was removed, and the residue (4.43 g) was used in the next step without further purification.

Step 3: Synthesis of the ketene. A solution of the acid chloride in THF (20 mL) was cooled to 0 °C, and then Et_3N (14.6 mL) was added. The reaction mixture was stirred for 2 hours at 0 °C, warmed to room temperature, and then stirred for 16 hours. The resulting suspension was filtered through a glass frit, concentrated, and purified by distillation under vacuum to give o-anisyl ethyl ketene as a yellow oil (500 mg, 9% over 3 steps; not optimized).

 1 H NMR (500 MHz, CDCl₃) δ 7.08 (1H, app dt, J = 8.0, 2.0 Hz), 7.00 (1H, app dt, J = 7.5, 1.0 Hz), 6.93 (1H, dd, J = 8.0, 2.0 Hz), 6.81 (1H, dd, J = 8.0 Hz, 1.0 Hz), 3.89 (3H, s), 2.46 (2H, q, J = 7.5 Hz), 1.26 (3H, t, J = 7.5 Hz);

¹³C (125 MHz, CDCl₃) δ 200.8, 152.7, 124.3, 123.7, 122.5, 121.8, 109.6, 55.6, 37.7, 18.2, 13;

IR (neat) 2969, 2974, 2089 (C=O), 1748, 1597, 1496, 1463, 1438, 1310, 1274, 1240, 1125, 1027, 747.

III. Enantioselective Synthesis of Aza-β-Lactams (Table 2)

General procedure for Table 2: In a glove box, a solution was prepared of the ketene (0.68 mmol) and dimethyl azodicarboxylate (100 mg, 0.68 mmol) in CH_2Cl_2 (49 mL). A solution was also prepared of catalyst (–)-1 (13 mg, 0.035 mmol) in CH_2Cl_2 (0.8 mL). Both vessels were removed from the glove box and placed in a –20 °C bath. After 10 minutes, the solution of the catalyst was added by syringe to the solution of ketene and dimethyl azodicarboxylate. The reaction mixture was stirred for 2 hours at –20 °C (the reaction is temperature-sensitive), and then the solvent was removed and the residue was purified by column chromatography.

For a reaction conducted without the use of a glove box, see the procedure for Table 2, entry 2 (below).

$$\begin{array}{c} \text{O} \quad \text{CO}_2\text{Me} \\ \text{Ph} \quad \text{N} \\ \text{Me} \quad \text{CO}_2\text{Me} \end{array}$$

(*R*)-Dimethyl 3-methyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 1). A variation of the General Procedure was employed (the reaction was conducted at lower concentration, which led to higher ee and yield).

First run: Phenyl methyl ketene (45 mg, 0.35 mmol), (–)-1 (6.5 mg, 0.017 mmol), dimethyl azodicarboxylate (50 mg, 0.35 mmol), and CH_2Cl_2 (300 mL; 0.0012 M) were used. The product was purified by column chromatography (30% EtOAc/hexanes), which furnished a viscous colorless oil (51 mg, 54%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 5% isopropanol/hexanes, 1.0 mL/min): 85% ee (retention times: 12.4 [minor], 14.4 [major]). $[\alpha]_D^{23} = +6.5$ (c = 1.0, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 49 mg, 52%; 84% ee. 1 H NMR (500 MHz, CDCl₃) δ 7.56 (2H, d, J = 7.0 Hz), 7.43-7.37 (3H, m), 3.92 (3H, s), 3.83 (3H, s), 1.94 (3H, s);

¹³C (125 MHz, CDCl₃) δ 165.1, 158.6, 148.9, 135.6, 129.3, 129.1, 125.8, 86.4, 54.8, 54.3, 22.0;

IR (neat) 2959, 1836 (C=O), 1775 (C=O), 1750 (C=O), 1495, 1440, 1377, 1311, 1243, 1193, 1071, 1052, 751, 711;

HRMS (EI+) calc for Na + $C_{13}H_{14}N_2O_5$, 301.0795, found 301.0801.

$$\begin{array}{c} \mathsf{O} \quad \mathsf{CO}_2\mathsf{Me} \\ \mathsf{Ph} \quad \mathsf{N} \\ \mathsf{Et} \quad \mathsf{CO}_2\mathsf{Me} \end{array}$$

(R)-Dimethyl 3-ethyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 2).

First run: Phenyl ethyl ketene (100 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (174 mg, 87%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 10% isopropanol/hexanes, 1.0 mL/min): 84% ee (retention times: 8.5 [major], 9.0 [minor]).

$$[\alpha]_D^{23} = -20 \ (c = 1.4, CHCl_3).$$

Slow evaporation of a solution of the oil in isopropanol produced colorless crystals of the racemate and a colorless mother liquor. The crystals were washed with hexanes (three times) and cold isopropanol (once). The mother liquor and the washes were concentrated to yield a viscous colorless oil (142 mg, 71%; >99% ee).

Second run: Identical to the first run, except that (+)-1 was used: 180 mg, 90%; 87% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.52 (2H, d, J = 7.5 Hz), 7.39-7.34 (3H, m), 3.88 (3H, s), 3.77 (3H, s), 2.37 (1H, app hex, J = 7.0 Hz), 2.25 (1H, app hex, J = 7.0 Hz), 1.04 (3H, t, J = 7.0 Hz);

¹³C (125 MHz, CDCl₃) δ 164.8, 158.3, 148.7, 135.2, 129.2, 129.0, 126.2, 91.1, 54.7, 54.2, 29.0, 8.8;

IR (neat) 2959, 1837 (C=O), 1775 (C=O), 1747 (C=O), 1494, 1440, 1315, 1273, 1171, 1062, 914, 734;

HRMS (EI+) calc for Na + $C_{14}H_{16}N_2O_5$, 315.0951, found 315.0949.

Gram-scale reaction. In a glove box, a solution was prepared of phenyl ethyl ketene (1.00 g, 6.8 mmol) and dimethyl azodicarboxylate (1.00 g, 6.8 mmol) in CH_2Cl_2 (490 mL). A solution was also prepared of catalyst (–)-1 (130 mg, 0.35 mmol) in CH_2Cl_2 (8 mL). The vessels were removed from the glove box, and both were placed in a –20 °C bath. After 1 hour, the solution of the catalyst was added by syringe to the solution of the substrates. The reaction mixture stirred for 2 hours, and then the solvent was removed

and the residue was purified by column chromatography (20% EtOAc), which furnished a viscous colorless oil (1.53 g, 77%; 84% ee).

Without-a-glove-box reaction. First run: The General Procedure was followed, except that the reaction was set up, open to the air, in a fume hood and unpurified, reagent-grade CH₂Cl₂ was used: 158 mg, 79%; 82% ee.

Second run: Identical to the first run, except that (+)-1 was used: 148 mg, 74%; 84% ee.

(*R*)-Diethyl 3-ethyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate. dicarboxylate (diethyl azodicarboxylate analogue of Table 2, entry 2; footnote 14).

First run: Phenyl ethyl ketene (100 mg) and diethyl azodicarboxylate (119 mg) were used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (182 mg, 83%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD, 10% isopropanol/hexanes, 1.0 mL/min): 80% ee (retention times: 8.2 [major], 10.4 [minor]).

 $[\alpha]_D^{23} = -14$ (c = 2.0, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 192 mg, 88%; 80% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.55 (2H, d, J = 7.5 Hz), 7.41-7.35 (3H, m), 4.35 (2H, q, J = 7.0 Hz), 4.25-4.18 (2H, m), 2.41 (1H, app hex, J = 7.5 Hz), 2.27 (1H, app hex, J = 7.5 Hz), 1.36 (3H, t, J = 7.0 Hz), 1.21 (3H, br s), 1.08 (3H, t, J = 7.0 Hz);

¹³C (125 MHz, CDCl₃) δ 164.9, 157.8, 148.2, 135.3, 129.2, 129.0, 126.4, 90.7, 64.4, 63.6, 28.9, 14.5, 14.4, 8.8;

IR (neat) 2982, 1837 (C=O), 1771 (C=O), 1744 (C=O), 1465, 1450, 1371, 1305, 1177, 1057, 915, 749;

HRMS (EI+) calc for Na + $C_{16}H_{20}N_2O_5$, 343.1264, found 343.1253.

(R)-Dimethyl 3-ethyl-4-oxo-3-meta-methyl-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 3).

First run: *meta*-Tolyl ethyl ketene (110 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (163 mg, 78%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD, 5% isopropanol/hexanes, 1.0 mL/min): 86% ee (retention times: 11.3 [major], 14.0 [minor]). $[\alpha]_D^{23} = -19$ (c = 2.1, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 166 mg, 79%; 84% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.35-7.34 (2H, m), 7.28 (1H, app t, J = 8.0 Hz), 7.16 (1H, d, J = 7.5 Hz), 3.90 (3H, s), 3.80 (3H, s), 2.40-2.34 (4H, m), 2.25 (1H, app hex, J = 7.5 Hz), 1.05 (3H, t, J = 7.5 Hz);

¹³C (125 MHz, CDCl₃) δ 164.9, 158.4, 148.8, 138.8, 135.1, 130.0, 128.8, 126.7, 123.3, 91.2, 54.7, 54.2, 29.0, 21.7, 8.8;

IR (neat) 2958, 1836 (C=O), 1774 (C=O), 1747 (C=O), 1490, 1440, 1315, 1251, 1192, 1062, 913, 733;

HRMS (EI+) calc for Na + $C_{15}H_{18}N_2O_5$, 329.1108, found 329.1105.

(R)-Dimethyl 3-ethyl-4-oxo-3-ortho-methylphenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 4).

First run: *ortho*-Tolyl ethyl ketene (110 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (98 mg, 47%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD, 5% isopropanol/hexanes, 1.0 mL/min): 67% ee (retention times: 12.7 [minor], 14.4 [major]). $[\alpha]_D^{23} = -1.9$ (c = 1.5, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 95 mg, 45%; 67% ee. 1 H NMR (500 MHz, CDCl₃) δ 7.70 (1H, d, J = 7.0 Hz), 7.27-7.19 (3H, m), 3.91 (3H, s), 3.89 (3H, s), 2.58 (3H, s), 2.47-2.35 (2H, m), 1.06 (3H, t, J = 7.5 Hz);

¹³C (125 MHz, CDCl₃) δ 164.3, 158.2, 148.8, 135.6, 133.9, 132.4, 128.9, 128.4, 126.4, 94.0, 54.7, 54.3, 27.5, 20.8, 8.9;

IR (neat) 2959, 1834 (C=O), 1773 (C=O), 1745 (C=O), 1440, 1317, 1269, 1229, 1161, 1064, 914, 730;

HRMS (EI+) calc for Na + $C_{15}H_{18}N_2O_5$, 329.1108, found 329.1116.

$$O$$
 CO_2Me
 O -anisyl···· N CO_2Me

(*R*)-Dimethyl 3-ethyl-4-oxo-3-*ortho*-methoxyphenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 5).

First run: *ortho*-Anisyl ethyl ketene (110 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a white solid (202 mg, 91%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD, 20% isopropanol/hexanes, 1.0 mL/min): 93% ee (retention times: 11.6 [minor], 6.5 [major]).

$$[\alpha]_D^{23} = -65 \text{ (c} = 1.3, \text{ CHCl}_3).$$

Second run: Identical to the first run, except that (+)-1 was used: 190 mg, 86%; 92% ee.

¹H NMR (500 MHz, CDCl₃) δ 7.39-7.34 (2H, m), 7.00 (1H, app t, J = 6.5 Hz), 6.90 (1H, d, J = 6.5 Hz), 3.95 (3H, s), 3.76 (3H, s), 3.58 (3H, s), 2.49-2.46 (2H, m), 1.13-1.11 (3H, m); ¹³C (125 MHz, CDCl₃) δ 166.7, 158.3, 158.0, 149.9, 131.6, 128.8, 121.4, 121.2, 111.7, 87.2, 55.9, 54.5, 53.6, 25.8, 8.3;

IR (neat) 2957, 1842 (C=O), 1771 (C=O), 1740 (C=O), 1495, 1465, 1439, 1305, 1256, 1056, 753;

LCMS (EI+) calc for H + $C_{15}H_{18}N_2O_6$, 323.1, found 323.1.

(*R*)-Dimethyl 3-benzyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 6). A variation of the General Procedure was employed (the reaction was conducted at lower concentration, which led to higher yield).

First run: Phenyl benzyl ketene (71 mg, 0.35 mmol), dimethyl azodicarboxylate (50 mg, 0.35 mmol), (–)-1 (6.5 mg, 0.0175 mmol), and CH_2Cl_2 (150 mL; 0.0023 M) were used. The vessels were cooled for 1 hour at –20 °C before the catalyst solution was added to the flask that contained the substrates. Reaction time: 16 hours. The product was purified by column chromatography (30% EtOAc/hexanes), which furnished a viscous colorless oil (91 mg, 75%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 10% isopropanol/hexanes, 1.0 mL/min): 80% ee (retention times: 16.2 [minor], 17.7 [major]).

 $[\alpha]_D^{23} = +14 \ (c = 0.80, CHCl_3).$

Second run: Identical to the first run, except that (+)-1 was used: 86 mg, 71%; 82% ee. 1 H NMR (500 MHz, CDCl₃) δ 7.58-7.57 (2H, m), 7.44-7.40 (3H, m), 7.32-7.26 (5H, m), 3.76 (3H, s), 3.68 (1H, d, J = 14.5 Hz), 3.65 (3H, s), 3.55 (1H, d, J = 14.0 Hz);

¹³C (125 MHz, CDCl₃) δ 165.0, 157.9, 148.5, 132.9, 131.1, 129.6, 129.0, 128.6, 128.1, 126.6, 90.7, 54.6, 53.9, 41.3, 25.6;

IR (neat) 2957, 1839 (C=O), 1774 (C=O), 1749 (C=O), 1440, 1267, 1226, 1137, 1075, 913, 731;

HRMS (EI+) calc for Na + $C_{19}H_{18}N_2O_5$, 377.1108, found 377.1120.

(R)-Dimethyl 3-iso-butyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 7).

First run: The General Procedure was followed, except that the reaction was run on half of the usual scale (phenyl *iso*-butyl ketene: 58 mg, 0.35 mmol) and that the reaction time was 3 hours. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (87 mg, 82%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 3% isopropanol/hexanes, 1.0 mL/min): 82% ee (retention times: 12.1 [major], 13.0 [minor]). $[\alpha]_D^{23} = +26$ (c = 2.5, CHCl₃).

Second run: The General Procedure was followed (phenyl *iso*-butyl ketene: 119 mg, 0.68 mmol), except that (+)-1 was used and the reaction was stirred for 3 hours. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (199 mg, 91%; 83% ee).

 1 H NMR (500 MHz, CDCl₃) δ 7.56 (2H, d, J = 7.5 Hz), 7.40-7.34 (3H, m), 3.89 (3H, s), 3.81 (3H, s), 2.28-2.09 (2H, m), 1.74 (1H, br s), 0.96 (3H, d, J = 6.5 Hz), 0.93 (3H, d, J = 6.5 Hz);

¹³C (125 MHz, CDCl₃) δ 165.0, 158.1, 148.8, 135.9, 129.2, 128.9, 126.2, 90.4, 54.7, 54.2, 44.8, 24.5, 24.2, 23.8;

IR (neat) 2960, 1838 (C=O), 1775 (C=O), 1745 (C=O), 1440, 1314, 1267, 1230, 1158, 1064, 914, 734;

HRMS (EI+) calc for Na + $C_{16}H_{20}N_2O_5$, 343.1264, found 343.1250.

(R)-Dimethyl 3-cyclopentyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 8).

First run: Phenyl cyclopentyl ketene (127 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (188 mg, 83%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 10% isopropanol/hexanes, 1.0 mL/min): 86% ee (retention times: 10.9 [minor], 16.0 [major]).

$$[\alpha]_D^{23} = +65$$
 (c = 0.90, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 191 mg, 84%; 86% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.55 (2H, d, J = 7.5 Hz), 7.38-7.33 (3H, m), 3.89 (3H, s), 3.77 (3H, s), 2.91-2.89 (1H, m), 1.77 (1H, br s), 1.66 (4H, br s), 1.56 (1H, br s), 1.43 (2H, br s);

¹³C (125 MHz, CDCl₃) δ 164.6, 158.3, 148.6, 135.4, 129.1, 128.8, 126.6, 93.3, 54.7, 54.2, 44.8, 29.1, 27.7, 25.9, 25.7;

IR (neat) 2959, 1833 (C=O), 1774 (C=O), 1747 (C=O), 1439, 1314, 1273, 1232, 1065, 914, 734;

HRMS (EI+) calc for Na + $C_{17}H_{20}N_2O_5$, 355.1264, found 355.1258.

(*R*)-Dimethyl 3-cyclohexyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 9).

First run: Phenyl cyclohexyl ketene (135 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a white foam (209 mg, 89%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 10% isopropanol/hexanes, 1.0 mL/min): 94% ee (retention times: 8.6 [minor], 11.4 [major]).

$$[\alpha]_D^{23} = +56$$
 (c = 0.90, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 214 mg, 91%; 94% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.48 (2H, d, J = 6.5 Hz), 7.39-7.34 (3H, m), 3.90 (3H, s), 3.64 (3H, s), 2.43-2.38 (1H, m), 1.97 (1H, br s), 1.82 (1H, d, J = 7.0 Hz), 1.70-1.65 (2H, m), 1.37-1.11 (6H, m);

¹³C (125 MHz, CDCl₃) δ 164.6, 158.2, 148.6, 133.3, 129.4, 128.8, 127.3, 94.3, 64.5, 54.7, 53.9, 41.8, 28.0, 27.8, 26.3, 26.1, 26.0, 25.5;

IR (neat) 2935, 2856, 1832 (C=O), 1774 (C=O), 1746 (C=O), 1439, 1315, 1276, 1232, 1064, 914, 733;

HRMS (EI+) calc for Na + $C_{18}H_{22}N_2O_5$, 369.14, found 369.1415.

(R)-Dimethyl 3-isopropyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 10).

First run: Phenyl isopropyl ketene (110 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (190 mg, 90%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD, 7% isopropanol/hexanes, 1.0 mL/min): 95% ee (retention times: 10.3 [minor], 11.0 [major]). $[\alpha]_D^{23} = +48 \text{ (c} = 2.5, \text{ CHCl}_3)$.

Second run: Identical to the first run, except that (+)-1 was used: 193 mg, 92%; 95% ee.

¹H NMR (500 MHz, CDCl₃) δ 7.48 (2H, d, J = 7.0 Hz), 7.36-7.35 (3H, m), 3.88 (3H, s), 3.64 (3H, s), 2.77 (1H, sept, J = 6.0 Hz), 1.15 (3H, d, J = 5.5 Hz), 0.93 (3H, d, J = 6.0 Hz); ¹³C (125 MHz, CDCl₃) δ 164.4, 158.2, 148.6, 133.7, 129.4, 128.8, 127.2, 94.6, 54.7, 53.9, 32.6, 18.0, 17.5;

IR (neat) 2960, 1833 (C=O), 1772 (C=O), 1748 (C=O), 1440, 1197, 1064, 997, 734; HRMS (EI+) calc for Na + $C_{15}H_{18}N_2O_5$, 329.1108, found 329.1111.

$$p$$
-anisyl·····N
 p -CO₂Me
 p -CO₂Me

(*R*)-Dimethyl 3-isopropyl-4-oxo-3-*para*-methoxyphenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 11).

First run: *para*-Anisyl isopropyl ketene (130 mg) was used. The product was purified by column chromatography (30% EtOAc/hexanes), which furnished a white solid (210 mg, 91%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD, 3% isopropanol/hexanes, 1.0 mL/min): 96% ee (retention times: 29.2 [minor], 31.3 [major]). $[\alpha]_D^{23} = +46$ (c = 1.0, CHCl₃).

A crystal structure was obtained of this product, in order to assign the absolute stereochemistry of the aza- β -lactam (for additional information, see Section V).

Second run: Identical to the first run, except that (+)-1 was used: 210 mg, 91%; 96% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.39 (2H, d, J = 8.5 Hz), 6.89 (2H, d, J = 9.0 Hz), 3.91 (3H, s), 3.79 (3H, s), 3.60 (3H, s), 2.78 (1H, sept, J = 7.0 Hz), 1.18 (3H, d, J = 7.0 Hz), 0.95 (3H, d, J = 7.0 Hz);

¹³C (125 MHz, CDCl₃) δ 164.7, 160.4, 158.3, 148.6, 128.8, 125.2, 114.1, 94.6, 55.5, 54.7, 53.8, 32.5, 17.9, 17.6;

IR (neat) 2960, 1832 (C=O), 1773 (C=O), 1746 (C=O), 1611, 1516, 1440, 1302, 1277, 1258, 1235, 1188, 1063, 738;

HRMS (EI+) calc for Na + $C_{16}H_{20}N_2O_6$, 359.1214, found 359.1219.

$$p$$
-ClC₆H₄······N CO₂Me

(*R*)-Dimethyl 3-isopropyl-4-oxo-3-*para*-chlorophenyl-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 12).

First run: *para*-Chlorophenyl isopropyl ketene (133 mg) was used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (210 mg, 90%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 10% isopropanol/hexanes, 1.0 mL/min): 92% ee (retention times: 9.1 [major], 9.9 [minor]).

$$[\alpha]_D^{23} = +48 \ (c = 1.4, CHCl_3).$$

Second run: Identical to the first run, except that (+)-1 was used: 209 mg, 90%; 92% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.45 (2H, d, J = 6.5 Hz), 7.34 (2H, d, J = 6.0 Hz), 3.89 (3H, s), 3.72 (3H, s), 2.71 (1H, sept, J = 7.0 Hz), 1.12 (3H, d, J = 6.0 Hz), 0.91 (3H, d, J = 6.5 Hz);

¹³C (125 MHz, CDCl₃) δ 164.0, 157.9, 148.5, 135.4, 132.6, 129.0, 128.5, 93.7, 54.8, 54.2, 32.8, 18.1, 17.5;

IR (neat) 2960, 1833 (C=O), 1775 (C=O), 1747 (C=O), 1495, 1440, 1319, 1282, 1234, 1065, 733;

HRMS (EI+) calc for Na + $C_{15}H_{17}ClN_2O_5$, 363.0718, found 363.0727.

$$p$$
-CIC₆H₄·····N CO_2 Et

(*R*)-Diethyl 3-isopropyl-4-oxo-3-*para*-chlorophenyl-1,2-diazetidine-1,2-dicarboxylate (diethyl azodicarboxylate analogue of Table 2, entry 12; footnote 14).

First run: *para*-Chlorophenyl isopropyl ketene (133 mg) and diethyl azodicarboxylate (119 mg) were used. The product was purified by column chromatography (20% EtOAc/hexanes), which furnished a viscous colorless oil (250 mg, 99%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 10% isopropanol/hexanes, 1.0 mL/min): 86% ee (retention times: 7.7 [major], 8.9 [minor]).

 $[\alpha]_D^{23} = +38$ (c = 0.85, CHCl₃).

Second run: Identical to the first run: 237 mg, 94%; 86% ee.

 1 H NMR (500 MHz, CDCl₃) δ 7.46 (2H, d, J = 7.5 Hz), 7.34 (2H, d, J = 7.0 Hz), 4.33 (2H, q, J = 6.5 Hz), 4.21-4.11 (2H, m), 2.73 (1H, sept, J = 6.5 Hz), 1.34 (3H, t, J = 7.0 Hz), 1.20 (3H, t, J = 7.0 Hz), 1.15 (3H, d, J = 7.0 Hz), 0.93 (3H, d, J = 7.0 Hz);

¹³C (125 MHz, CDCl₃) δ 164.2, 157.4, 148.0, 135.3, 132.7, 129.0, 128.7, 93.3, 64.4, 63.6, 32.7, 18.1, 17.6, 14.5, 14.4;

IR (neat) 2983, 1834 (C=O), 1771 (C=O), 1743 (C=O), 1495, 1372, 1313, 1228, 1095, 1058, 1016, 732;

HRMS (EI+) calc for Na + $C_{17}H_{21}ClN_2O_5$, 391.10, found 391.1028.

(*R*)-Dimethyl 3-isopropyl-4-oxo-3-(thiophen-3-yl)-1,2-diazetidine-1,2-dicarboxylate (Table 2, entry 13).

First run: 3-Thiophenyl isopropyl ketene (133 mg) was used. The product was purified by column chromatography (40% EtOAc/hexanes), which furnished a viscous colorless oil (184 mg, 86%).

The enantiomeric excess was determined by chiral HPLC analysis (Chiralcel AD, 5% isopropanol/hexanes, 1.0 mL/min): 96% ee (retention times: 13.7 [major], 14.7 [minor]). $[\alpha]_D^{23} = +4.7$ (c = 1.0, CHCl₃).

Second run: Identical to the first run, except that (+)-1 was used: 199 mg, 93%; 96% ee.

¹H NMR (500 MHz, CDCl₃) δ 7.41 (1H, dd, J = 3.0, 1.5 Hz), 7.35 (1H, dd, J = 5.5, 3.0 Hz), 7.12 (1H, d, J = 4.5 Hz), 3.93 (3H, s), 3.55 (3H, s), 2.74 (1H, sept, J = 7.0 Hz), 1.20 (3H, d, J = 6.5 Hz), 1.01 (3H, d, J = 7.0 Hz);

¹³C (125 MHz, CDCl₃) δ 164.3, 158.3, 148.6, 133.3, 126.8, 126.4, 125.4, 91.5, 54.8, 53.8, 33.0, 17.8, 17.6;

IR (neat) 2960, 1833 (C=O), 1773 (C=O), 1747 (C=O), 1439, 1307, 1277, 1156, 1063, 988, 914, 736;

HRMS (EI+) calc for Na + $C_{13}H_{16}N_2O_5S$, 335.0672, found 335.0663.

IV. Derivatization of the Aza-β-Lactams

Ring opening of the aza-β-lactam: (R)-methyl 2-(methoxycarbonylamino)-2-phenylbutanoate. ¹³ K₂CO₃ (126 mg, 0.91 mmol) was added to a solution of (R)-dimethyl 3-ethyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (252 mg, 0.86 mmol; 84% ee; synthesized with catalyst (–)-1) in MeOH (28 mL) and acetone (10 mL). The reaction mixture was stirred for 20 hours, and then the solvent was removed. The residue was suspended in CH₂Cl₂ and filtered through a glass frit. A white solid was collected (280 mg, 100%), which was used without further purification.

Pyridine (8 mL) was added to the white solid, and the reaction mixture was stirred at $40\,^{\circ}\text{C}$ for 24 hours. Then, it was cooled to room temperature, and trifluoroacetic

anhydride ($600 \, \mu L$; $4.3 \, mmol$) was added. The reaction mixture was stirred for $48 \, hours$, and then it was concentrated. Water and EtOAc were added, and the organic layer was separated. The aqueous layer was extracted with EtOAc (three times), and the combined organic layers were dried, concentrated, and then passed through a pad of silica gel (washing with EtOAc). The filtrate was concentrated, yielding a yellow residue.

This residue was dissolved in MeOH (16 mL). Argon was bubbled through the solution for 5 minutes, and then a solution of SmI_2 (0.1 M in THF; 40 mL, 4 mmol) was added. The reaction mixture was stirred for 30 minutes, and then it was concentrated. Water and EtOAc were added, and the organic layer was separated. The aqueous layer was extracted with EtOAc (three times), and the combined organic layers were dried and concentrated. The residue was purified by column chromatography (10% EtOAc/hexanes), which furnished (R)-methyl 2-(methoxycarbonylamino)-2-phenylbutanoate as a viscous colorless oil (146 mg, 68%).

$$[\alpha]_D^{23} = +50 \ (c = 1.4, CHCl_3).$$

Second run: By an analogous procedure, a second batch of the aza- β -lactam (160 mg; 92% ee) was converted into the desired product (90 mg, 65%).

 1 H NMR (500 MHz, CDCl₃) δ 7.45 (2H, d, J = 7.5 Hz), 7.35 (2H, app t, J = 7.5 Hz), 7.29 (1H, app t, J = 7.5 Hz), 6.38 (1H, s), 3.68 (3H, s), 3.60 (3H, s), 2.78 (1H, br s), 2.51 (1H, app hex, J = 6.5 Hz), 0.90 (3H, t, J = 7.0 Hz).

¹³C (125 MHz, CDCl₃) δ 173.5, 154.6, 140.4, 128.7, 128.0, 126.2, 66.0, 53.5, 52.1, 8.8, 1.3; IR (neat) 2959, 1725 (C=O), 1497, 1449, 1310, 1256, 1088, 1005, 789, 698; HRMS (EI+) calc for Na + C₁₃H₁₇NO₄, 274.1050, found 274.1055.

(*R*)-2-Amino-2-phenylbutanoic acid. Water (380 μL) and concentrated HCl (736 μL) were added to a solution of (*R*)-methyl 2-(methoxycarbonylamino)-2-phenylbutanoate (146 mg, 0.58 mmol) in dioxane (8 mL). The reaction mixture was stirred for 48 hours at 80 °C, and then it was poured into a mixture of water: Et_2O (1:2; 0 °C). The organic layer was separated, and the aqueous layer was washed with Et_2O and then concentrated. The residue was dissolved in HCl (1 N; 20 mL) and purified by ion exchange chromatography (AG 50w-X8 resin; elution with water until pH=7 and then with 10% NH₄OH), which furnished (*R*)-2-amino-2-phenylbutanoic acid (104 mg, 99%).

Second run: By an analogous procedure, a second batch of (R)-methyl 2-(methoxycarbonylamino)-2-phenylbutanoate (88 mg, 0.35 mmol) furnished (R)-2-amino-2-phenylbutanoic acid (62 mg, 100%).

 $[\alpha]_D^{23} = +22$ (c = 0.9, 1 N HCl). The absolute stereochemistry was determined by comparison to literature data ($[\alpha]_D^{23} = -57$ for the S enantiomer (c = 0.5, 2 N HCl)).

(*R*)-5-Ethyl-5-phenylimidazolidine-2,4-dione ((*R*)-(-)-nirvanol; 50-12-4). To (*R*)-dimethyl 3-ethyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (183 mg, 0.63 mmol) was added THF (25 mL), HMPA (0.92 mL), and then SmI_2 (0.1 M in THF; 25 mL, 2.5 mmol). The reaction mixture was stirred for 1 hour, and then the reaction was quenched by exposure to air. Water and EtOAc were added, and the organic layer was separated. The aqueous layer was extracted with EtOAc (three times). The organic layers were combined, and saturated aqueous NaHCO₃ (100 mL) was added. The reaction mixture was stirred for 48 hours, and then it was concentrated. The residue was purified by column chromatography (40% EtOAc/40% hexanes/20% CH_2Cl_2), which furnished a mixture of the desired compound and an acyclic precursor. Saturated aqueous NaHCO₃ (20 mL) and THF (2 mL) were added to the mixture, and the solution was stirred for 48 hours. The solvent was removed, and the residue was purified by column chromatography (5% MeOH/45% $CH_2Cl_2/50\%$ hexanes), which furnished the hydantoin as a white solid (44 mg, 34%).

Second run: By an analogous procedure, a second batch of (*R*)-dimethyl 3-ethyl-4-oxo-3-phenyl-1,2-diazetidine-1,2-dicarboxylate (48 mg, 0.16 mmol) furnished the hydantoin (16 mg, 48%).

This process has not been optimized.

V. Assignment of Absolute Configuration

Entry 2 of Table 2 (correlation): The aza- β -lactam (synthesized with catalyst (–)-1) was converted into the α -amino acid and determined to have the (R) configuration (see Section IV).

Entry 2 of Table 11 (X-ray crystallography with Cu radiation): The crystal structure of the aza-β-lactam produced by catalyst (–)-1 was obtained.

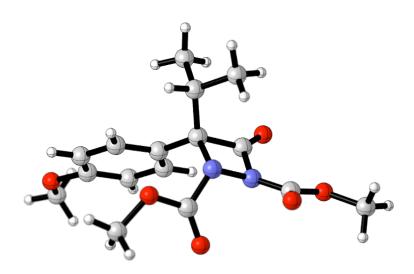


Table 1. Crystal data and structure refinement.

Empirical formula C16 H20 N2 O6

Formula weight 336.34

Temperature 100(2) K

Wavelength 1.54178 Å

Crystal system Monoclinic

Space group P2(1)

Unit cell dimensions a = 10.71550(10) Å $a = 90^{\circ}$.

b = 16.5325(2) Å $b = 118.4850(10)^{\circ}.$

c = 10.83790(10) Å $g = 90^{\circ}$.

Volume 1687.55(3) Å³

Z 4

Density (calculated) 1.324 Mg/m^3 Absorption coefficient 0.858 mm^{-1}

F(000) 712

Crystal size $0.35 \times 0.07 \times 0.03 \text{ mm}^3$

Theta range for data collection 4.64 to 67.55°.

Index ranges -12 <= h <= 12, -19 <= k <= 19, -12 <= l <= 12

Reflections collected 28887

Independent reflections 5917 [R(int) = 0.0254]

Completeness to theta = 67.55° 98.6%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9747 and 0.7532

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5917 / 1 / 443

Goodness-of-fit on F^2 1.090

Final R indices [I>2sigma(I)] R1 = 0.0266, wR2 = 0.0722

R indices (all data) R1 = 0.0282, wR2 = 0.0756

Absolute structure parameter 0.08(10)

Largest diff. peak and hole 0.164 and -0.218 e.Å-3

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Å $^2x\ 10^3$) for D08001. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor.

	х	у	Z	U(eq)
O(6)	5645(1)	3828(1)	1644(1)	20(1)
O(1)	2852(1)	6462(1)	-917(1)	22(1)
O(10)	7091(1)	4005(1)	6756(1)	22(1)
O(5)	4851(1)	3855(1)	-701(1)	23(1)
O(3)	6517(1)	5389(1)	-1000(1)	23(1)
O(7)	8733(1)	3157(1)	4014(1)	22(1)
O(2)	101(1)	3434(1)	1518(1)	26(1)
O(11)	7408(1)	5591(1)	5535(1)	23(1)
O(9)	6337(1)	3117(1)	4950(1)	26(1)
O(12)	9752(1)	5869(1)	6870(1)	20(1)
N(1)	4548(1)	5466(1)	-698(1)	19(1)
N(4)	9149(1)	4597(1)	6259(1)	17(1)
N(3)	8082(1)	4026(1)	5357(1)	19(1)
N(2)	5197(1)	5024(1)	606(1)	18(1)
O(8)	10491(1)	6777(1)	2031(1)	28(1)
O(4)	4625(1)	6156(1)	-2429(1)	22(1)
C(2)	3635(2)	5911(1)	-349(2)	17(1)
C(56)	9203(2)	5011(1)	3168(2)	21(1)
C(4)	5169(2)	4184(1)	400(2)	18(1)
C(60)	11279(2)	3302(1)	7451(2)	24(1)
C(54)	10319(2)	6183(1)	2816(2)	22(1)
C(55)	9284(2)	5583(1)	2269(2)	23(1)
C(11)	3059(2)	4881(1)	1100(2)	18(1)
C(41)	5531(2)	2952(1)	1600(2)	23(1)
C(7)	7084(2)	3658(1)	5648(2)	18(1)
C(71)	5915(2)	3766(1)	6983(2)	29(1)
C(8)	8637(2)	5395(1)	6130(2)	18(1)
C(19)	6004(2)	6545(1)	2201(2)	27(1)
C(52)	11185(2)	5621(1)	5130(2)	23(1)
C(1)	4152(2)	5434(1)	1030(2)	18(1)
C(3)	5354(2)	5658(1)	-1365(2)	18(1)

C(6)	8898(2)	3722(1)	4762(2)	18(1)
C(15)	623(2)	4405(1)	127(2)	21(1)
C(5)	10057(2)	4363(1)	5539(2)	18(1)
C(51)	10156(2)	5009(1)	4599(2)	18(1)
C(53)	11264(2)	6201(1)	4255(2)	25(1)
C(58)	11479(2)	3986(1)	6607(2)	19(1)
C(16)	1653(2)	4878(1)	37(2)	20(1)
C(18)	4972(2)	5961(1)	2348(2)	22(1)
C(17)	-1377(2)	3461(1)	487(2)	31(1)
C(20)	3934(2)	6421(1)	2684(2)	29(1)
C(12)	3423(2)	4387(1)	2276(2)	21(1)
C(31)	5349(2)	6365(1)	-3235(2)	30(1)
C(59)	12258(2)	3669(1)	5833(2)	26(1)
C(13)	2419(2)	3911(1)	2373(2)	23(1)
C(81)	9461(2)	6728(1)	6750(2)	31(1)
C(14)	1007(2)	3920(1)	1303(2)	21(1)
C(57)	9523(2)	6778(1)	566(2)	36(1)

S-19

Table 3. Bond lengths [Å] and angles [°] for D08001.

O(6)-C(4)	1.3301(19)
O(6)-C(41)	1.4526(18)
O(1)-C(2)	1.1905(19)
O(10)-C(7)	1.3275(19)
O(10)-C(71)	1.449(2)
O(5)-C(4)	1.2033(19)
O(3)-C(3)	1.1984(19)
O(7)-C(6)	1.1939(19)
O(2)-C(14)	1.364(2)
O(2)-C(17)	1.439(2)
O(11)-C(8)	1.2018(19)
O(9)-C(7)	1.198(2)
O(12)-C(8)	1.330(2)
O(12)-C(81)	1.446(2)
N(1)-C(3)	1.403(2)
N(1)-C(2)	1.412(2)
N(1)-N(2)	1.4412(17)
N(4)-C(8)	1.410(2)
N(4)-N(3)	1.4448(18)
N(4)-C(5)	1.558(2)
N(3)-C(7)	1.391(2)
N(3)-C(6)	1.404(2)
N(2)-C(4)	1.405(2)
N(2)-C(1)	1.5537(19)
O(8)-C(54)	1.370(2)
O(8)-C(57)	1.423(2)
O(4)-C(3)	1.3260(19)
O(4)-C(31)	1.460(2)
C(2)-C(1)	1.541(2)
C(56)-C(55)	1.391(2)
C(56)-C(51)	1.392(2)
C(60)-C(58)	1.533(2)
C(54)-C(55)	1.392(2)
C(54)-C(53)	1.397(2)

C(11)-C(16)	1.393(2)
C(11)- $C(12)$	1.404(2)
C(11)-C(1)	1.517(2)
C(19)-C(18)	1.532(2)
C(52)-C(53)	1.380(2)
C(52)-C(51)	1.401(2)
C(1)-C(18)	1.541(2)
C(6)-C(5)	1.542(2)
C(15)-C(14)	1.391(2)
C(15)-C(16)	1.393(2)
C(5)-C(51)	1.514(2)
C(5)-C(58)	1.539(2)
C(58)-C(59)	1.530(2)
C(18)-C(20)	1.527(2)
C(12)-C(13)	1.376(2)
C(13)-C(14)	1.400(2)
C(4)-O(6)-C(41)	115.04(12)
C(7)-O(10)-C(71)	113.89(12)
C(14)-O(2)-C(17)	117.32(13)
C(8)-O(12)-C(81)	115.48(13)
C(3)-N(1)-C(2)	134.08(13)
C(3)-N(1)-N(2)	119.48(12)
C(2)-N(1)-N(2)	94.26(11)
C(8)-N(4)-N(3)	113.55(12)
C(8)-N(4)-C(5)	119.29(12)
N(3)-N(4)-C(5)	88.91(10)
C(7)-N(3)-C(6)	131.41(13)
C(7)-N(3)-N(4)	125.38(12)
C(6)-N(3)-N(4)	94.54(11)
C(4)-N(2)-N(1)	112.41(12)
	112.41(12)
C(4)-N(2)-C(1)	120.92(12)
C(4)-N(2)-C(1) N(1)-N(2)-C(1)	
	120.92(12)
N(1)-N(2)-C(1)	120.92(12) 89.42(10)

0(4) (3(4) (3(4)	12606(15)
O(1)-C(2)-C(1)	136.96(15)
N(1)-C(2)-C(1)	91.02(11)
C(55)-C(56)-C(51)	121.66(15)
O(5)-C(4)-O(6)	126.52(14)
O(5)-C(4)-N(2)	125.38(14)
O(6)-C(4)-N(2)	107.95(12)
O(8)-C(54)-C(55)	124.22(15)
O(8)-C(54)-C(53)	115.96(15)
C(55)-C(54)-C(53)	119.82(15)
C(56)-C(55)-C(54)	119.27(15)
C(16)-C(11)-C(12)	118.12(15)
C(16)-C(11)-C(1)	121.14(14)
C(12)-C(11)-C(1)	120.66(14)
O(9)-C(7)-O(10)	127.42(15)
O(9)-C(7)-N(3)	122.57(14)
O(10)-C(7)-N(3)	109.99(13)
O(11)-C(8)-O(12)	127.20(15)
O(11)-C(8)-N(4)	125.41(14)
O(12)-C(8)-N(4)	107.22(13)
C(53)-C(52)-C(51)	120.89(15)
C(11)-C(1)-C(18)	114.04(12)
C(11)-C(1)-C(2)	115.38(13)
C(18)-C(1)-C(2)	113.05(13)
C(11)-C(1)-N(2)	115.78(12)
C(18)-C(1)-N(2)	110.36(12)
C(2)-C(1)-N(2)	85.00(11)
O(3)-C(3)-O(4)	127.38(15)
O(3)-C(3)-N(1)	122.98(14)
O(4)-C(3)-N(1)	109.63(13)
O(7)-C(6)-N(3)	132.03(15)
O(7)-C(6)-C(5)	136.80(15)
N(3)-C(6)-C(5)	91.07(11)
C(14)-C(15)-C(16)	119.26(15)
C(51)-C(5)-C(58)	115.48(13)
C(51)-C(5)-C(6)	114.48(12)
C(58)-C(5)-C(6)	112.48(13)
	` ′

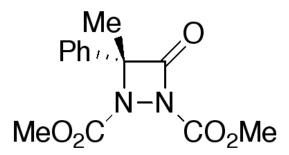
C(51)-C(5)-N(4)	114.95(12)
C(58)-C(5)-N(4)	110.80(12)
C(6)-C(5)-N(4)	84.93(11)
C(56)-C(51)-C(52)	118.12(15)
C(56)-C(51)-C(5)	120.10(14)
C(52)-C(51)-C(5)	121.78(14)
C(52)-C(53)-C(54)	120.21(15)
C(59)-C(58)-C(60)	110.05(13)
C(59)-C(58)-C(5)	109.28(13)
C(60)-C(58)-C(5)	112.20(13)
C(11)-C(16)-C(15)	121.62(14)
C(20)-C(18)-C(19)	110.81(14)
C(20)-C(18)-C(1)	110.13(13)
C(19)-C(18)-C(1)	112.41(13)
C(13)-C(12)-C(11)	120.89(15)
C(12)-C(13)-C(14)	120.34(15)
O(2)-C(14)-C(15)	124.92(15)
O(2)-C(14)-C(13)	115.32(14)
C(15)-C(14)-C(13)	119.76(15)

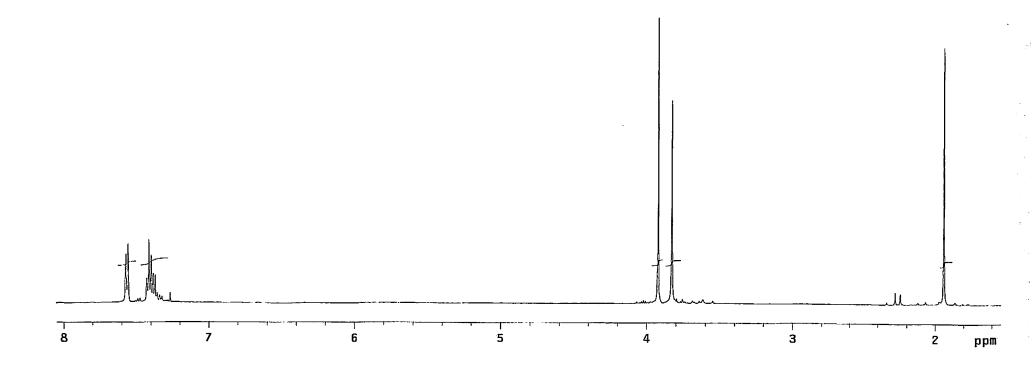
Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å 2 x 10 3)for D08001. The anisotropic displacement factor exponent takes the form: $-2p^2[~h^2a^{*2}U^{11}+...+2~h~k~a^*~b^*~U^{12}~]$

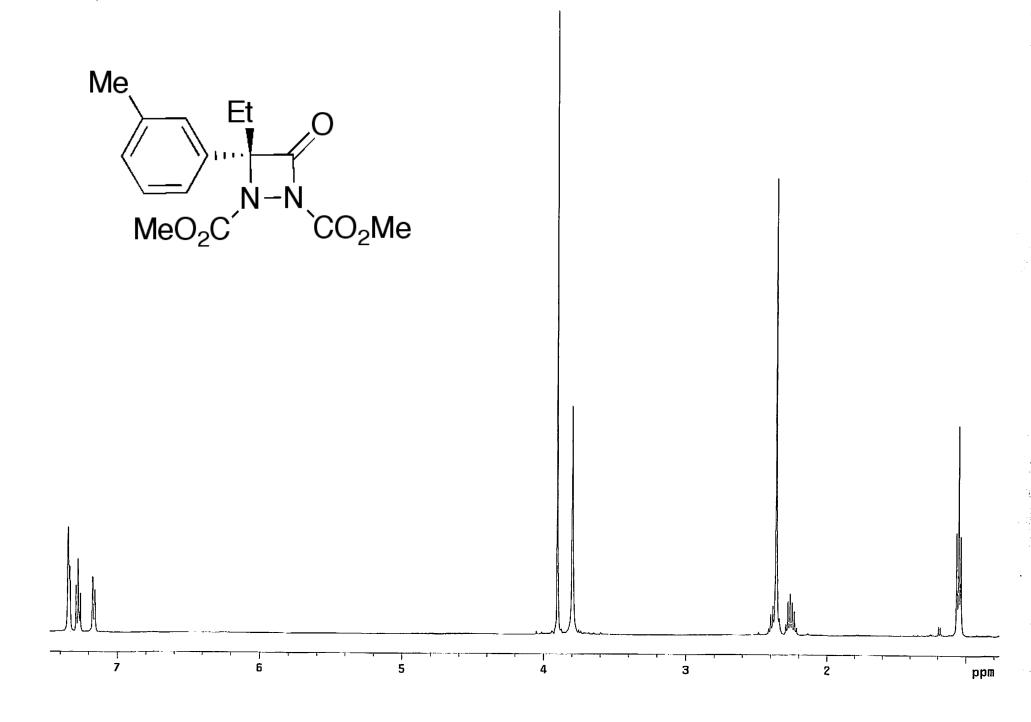
	U ¹¹	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O(6)	25(1)	16(1)	18(1)	1(1)	9(1)	2(1)
O(1)	21(1)	20(1)	24(1)	5(1)	11(1)	1(1)
O(10)	22(1)	24(1)	25(1)	-4(1)	16(1)	-5(1)
O(5)	27(1)	24(1)	19(1)	-2(1)	12(1)	-2(1)
O(3)	21(1)	25(1)	23(1)	2(1)	12(1)	1(1)
O(7)	24(1)	22(1)	24(1)	-5(1)	13(1)	-3(1)
O(2)	26(1)	26(1)	31(1)	5(1)	17(1)	-3(1)
O(11)	18(1)	27(1)	23(1)	1(1)	9(1)	3(1)
O(9)	25(1)	28(1)	27(1)	-7(1)	16(1)	-9(1)
O(12)	20(1)	16(1)	22(1)	-1(1)	8(1)	-1(1)
N(1)	20(1)	18(1)	18(1)	4(1)	10(1)	2(1)
N(4)	15(1)	19(1)	19(1)	-4(1)	9(1)	-4(1)
N(3)	17(1)	20(1)	20(1)	-7(1)	9(1)	-5(1)
N(2)	19(1)	19(1)	16(1)	5(1)	9(1)	3(1)
O(8)	32(1)	27(1)	30(1)	8(1)	19(1)	1(1)
O(4)	26(1)	24(1)	22(1)	7(1)	16(1)	5(1)
C(2)	15(1)	18(1)	18(1)	-1(1)	7(1)	-3(1)
C(56)	18(1)	22(1)	23(1)	-3(1)	10(1)	-2(1)
C(4)	14(1)	22(1)	18(1)	1(1)	9(1)	-1(1)
C(60)	23(1)	23(1)	25(1)	3(1)	11(1)	1(1)
C(54)	24(1)	21(1)	29(1)	4(1)	18(1)	5(1)
C(55)	24(1)	26(1)	19(1)	2(1)	10(1)	4(1)
C(11)	20(1)	17(1)	18(1)	-1(1)	11(1)	1(1)
C(41)	28(1)	15(1)	26(1)	0(1)	13(1)	-1(1)
C(7)	18(1)	19(1)	19(1)	-1(1)	9(1)	0(1)
C(71)	31(1)	32(1)	37(1)	-5(1)	26(1)	-6(1)
C(8)	20(1)	22(1)	14(1)	1(1)	9(1)	0(1)
C(19)	25(1)	24(1)	27(1)	-5(1)	9(1)	-5(1)
C(52)	20(1)	27(1)	21(1)	-1(1)	8(1)	-2(1)
C(1)	19(1)	19(1)	17(1)	2(1)	10(1)	2(1)
C(3)	20(1)	17(1)	17(1)	-2(1)	9(1)	-2(1)

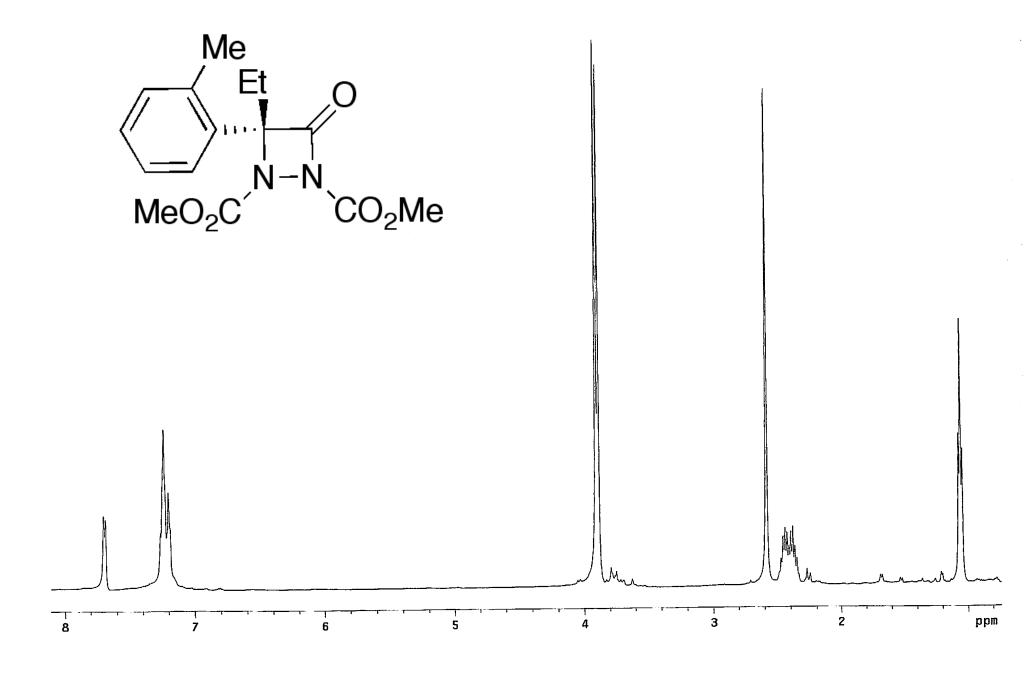
C(6)	19(1)	19(1)	18(1)	0(1)	9(1)	-1(1)
C(15)	20(1)	22(1)	21(1)	-1(1)	9(1)	-1(1)
C(5)	17(1)	20(1)	19(1)	-4(1)	11(1)	-1(1)
C(51)	17(1)	21(1)	20(1)	-2(1)	12(1)	0(1)
C(53)	22(1)	23(1)	31(1)	-1(1)	14(1)	-5(1)
C(58)	17(1)	20(1)	21(1)	-1(1)	9(1)	-1(1)
C(16)	23(1)	19(1)	18(1)	2(1)	11(1)	1(1)
C(18)	25(1)	18(1)	19(1)	-1(1)	9(1)	0(1)
C(17)	24(1)	29(1)	43(1)	3(1)	19(1)	-4(1)
C(20)	37(1)	27(1)	28(1)	-7(1)	18(1)	0(1)
C(12)	20(1)	24(1)	18(1)	2(1)	9(1)	2(1)
C(31)	36(1)	35(1)	28(1)	10(1)	23(1)	8(1)
C(59)	20(1)	27(1)	33(1)	1(1)	16(1)	3(1)
C(13)	28(1)	24(1)	21(1)	5(1)	14(1)	2(1)
C(81)	32(1)	17(1)	38(1)	0(1)	11(1)	1(1)
C(14)	26(1)	18(1)	25(1)	-1(1)	17(1)	0(1)
C(57)	49(1)	33(1)	29(1)	7(1)	20(1)	-1(1)


Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for D08001.


30A) 10778 2850 6823 35 36B) 10721 3500 7889 35 36C) 12209 3117 8181 35 35 8639 5565 1291 28 41A) 4533 2795 1040 35 41B) 5901 2742 2557 35 41C) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 79A) 5466 6953 1487 40 79B) 6615 6243 1921 40 79C) 6591 6813 3103 40 82) 11837 5636 6106 28 83) 11963 6614 4631 30 88) 12074 4417 7275 23 88) 5542 5592 3154 26 81A) -1738<		x	у	z	U(eq)
30A) 10778 2850 6823 35 36B) 10721 3500 7889 35 36C) 12209 3117 8181 35 35 8639 5565 1291 28 41A) 4533 2795 1040 35 41B) 5901 2742 2557 35 41C) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 79A) 5466 6953 1487 40 79B) 6615 6243 1921 40 79C) 6591 6813 3103 40 82) 11837 5636 6106 28 83) 11963 6614 4631 30 88) 12074 4417 7275 23 88) 5542 5592 3154 26 81A) -1738<	H(56)	8480	4611	2797	25
50B) 10721 3500 7889 35 50C) 12209 3117 8181 35 55) 8639 5565 1291 28 41A) 4533 2795 1040 35 41B) 5901 2742 2557 35 41C) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 362) 11837 5636 6106 28 363) 11963 6614 4631 30 368) 12074 4417 7275 23 360 1390 5207 -769 24 38 5542 5592 3154 26 37A) -1738	H(60A)				
30C) 12209 3117 8181 35 35) 8639 5565 1291 28 41A) 4533 2795 1040 35 41B) 5901 2742 2557 35 41C) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 32) 11837 5636 6106 28 33) 11963 6614 4631 30 38) 12074 4417 7275 23 38) 12074 4417 7275 23 38) 12074 4417 7275 23 38) 5542 5592 3154 26 37A) -1738 </td <td>H(60B)</td> <td></td> <td></td> <td></td> <td></td>	H(60B)				
55) 8639 5565 1291 28 41A) 4533 2795 1040 35 41B) 5901 2742 2557 35 41C) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 18D 1963 6614 4631 30 18B 12074 4417 7275 23 18B 5542 5592 3154 26 17A) -1738 <td>H(60C)</td> <td></td> <td></td> <td></td> <td></td>	H(60C)				
HA) 4533 2795 1040 35 HB) 5901 2742 2557 35 HC) 6083 2727 1174 35 ZIA) 5018 3914 6161 43 ZIB) 5989 4043 7814 43 ZIC) 5943 3179 7126 43 JPA) 5466 6953 1487 40 JPB) 6615 6243 1921 40 JPC) 6591 6813 3103 40 JPC) 1933 6614 4631 30 JPC) 1944 4417 7275 23 JPC) 1934 4012 430 47 JPR) 1913 3088 760 47 JPR) 1913	H(55)				
41B) 5901 2742 2557 35 41C) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 49A) 5466 6953 1487 40 49B) 6615 6243 1921 40 49C) 6591 6813 3103 40 52) 11837 5636 6106 28 45) -332 4414 -606 25 53) 11963 6614 4631 30 58) 12074 4417 7275 23 46) 1390 5207 -769 24 48) 5542 5592 3154 26 47A) -1738 4012 430 47 47B) -1913 3088 760 47 47C) -1486 3301 -430 47 20A) 3270 <td>H(41A)</td> <td></td> <td></td> <td></td> <td></td>	H(41A)				
HC) 6083 2727 1174 35 71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 19C) 11837 5636 6106 28 15) -332 4414 -606 25 15) -332 4414 77 17275 23 188 12074 4417 7275 23 189 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 180A) 3270 6728 1857 44 180B) 4462 6793 3466 44 180C) 3405 6035 2945 44 181B) 4765 6746 -3981 44	H(41B)				
71A) 5018 3914 6161 43 71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 32) 11837 5636 6106 28 35) -332 4414 -606 25 33) 11963 6614 4631 30 38) 12074 4417 7275 23 48) 5542 5592 3154 26 47A) -1738 4012 430 47 47B) -1913 3088 760 47 47C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 20C) 3405 <td>H(41C)</td> <td></td> <td></td> <td></td> <td></td>	H(41C)				
71B) 5989 4043 7814 43 71C) 5943 3179 7126 43 19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 52) 11837 5636 6106 28 15) -332 4414 -606 25 33) 11963 6614 4631 30 38) 12074 4417 7275 23 16) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 <td>H(71A)</td> <td></td> <td></td> <td></td> <td>43</td>	H(71A)				43
19A) 5466 6953 1487 40 19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 32) 11837 5636 6106 28 45) -332 4414 -606 25 33) 11963 6614 4631 30 38) 12074 4417 7275 23 46) 1390 5207 -769 24 48) 5542 5592 3154 26 47A) -1738 4012 430 47 47B) -1913 3088 760 47 47C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(71B)	5989	4043	7814	43
19B) 6615 6243 1921 40 19C) 6591 6813 3103 40 52) 11837 5636 6106 28 15) -332 4414 -606 25 53) 11963 6614 4631 30 58) 12074 4417 7275 23 16) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(71C)	5943	3179	7126	43
19C) 6591 6813 3103 40 52) 11837 5636 6106 28 15) -332 4414 -606 25 53) 11963 6614 4631 30 58) 12074 4417 7275 23 16) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(19A)	5466	6953	1487	40
52) 11837 5636 6106 28 15) -332 4414 -606 25 53) 11963 6614 4631 30 58) 12074 4417 7275 23 16) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(19B)	6615	6243	1921	40
15) -332 4414 -606 25 133) 11963 6614 4631 30 158) 12074 4417 7275 23 16) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 17C) -1486 3301 -430 47 120A) 3270 6728 1857 44 120B) 4462 6793 3466 44 120 3405 6035 2945 44 121 4374 4380 3015 25 131A) 6267 6615 -2612 44 131B) 4765 6746 -3981 44	H(19C)	6591	6813	3103	40
633) 11963 6614 4631 30 68) 12074 4417 7275 23 160) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 42) 4374 4380 3015 25 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(52)	11837	5636	6106	28
58) 12074 4417 7275 23 16) 1390 5207 -769 24 18) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(15)	-332	4414	-606	25
166) 1390 5207 -769 24 188) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 180A) 3270 6728 1857 44 180B) 4462 6793 3466 44 180C) 3405 6035 2945 44 181B) 6267 6615 -2612 44 181B) 4765 6746 -3981 44	H(53)	11963	6614	4631	30
188) 5542 5592 3154 26 17A) -1738 4012 430 47 17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(58)	12074	4417	7275	23
(7A) -1738 4012 430 47 (7B) -1913 3088 760 47 (7C) -1486 3301 -430 47 (20A) 3270 6728 1857 44 (20B) 4462 6793 3466 44 (20C) 3405 6035 2945 44 (22) 4374 4380 3015 25 (31A) 6267 6615 -2612 44 (31B) 4765 6746 -3981 44	H(16)	1390	5207	-769	24
17B) -1913 3088 760 47 17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 42) 4374 4380 3015 25 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(18)	5542	5592	3154	26
17C) -1486 3301 -430 47 20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 42) 4374 4380 3015 25 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(17A)	-1738	4012	430	47
20A) 3270 6728 1857 44 20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 22) 4374 4380 3015 25 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(17B)	-1913	3088	760	47
20B) 4462 6793 3466 44 20C) 3405 6035 2945 44 (2) 4374 4380 3015 25 (31A) 6267 6615 -2612 44 (31B) 4765 6746 -3981 44	H(17C)	-1486	3301	-430	47
20C) 3405 6035 2945 44 (2) 4374 4380 3015 25 (31A) 6267 6615 -2612 44 (31B) 4765 6746 -3981 44	H(20A)	3270	6728	1857	44
42) 4374 4380 3015 25 31A) 6267 6615 -2612 44 31B) 4765 6746 -3981 44	H(20B)	4462	6793	3466	44
81A) 6267 6615 -2612 44 81B) 4765 6746 -3981 44	H(20C)	3405	6035	2945	44
31B) 4765 6746 -3981 44	H(12)	4374	4380	3015	25
	H(31A)	6267	6615	-2612	44
31C) 5503 5874 -3651 44	H(31B)	4765	6746	-3981	44
	H(31C)	5503	5874	-3651	44


H(59A)	13124	3387	6498	38	
H(59B)	12508	4123	5413	38	
H(59C)	11640	3293	5093	38	
H(13)	2685	3574	3171	28	
H(81A)	9024	6888	5760	47	
H(81B)	10350	7026	7284	47	
H(81C)	8810	6851	7123	47	
H(57A)	9626	6273	147	54	
H(57B)	9727	7238	122	54	
H(57C)	8550	6821	420	54	


VI. References


- (1) Pracejus, H.; Wallura, G. *J. Prakt. Chem.* **1963**, *19*, 33–36. *N*,*N*-Dimethylethylamine was used as the base, rather than triethylamine.
- (2) Baigrie, L. M.; Seiklay, H. R.; Tidwell, T. J. Am. Chem. Soc. 1985, 107, 5391–5396.
- (3) Lee, E. C.; McCauley, K. M.; Fu, G. C. Angew. Chem., Int. Ed. 2007, 46, 977–979.
- (4) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10006–10007.
- (5) Dehmlow, E. V.; Slopianka, M.; Pickardt, J. *Liebigs. Ann. Chem.* **1979**, 572–593.
- (6) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578–1579.
- (7) Allen, A. D.; Baigrie, L. M.; Gong, L.; Tidwell, T. T. Can. J. Chem. **1991**, 69, 138–145.
- (8) Dai, X.; Nakai, T.; Romero, J. A. C.; Fu, G. C. *Angew. Chem., Int. Ed.* **2007**, 46, 4367–4369.
- (9) Wiskur, S. L.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 6176–6177.
- (10) Wurz, R. P.; Lee, E. C.; Ruble, J. C.; Fu, G. C. Adv. Syn. Catal. 2007, 349, 2345–2352.
- (11) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698.
- (12) Mackay, D.; McIntyre, D. D.; Wigle, I. D. J. Chem. Soc., Perkin Trans. 2, **1989**, 12, 1999–2010.
- (13) This procedure was adapted from: Baumann, T.; Vogt, H.; Bräse, S. *Eur. J. Org. Chem.* **2007**, 266–282.
- (14) Wang, M.-X.; Lin, S.-J.; Liu, J.; Zheng, Q.-Y. Adv. Synth. Catal. **2004**, 346, 439–445.

