Copyright Wiley-VCH Verlag GmbH, D-69451 Weinheim, 1999.

Angew. Chem. 1999.

Controlled Self-Assembly of Gold Rings: The First Family of Organometallic Catenanes**

Christopher P. McArdle, Michael J. Irwin, Michael C. Jennings and Richard J. Puddephatt *

Supporting Materials

Experimental Procedure *

Synthesis of the digold (I) diacetylide complex 2

[AuCl(SMe₂)]^[1] (0.593 g, 2.01 mmol) was dissolved in the mixed solvents THF (180 mL)/MeOH (120 mL). To the solution was then added a solution of Me₂C(4- $C_6H_4OCH_2C\equiv CH)_2^{[2]}$ (0.306 g, 1.01 mmol) and NaO₂CMe (0.412 g, 5.02 mmol) in THF (20 mL)/MeOH (20 mL). The resulting mixture was stirred for 10 h to produce a bright yellow precipitate. The solid was then collected by filtration, washed with MeOH and Et₂O, and dried. Yield: 0.661 g, 94%. The solid is insoluble in common organic solvents. IR (Nujol): $v(C\equiv C)$ 2000 (w) cm⁻¹.

Reaction of 2 with dppe

A mixture of **2** (0.125 g, 0.180 mmol) and Ph₂P(CH₂)₂PPh₂ (0.079 g, 0.198 mmol) in CH₂Cl₂ (50 mL) was stirred for ca. 1 h to give a clear pale pink solution. Activated charcoal was then added to the solution, and the mixture was filtered. The filtrate was concentrated

(ca. 1-2 mL) and addition of Et₂O (100 mL) precipitated a white solid, complex **3a**. The powder was collected by filtration, washed with Et₂O and dried. Yield 0.137 g, 70%. IR (Nujol): $v(C \equiv C)$ 2130 (w) cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): $\delta = 1.65$ (s, 6H, 2Me), 2.51 (m, 4H, 2CH₂), 4.75 (s, 4H, 2OCH₂), 7.01 (m, 4H, 2C₆H₄), 7.23 (m, 4H, 2C₆H₄), 7.42-7.52 (m, 20H, 4Ph). ³¹P NMR (CD₂Cl₂, 25 °C): $\delta = 40.26$. ¹³C NMR (CD₂Cl₂, 25 °C): $\delta = 24.1$ (CH₂), 30.8 (Me), 41.6 (CMe₂), 56.6 (OCH₂), 114.9, 127.6 (both C₆H₄), 129.6, 129.7, 132.4, 133.6, 133.7 (all Ph), 143.5, 156.0 (both C₆H₄). Anal. Calcd for C₄₇H₄₂Au₂P₂O₂: C 51.57, H 3.87. Found: C 52.04, H 3.95. X-ray quality crystals were grown from slow diffussion of Et₂O into a CH₂Cl₂ solution of complex **3a**.

Reaction of 2 with dppp

A mixture of **2** (0.140 g, 0.201 mmol) and Ph₂P(CH₂)₃PPh₂ (0.091 g, 0.221 mmol) in CH₂Cl₂ (50 mL) was stirred for ca. 1 h to give a clear pale blue solution. Activated charcoal was then added to the solution, and the mixture was filtered. The filtrate was concentrated (ca. 1-2 mL) and addition of Et₂O (100 mL) precipitated a white solid containing a mixture of complexes **3b**, **4a** and a further unknown species. The powder was collected by filtration, washed with Et₂O and dried. Overall crude yield 0.180 g, 81 %. ³¹P NMR (CD₂Cl₂, 25 °C): $\delta = 35.61, 34.56, 34.47, 31.67$.

Recrystallisation of the mixture from CH_2Cl_2/Et_2O produced fine white crystals of complex **4a**. IR (Nujol): $\nu(C\equiv C)$ 2132 (w) cm⁻¹. ¹H NMR (CD_2Cl_2 , 25 °C): δ = 1.42 (s, 6H, 2Me), 1.82 (m, 4H, 2CH₂), 2.32 (m, 4H, CH₂), 4.55 (s, 4H, 2OCH₂), 6.13 (m, 4H, 2C₆H₄), 6.77 (m, 4H, 2C₆H₄), 7.17-7.45 (m, 20H, 4Ph). ³¹P NMR (CD_2Cl_2 , 25 °C): δ = 31.67. ¹³C NMR

 $(CD_2Cl_2, 25\ ^{\circ}C)$: $\delta = 22.8\ (CH_2), 28.3\ (CH_2), 30.5\ (Me), 40.8\ (CMe_2), 56.9\ (OCH_2), 115.1,$ 127.1 (both C_6H_4), 129.4, 129.5, 129.6, 131.0, 133.8 (all Ph), 143.0, 155.5 (both C_6H_4). Anal. Calcd for $C_{96}H_{88}Au_4P_4O_4$: C 52.00, H 4.00. Found: C 52.15, H 4.10. X-ray quality crystals were grown from slow diffussion of $Et_2O/pentane$ into a nitrobenzene/MeOH/CH₂Cl₂/C₂H₄Cl₂ solution of pure complex **4a**.

Reaction of 2 with dppb

A mixture of **2** (0.115 g, 0.165 mmol) and Ph₂P(CH₂)₄PPh₂ (0.078 g, 0.183 mmol) in CH₂Cl₂ (50 mL) was stirred for ca. 1 h to give a clear pale blue solution. Activated charcoal was then added to the solution, and the mixture was filtered. The filtrate was concentrated (ca. 1-2 mL) and addition of Et₂O (100 mL) precipitated a white solid, complex **4b**. The powder was collected by filtration, washed with Et₂O and dried. Yield 0.125 g, 68 %. IR (Nujol): $v(C \equiv C)$ 2132 (w) cm⁻¹. ¹H NMR (CD₂Cl₂, 25 °C): $\delta = 1.64$ (s, 6H, 2Me), 1.74 (m, 4H, 2CH₂), 2.35 (m, 4H, 2CH₂), 4.76 (s, 4H, 2OCH₂), 7.00 (m, 4H, 2C₆H₄), 7.20 (m, 4H, 2C₆H₄), 7.42-7.64 (m, 20H, 4Ph). ³¹P NMR (CD₂Cl₂, 25 °C): $\delta = 38.73$. ¹³C NMR (CD₂Cl₂, 25 °C): $\delta = 27.9$ (CH₂), 28.4 (CH₂), 31.0 (Me), 41.7 (CMe₂), 56.8 (OCH₂), 114.8, 127.7 (both C₆H₄), 129.4, 129.6, 131.9, 133.5, 133.7 (all Ph), 143.5, 156.2 (both C₆H₄). Anal. Calcd for C₉₈H₉₂Au₄P₄O₄: C 52.42, H 4.15. Found: C 52.46, H 4.20. X-ray quality crystals were grown from slow diffussion of Et₂O into a CDCl₃ solution of complex **4b**.

Reaction of 2 with dpppe

A mixture of **2** (0.127 g, 0.182 mmol) and $Ph_2P(CH_2)_5PPh_2$ (0.089 g, 0.202 mmol) in CH_2Cl_2 (50 mL) was stirred for ca. 1 h to give a clear pale pink solution. Activated charcoal was then added to the solution, and the mixture was filtered. The filtrate was concentrated (ca. 1-2 mL) and addition of Et_2O (100 mL) precipitated a white solid, complex **4c**. The powder was collected by filtration, washed with Et_2O and dried. Yield 0.145 g, 70 %. IR (Nujol): $v(C\equiv C)$ 2130 (w) cm⁻¹. ¹H NMR (CD_2Cl_2 , 25 °C): δ = 1.57 (m, 6H, 3CH₂), 1.64 (s, 6H, 2Me), 2.35 (m, 4H, 2CH₂), 4.74 (s, 4H, 2OCH₂), 6.95 (m, 4H, 2C₆H₄), 7.17 (m, 4H, 2C₆H₄), 7.43-7.67 (m, 20H, 4Ph). ³¹P NMR (CD_2Cl_2 , 25 °C): δ = 37.36. ¹³C NMR (CD_2Cl_2 , 25 °C): δ = 25.5 (CH_2), 28.0 (CH_2), 31.1 (Me), 32.8 (CH_2), 41.9 (CMe_2), 56.9 (CMe_2), 114.7, 127.9 (both C_6H_4), 129.4, 129.6, 131.8, 133.5, 133.7 (all Ph), 143.6, 156.2 (both C_6H_4).

- Gold complexes are protected from light by using darkened flasks throughout.
 All NMR spectra were recorded using a 300 MHz Varian Gemini spectrometer.
- [1] A. Tamaki, J. K. Kochi, J. Organomet. Chem. **1974**, 64, 411-25.
- [2] A. M. Sladkov, V. V. Korshak, A. G. Makhsumov, *Izv. Akad. Nauk SSSR Ser. Khim.* 1963, 1343-1345; *Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.)*, 1963, 1220-1222.
- $2 = [(AuC = CCH_2OC_6H_4C(Me)_2C_6H_4OCH_2C = CAu)_x]$

- ${\bf 3a} = [Au(\mu Ph_2P(CH_2)_2PPh_2)Au(\mu C \equiv CCH_2OC_6H_4C(Me)_2C_6H_4OCH_2C \equiv C)]$
- $\mathbf{3b} = [Au(\mu Ph_2P(CH_2)_3PPh_2)Au(\mu C \equiv CCH_2OC_6H_4C(Me)_2C_6H_4OCH_2C \equiv C)]$
- $\textbf{4a} = [Au(\mu Ph_2P(CH_2)_3PPh_2)Au(\mu C \equiv CCH_2OC_6H_4C(Me)_2C_6H_4OCH_2C \equiv C)]_2$
- $\textbf{4b} = [Au(\mu Ph_2P(CH_2)_4PPh_2)Au(\mu C \equiv CCH_2OC_6H_4C(Me)_2C_6H_4OCH_2C \equiv C)]_2$
- $\mathbf{4c} = [Au(\mu Ph_2P(CH_2)_5PPh_2)Au(\mu C \equiv CCH_2OC_6H_4C(Me)_2C_6H_4OCH_2C \equiv C)]_2$