

**Synthesis and Reactions of Palladium and Platinum Complexes Bearing
Diphosphinidene Cyclobutene Ligands. A Thermally Stable Catalyst for Ethylene
Polymerization**

Shintaro Ikeda, Fumie Ohhata, Masaki Miyoshi, Rika Tanaka, Tatsuya Minami,
Fumiuki Ozawa,* and Masaaki Yoshifuji*

Experimental Section

General Procedure and Materials. All manipulations were carried out under a nitrogen atmosphere using conventional Schlenk techniques. Nitrogen gas was dried by passing through P_2O_5 (Merck, SICAPENT). NMR spectra were recorded on JEOL JNM-A400 and Varian Mercury 300 spectrometers. Chemical shifts are reported in δ (ppm), referred to 1H (of residual protons) and ^{13}C signals of the deuterated solvents or to the ^{31}P signal of an external 85% H_3PO_4 standard. GPC analysis was performed on a Waters 150C syetem using polyethylene standards (1,2,4-trichlorobenzene, 145 °C). Et_2O and pentane were dried over sodium benzophenone ketyl and distilled prior to use. CH_2Cl_2 and CH_3CN were dried over CaH_2 and distilled prior to use. CD_2Cl_2 and $CDCl_3$ were purified by passing through a short Al_2O_3 column and stored under a nitrogen atmosphere. Diphosphinidene cyclobutene ligands,^[1] $[PdMe_2(tmeda)]$,^[2] $[PdMe_2(cod)]$,^[3] $[Pt_2Me_4(SMe_2)_2]$,^[4] and $H(OEt_2)_2BAr_4$ (Ar = 3,5-($CF_3)_2C_6H_3$)^[5] were synthesized according to the literatures. All other compounds were obtained from commercial sources and used without further purification.

Preparation of 1 and 4. A typical procedure for synthesizing **1** was as follows. To a solution of $[PdMe_2(tmeda)]$ (100 mg, 0.396 mmol) in Et_2O (6 mL) was added the phenyl group-substituted diphosphinidene ligand (329 mg, 0.436 mmol). On stirring the mixture, an orange precipitate was gradually separated from the solution. After 12 h at room temperature,

the precipitate was collected by filtration, washed with Et₂O (2 mL), and dried under vacuum (333 mg, 94%), which was analytically pure without further purification. Complex **4** was prepared in almost the same procedure using [Pt₂Me₄(SMe₂)₂] in place of [PdMe₂(tmada)], and isolated as red crystals suitable for single-crystal X-ray diffraction analysis in 89% yield after recrystallization from toluene.

1: ¹H NMR (300 MHz, CD₂Cl₂, 20 °C): δ = 0.55 (A₃A'₃XX', 6H, PdMe), 1.44 (s, 18H, *p*-*t*Bu), 1.59 (s, 36H, *o*-*t*Bu), 6.75 (d, *J*_{HH} = 8.5 Hz, 4H, *o*-Ph), 6.89 (t, *J*_{HH} = 7.9 Hz, 4H, *m*-Ph), 7.11 (t, *J*_{HH} = 7.5 Hz, 2H, *p*-Ph), 7.56 (d, *J*_{PH} = 2.1 Hz, 4H, PAr); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 20 °C): δ = 2.2 (dd, *J*_{PC} = 121, 8 Hz, PdMe), 31.6 (s, *p*-CMe₃), 33.6 (s, *o*-CMe₃), 35.6 (s, *p*-CMe₃), 39.0 (s, *o*-CMe₃), 123.2 (s, *m*-Par), 128.1 (d, *J*_{PC} = 32 Hz, *ipso*-Par), 128.2, 128.5 (each s, *o* or *m*-Ph), 129.4 (s, *p*-Ph), 131.5 (s, *ipso*-Ph), 151.0 (dd, *J*_{PC} = 55, 36 Hz, P=C–C), 153.0 (s, *p*-Par), 156.9 (s, *o*-Par), 172.6 (dd, *J*_{PC} = 26, 21 Hz, P=C–C); ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 20 °C): δ 164.0 (s); elementary analysis calcd for C₅₄H₇₄P₂Pd: C 72.75, H 8.37; found: C 72.50, H 8.26.

4: ¹H NMR (300 MHz, CDCl₃, 20 °C): δ = 1.06 (A₃A'₃XX', *J*_{PtH} = 80.3 Hz, 6H, PtMe), 1.43 (s, 18H, *p*-*t*Bu), 1.62 (s, 36H, *o*-*t*Bu), 6.81 (d, *J*_{HH} = 7.8 Hz, 4H, *o*-Ph), 6.86 (t, *J*_{HH} = 8.0 Hz, 4H, *m*-Ph), 7.11 (t, *J*_{HH} = 7.2 Hz, 2H, *p*-Ph), 7.57 (d, *J*_{PH} = 1.6 Hz, 4H, PAr); ¹³C{¹H} NMR (100 MHz, CDCl₃, 20 °C): δ = -1.9 (dd, *J*_{PC} = 126, 9 Hz, *J*_{PtC} = 723 Hz, PtMe), 31.5 (s, *p*-CMe₃), 33.5 (s, *o*-CMe₃), 35.4 (s, *p*-CMe₃), 38.8 (s, *o*-CMe₃), 122.8 (s, *m*-Par), *ca.* 127 (m, the coupling pattern and exact chemical shift were obscure due to overlap with the Ph signals, *ipso*-Par), 127.4, 128.1 (each s, *o*- or *m*-Ph), 128.6 (s, *p*-Ph), 131.8 (s, *ipso*-Ph), 147.8 (dd, *J*_{PC} = 60, 40 Hz, P=C–C), 152.6 (s, *p*-Par), 156.9 (s, *o*-Par), 170.7 (dd, *J*_{PC} = 36, 30 Hz, P=C–C); ³¹P{¹H} NMR (121 MHz, CDCl₃, 20 °C): δ = 171.6 (s, *J*_{PtP} = 1590 Hz); elementary analysis calcd for C₅₄H₇₄P₂Pt: C 66.17, H 7.61; found: C 65.64, H 7.31.

Preparation of 2 and 3. Complex **2** was synthesized as follows. To a solution of [PdMe₂(cod)] (43.0 mg, 0.176 mmol) in Et₂O (3 mL) was added the trimethylsilyl group-substituted diphosphinidene ligand (135 mg, 0.181 mmol) at 0 °C. The mixture was warmed to room temperature and stirred for 30 min. The color of the solution turned to greenish

yellow, which was filtered through a short Celite column. The filtrate was concentrated to *ca.* 1 mL and cooled to -78 °C. Pentane (1mL) was slowly added with stirring, leading to the separation of a yellow precipitate, which was collected by filtration, washed with pentane (1 mL), and dried under vacuum (109 mg, 70%). Complex **3** was similarly prepared in 60% isolated yield. Complex **2** could be synthesized from [PdMe₂(tmeda)] instead of [PdMe₂(cod)] in 63% yield, while an elongated reaction time (17 h) was needed. Attempts for recrystallization of **2** and **3** from toluene or dichloromethane were unsuccessful due to partial decomposition.

2: ¹H NMR (300 MHz, CD₂Cl₂, 20 °C): δ = -0.28 (s, 18H, SiMe₃), 0.38 (A₃A'₃XX', 6H, PdMe), 1.34 (s, 18H, *p*-*t*Bu), 1.64 (s, 36H, *o*-*t*Bu), 7.54 (s, 4H, PAr); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 20 °C): δ = -0.42 (s, SiMe₃), 2.45 (dd, J_{PC} = 119, 7 Hz, PdMe), 31.2 (s, *p*-CMe₃), 33.7 (s, *o*-CMe₃), 35.5 (s, *p*-CMe₃), 39.0 (s, *o*-CMe₃), 123.4 (s, *m*-PAr), 127.8 (d, J_{PC} = 30 Hz, *ipso*-PAr), 152.7 (s, *p*-PAr), 156.4 (s, *o*-PAr), 173.3 (dd, J_{PC} = 46, 31 Hz, P=C-C), 178.3 (dd, J_{PC} = 23, 15 Hz, P=C-C); ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 20 °C): δ = 170.8 (s); elementary analysis calcd for C₄₈H₈₂P₂Si₂Pd: C 65.24, H 9.35; found: C 64.89, H 8.87.

3: ¹H NMR (300 MHz, CD₂Cl₂, -20 °C): δ = 0.47 (A₃A'₃XX', 6H, PdMe), 1.32 (s, 18H, *p*-*t*Bu), 1.58 (s, 36H, *o*-*t*Bu), 6.75 (pseudo t, J_{PH} = 2.7 Hz, 2H, P=C-CH), 7.49 (d, J_{PH} = 1.8 Hz, 4H, PAr); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, -20 °C): δ = 1.2 (dd, J_{PC} = 118, 10 Hz, PdMe), 31.0 (s, *p*-CMe₃), 33.0 (s, *o*-CMe₃), 35.2 (s, *p*-CMe₃), 38.3 (s, *o*-CMe₃), 122.3 (s, *m*-PAr), 126.3 (d, J_{PC} = 28 Hz, *ipso*-PAr), 144.7 (dd, J_{PC} = 52, 35 Hz, P=C-C), 152.0 (s, *p*-PAr), 156.2 (s, *o*-PAr), 174.7 (dd, J_{PC} = 25 Hz, P=C-C); ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, -20 °C): δ = 165.8 (s); elementary analysis calcd for C₄₂H₆₆P₂Pd: C 68.23, H 8.99; found: C 67.87, H 8.42.

Ethylene Polymerization (run 1, Table 1). Complex **1** (9.31 mg, 10.4 μ mol) and H(OEt₂)₂BAr₄ (10.7 mg, 10.6 μ mol) were placed in a Schlenk tube, and dissolved in chlorobenzene (5 mL) at room temperature. The solution was transferred by cannulation into a 150 mL pressure bottle and diluted with chlorobenzene (15 mL). Ethylene gas was charged and the mixture was mechanically stirred at 60 °C for 1 h under a constant pressure (10 kgf cm⁻²). The mixture was poured into MeOH (80 mL), and the resulting precipitate was

collected by filtration and dried under vacuum to give a white solid of polyethylene (0.90 g). ^1H NMR (400 MHz, 1,2,4-trichlorobenzene/ C_6D_6 , 130 °C): δ = 0.90 (m, CH_3 , 2% of total H), 1.33 (CH_2 , 95% of total H), 2.01 (m, allylic H, 1% of total H), 4.94 (m, terminal vinyl H), 5.40 (m, internal vinyl H), 5.78 (m, terminal vinyl H); $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, 1,2,4-trichlorobenzene/ C_6D_6 , 130 °C): δ = 14.1 (s, CH_3), 30.0 (s, CH_2), 32.8, 33.9 (each s, allylic C).

Reaction of 1 and $\text{H}(\text{OEt}_2)_2\text{BAr}_4$. Complex **1** (13.6 mg, 15.3 μmol) and $\text{H}(\text{OEt}_2)_2\text{BAr}_4$ (15.5 mg, 15.3 μmol) were placed in an NMR sample tube equipped with a rubber septum cap, and the system was replaced with argon gas at room temperature. CD_2Cl_2 (0.7 mL) was added at 0 °C, and the contents were dissolved at this temperature. The sample was examined by NMR spectroscopy at 20 °C, showing the formation of monomethylpalladium complex **5**.

5: ^1H NMR (300 MHz, CD_2Cl_2 , 20 °C): δ = 1.24 (br, 12H, OEt_2), *ca.* 1.4 (m, the coupling pattern and exact chemical shift were obscure due to overlap with the *t*-Bu signals, PdMe), 1.43, 1.45, 1.61, 1.61, 1.63, 1.64 (each s, each 9H, *t*-Bu), 3.57 (br, 8H, OEt_2), 6.78 (d, $J_{\text{HH}} = 7.8$ Hz, 2H, *o*-Ph), 6.83 (d, $J_{\text{HH}} = 8.1$ Hz, 2H, *o*-Ph), 6.97 (t, $J_{\text{HH}} = 7.8$ Hz, 2H, *m*-Ph), 6.98 (t, $J_{\text{HH}} = 8.1$ Hz, 2H, *m*-Ph), 7.25 (t, $J_{\text{HH}} = 7.5$ Hz, 2H, *p*-Ph), 7.57 (s, 4H, *p*-BAr), 7.61 (d, $J_{\text{PH}} = 2.7$ Hz, 2H, PAr), 7.73 (d, $J_{\text{PH}} = 4.2$ Hz, 2H, PAr), 7.74 (s, 8H, *o*-BAr); $^{31}\text{P}\{^1\text{H}\}$ NMR (121 MHz, CD_2Cl_2 , 20 °C): δ = 126.6, 157.7 (each br).

Complex **5** thus formed gradually decomposed in solution. However, in the presence of added CH_3CN (3 molar amounts) or in neat Et_2O , this complex was stable for a few days. The acetonitrile adduct of **5** could be isolated as described below.

Preparation of $\mathbf{5}\cdot(\text{MeCN})$. To a suspension of **1** (84.3 mg, 0.0946 mmol) in CH_2Cl_2 (3 mL) was added a CH_2Cl_2 (2 mL) solution of $\text{H}(\text{OEt}_2)_2\text{BAr}_4$ (95.8 mg, 0.0946 mmol) at 0 °C. The mixture instantly turned into an orange solution. CH_3CN (25 μL , 0.48 mmol) was then added, and the solution was stirred at room temperature for 30 min. The solution was filtered and the solvent was removed by pumping, giving a brown solid (159 mg, 94%).

$\mathbf{5}\cdot(\text{MeCN})$: ^1H NMR (300 MHz, CD_2Cl_2 , 20 °C): δ = 1.39 (dd, $J_{\text{PH}} = 9.3$, 3.3 Hz, 3H, PdMe), 1.44, 1.45, 1.59, 1.60, 1.60, 1.61 (each s, each 9H, *t*Bu), 2.30 (s, 3H, MeCN), 6.78 (d,

$J_{\text{HH}} = 7.8$ Hz, 2H, *o*-Ph), 6.84 (d, $J_{\text{HH}} = 8.1$ Hz, 2H, *o*-Ph), 6.97 (t, $J_{\text{HH}} = 8.1$ Hz, 2H, *m*-Ph), 6.98 (t, $J_{\text{HH}} = 7.8$ Hz, 2H, *m*-Ph), 7.24 (t, $J_{\text{HH}} = 7.8$ Hz, 2H, *p*-Ph), 7.57 (s, 4H, *p*-BAr), 7.61 (d, $J_{\text{PH}} = 2.7$ Hz, 2H, PAr), 7.71 (d, $J_{\text{PH}} = 4.2$ Hz, 2H, PAr), 7.73 (s, 8H, *o*-BAr); $^{13}\text{C}\{^1\text{H}\}$ NMR (75 MHz, CD_2Cl_2 , 20 °C): $\delta = 3.4$ (s, *MeCN*), 14.5 (dd, $J_{\text{PC}} = 94$, 3 Hz, *PdMe*), 31.3, 31.5, 33.8, 33.8, 34.1, 34.1 (each s, *CMe*₃), 35.8, 36.0, 38.7, 38.7, 39.8, 39.9 (each s, *CMe*₃), 117.8 (septets, $J_{\text{FC}} = 4$ Hz, *p*-BAr), 120.7 (d, $J_{\text{PC}} = 23$ Hz, *ipso*-PAr), 122.7 (s, *NCMe*), 125.9 (d, $J_{\text{PC}} = 23$ Hz, *ipso*-PAr), 123.6, 123.6, 124.9, 125.0 (each s, *m*-PAr), 125.0 (q, $J_{\text{FC}} = 273$ Hz, CF_3), 128.4, 128.4, 128.4, 128.5, 129.0, 129.0, 129.0, 129.1 (each s, *o* or *m*-Ph), 129.6 (q, $J_{\text{FC}} = 32$ Hz, *m*-BAr), 131.4, 131.5 (s, *ipso*-Ph), 131.5 (s, *p*-Ph), 135.2 (s, *o*-BAr), 153.6 (dd, $J_{\text{PC}} = 57$, 34 Hz, P=C–C), 154.9 (dd, $J_{\text{PC}} = 53$, 31 Hz, P=C–C), 155.1, 156.4 (each s, *p*-PAr), 157.5 (s, *o*-PAr), 162.1 (q, $J_{\text{BC}} = 50$ Hz, *ipso*-BAr), 170.7 (dd, $J_{\text{PC}} = 28$, 13 Hz, P=C–C), 171.5 (dd, $J_{\text{PC}} = 58$, 35 Hz, P=C–C); $^{31}\text{P}\{^1\text{H}\}$ NMR (121 MHz, CD_2Cl_2 , 20 °C): $\delta = 133.6$, 159.9 (each d, $J_{\text{PP}} = 30$ Hz); elementary analysis calcd for $\text{C}_{87}\text{H}_{86}\text{BF}_{24}\text{NP}_2\text{Pd}$: C 58.68; H 4.87; N 0.79. found: C 58.25; H 4.75; N, 0.73.

References

- [1] a) R. Appel, V. Winkhaus, F. Knoch, *Chem. Ber.* **1987**, *120*, 243; b) M. Yoshifuji, K. Toyota, M. Murayama, H. Yoshimura, A. Okamoto, K. Hirotsu, S. Nagase, *Chem. Lett.* **1990**, 2195; c) K. Toyota, K. Tashiro, M. Yoshifuji, S. Nagase, *Bull. Chem. Soc. Jpn.* **1992**, *65*, 2297.
- [2] W. de Graaf, J. Boersma, W. J. J. Smeets, A. L. Spek, G. van Koten, *Organometallics* **1989**, *8*, 2907.
- [3] G. Calvin, G. E. Coates, *J. Chem. Soc.* **1960**, 2008.
- [4] J. D. Scott, R. J. Puddephatt, *Organometallics* **1983**, *2*, 1643.
- [5] M. Brookhart, B. Grant, A. F. Jr. Volpe, *Organometallics* **1992**, *11*, 3920.