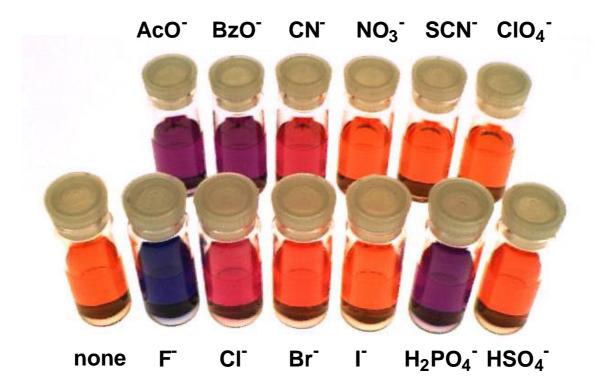
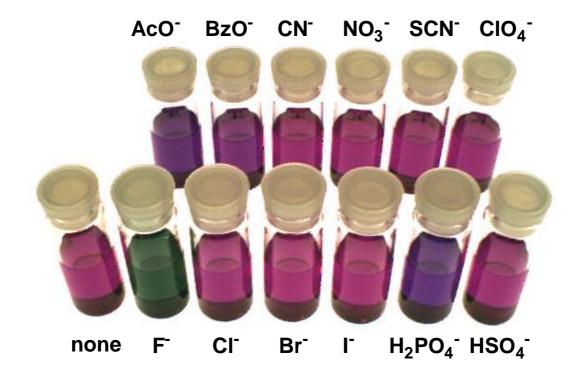

Copyright WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000. Supporting Information for:

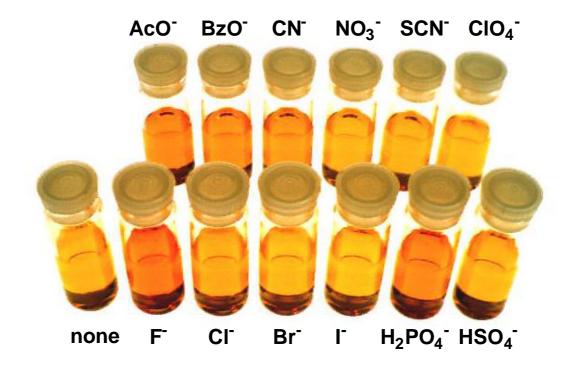
Off-the-Shelf Colorimetric Anion Sensors


Hidekazu Miyaji and Jonathan L. Sessler*

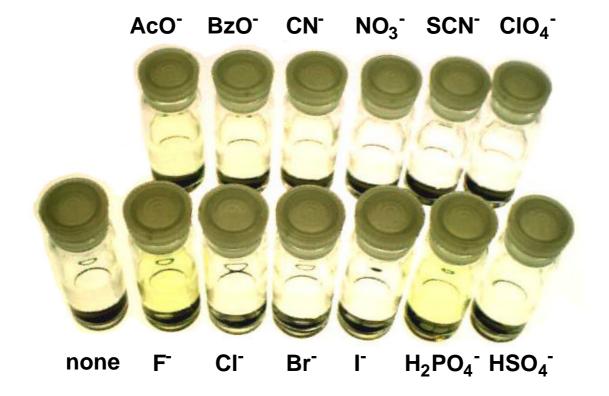
Finding Systems that Sense Anions without Recourse to Synthesis!


1,2-diaminoanthraquinone in dichloromethane (1 x 10^{-4} M). The color changed from yellow to dark purple by F^- , to red by Cl^- , to reddish orange by Br^- , to orange by I^- , to purple by $H_2PO_4^-$, to orange by HSO_4^- , to purple by AcO^- and BzO^- , to red by CN^- , to orange by NO_3^- , to orange by SCN^- (Anion: 100 equiv.).

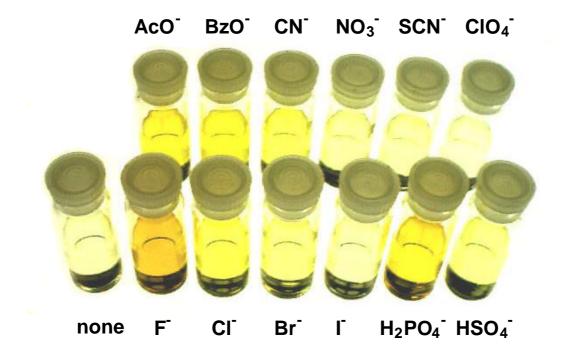
Finding Systems that Sense Anions without Recourse to Synthesis!


1,2-diaminoanthraquinone in acetonitrile (1 x 10^{-4} M). The color changed from orange to dark purple by F^- , to red by Cl^- , to reddish orange by Br^- , to purple by $H_2PO_4^-$, to purple by AcO^- and BzO^- , to red by CN^- (Anion: 100 equiv.).

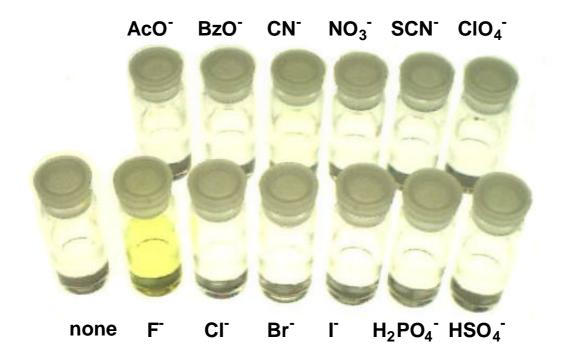
Finding Systems that Sense Anions without Recourse to Synthesis!


1,2-diaminoanthraquinone in DMSO (1 x 10^{-4} M). The color changed from red to green by F^- , to purple by $H_2PO_4^-$, AcO $^-$ and BzO $^-$ (Anion: 100 equiv.).

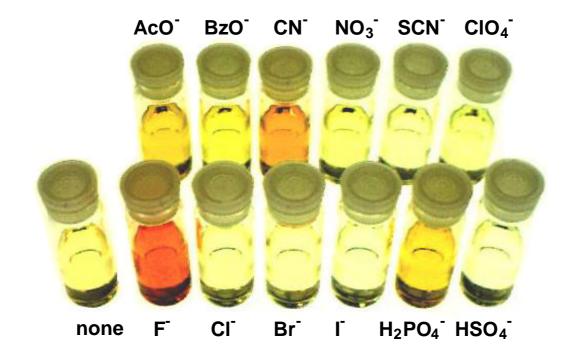
Finding Systems that Sense Anions without Recourse to Synthesis!


1,8-diaminoanthraquinone in dichloromethane (1 x 10^{-4} M). The color changed from orange to reddish orange by F⁻, $H_2PO_4^-$, AcO⁻, BzO⁻ and CN⁻ (Anion: 100 equiv.).

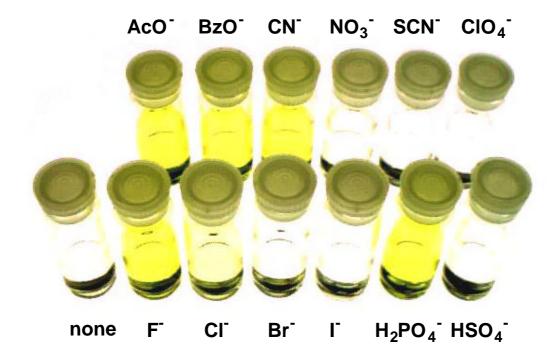
Finding Systems that Sense Anions without Recourse to Synthesis!


4-nitroaniline in dichloromethane (1 x 10^{-4} M). The color changed from colorless to yellow by F⁻, H₂PO₄⁻, AcO⁻, BzO⁻ and CN⁻ (Anion: 100 equiv.).

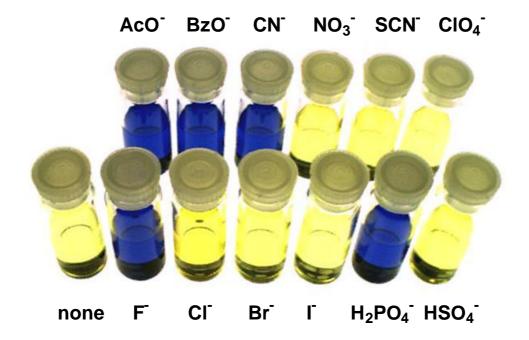
Finding Systems that Sense Anions without Recourse to Synthesis!


4-nitro-1,2-phenylenediamine in dichloromethane (1 x $10^{-4}\,\mathrm{M}$). The color changed from pale yellow to orange by F⁻, to intence yellow by Cl⁻, $\mathrm{H_2PO_4}^-$, AcO⁻, BzO⁻ and CN⁻, to yellow by Br⁻, $\mathrm{HSO_4}^-$, $\mathrm{NO_3}^-$ and SCN⁻ (Anion: 100 equiv.).

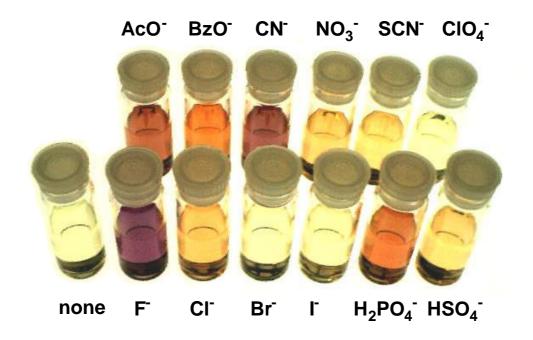
Finding Systems that Sense Anions without Recourse to Synthesis!


L-leucine-4-nitroanilide in dichloromethane (1 x 10^{-4} M). The color changed from colorless to intense yellow by F^- , to weak yellow by CN^- (Anion: 100 equiv.).

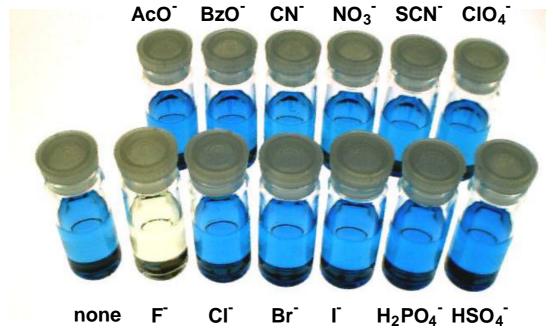
Finding Systems that Sense Anions without Recourse to Synthesis!


 $1\text{-}(4\text{-nitrophenyl})\text{-}2\text{-thiourea in DMSO }(1\text{ x }10^{-4}\text{ M})\text{.} \quad \text{The }$ color changed from pale yellow to orange by \$F^-\$ and \$CN^-\$, to intense yellow by \$H_2PO_4^-\$, \$AcO^-\$ and \$BzO^-\$ (Anion: 100 equiv.).}

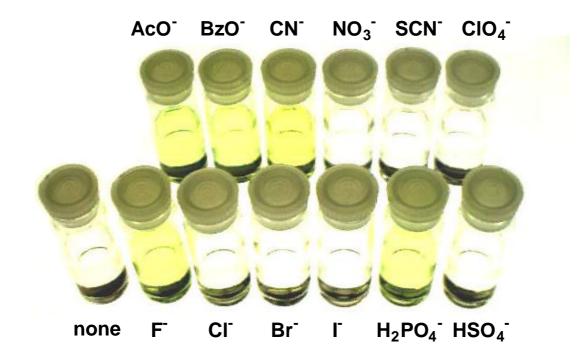
Finding Systems that Sense Anions without Recourse to Synthesis!


4-nitrophenol in dichloromethane (1 x 10^{-4} M). The color changed from colorless to intense yellow by F⁻, $H_2PO_4^-$, AcO⁻, BzO⁻ and CN⁻, to yellow by Cl⁻ (Anion: 100 equiv.).

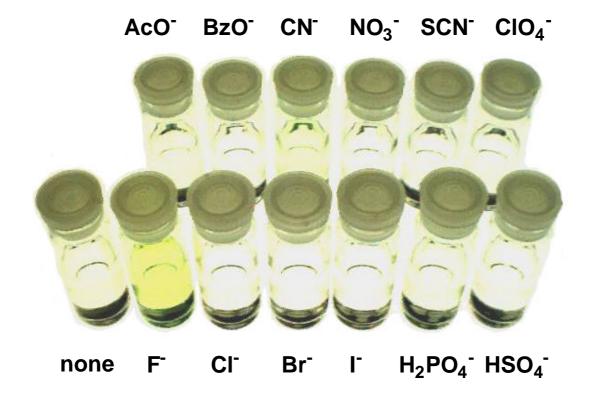
Finding Systems that Sense Anions without Recourse to Synthesis!


Alizarin in dichloromethane (1 x 10^{-4} M). The color changed from yellow to blue by F⁻, H₂PO₄⁻, AcO⁻, BzO⁻ and CN⁻ (Anion: 100 equiv.).

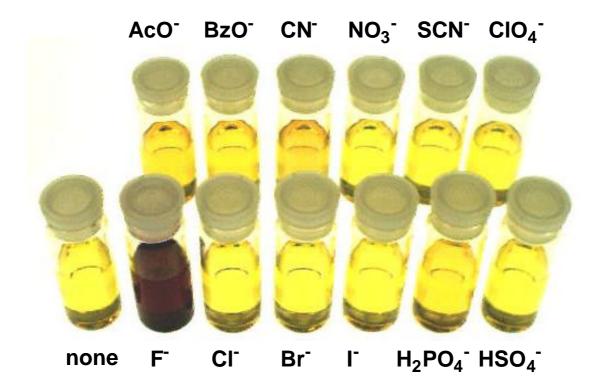
Finding Systems that Sense Anions without Recourse to Synthesis!


2,2'-bi(3-hydroxy-1,4-naphthoquinone) in dichloromethane (1 x 10^{-4} M). The color changed from yellow to purple by F⁻, CN⁻, to reddish orange by $H_2PO_4^-$, AcO⁻ BnO⁻, to yellow by Cl⁻, HSO_4^- , NO_3^- and SCN^- (Anion: 100 equiv.).

Finding Systems that Sense Anions without Recourse to Synthesis!


Acid blue 45 in DMSO (1 x $10^{-4}\,\mathrm{M}$). The color changed from blue to colorless by F $\bar{}$.

Finding Systems that Sense Anions without Recourse to Synthesis!


Naphthol AS in dichloromethane (1 x 10^{-4} M). The color changed from colorless to fluorescent yellow by F⁻, H₂PO₄⁻, AcO⁻, BzO⁻ and CN⁻ (Anion: 100 equiv.).

Finding Systems that Sense Anions without Recourse to Synthesis!

9(10H)-acridone in DMSO (1 x 10^{-4} M). The color changed from colorless to fluorescent yellow by F^- , $H_2PO_4^-$, AcO and CN (Anion: 100 equiv.).

Finding Systems that Sense Anions without Recourse to Synthesis!

Direct yellow 50 in DMSO (1 x 10^{-4} M). The color changed from yellow to red by F⁻, to orange by $\rm H_2PO_4^-$ and $\rm CN^-$ (Anion: 100 equiv.).