Copyright WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001. Supporting Information for *Angew. Chem. Int. Ed.* Z16751

Regioselective Cross-Coupling Reactions as an Entry into Biologically Relevant Bithiazoles. First Total Synthesis of Cystothiazole^^E

Thorsten Bach*, StefanHeuser

4-Bromo-2-isopropenylthiazole

$$Br$$
 N
 H_{β}

C₆H₆BrNS

34.6 mL of a solution (1.5 M in hexane, 52.0 mmol) of *t*-butyllithium were added at -78°C to a solution of 3.15 g (26.0 mmol) 2-bromopropene in 60 mL diethylether. After stirring for 15 min at -78°C 32.5 mL (1.0 M in THF, 32.5 mmol) of a ZnC½-solution were added and the reaction mixture was allowed to warm up to 25°C keeping the temperature for 30 min. This solution was cannulated quantitavely to a suspension of 4.86 g (20.0 mmol) 2,4-dibromothiazole (6) and 1.16 g (5 mol-%) Pd(PPh₃)₄ in 50 mL THF. Upon stirring for 1 h, the reaction was quenched by addition of 40 mL saturated aqueous NH₄Cl-solution. The aqueous phase was extracted three times with 100 mL diethylether and the combined organic extracts were washed with 50 mL brine and dried over Na₂SO₄. After filtration and removal of the solvent in vacuo the residue was purified by column chromatrography (pentane/diethylether, 95:5). 3.90 g (96%) 4-bromo-2-isopropenylthiazole could be isolated as a dark yellow oil, which was immediately subjected to further conversions due to its tendency to polymerize.

¹H NMR (200 MHz): δ = 2.22 (s, 3 H, C H_3), 5.35 (d, b, ²J = 1.5 Hz, 1 H, H_α), 5.87 (s, b, 1 H, H_β), 7.14 (s, 1 H, H_{arom}). – ¹³C NMR (50 MHz): δ = 20.7 (CH₃), 116.8 (CH_{arom}), 117.8 (C CH_2), 125.8 (CBr), 137.7 (CH₃ CCH_2), 170.6 (SCN).

4-Bromo-2-[4'-(2'isopropyl)-thiazoyl]-thiazol

C₉H₉BrN₂S₂

15.0 mL of a solution (1.5 M in hexane, 22.5 mmol) of *t*-butyllithium were added at -78°C to a solution of 2.20 g (10.7 mmol) 4-bromo-2-isopropylthiazole (7) in 50 mL diethylether. After stirring for 15 min at -78°C 16.0 mL (1.0 M in THF, 16.0 mmol) of a ZnC½-solution were added and the reaction mixture was allowed to warm up to 25°C keeping the temperature for 30 min. A suspension of 1.70 g (7.00 mmol) 2,4-dibromothiazole (6) and 245 mg (5 mol-%) Pd(PPh₃)C½ in 50 mL THF was cannulated quantitavely to the prepared organozinc-solution. Upon refluxing for 16 h, the reaction was quenched by addition of 40 mL saturated aqueous NH₄Cl-solution. The aqueous phase was extracted three times with 100 mL diethylether and the combined organic extracts were washed with 50 mL brine and dried over Na₂SO₄. After filtration and removal of the solvent in vacuo the residue was purified by column chromatrography (pentane/diethylether, 99:1). 2.06 g (97%) 4-Bromo-2-[4′-(2′isopropyl)-thiazol(3) could be isolated as a yellow solid.

¹H NMR (200 MHz): δ = 1.36 (d, ³J = 6.8 Hz, 6 H, CH₃), 3.28 (sept., ³J = 6.8 Hz, 1 H, CH), 7.16 (s, 1 H, H-5), 7.80 (s, 1 H, H-5′). – ¹³C NMR (50 MHz): δ = 23.5 (CH₃), 33.7 [CH(CH₃)₂], 116.1 (C-5), 117.6 (C-5′), 126.2 (C-4), 147.9 (C-4′), 164.3 (C-2), 179.3 (C-2′)

Bithiazole 12

$$Si$$
 0 0 6 11 S 12 $\frac{1}{4}$ 5 $\frac{1}{8}$ 8 S $\frac{10}{10}$ N $\frac{12}{13}$ $\frac{13}{14}$

12

$C_{22}H_{36}N_2O_2S_2S_1$

565 mg (4.75 mmol) catecholborane were added slowly to neat 760 mg (3.16 mmol) 1-*tert*-butyldimethylsiloxy-3(R)-methoxy-2(R)-methyl-4-pentyne (11). After keeping the reaction mixture at 25°C for 5 min, the temperature was risen to 70°C for 1 h and afterwards to 95°C for further 2 h. The reaction mixture was allowed to cool to room temperature and 6.5 mL water were added. After vigorous stirring for 1 h 10 mL ethanol were added to dissolve the formed white precipitate. This solution was quantitatively added to a solution of 365 mg (1.26 mmol) 4-bromo-2-[4'-(2'isopropyl)-thiazoyl]-thiazol (3), 73 mg (5 mol-%) Pd(PPh₃)₄ and 6.3 mL (3.73 mmol) of an aqueous 10% CsOH-solution in 60 mL benzene. The reaction mixture was heated to 95°C for 24 h. After cooling to room temperature and addition of 40 ml water the aqueous phase was extracted two times with 100 mL CH₂Cl₂ and two times with 100 mL pentane. The combined organic extracts were washed with 100 mL brine, dried over Na₂SO₄, filtered and the solvent was removed in vacuo. Flash chromatrography (pentane/diethylether, 95:5) provided 537 mg (94%) of the desired compound 12 as a yellow oil.

¹H NMR (250 MHz): $\delta = 0.02$ [s, 6 H, Si(CH₃)₂], 0.88 [s, 9 H, C(CH₃)₃], 0.92 (d, ${}^{3}J = 6.2$ Hz, 3 H, H-3), 1.41 [d, ${}^{3}J = 6.9$ Hz, 6 H, CH(C H_3)₂], 1.82 (virt. sept., ${}^{3}J = 6.2$ Hz, 1 H, H-2), 3.31 (s, 3 H, OCH₃), 3.33 [sept., ${}^{3}J = 6.9$ Hz, 1 H, CH(CH₃)₂], 3.48 (dd, ${}^{2}J = 9.7$ Hz, ${}^{3}J = 5.7$ Hz, 1 H, CHHOSi), 3.60 (dd, ${}^{2}J = 9.7$ Hz, ${}^{3}J = 6.7$ Hz, 1 H, CHHOSi), 3.85 (virt. t, ${}^{3}J = 5.0$ Hz, 1 H, CHOCH₃), 6.53 (m, 2 H, H-5, H-6), 7.05 (s, 1 H, H-8), 7.84 (s, 1 H, H-11). – ¹³C NMR (62.9 MHz): $\delta = -5.5$ [Si(CH₃)(CH₃)], -5.4 [Si(CH₃)(CH₃)], 11.6 (CH₃), 18.2 [SiC(CH₃)₃], 23.1 [2 C, CH(CH₃)₂], 25.9 [SiC(CH₃)₃], 33.3 [CH(CH₃)₂], 41.0 [OCH₂CH(CH₃)CH(OCH₃], 57.1 (OCH₃), 64.8 (CH₂O), 82.1 [CH(CH₃)CH(OCH₃], 114.9 (C-11), 115.0 (C-8), 124.8 (C-6), 132.2 (C-5), 148.7 (C-10), 154.4 (C-7), 162.7 (C-9), 178.6 (C-12)