

Catalytic Asymmetric Direct Mannich Reactions of Carbonyl Compounds with α -Imino Esters**

Karsten Juhl, Nicholas Gathergood, and Karl Anker
Jørgensen*

Experimental Section

General Methods. The ^1H NMR and ^{13}C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. The chemical shifts are reported in ppm down field to TMS ($\delta=0$) for ^1H NMR and relative to the central CDCl_3 resonance ($\delta=77.3$) for ^{13}C NMR. Solvents were dried according to standard procedures. Purification of reactions products was carried out by flash chromatography (FC) using Merck silica gel 60 (230-400 mesh). Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products were determined by HPLC using a Daicel Chiralpak AD column.

Materials.

2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline], methylenebis[(4R,5S)-4,5-diphenyl-2-oxazoline], 2,2'-isopropylidenebis[(4R)-4-phenyl-2-oxazoline], $\text{Cu}(\text{OTf})_2$,

2-oxo-butyric acid, ethyl pyruvate **1a**, ethyl 2-oxo-4-phenylbutyrate **1c**, di-*tert*-butyldicarbonate, *N,N*-dimethyl-4-aminopyridine and Mg-powder were purchased from Aldrich and used as received. Ethyl bromopyruvate **1d** was purchased from Acros in 80% pure form and used as received. (*R*)-Tol-BINAP was purchased from Lancaster and used as received. *N*-tosyl- α -ester **2**^[1] and CuPF₆^[2] were prepared by literature procedures. Ethyl 2-oxo-butyrate **1b** was prepared by refluxing 2-oxo-butyric acid in ethanol in the presence of a catalytic amount of HCl followed by destillation.

General Procedure for Catalytic Asymmetric Mannich-type reaction: In an oven dried Schlenk tube equipped with a magnetic stirrer bar, Cu(OTf)₂ (9 mg, 0.025 mmol) and 2,2-isopropylidenebis[(4*R*)-4-phenyl-2-oxazoline] (9 mg, 0.027 mmol) were added. The mixture was stirred under vacuum for 2h and filled with Ar. Dry CH₂Cl₂ (1 mL) was added and the solution was stirred for 2h. 1.5 mL of a 0.25 M CH₂Cl₂ solution of the imine (0.375 mmol) were added followed by the addition of 0.25 mmol of the ethyl pyruvate derivative. After 40h the reaction mixture was filtered through a plug of silica using 30% EtOAc in CH₂Cl₂ as the eluent. Evaporation of the solvents *in vacuo* afforded the crude product, which was purified by FC to give the diethyl-*N*-tosyl-4-oxo-glutamic acid ester.

Compound 3a: $[\alpha]^{rt}_{D} = -29.6^{\circ}$ ($c = 0.01$ g/mL, CH_2Cl_2); ^1H NMR (400 MHz, CDCl_3) δ 7.74 (d, $J = 8.2$, 2H, ArH), 7.29 (d, $J = 8.2$ Hz, 2H, ArH), 5.53 (d, $J = 7.4$ Hz, 1H, NH), 4.42 (dt, $J = 7.4$, 4.8 Hz, 1H, CH), 4.31 (q, $J = 7.1$ Hz, 2H, OCH_2), 4.04 (q, $J = 7.1$, 2H, OCH_2), 3.43 (d, $J = 4.8$ Hz, 2H, CH_2), 2.41 (s, 3H), 1.36 (t, $J = 7.1$, 3H, CH_3), 1.11 (t, $J = 7.1$, 3H, CH_3); ^{13}C NMR (100 MHz, CDCl_3) δ 191.1, 169.8, 159.9, 144.1, 136.6, 130.0, 127.5, 63.2, 62.7, 51.4, 43.2, 21.8, 14.2, 14.0; HRMS $\text{C}_{16}\text{H}_{21}\text{NO}_7\text{S}$ $[\text{M}+\text{Na}]^+$ calculated 394.0936; found 394.0940.

Compound 3b: ^1H NMR (400 MHz, CDCl_3) δ 7.70 (d, $J = 8.0$, 2H, ArH), 7.30 (d, $J = 8.0$ Hz, 2H, ArH), 5.55 (d, $J = 8.8$ Hz, 1H, NH), 4.60 (dd, $J = 8.8$, 5.6 Hz, 1H, CHN), 4.36 (dq, $J = 7.2$, 2.0 Hz, 2H, OCH_2), 4.00 (dq, $J = 7.2$, 2.0, 2H, OCH_2), 3.69 (dq, $J = 6.4$, 5.6, 1H, CHMe), 2.42 (s, 3H), 1.40 (t, $J = 7.2$, 3H, CH_3), 1.14 (d, $J = 6.4$, 3H, CH_3), 1.09 (t, $J = 7.2$, 3H, CH_3); ^{13}C NMR (100 MHz, CDCl_3) δ 192.7, 169.8, 160.3, 144.1, 136.5, 130.4, 128.0, 63.0, 62.7, 56.5, 45.4, 21.8, 14.2, 14.1, 11.1; HRMS $\text{C}_{17}\text{H}_{23}\text{NO}_7\text{S}$ $[\text{M}+\text{Na}]^+$ calculated 408.1093; found 408.1094.

Compound 3c: ^1H NMR (400 MHz, CDCl_3) δ 7.51 (d, $J = 8.0$, 2H, ArH), 7.20 (m, 5H, ArH), 7.08 (d, $J = 8.0$, 2H, ArH), 5.40 (d, $J = 7.9$ Hz, 1H, NH), 4.27 (dd, $J = 7.9$, 5.2 Hz, 1H, CH), 4.18 (m, 2H, CH_2), 4.00 (m, 1H, CH), 3.88 (m, 2H, CH_2), 3.08 (dd, $J = 14.0$, 8.2 Hz, 1H, BnCH), 2.85

(dd, $J = 14.0, 6.9$ Hz, 1H, BnCH), 2.32 (s, 3H), 1.24 (dt, $J = 7.1, 0.9$, 3H, CH₃), 1.03 (dt, $J = 7.1, 0.9$, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 192.4, 169.7, 160.1, 144.1, 137.6, 136.1, 129.9, 129.5, 128.8, 127.6, 127.0, 63.0, 62.8, 55.7, 53.1, 21.8, 14.1, 14.0; HRMS C₂₃H₂₇NO₇S [M+Na]⁺ calculated 484.1406; found 484.1404.

Compound 3d: HRMS C₁₆H₂₀BrNO₇S [M+Na]⁺ calculated 472.0042; found 472.0042. The enantiomeric excess of **3b** was determined by reduction of the compound to **3a**. Compound **3a** was formed by reaction of **3d** with MgI₂, followed by reduction with NaHSO₃.

Representative Procedure for Enantio- and Diastereoselective Formation of N-tosyl-4-amino-5-oxo-tetrahydro-furan-2-carboxylic acid ethyl esters: In an oven dried Schlenk tube equipped with a magnetic stirrer bar, Cu(OTf)₂ (41 mg, 0.1125 mmol) and 2,2-isopropylidenebis[(4R)-4-phenyl-2-oxazoline] (40 mg, 0.118 mmol) were added. The mixture was stirred under vacuum for 2h and filled with Ar. Dry CH₂Cl₂ (4 mL) was added and the solution was stirred for 2h. 430 mg of the imine (1.68 mmol) was added followed by the addition of 143 mL (1.125 mmol) of ethyl 2-oxo-butanoic acid ester. After 40h the reaction mixture was filtered through a plug of silica using 30% EtOAc in CH₂Cl₂ as the eluent. Evaporation of the solvents *in-vacuo* afforded the crude product. The crude product from the Mannich reaction was

added to a Schlenk tube equipped with a magnetic stirrer bar. The Schlenk tube was evacuated and filled with Ar. Dry THF (5 mL) was added, and the solution was cooled to -78°C. 1.3 mL of a 1 M THF solution of L-Selectride was added, and the solution was stirred for 90 minutes. The reaction mixture was then poured into 20 mL of 1 N HCl and extracted with CH₂Cl₂. Evaporation of the solvents *in-vacuo* afforded the crude alcohol, which after treatment with PTSA (cat) in toluene at 70°C for 4h gave the lactone, which was purified by FC.

Compound 8b: $[\alpha]^{rt}_{D} = -19.9^{\circ}$ ($c = 0.01$ g/mL, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, $J = 8.4$, 2H, ArH), 7.33 (d, $J = 8.4$, 2H, ArH), 5.08 (d, $J = 7.3$ Hz, 1H, NH), 4.38 (d, $J = 9.5$ Hz, 1H, CHCOOEt), 4.28 (q, $J = 7.1$ Hz, 2H, OCH₂), 3.75 (dd, $J = 7.3$, 10.5 Hz, 1H, CHN), 2.45 (m, 1H, CHMe), 2.43 (s, 3H, CH₃), 1.40 (d, $J = 6.6$, 3H, CH₃), 1.31 (t, $J = 7.1$, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 168.3, 144.2, 137.1, 130.0, 127.5, 79.1, 62.6, 58.9, 42.4, 21.8, 15.0, 14.3. HRMS C₁₅H₁₉NO₆S[M+Na]⁺ calculated 364.0831; found 364.0895.

Compound 8c: $[\alpha]^{rt}_{D} = -48.7^{\circ}$ ($c = 0.01$ g/mL, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, $J = 8.0$, 2H, ArH), 7.18-7.27 (m, 7H, ArH), 5.40 (d, $J = 6.6$ Hz, 1H, NH), 4.41 (d, $J = 8.4$ Hz, 1H, CHCOOEt), 4.04 (m, 1H, CHN), 3.92 (m, 2H, CH₂), 3.14 (m, 1H, CHBn), 2.84 (m, 2H, CH₂Ph), 2.34 (s, 3H), 1.12 (t, $J = 7.1$, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃)

δ 172.2, 168.7, 144.3, 137.0, 135.8, 130.1, 130.0, 129.0, 127.6, 127.5, 77.2, 62.7, 55.8, 47.5, 34.6, 21.8, 14.1. HRMS $C_{21}H_{23}NO_6S[M+Na]^+$ calculated 440.1144; found 440.1149.

Boc-protection of lactone 8b. 50 mg (0.15 mmol) of lactone **8b** is placed in a flask which evacuated and filled with Ar. 5 mL HPLC-grade MeCN is added followed by 0.2 equiv DMAP and 1.5 equivalent di-*tert*-butyldicarbonate. The solution is stirred at room temperature over night. The solvent is removed *in-vacuo*. The crude is redissolved in ether and extracted twice with 0.2 M citric acid and once with saturated $NaHCO_3$. The crude is filtered through a plug of silica and transferred to a Schlenk flask after removal of the solvent *in-vacuo*. Lactone **9** is obtained as white crystals in 98% yield (63 mg) after FC.

Compound 9: $[\alpha]^{rt}_D = -61.6^\circ$ ($c = 0.01$ g/mL, CH_2Cl_2); 1H NMR (400 MHz, $CDCl_3$) δ 7.85 (d, $J = 8.0$, 2H, ArH), d = 7.27 (d, $J = 8.0$, 2H, ArH), 4.93 (d, $J = 10.8$ Hz, 1H, CHN), 4.41 (d, $J = 9.6$ Hz, 1H, $CHCOOEt$), 4.24 (q, $J = 7.2$ Hz, 2H, CH_2), 2.98 (m, 1H, CHMe), 2.37 (s, 3H, CH_3), 1.41 (d, $J = 6.4$, 3H, CH_3), 1.26 (t, $J = 7.2$, 3H, CH_3), 1.24 (s, 9H, $C(CH_3)_3$); ^{13}C NMR (100 MHz, $CDCl_3$) δ 170.7, 168.0, 149.2, 145.0, 136.3, 130.2, 129.3, 128.6, 128.1, 86.8, 79.6, 79.0, 62.4, 38.8, 27.9, 21.3, 15.8, 14.4. HRMS $C_{20}H_{27}NO_8S[M+Na]^+$ calculated 464.1355; found 464.1367.

Detosylation of aminolactone 9. 90 mg (0.2 mmol) of lactone **9** is transferred to an oven dried Schlenk tube equipped with a magnetic stirrer bar. The Schlenk flask is evacuated and filled with Ar and then charged with 1.5 mL of dry MeOH followed by the addition of 5 equiv of Mg. The reaction mixture is sonicated for 45 min and then poured into 1M HCl and extracted with ether. The organic phase is washed with saturated NaHCO₃ and brine. The solvent is removed *in-vacuo* and 41 mg of **10** (71%) is obtained after FC.

Compound **10**: $[\alpha]^{25}_{D} = -9.1$ ($c = 0.01$ g/mL, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 5.16 (d, $J = 8.0$, 1H, NH), 4.44 (d, $J = 10.0$, 1H, CHCOOEt), 4.21 (dd, $J = 8.0$, 10.8 Hz, 1H, CHN), 2.45 (m, 1H, CHMe), 3.81 (s, 3H, OCH₃), 1.34 (d, $J = 6.8$, 3H, CH₃), 1.43 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 168.9, 155.7, 81.0, 79.2, 56.9, 53.2, 42.7, 28.5, 15.4. HRMS C₁₂H₁₉NO₆ [M+Na]⁺ calculated 296.1110; found 296.1115.

References.

1. G. R. Heintzelman, S. M. Weinreb and M Parvez, *J. Org. Chem.* **1996**, *61*, 4594.
2. G. J. Kubas Inorg. Synth., Vol. XIX, D. F. Shcriver, Ed., Plenum, **1979**, 90.